(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-06
(45)【発行日】2023-11-14
(54)【発明の名称】医療シミュレータ及び医療シミュレータを用いた手技評価方法
(51)【国際特許分類】
G09B 23/32 20060101AFI20231107BHJP
G09B 9/00 20060101ALI20231107BHJP
【FI】
G09B23/32
G09B9/00 Z
(21)【出願番号】P 2021522613
(86)(22)【出願日】2019-10-10
(86)【国際出願番号】 JP2019040115
(87)【国際公開番号】W WO2020240884
(87)【国際公開日】2020-12-03
【審査請求日】2022-09-20
(31)【優先権主張番号】P 2019101754
(32)【優先日】2019-05-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】504150461
【氏名又は名称】国立大学法人鳥取大学
(74)【代理人】
【識別番号】100149696
【氏名又は名称】田中 俊夫
(72)【発明者】
【氏名】下田 智大
(72)【発明者】
【氏名】松岡 正晃
(72)【発明者】
【氏名】福田 知治
(72)【発明者】
【氏名】大田 廉
(72)【発明者】
【氏名】米田 章
(72)【発明者】
【氏名】植木 賢
(72)【発明者】
【氏名】藤井 政至
【審査官】宇佐田 健二
(56)【参考文献】
【文献】特開2015-196075(JP,A)
【文献】特開2003-199700(JP,A)
【文献】登録実用新案第3197290(JP,U)
【文献】特開2017-068413(JP,A)
【文献】特開2004-085718(JP,A)
【文献】特開2003-210386(JP,A)
【文献】国際公開第2008/041456(WO,A1)
【文献】特開2016-218415(JP,A)
【文献】テクノロジーMICOTO,"[mikoto]大腸内視鏡トレーニングモデル",YouTube,日本,YouTube,LLC,2019年05月30日,全文,全図(p.1-4),https://www.youtube.com/watch?v=eJIiVU6pDq0,[2019.12.13検索]
(58)【調査した分野】(Int.Cl.,DB名)
G09B 9/00,23/28-23/34
(57)【特許請求の範囲】
【請求項1】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、
カメラにより撮像された前記臓器収容部内の画像を取得し、取得された画像を用いて、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能である、
医療シミュレータ。
【請求項2】
前記管腔臓器モデルの前記可動領域の少なくとも一部の外側周囲又は外側表面には、前記管腔臓器モデルの軸方向に離間する位置に複数のマーカが配置されており、
前記検出手段は、
前記取得された画像に含まれるマーカ画像に基づいて、前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である、
請求項1に記載の医療シミュレータ。
【請求項3】
前記臓器収容部に着脱自在に装着され、装着状態で前記臓器収容部の内部空間を外光から遮光する遮光部、
を更に備え、
前記臓器収容部は、前記管腔臓器モデルを収容した状態で前記臓器収容部の内部空間を腹側から封鎖する腹壁カバー部を含み、
前記腹壁カバー部は、透明な窓部を含み、
前記遮光部は、前記窓部を介して前記管腔臓器モデルを撮像可能な位置及び向きに設置された前記カメラと、光源と、該光源と前記窓部との間に設けられており該光源からの光で間接的に前記臓器収容部の内部空間を照らす間接照明部とを含む、
請求項1又は2に記載の医療シミュレータ。
【請求項4】
前記臓器収容部の内壁面のうち、少なくとも、前記検出手段の検出対象とされる前記管腔臓器モデルの前記対象部位の周囲の領域は、表面反射を抑制する部材又は材料を含む、
請求項3に記載の医療シミュレータ。
【請求項5】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であり、
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部及び前記臓器収容部に対してスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられた臓器保持部を含み、
前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域及び前記臓器保持部に保持される領域を含み、
前記大腸モデルの前記臓器保持部に保持される領域は、下行結腸からS状結腸までの範囲の一部に相当する領域であり、
前記臓器保持部のスライドにより、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの間の屈曲度合が変化する、
医療シミュレータ。
【請求項6】
前記臓器保持部のスライド範囲は、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの長さが前記肛門保持部から前記臓器保持部までの距離の2倍となる位置を含む、
請求項5に記載の医療シミュレータ。
【請求項7】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であり、
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記管腔臓器モデルの前記局所固定領域は、前記大腸モデルの肛門側端部領域を含み、
前記管腔臓器モデルの前記可動領域は、前記大腸モデルにおける横行結腸に相当する横行結腸領域及び前記大腸モデルにおける直腸に相当する直腸領域を含み、
前記臓器収容部は、前記大腸モデルの前記横行結腸領域の収容位置よりも下方かつ前記肛門側端部領域を保持する肛門保持部及び前記大腸モデルの前記直腸領域の収容位置よりも上方に位置し下向きの壁面を持つ補助壁部を含む、
医療シミュレータ。
【請求項8】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であり、
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記大腸モデルは、横行結腸に相当する横行結腸領域、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
前記臓器収容部は、前記内部空間の上方に下向きの壁面を持って立設されており、下方へスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられたスライド壁部を含み、
前記大腸モデルの少なくとも前記脾彎曲領域及び前記肝彎曲領域は、前記スライド壁部の下方へのスライドに伴い、下方へ変位する、
医療シミュレータ。
【請求項9】
前記大腸モデルは、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
前記大腸モデルの前記脾彎曲領域及び前記肝彎曲領域は、前記大腸モデルの管腔内で撮像される内視鏡画像において前記脾彎曲領域及び前記肝彎曲領域で色調変化を生じさせる色調変化領域を含む、
請求項8に記載の医療シミュレータ。
【請求項10】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
モータと、
前記モータを収容するモータ収容部と、
前記モータの回転動力を用いて駆動される出力シャフトと、
前記モータ収容部を保持する基台と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であり、
前記臓器収容部は、前記内部空間の上方を封鎖すると共に前記出力シャフトの一端を固定する上端壁部を更に含み、前記モータの回転動力により前記出力シャフトが駆動される場合には、前記基台又は前記臓器収容部に回動自在に設けられたタイヤ部を介して前記基台の腹側支持面に支持されながら前記出力シャフトと共に揺動する、
医療シミュレータ。
【請求項11】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であり、
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部を含み、
前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域を含み、
前記肛門保持部は、前記大腸モデルの前記肛門側端部領域が挿通される貫通孔、及び前記貫通孔の断面積が上方に向かって漸次拡大するテーパ状壁面部を含み、
前記テーパ状壁面部は、前記テーパ状壁面部の下端から上端までの傾斜が急峻な第一壁面部と該第一壁面部よりも該傾斜が緩やかな第二壁面部とを含み、
前記第一壁面部及び前記第二壁面部は、前記貫通孔の軸方向視で対向する位置に少なくとも存在する、
医療シミュレータ。
【請求項12】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であり、
前記管腔臓器モデルは、管腔を画定する内壁面に、該管腔内に注入された潤滑液を滞留させ得る複数の
線状の微小凹溝を有
し、
前記複数の線状の微小凹溝の幅はそれぞれ1mm(ミリメートル)未満である、
医療シミュレータ。
【請求項13】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
判定手段と、
時間取得手段と、
評価手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であり、
前記判定手段は、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを前記対象装置の部位が通過したことを判定
し、
前記時間取得手段は、二つのチェックポイント間の前記部位の滞在時間を取得
し、
前記評価手段は、前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価す
る、
医療シミュレータ。
【請求項14】
前記時間取得手段は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、該第二のチェックポイントを通過してから該第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得し、
前記評価手段は、前記第一の滞在時間及び前記第二の滞在時間に対して別個の評価方式でそれぞれ評価する、
請求項13に記載の医療シミュレータ。
【請求項15】
前記管腔臓器モデルの所定部位にかかる負荷情報を取得する負荷取得手段、
を更に備え、
前記評価手段は、前記取得される負荷情報が閾値を超えた負荷を示す場合に、前記取得される滞在時間を用いて点数付けされた評価ポイントから該負荷情報に対応する減点を行うことで、前記被訓練者の手技の評価ポイントを算出する、
請求項13又は14に記載の医療シミュレータ。
【請求項16】
前記被訓練者の発話情報を取得する発話取得手段と、
前記取得された発話情報に基づいて、予め定められた複数種の所定発話のうち前記被訓練者が発した一以上の所定発話を特定可能な発話特定手段と、
を更に備え、
前記評価手段は、前記特定された一以上の所定発話の組合せに基づいて加点又は減点することで、前記評価ポイントを算出する、
請求項15に記載の医療シミュレータ。
【請求項17】
前記管腔臓器モデルの管腔内の気圧を測定する測定手段、
を更に備え、
前記評価手段は、前記対象装置の部位が二つのチェックポイント間に滞在している際に測定された気圧と気圧閾値との比較結果を更に用いて、前記被訓練者の手技を評価する、
請求項13から16のいずれか一項に記載の医療シミュレータ。
【請求項18】
前記評価手段は、前記検出手段が前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である場合に、検出された屈曲状態、伸縮状態、捻じれ状態、又はループ状態を更に用いて、前記被訓練者の手技を評価する、
請求項13から17のいずれか一項に記載の医療シミュレータ。
【請求項19】
前記検出手段は、少なくとも訓練時において、前記管腔臓器モデルの前記可動領域の少なくとも一部が前記臓器収容部の内部空間における前後方向の評価位置又は上下方向の評価位置を超えたことを検出し、
前記評価手段は、前記検出手段による前記評価位置が超えられたことの検出結果を更に用いて、前記被訓練者の手技を評価する、
請求項13から18のいずれか一項に記載の医療シミュレータ。
【請求項20】
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、前記管腔臓器モデルを内部空間に収容する臓器収容部と、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のセンサとを少なくとも備える医療シミュレータを制御する制御部により実行される医療シミュレータを用いた手技評価方法であって、
前記複数のセンサによる検出信号に基づいて、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを
被訓練者により操作される対象装置の部位が通過したことを判定し、
二つのチェックポイント間の前記部位の滞在時間を取得し、
前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価する、
ことを含む医療シミュレータを用いた手技評価方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、医療シミュレータに関し、特に、管腔臓器へ内視鏡等の医療具を挿入する医療手技の訓練を可能とするシミュレータ及びそのような医療シミュレータを用いた被訓練者の手技の評価方法に関する。
【背景技術】
【0002】
近年の医学の進歩及び医療技術の高度化に伴い、医療従事者にも高度な技能が求められるようになってきており、医療従事者に対する教育の充実が求められている。中でも、生体を模擬したモデルを用いたシミュレーション教育は、実践さながらの技術習得及び訓練が可能となるため、特に注目されている。
【0003】
下記特許文献1には、臓器モデルの穿孔を防ぎ、効率良くトレーニング可能な内視鏡トレーニングシステムが開示されている。このシステムは、内視鏡装置のスコープを挿入する臓器モデルを外箱本体に収容し、その外箱本体と臓器モデルとの間を液体で充填し、液体が外箱本体から外部へ流出する流量を臓器モデルに作用する圧力として検出する。これにより、臓器モデルが穿孔するほどの不必要な圧力がかかる前に使用者に注意喚起することで、臓器モデルの穿孔を防ぐことが可能となる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述のトレーニングシステムでは、液体の流出量を臓器モデルに作用する圧力として検出するが、内視鏡手技では臓器モデルは大きく変位する場合もあるため、液体の流出量では臓器モデルに作用する圧力を正確に検出できるとは言い切れない。例えば、臓器モデルが大きく変位することで臓器モデルに作用する圧力とは無関係に液体が流出してしまう場合があり得る。
管腔臓器へ内視鏡等の医療具を挿入する医療手技は医師の暗黙知でしかなく、そのような医療手技の状況を適切に可視化することができていないのが現状である。
【0006】
本発明は、このような事情に鑑みてなされたものであり、管腔臓器へ内視鏡等の医療具を挿入する医療手技の状況を適切に可視化することで、当該医療手技の効率的な訓練を可能とする医療シミュレータ及びそのような医療シミュレータを用いた被訓練者の手技の評価方法を提供する。
本明細書において「医療具」とは、医療機器だけでなく、医療手技訓練用の機器や用具を含むものとする。
【課題を解決するための手段】
【0007】
本発明の一側面に係る医療シミュレータは、上述した課題を解決するために、以下の構成を採用する。即ち、当該一側面に係る医療シミュレータは、柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、検出手段とを備え、管腔臓器モデルは、長手方向の異なる位置に、臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により臓器収容部の内部空間内で変位可能な可動領域とを含み、検出手段は、少なくとも訓練時において、当該内部空間内における管腔臓器モデルの可動領域の少なくとも一部である対象部位の変位又は変形を検出可能である。
ここで、管腔臓器モデルとは、管腔臓器を模擬した中空の管状体である。
対象装置は、内視鏡等のような医療具である。
【0008】
本発明の他の側面は、柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、管腔臓器モデルを内部空間に収容する臓器収容部と、管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のセンサとを少なくとも備える医療シミュレータを制御する制御部により実行される医療シミュレータを用いた手技評価方法に関する。本方法は、当該複数のセンサによる検出信号に基づいて、管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを対象装置の部位が通過したことを判定し、二つのチェックポイント間の上記部位の滞在時間を取得し、取得された滞在時間を少なくとも用いて被訓練者の手技を評価することを含む。
また、他の側面として、上記手技評価方法を上記医療シミュレータを制御する制御部に実行させるコンピュータプログラムであってもよいし、このようなプログラムを記録したコンピュータが読み取り可能な記憶媒体であってもよい。この記憶媒体は、非一時的な有形の媒体を含む。
【発明の効果】
【0009】
本発明によれば、管腔臓器へ内視鏡等の医療具を挿入する医療手技の状況を適切に可視化することで、当該医療手技の効率的な訓練を可能とする医療シミュレータ及びそのような医療シミュレータを用いた被訓練者の手技の評価方法を提供することができる。
【図面の簡単な説明】
【0010】
【
図1】本実施形態に係る医療シミュレータの全体構成を概念的に示す図である。
【
図2】本実施形態に係る医療シミュレータの人体模型部の外観を示す斜視図である。
【
図3】本実施形態に係る臓器収容部の内部構成を示す模式図である。
【
図4】肛門保持部を前後方向に直交する平面で切断した断面図である。
【
図5】
図5(a)は、臓器保持部が肛門保持部から相対的に近い位置に配置されている状態における大腸モデル30の状態を示す図であり、
図5(b)は、臓器保持部が肛門保持部に相対的に遠い位置に配置されている状態における大腸モデル30の状態を示す図である。
【
図6】
図6(a)は、仰臥位状態の臓器収容部とモータ収容部の内部構成とを示す図であり、
図6(b)は、左側臥位状態の臓器収容部とモータ収容部の内部構成とを示す図である。
【
図7】本実施形態に係る医療シミュレータにおける制御構成を概念的に示す図である。
【
図8】制御部により実現されるソフトウェア構成を概念的に示すブロック図である。
【
図9】本実施形態に係る医療シミュレータにおける訓練時の表示例を示す図である。
【
図10】本実施形態に係る医療シミュレータにおける訓練評価の表示例を示す図である。
【
図11】本実施形態における大腸モデルの内壁面を示す図である。
【
図12】変形例に係る人体模型部の外観を示す斜視図である。
【
図13】変形例に係る人体模型部における臓器収容部と遮光部とを分離させた分解図である。
【
図14】変形例における訓練時の表示の一部を示す図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態について図面を用いて説明する。以下に挙げる実施形態は例示であり、本発明は以下の実施形態の構成に限定されない。
【0012】
図1は、本実施形態に係る医療シミュレータの全体構成を概念的に示す図である。
本実施形態に係る医療シミュレータ(以降、本シミュレータと略称する場合もある)は、主に、人体模型部1及びシミュレータ制御部10により構成されており、大腸内視鏡に関する手技の訓練を可能とする。
シミュレータ制御部10は、医療シミュレータを制御する構成であり、PC(Personal Computer)のようないわゆるコンピュータであってもよいし、組込みシステムであってもよいし、制御基板であってもよい。シミュレータ制御部10の詳細構成については後述する。
【0013】
図2は、本実施形態に係る医療シミュレータの人体模型部1の外観を示す斜視図である。
人体模型部1は、
図2に示されるように、主に、臓器収容部2、モータ収容部7及び基台9により構成されている。
以降、人体模型部1の各部の相対的な位置関係を特定するために、
図2に示される上下方向及び左右方向を便宜的に用い、それらに直交する方向を前後方向と表記することとする。但し、詳細は後述するが、臓器収容部2は、
図2に示される向き(以降、仰臥位状態と表記する場合がある)だけでなく、後述する
図6(b)に示される向き(以降、左側臥位状態と表記する場合がある)にもなるが、臓器収容部2の説明では、左右方向及び前後方向は、臓器収容部2の向きに関わらず固定的に設定するものとする。このため、左側臥位状態の臓器収容部2の説明で用いる左右方向及び前後方向は、モータ収容部7及び基台9の説明で用いる左右方向及び前後方向と異なることとなる。
このように本明細書で表記する方向は、重力方向の上下とは一致しない場合もあるし、医療シミュレータの使用態様を限定するものでもない。
【0014】
臓器収容部2は、略直方体状の箱体であり、内部に、後述する大腸モデル30を収容する。具体的には、臓器収容部2は、背側壁部の周縁に腹側に向けて立設された下壁部21、上壁部22、右側壁部23及び左側壁部24で四方が覆われており、かつ腹側が窓部25で封鎖された中空の箱体である。右側壁部23及び左側壁部24は、背側から腹側へそれぞれ延設されており、腹側端縁の一部が双方接近する方向にそれぞれ湾曲している。このため、臓器収容部2の腹側は、右側壁部23及び左側壁部24の腹側端縁の一部と窓部25とで封鎖されている(腹壁カバー部に相当)。
【0015】
臓器収容部2の外側には二台のカメラ6が設置されている。具体的には、二つのカメラ支持プレート61が臓器収容部2の下壁部21及び左側壁部24から斜め前方に向けてそれぞれ延設されており、それらの上端付近で二台カメラ6が設けられている。
各カメラ6は、臓器収容部2の内部に収容されている大腸モデル30を窓部25を介して撮像可能な角度でカメラ支持プレート61にそれぞれ支持されている。これにより、各カメラ6は、仰臥位状態の臓器収容部2を腹側から視た平面視で相互に直交する向きに設置されている。なお、以降の説明において単に「平面視」と表記する場合には、仰臥位状態の臓器収容部2を腹側から視た平面視を意味するものとする。
各カメラ6は、映像を撮像可能な装置であればよく、各カメラ6で撮像される映像(静止画像、動画像を含む)は、可視光画像のみならず、赤外線、紫外線、X線等のような非可視光の画像であってもよいことは言うまでもない。
【0016】
窓部25は、臓器収容部2内の大腸モデル30が外側から視認可能となるように透明な材質を用いて成形されている。これにより、臓器収容部2の外側に設けられている二台のカメラ6で窓部25を介して大腸モデル30が撮像可能となっている。
ここで、窓部25の外側表面には、表面反射を抑制し得るフィルムが貼られていることが好ましい。但し、このようなフィルムによらず、窓部25が表面反射を抑制し得る材料を含んでいてもよいし、窓部25の外側表面に表面反射を抑制し得る剤が塗布されていてもよい。このようなフィルムや素材、剤には、外側からの大腸モデル30の視認性を維持しつつ外光の反射や映り込み等を抑制することができれば既知のあらゆるものが利用可能である。
このように窓部25が表面反射を抑制する部材又は材料を含むことで、カメラ6により窓部25を介して撮像された画像において、窓部25における外光の反射や映り込み等を抑制することができるため、その画像における大腸モデル30の認識精度の低下を防ぐことができる。
【0017】
臓器収容部2は、詳細は後述するが(
図6参照)、出力シャフト75を介して上端側がモータ収容部7に支持されると共に、背側が複数のタイヤ部を介して基台9の腹側支持面91で支持されている。
タイヤ部20a、20b及び20cは、臓器収容部2に回動自在に設けられている。具体的には、タイヤ部20aは、右側壁部23と背側壁部とが接続する角の上下方向の中央に一部が外側に突出するように設けられており、タイヤ部20bは、上壁部22の上面の背側端部の右端部に一部が外側に突出するように設けられており、タイヤ部20cは、上壁部22の上面の右端部の上端部に一部が外側に突出するように設けられている。タイヤ部は、
図2に示されていない箇所にも複数設けられており、このような複数のタイヤ部が基台9の腹側支持面91に当接しながら回動することで、臓器収容部2は、基台9の腹側支持面91上で揺動可能に支持されている。
このような臓器収容部2の揺動の詳細については後述する。
【0018】
基台9は、上述したとおり、臓器収容部2を背側から支持すると共に、モータ収容部7を保持している。なお、基台9とモータ収容部7とは一体成形されていてもよいし、連結可能に別体成形されていてもよい。
モータ収容部7は、臓器収容部2の上方に隣接して配置されており、臓器収容部2の揺動を実現する体位変換モータ71(
図7参照)を収容する箱体である。モータ収容部7の詳細については後述する。
【0019】
以下、
図3を用いて、臓器収容部2の内部構成について説明する。
図3は、本実施形態に係る臓器収容部2の内部構成を示す模式図である。
図3は、臓器収容部2を平面視した状態を示している。
大腸モデル30は、盲腸、上行結腸、横行結腸、下行結腸、S状結腸及び直腸からなる大腸を模擬した中空の管状体である。このため、大腸モデル30は管腔臓器モデルということもできる。大腸モデル30は、盲腸に相当する盲腸領域、上行結腸に相当する上行結腸領域、横行結腸に相当する横行結腸領域、下行結腸に相当する下行結腸領域、S状結腸に相当するS状結腸領域、及び直腸に相当する直腸領域を含んでいる。
【0020】
盲腸領域や上行結腸領域等のような大腸モデル30の各部位は、管腔を画定する内壁の形状が内視鏡で撮像される生体の大腸の各部位の形状にできる限り近くなるように成形されている。
例えば、生体の大腸の内視鏡画像では、脾彎曲及び肝彎曲において他臓器との接触により色調変化が生じる。高度な内視鏡手技を持つベテラン医師等は、その色調変化で大腸内の位置を把握する場合もある。
そこで、大腸モデル30における肝彎曲に相当する肝彎曲領域及び脾彎曲に相当する脾彎曲領域が、大腸モデル30の管腔内で撮像される内視鏡画像において脾彎曲領域及び肝彎曲領域で色調変化を生じさせる色調変化領域を含むことが好ましい。この色調変化は、当該内視鏡画像に写る色調が肝彎曲領域及び脾彎曲領域においてその周囲の壁面とは異なることで生じる。
大腸モデル30のその色調変化領域は、様々な手法で実現することができる。例えば、その色調変化領域における大腸モデル30の外側表面又は内側表面を他の部分とは違う色で着色することで実現することができる。この着色は、塗料で実現してもよいし、色の異なる素材を重ね合わせることでも実現することができる。また、同色であっても色調変化領域のみ大腸モデル30の壁の厚みを変えることでも実現することができる。また、LED(Light Emitting Diode)のような適切な色味の光源を大腸モデル30の外側表面に向けて照射することで実現してもよい。
また、大腸モデル30の肛門側端部の内壁には、歯状線が模擬されていることが好ましい。
【0021】
大腸モデル30は、シリコーンゴム等の柔軟性を有する素材により成形されている。本実施形態は、大腸モデル30の素材を限定するものではないが、大腸モデル30は実際の生体の大腸に近い柔軟性を有するように成形されることが好ましい。
また、大腸モデル30は、繋ぎ目なく一体的に成形されていることが好ましい。
このようにすれば、内視鏡を大腸モデル30の管腔に挿入した際の感触を実物に近づけることができ、ひいては、リアルな内視鏡手技シミュレーションが可能となる。
【0022】
大腸モデル30は、上行結腸領域、横行結腸領域等の各部位が人体の腹腔内の大腸の配置と等しくなるように、臓器収容部2の内部空間に局所的に(部分的に)固定された状態で収容されている。大腸モデル30は、長手方向の異なる位置に、臓器収容部2に固定されている状態となり得る局所固定領域と、本シミュレータを用いて訓練を受ける人(被訓練者と表記される)による内視鏡の操作により臓器収容部2の内部空間内で変位可能(動作可能)な可動領域とを含むと表記できる。
ここで「臓器収容部2に固定されている状態となり得る」とは、臓器収容部2の内部に完全に固定されていることだけでなく、臓器収容部2に対して固定されている状態とそうでない状態との両方になり得ることを含む意味である。
本実施形態では、大腸モデル30の局所固定領域は、肛門保持部31で保持される肛門側端部領域、臓器保持部32で保持される領域、脾彎曲に相当する脾彎曲領域、肝彎曲に相当する肝彎曲領域、及び盲腸領域であり、それ以外の領域は可動領域とされている。但し、大腸モデル30における臓器収容部2に対する固定箇所は、本実施形態で示される箇所に限定されない。
【0023】
また、臓器収容部2の内部には、内部空間を腹側と背側とに分割するプレート(図示せず)が設けられている。即ち、臓器収容部2の内部空間は、このプレートにより腹側内部空間と背側内部空間とに分割されており、大腸モデル30は腹側内部空間に収容されている。このプレートは、大腸モデル30が収容される腹側内部空間の背側の壁を形成しているため、以降、背側プレートと表記される。
背側内部空間には、後述するように、臓器保持部32、第一スライド壁部35、第二スライド壁部34等のスライドを実現するモータ群や、各モータの動力の変換や減速等を行う各種機構が搭載されている。
なお、当該背側プレートの形状は制限されず、例えば、平板形状を有していてもよいし、湾曲していてもよい。
【0024】
加えて、本実施形態では、
図3に示されるように、複数のマーカリング43が、大腸モデル30における肛門保持部31と臓器保持部32との間の領域の、大腸モデル30の軸方向に離間する位置に配置されている。これらマーカリング43は、詳細は後述するが、大腸モデル30の対象部位の変位又は変形を検出するために設けられている。
本明細書において「対象部位の変位」とは、対象部位の位置の変化を意味する。
また、「対象部位の変形」は、対象部位の形状の変化を意味し、屈曲変形、伸縮変形(長手方向の長さの伸展変形又は短縮変形)、捻じれ変形(長手方向を軸とした回転捻じれ(雑巾を絞るような捻じれ))、ループ変形(長手方向にループ形状をなす変形)等のいずれか一つ以上を含むものとする。
各マーカリング43は、大腸モデル30の外側周囲に周回状に巻かれており、各マーカリング43の内側表面の一部と大腸モデル30の外側表面の一部とが接着されている。このように各マーカリング43を大腸モデル30の外側表面に部分的に接合させることで、各マーカリング43で大腸モデル30の伸縮性が阻害されるのを防ぐことができる。
【0025】
また、各マーカリング43の外側表面にはマーカが配置されている。本実施形態では、マーカには予め定められたパターン画像(AR(Augmented Reality)マーカとも呼ばれる)が用いられている。但し、マーカは、カメラ6により撮像された画像から認識可能な目印であればよく、大腸モデル30の外側表面に設けられた特徴的な構造、形状や色、発光体等であってもよい。
更に言えば、本実施形態では、各マーカリング43の外側表面には、複数のマーカが全周に亘って一列に配置されている。これにより大腸モデル30が内視鏡手技において捻られた場合等であってもマーカを当該画像から確実に認識することができる。但し、各マーカリング43において一つのマーカのみが配置されていてもよいし、二以上のマーカが全周のうちの一部にのみ配置されていてもよい。
【0026】
また、一つのマーカリング43に配置される複数のマーカはそれぞれ異なるマーカとされてもよい。本実施形態によれば、一つのマーカリング43に配置される複数のマーカはそれぞれ異なるパターン画像とされてもよい。このようにすれば、大腸モデル30の捻じれ状態やループ状態をマーカが写る画像から判定することができる。
【0027】
また、本実施形態では、複数のマーカが周回状に一列に並ぶマーカリング43が大腸モデル30の外側周囲に設けられたが、当該複数のマーカは、大腸モデル30の外側表面に印刷されてもよいし、個々に貼付されてもよい。即ち、大腸モデル30の可動領域の少なくとも一部の外側周囲又は外側表面面には、大腸モデル30の軸方向に離間する位置に複数のマーカが配置されていると表記することができる。
加えて、本実施形態では、肛門保持部31及び臓器保持部32の上面にもそれぞれマーカ(保持部マーカ41及び42)が設けられている。
このようなマーカを用いた大腸モデル30の対象部位の変位又は変形を検出する手法については後述する。
【0028】
肛門保持部31は、下壁部21の内面(上面)における左右方向の中央かつ前後方向の背側寄りに装着されている。肛門保持部31は、プラスチックのような、大腸モデル30の素材よりも高硬度の素材で成形されており、角丸の略立方体形状を有しており、その下面が下壁部21の内面と当接した状態で臓器収容部2に装着されている。
肛門保持部31の説明で方向を示す場合には、肛門保持部31が臓器収容部2に装着された状態における方向を用いることとする。
【0029】
図4は、肛門保持部31を前後方向に直交する平面で切断した断面図である。
肛門保持部31は、上下方向に貫通する貫通孔310を有している。一方で、臓器収容部2の下壁部21にも貫通孔(図示せず)が設けられており、肛門保持部31が臓器収容部2に装着されている状態において下壁部21の貫通孔と肛門保持部31の貫通孔310とが連通している。
【0030】
大腸モデル30は、肛門側端部領域がその貫通孔310に挿通された状態で肛門保持部31に保持される。大腸モデル30は、貫通孔310に挿通されている肛門側端部領域の外周面と貫通孔310を画定する肛門保持部31の内壁面とが接合されることで、肛門保持部31に保持されてもよいし、他の方法で肛門保持部31に保持されてもよい。例えば、大腸モデル30の肛門側端部に大腸モデル30の外周面から突出したフランジ蓋部が設けられており、大腸モデル30の肛門側端部領域が肛門保持部31の貫通孔310及び臓器収容部2の下壁部21の貫通孔に挿通されて、当該フランジ蓋部が臓器収容部2の下壁部21の外側面(下面)と係合するようにしてもよい。このようにして保持される場合には、臓器収容部2の下壁部21も含めて肛門保持部31と呼ぶことができる。このように肛門保持部31による大腸モデル30の肛門側端部領域の保持構造は何ら制限されない。
【0031】
肛門保持部31における貫通孔310を画定する内壁面は、
図4に示されるように、テーパ状壁面部311を一部に含んでいる。
テーパ状壁面部311は、貫通孔310の断面積が上方(肛門保持部31の上面)に向かって漸次拡大するように形成されている。
ここでの「貫通孔310の断面積」とは、貫通孔310を軸方向と直交する平面で切断したと仮定した場合における貫通孔310の面積を意味し、貫通孔310のその面積は肛門保持部31の内壁面で画定される。
本実施形態では、肛門保持部31の内壁面は、貫通孔310の下方口312から上方に向けて僅かな範囲でテーパ状とならない内壁面を含むが、当該内壁面の全てがテーパ状壁面部311とされてもよい。
【0032】
テーパ状壁面部311は、テーパ状壁面部311の下端(壁面下端部313)から上端(壁面上端部314)までの傾斜が急峻な第一壁面部316とその第一壁面部316よりもその傾斜が緩やか第二壁面部315とを含んでいる。
第一壁面部316と第二壁面部315とは、貫通孔310の軸方向視で対向する位置に少なくとも存在している。具体的には、第一壁面部316は、テーパ状壁面部311の左側に存在し、第二壁面部315は、テーパ状壁面部311の右側に存在する。
これにより、肛門から大腸モデル30の管腔内に挿入した内視鏡が大腸の延びる方向(向かって反時計回り)とは違う方向に向かうのを抑制することができるため、内視鏡手技の訓練が無駄に難しくならず、効率的な訓練を可能とする。
【0033】
臓器保持部32は、プラスチックのような、大腸モデル30の素材よりも高硬度の素材で成形されている。また、臓器保持部32は、上下方向に貫通孔を有しており、その貫通孔に挿通されている大腸モデル30の領域を保持する。具体的には、大腸モデル30における臓器保持部32の貫通孔に挿通されている領域の外周面とその貫通孔を画定する臓器保持部32の内壁面とが接合されることで、大腸モデル30のその領域が臓器保持部32に保持されている。
大腸モデル30における臓器保持部32で保持される領域は、下行結腸領域及びS状結腸領域の範囲の中の一部であればよい。本実施形態では、下行結腸領域における肛門寄りの領域が臓器保持部32で保持されている。このため、本実施形態では、大腸モデル30の臓器保持部32で保持される領域は、下行結腸保持領域と表記する場合がある。
【0034】
臓器保持部32は、臓器収容部2にスライド可能に支持されている。具体的には、臓器保持部32は、臓器収容部2の右側壁部23の内面に設けられたガイドレール33の延在方向に沿ってスライド可能に、当該内面に設けられた支持機構(図示せず)により支持されている。臓器保持部32の支持機構は何ら限定されない。臓器保持部32は、ガイドレール33に対して摺動可能に係合されることで支持されてもよい。
ここで、ガイドレール33は右側壁部23の内面に沿って上下方向に延設されている。このため、臓器保持部32のスライドにより臓器保持部32から肛門保持部31までの直線距離が変化する。また、臓器収容部2の平面視(
図3参照)において、肛門保持部31の下端面が接合する下壁部21の内面と、肛門保持部31と臓器保持部32とを結ぶ直線とのなす角度(以降、肛門保持部31及び臓器保持部32の角度と表記する)も変化している。
【0035】
図5は、肛門保持部31と臓器保持部32との間の距離とその間の大腸モデル30の状態との関係を示す図である。
図5(a)は、臓器保持部32が肛門保持部31から相対的に近い位置に配置されている状態を示し、
図5(b)は、臓器保持部32が肛門保持部31に相対的に遠い位置に配置されている状態を示す。
臓器保持部32のスライドにより臓器保持部32から肛門保持部31までの直線距離D1及びD2は変化する一方で、大腸モデル30における肛門側端部領域から下行結腸保持領域までの長さ(長手方向の長さ)L1及びL2は一定である。即ち、距離D1及びD2は相互に異なるが、大腸モデル30の長さL1とL2とは同一である。
また、臓器保持部32のスライドにより肛門保持部31及び臓器保持部32の角度も変化する。
このため、
図5に示されるとおり、臓器保持部32のスライドにより、当該直線距離若しくは当該角度、又はそれら両方が変化し、大腸モデル30における肛門側端部領域から下行結腸保持領域までの間の弛み度合或いは屈曲度合が変化する。
ここで大腸モデル30の弛み度合或いは屈曲度合が小さいと、大腸モデル30の管腔内の内視鏡は相対的に操作し易くなり、逆にその弛み度合或いは屈曲度合が大きいと、当該内視鏡操作は相対的に難しくなる。
つまり、上述の構成によれば、内視鏡手技の訓練の難易度を変えることができる。
【0036】
ここで、臓器保持部32のスライド範囲は、大腸モデル30における肛門側端部領域から臓器保持部32で保持される領域までの長さ(
図5のL1、L2等)が肛門保持部31から臓器保持部32までの距離(
図5のD1、D2等)の2倍となる位置を含むことが好ましい。また、大腸モデル30における肛門端部領域から脾彎曲領域までの長さに対する当該肛門端部領域から臓器保持部32で保持される領域までの長さの割合は、2分の1以上かつ10分の7以下とされることが好ましい。
高度な内視鏡手技を持つベテラン医師を含む本発明者らは、臓器収容部2の試作及びその試作機の当該ベテラン医師による検証を繰り返すことで、臓器保持部32と肛門保持部31との間の距離とその間の大腸モデル30の状態との関係で、実際の人体に対する内視鏡手技で得る感覚に近くなる上述の関係を見出したのである。
即ち、臓器保持部32のスライド範囲に上述の位置を含めることで、内視鏡手技の訓練の難易度を可変としながらも、人体に対する内視鏡手技の感覚をリアルに再現し、高精度な訓練を可能とすることができる。
【0037】
本実施形態では、臓器保持部32のスライドは、臓器収容部2の背側内部空間に収容されているモータの動力を用いて実現される。臓器保持部32のスライドは、例えば、次のような構成により実現され得る。モータの回転軸がガイドレール33の延在方向に直交する方向に延びており、その回転軸に直接又は間接的に歯付きの駆動プーリが取り付けられており、回転自在に支持された歯付きの従動プーリとその駆動プーリとの間に、ガイドレール33の延在方向と並行に歯付きのタイミングベルトが掛け渡されている。そのタイミングベルトの一部に係合する係合部材に直接又は間接的に臓器保持部32が取り付けられる。この構成によれば、モータの回転動力がガイドレール33の延在方向の直線運動の動力に変換されることで、臓器保持部32がガイドレール33に沿ってスライド可能となる。
このため、臓器保持部32は、大腸モデル30の肛門側端部領域を保持する肛門保持部31及び臓器保持部32に対してスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられているということができる。
【0038】
但し、臓器保持部32のスライドを実現する構成はこのような構成に限定されず、モータの回転動力がガイドレール33の延在方向の直線運動の動力に変換される構成であればよい。
なお、臓器保持部32のスライドに関する制御内容については後述することとする。
また、本実施形態では、臓器保持部32のスライドはモータの動力を用いて実現されたが、手動で行われてもよい。この場合には、臓器保持部32は、臓器収容部2(臓器収容部2に固定された肛門保持部31も含む)に対してスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられれば良い。例えば、ロック機構により臓器保持部32が臓器収容部2に対して固定される状態となり、ロック機構を解除することで臓器保持部32が臓器収容部2に対してスライド可能な状態とされ得る。
【0039】
更に、臓器収容部2は、腹側内部空間内に、プラスチック等の硬い素材で成形された第一スライド壁部35を備えている。
第一スライド壁部35は、臓器収容部2の腹側内部空間における左右方向及び上下方向の略中央部であって、大腸モデル30の横行結腸領域の収容位置よりも下方かつ肛門保持部31及び大腸モデル30の直腸領域の収容位置よりも上方に位置し、背側プレートに上下方向にスライド可能に支持されている。具体的には、第一スライド壁部35は、背側プレートの腹側面に設けられたガイドレール36の延在方向に沿ってスライド可能に、背側プレートの腹側面に設けられた支持機構(図示せず)により支持されている。第一スライド壁部35の支持機構は何ら限定されない。第一スライド壁部35は、ガイドレール36に対して摺動可能に係合されている支持機構により支持されるようにしてもよい。
ここで、ガイドレール36は背側プレートの腹側面に沿って上下方向に延設されている。このため、第一スライド壁部35は、肛門保持部31に接近する方向及び肛門保持部31から離れる方向にスライド可能となっている。
【0040】
大腸内視鏡の手技において挿入が困難となる場合に看護師等の介助者が腹部を圧迫して内視鏡挿入をサポートする場合がある(用手圧迫法とも呼ばれる)。本実施形態では、この腹部圧迫を模擬するべく、第一スライド壁部35が設けられている。このため、第一スライド壁部35は補助壁部と呼ぶこともできる。
第一スライド壁部35は、腹側から視た場合に左右方向の中央が上方に突出した湾曲形状を有した下向きの壁面を少なくとも有しており、腹部圧迫を模擬する場合には、肛門保持部31に近い位置で固定される。これにより、管腔内に内視鏡が挿入されて上方に直線化された大腸モデル30のS状結腸領域の一部(例えば、S-topと呼ばれる頂部)が第一スライド壁部35の下向きの壁面に当接することで、内視鏡の挿入方向がガイドされる。
一方で、腹部圧迫が行われていない状態では、第一スライド壁部35を肛門保持部31から離間した位置に固定することで、第一スライド壁部35を大腸モデル30と接触し難い位置に置くことができる。
このように本実施形態によれば、介助者による腹部圧迫(用手圧迫)を模擬することができる。
【0041】
本実施形態では、第一スライド壁部35のスライドは、臓器収容部2の背側内部空間に収容されているモータの動力を用いて実現される。第一スライド壁部35のスライドは、例えば、臓器保持部32と同様の構成で実現することができる。モータの回転軸がガイドレール36の延在方向に直交する方向に延びており、その回転軸に直接又は間接的に歯付きの駆動プーリが取り付けられており、回転自在に支持された歯付きの従動プーリとその駆動プーリとの間に、ガイドレール36の延在方向と並行に歯付きのタイミングベルトが掛け渡されている。そのタイミングベルトの一部に係合する係合部材に直接又は間接的に第一スライド壁部35が取り付けられる。この構成によれば、モータの回転動力がガイドレール36の延在方向の直線運動の動力に変換されることで、第一スライド壁部35がガイドレール36に沿ってスライド可能となる。
このような構成においても、第一スライド壁部35は、肛門保持部31への距離が変化する方向にスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能となっていると言える。
【0042】
但し、第一スライド壁部35のスライドを実現する構成はこのような構成に限定されず、モータの回転動力がガイドレール36の延在方向の直線運動の動力に変換される構成であればよい。
なお、第一スライド壁部35のスライドに関する制御内容については後述することとする。
また、本実施形態では、第一スライド壁部35のスライドはモータの動力を用いて実現されたが、手動で行われてもよい。この場合には、第一スライド壁部35は、肛門保持部31への距離が変化する方向にスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられていればよい。例えば、ロック機構により第一スライド壁部35が臓器収容部2に対して固定される状態となり、ロック機構を解除することで第一スライド壁部35が臓器収容部2に対してスライド可能な状態とされ得る。
【0043】
ここで、大腸モデル30のS状結腸領域の外側表面に第一ワイヤ部材37が連結されている。本実施形態では、第一ワイヤ部材37は、大腸モデル30のS状結腸領域の頂部(S-top)に相当する位置に連結されており、その頂部を初期位置に戻す役割を担う。大腸モデル30の第一ワイヤ部材37が連結されている部位をS状結腸領域のワイヤ連結部位と表記する場合がある。
第一ワイヤ部材37は、大腸モデル30との連結部位(S-top)の変位を可能としながら当該連結部位を初期位置に戻すことができる可変長部材であればよい。第一ワイヤ部材37は、伸縮性を持つ素材で形成されていてもよいし、伸縮性を持たない素材で形成されていてもよい。
【0044】
本実施形態では、第一ワイヤ部材37は、それ自体の素材で可変長を実現しているわけではなく、第一ワイヤ部材37を巻き取るワイヤリール(図示せず)とのセットで可変長を実現している。このため、第一ワイヤ部材37及びワイヤリールが可変長部材に相当する。即ち、本実施形態では、臓器収容部2は、第一ワイヤ部材37を巻き取るワイヤリール(図示せず)を備えている。ワイヤリールは、大腸モデル30のS状結腸領域のワイヤ連結部位が初期位置に存在する状態において送り出されている第一ワイヤ部材37の状態を最大巻き取り状態とし、その最大巻き取り状態から更に送り出された第一ワイヤ部材37を最大巻き取り状態まで巻き取るようにバネ部材により付勢されている。
【0045】
更に、ワイヤリールには、最大巻き取り状態からのワイヤリールの回転量を検出するセンサ(例えば、ポイテンショメータ等)が設けられており、詳細は後述するが、このセンサにより検出された回転量により大腸モデル30のS状結腸領域のワイヤ連結部位の変位が検出可能となっている。
このように、第一ワイヤ部材37と連結される大腸モデル30のS状結腸領域のワイヤ連結部位を含む領域は、固定されておらず変位可能でありながら初期位置に戻るようにテンションがかけられているため、大腸モデル30の特定可動領域と呼ぶこともできる。
【0046】
更に、臓器収容部2は、腹側内部空間に、プラスチック等の硬い素材で成形された第二スライド壁部34を備えている。
第二スライド壁部34は、
図3に示されるように、臓器収容部2の腹側内部空間における大腸モデル30の横行結腸領域の収容位置よりも更に上方に、下向きの壁面を持って立設されている。第二スライド壁部34は、右側壁部23の内面及び左側壁部24の内面にそれぞれ設けられたガイドレールの延在方向に沿って下方へスライド可能な状態で臓器収容部2に支持されている。第二スライド壁部34は、右側壁部23の内面及び左側壁部24の内面に設けられた支持機構(図示せず)により支持される。但し、第二スライド壁部34の支持機構は何ら限定されない。第二スライド壁部34は、右側壁部23の内面及び左側壁部24の内面にそれぞれ設けられたガイドレールに対して摺動可能に係合されている支持機構により支持されるようにしてもよい。
【0047】
上述した腹部圧迫と同様に、大腸内視鏡の挿入が困難となる場合に被検者(患者)に深く息を吸ってもらうことで内視鏡挿入が容易となる場合がある。深く息を吸ってもらうことで横隔膜が下がり、結果として肝彎曲及び脾彎曲が下がることになる。本実施形態では、被検者に深く息を吸ってもらったときの横行結腸の状態を模擬するべく、第二スライド壁部34が設けられている。
第二スライド壁部34は、右側壁部23の内面の近傍から左側壁部24の内面の近傍まで左右方向に幅広の下向きの壁面を少なくとも有している。第二スライド壁部34のこの壁面は、左右両端が下方凸状に湾曲している。
第二スライド壁部34は、深く息を吸った状態を模擬する場合には下方へスライドし、それ以外では上方に配置される。
これにより、第二スライド壁部34が下方へスライドされることに伴い、大腸モデル30の少なくとも脾彎曲領域及び肝彎曲領域も下方へ変位することになるため、本実施形態によれば、被検者に深く息を吸わせた状態の大腸の動きをリアルに模擬することができる。
【0048】
ところで、本実施形態では、大腸モデル30の脾彎曲領域及び肝彎曲領域の外側面が第二スライド壁部34の下向きの壁面に固定されている。例えば、脾彎曲領域及び肝彎曲領域の外側面と第二スライド壁部34の壁面とは、面ファスナやスナップボタン等のような連結部材で連結固定されてもよいし、接着剤等により接着されてもよい。
このような構成により、大腸モデル30の脾彎曲領域及び肝彎曲領域を第二スライド壁部34のスライドと共に確実に下方へ変位させることができる。
但し、大腸モデル30の脾彎曲領域及び肝彎曲領域は、第二スライド壁部34のスライドに伴い下方へ変位することができれば、このように第二スライド壁部34の壁面に固定されていなくてもよい。
【0049】
また、本実施形態では、第二スライド壁部34のスライドは、臓器収容部2の背側内部空間に収容されているモータの動力を用いて実現される。第二スライド壁部34のスライドは、例えば、第一スライド壁部35と同様の構成で実現することができる。このため詳細説明は割愛するが、モータの回転動力がタイミングベルトに係合する係合部材におけるガイドレール(右側壁部23の内面及び左側壁部24の内面に設けられた)の延在方向の直線運動の動力に変換されることで、第二スライド壁部34がそのガイドレールに沿って下方にスライド可能となる。
このような構成により、第二スライド壁部34は、臓器収容部2に対して下方へスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能となっていると言える。
【0050】
但し、第二スライド壁部34のスライドを実現する構成はこのような構成に限定されず、モータの回転動力が上下方向の直線運動の動力に変換される構成であればよい。
なお、第二スライド壁部34のスライドに関する制御内容については後述することとする。
また、本実施形態では、第二スライド壁部34のスライドはモータの動力を用いて実現されたが、手動で行われてもよい。この場合には、第二スライド壁部34は、臓器収容部2に対して下方へスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられていればよい。例えば、ロック機構により第二スライド壁部34が臓器収容部2に対して固定される状態となり、ロック機構を解除することで第二スライド壁部34が臓器収容部2に対してスライド可能な状態とされ得る。
【0051】
大腸モデル30の横行結腸領域の外側表面には、
図3に示されるように、第二ワイヤ部材38が連結されている。本実施形態では、第二ワイヤ部材38は、大腸モデル30の横行結腸領域の長手方向の中央周辺に連結されており、その連結部を下方に引っ張る役割を担う。大腸モデル30の第二ワイヤ部材38が連結されている部位を横行結腸領域のワイヤ連結部位と表記する場合がある。
この第二ワイヤ部材38により、第二スライド壁部34が上方に位置する通常状態においても、大腸モデル30の横行結腸領域の長手方向の中央部が下方に引っ張られるため、生体における横行結腸の湾曲をリアルに再現することができる。
【0052】
第二ワイヤ部材38は、可変長部材でなくてもよいし、可変長部材であってもよい。第二ワイヤ部材38が可変長部材とされる場合には、第一ワイヤ部材37と同様の構成とされればよい。即ち、第一ワイヤ部材37は、伸縮性を持つ素材で形成されていてもよいし、伸縮性を持たない素材で形成されていてもよい。また、臓器収容部2が第二ワイヤ部材38を巻き取るワイヤリールを備え、そのワイヤリールと第二ワイヤ部材38とで可変長部材とされてもよい。ワイヤリールの構成は上述した通りである。第二ワイヤ部材38が可変長部材とされる場合、第一ワイヤ部材37と同様に、センサにより検出されたワイヤリールの回転量により大腸モデル30の横行結腸領域のワイヤ連結部位の変位が検出可能となっていてもよい。
【0053】
ところで、上述したワイヤ連結部位以外で大腸モデル30の外側表面に、第一ワイヤ部材37のような可変長部材が連結されていてもよい。
例えば、大腸モデル30におけるS状結腸下行結腸移行部(以降、SDJと表記される)に相当する部位に可変長部材が連結されていてもよい。このようにすれば、大腸モデル30におけるSDJに相当する部位の変位を可能としながら当該部位を初期位置に戻すことができる。更に、当該SDJに相当する部位の変位を検出することができる。
【0054】
大腸モデル30の盲腸領域も局所固定領域であり臓器収容部2に固定される。例えば、臓器収容部2の背側プレートに支持される保持機構を介して当該盲腸領域が固定されてもよいし、当該盲腸領域と背側プレートとが、面ファスナやスナップボタン等のような連結部材で連結固定されてもよいし、接着剤等により接着されてもよい。
【0055】
大腸モデル30は、臓器収容部2に対して着脱可能となっていることが好ましい。このようにすれば、生体の大腸にも長さや太さなど個人差があるように、異なる形状や大きさ、或いはポリープ等の疾患を持つ複数種の大腸モデル30が提供される場合に、臓器収容部2に対して複数種の大腸モデル30を取り換えて利用することができる。結果、様々な被検者を想定した大腸内視鏡手技の訓練を行うことができる。
この場合、肛門保持部31及び臓器保持部32も大腸モデル30と共に臓器収容部2に対して着脱可能とされてもよいし、肛門保持部31及び臓器保持部32は臓器収容部2に残しながら、大腸モデル30のみが着脱可能とされてもよい。
【0056】
次に、
図6を用いて、モータ収容部7の内部構成及び臓器収容部2の揺動について説明する。
図6は、モータ収容部7の内部構成及び臓器収容部2の揺動を示す図であり、
図6(a)は、仰臥位状態の臓器収容部2とモータ収容部7の内部構成とを示しており、
図6(b)は、左側臥位状態の臓器収容部2とモータ収容部7の内部構成とを示している。
【0057】
モータ収容部7は、
図6(a)及び
図6(b)に示されるように、内部において、モータ保持部72を支持している。
モータ保持部72は、体位変換モータ71を保持しており、体位変換モータ71の回転動力を用いて駆動される出力シャフト75がそのモータ保持部72から突出している。
出力シャフト75は、モータ収容部7の隣接壁部77(下壁部)のシャフト孔78から臓器収容部2側に突出しており、その先端が、臓器収容部2の上壁部22の上面の略中央で固定されている。
これにより、臓器収容部2は、体位変換モータ71の回転動力により出力シャフト75が駆動される際には、臓器収容部2に回動自在に設けられた複数のタイヤ部(20a、20b、20c等)を介して基台9の腹側支持面91に支持されながら、その出力シャフト75と共に揺動する。結果、臓器収容部2は、
図6(a)に示される仰臥位状態から、基台9の腹側支持面91の上を回動するタイヤ部20a及び20b(言い換えれば、右側壁部23と背側壁部との境界縁(角部))を軸にして90度回転し、
図6(b)に示される左側臥位状態に遷移することになる。左側臥位状態では、タイヤ部20a、20b及び20cが基台9の腹側支持面91に当接している(図示せず)。
このように本実施形態によれば、人体の腹部を模した臓器収容部2を揺動させて、体位変換を模擬することができる。
更に言えば、臓器収容部2は出力シャフト75で上方が支持されながら、複数のタイヤ部を介して側面(背側及び右側面)が基台9の腹側支持面91で支持されるため、安定した臓器収容部2の揺動を実現することができ、臓器収容部2の揺動に伴う破損や故障の発生を抑制することができる。なお、このような体位変換を模擬する体位変換モータ71の制御内容については後述する。
【0058】
ここで、臓器収容部2が基台9の腹側支持面91上を上述のように揺動する際に、臓器収容部2の上端壁部22で固定されている出力シャフト75は、臓器収容部2の揺動動力によって、少なくとも
図2で示される前後方向に移動する。本実施形態では、出力シャフト75はモータ保持部72で回動自在に保持されていることから、出力シャフト75の駆動で臓器収容部2が仰臥位状態から左側臥位状態へ揺動するに伴い、モータ保持部72は少なくとも前方へ移動し、出力シャフト75の駆動で臓器収容部2が左側臥位状態から仰臥位状態へ揺動するに伴い、モータ保持部72は少なくとも後方へ移動する。
そこで、本実施形態では、モータ収容部7は、
図6(a)及び
図6(b)に示されるように、内部において、モータ保持部72を前後方向にスライド可能に支持している。具体的には、モータ収容部7は、内部に、前後方向に延在する一対のガイドレール73を有しており、モータ保持部72は、左右両側面に設けられた係合部材を介して当該一対のガイドレール73に摺動可能に係合されている。
このように体位変換モータ71及び出力シャフト75を保持するモータ保持部72が前後方向にスライド可能にモータ収容部7の内部で支持されているため、臓器収容部2のスムーズな揺動を実現することができる。
【0059】
〔制御構成〕
次に、本シミュレータにおける制御構成について
図7を用いて説明する。
図7は、本実施形態に係る医療シミュレータにおける制御構成を概念的に示す図である。
図7に示されるように、本シミュレータは、制御に関わる構成として、シミュレータ制御部(以降、制御部と略称する)10、入出力パネル15、マイク16、モータ群17、センサ群18等を有し、上述したとおり、本シミュレータの制御は、制御部10により実行される。但し、本シミュレータは、
図7に図示されていない他の制御構成を有していてもよい。
【0060】
制御部10は、ハードウェア構成として、CPU(Central Processing Unit)11、メモリ12、入出力インタフェース(I/F)ユニット13等を有する。
CPU11は、一般的な一以上のCPU又はMPU(Micro Processing Unit)であってもよいし、それに替え又はそれと共に、特定用途向け集積回路(ASIC)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等であってもよい。
メモリ12は、RAM(Random Access Memory)及びROM(Read Only Memory)であり、補助記憶装置(ハードディスク等)を含んでもよい。
入出力I/Fユニット13は、CPU11で処理すべき又は処理された信号の入力又は出力を制御する機器であり、入出力パネル15、マイク16等のユーザインタフェース装置、モータ群17、センサ群18等に接続される。また、入出力I/Fユニット13は、他のコンピュータや機器との通信を行う通信ユニットを含んでもよく、可搬型記録媒体等にも接続され得る。
制御部10は、
図7に図示されていないハードウェア要素を含んでもよく、制御部10のハードウェア構成は制限されない。
【0061】
入出力パネル15は、訓練メニュー、動作モード、評価結果などを表示する表示装置及び表示装置に表示された画面を操作するための入力装置を含む。入出力パネル15は、表示装置と入力装置とが一体化されたタッチパネルとして実現されてもよい。
本実施形態では、入出力パネル15に表示される内容は何ら制限しない。本実施形態では、例えば、訓練の開始及び中止を選択可能な操作ボタンや、訓練の経過時間の表示や、訓練の難易度を選択するメニュー、評価結果などが表示される。入出力パネル15へ出力される表示例については後述する。
マイク16は、マイクロフォンであり、集音された音を電気信号に変換する。
【0062】
モータ群17は、臓器保持部32、第一スライド壁部35、及び第二スライド壁部34の各スライドを実現する3つのモータ、及び体位変換モータ71を少なくとも含んでいる。
モータ群17に含まれる各モータは、電気エネルギを機械エネルギに変換する電動機であればよく、直流モータであってもよいし、交流モータであってもよいし、それ以外のモータであってもよい。以降、モータ群17に含まれる各モータはそれぞれ区別されずモータ17と総称される場合がある。
【0063】
センサ群18は、大腸モデル30の造形内部若しくは造形外部(外表面或いは内壁面)、又は他の構成に設けられた複数の各種センサであり、各位置での内視鏡手技の状態を検知する。
例えば、大腸モデル30における局所固定領域(肛門側端部領域、下行結腸保持領域、脾彎曲領域、肝彎曲領域、盲腸領域)に設けられ内視鏡の存在を検出する物体検出センサが当該センサ群18に含まれる。本実施形態では、肛門保持部31、臓器保持部32、及び盲腸領域を保持する保持機構(図示せず)に物体検出センサとしての光電センサがそれぞれ設置される。但し、当該物体検出センサは、大腸モデル30の管腔内を通過する内視鏡の存在を検出することができれば、その具体的な種類や検出原理は限定されないし、その設置場所についても限定されない。
また、当該センサ群18には第一スライド壁部35又は第二スライド壁部34の下向き壁面に対する圧力を検出する圧力センサが含まれてもよい。
更に、当該センサ群18には大腸モデル30の管腔内の気圧を検出する気圧センサが含まれてもよい。
【0064】
CPU11によりメモリ12に格納される制御プログラムが実行されることにより、制御部10は、センサ群18やマイク16からの入力信号を受けつつ、モータ群17の制御、入出力パネル15の表示制御等を行う。
当該制御プログラムは、出荷時に予め格納されてもいてもよいし、CD(Compact Disc)、メモリカード等のような可搬型記録媒体やネットワーク上の他のコンピュータから入出力I/Fユニット13を介してインストールされ、メモリ12に格納されてもよい。
【0065】
図8は、制御部10により実現されるソフトウェア構成を概念的に示すブロック図である。
CPU11によりメモリ12に格納される制御プログラムが実行されることにより、制御部10は、
図8に示されるようなソフトウェア構成を実現する。具体的には、制御部10は、ソフトウェア構成として、臓器状態検出モジュール(以降、検出モジュールと略称される場合もある)101、モード管理モジュール102、発話処理モジュール103、計測モジュール104、評価モジュール105等を有している。
但し、
図8に示される各ソフトウェア構成要素は、説明の便宜のために概念的にそれぞれ分けて示したものであるため、制御部10で実現されるソフトウェア構成は、
図8に示されるような各構成要素に明確に区分けされていなくてもよい。
【0066】
検出モジュール101は、臓器収容部2に収容されている大腸モデル30の可動領域の少なくとも一部である対象部位の変位又は変形を検出する。本実施形態では、大腸モデル30における肛門保持部31と臓器保持部32との間の領域が当該対象部位とされている。
ここで検出モジュール101により検出される「対象部位の変位」とは、上述したとおり、対象部位の位置の変化を意味する。このため、「対象部位の変位の検出」には、対象部位の三次元位置又は二次元位置を取得すること、対象部位の三次元空間内又は二次元空間内の位置変化を検出することのいずれか一方又は両方が含まれる。
また、「対象部位の変形」についても、上述したとおり、対象部位の屈曲変形、伸縮変形(長手方向の長さの伸展変形又は短縮変形)、捻じれ変形(長手方向を軸とした回転捻じれ(雑巾を絞るような捻じれ))、ループ変形(長手方向にループ形状をなす変形)等のいずれか一つ以上を含む。
【0067】
本実施形態では、検出モジュール101は、二台のカメラ6により撮像された臓器収容部2内の画像データを取得し、この画像データからマーカ画像を認識することで、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、若しくはループ状態のいずれか一つ又はいずれか複数を検出することができる。
ここで「屈曲状態」は、屈曲変形の状態を意味し、例えば、屈曲の程度や屈曲角度、屈曲している箇所の数等で示され得る。
「伸縮状態」は、長手方向の長さの伸展変形又は短縮変形の状態を意味し、例えば、伸展又は短縮の程度や伸展率又は短縮率(元の長さに対する変化した長さの割合)、伸展又は短縮している箇所の数等で示され得る。
「捻じれ状態」は、捻じれ変形の状態を意味し、大腸モデル30の長手方向を軸とした回転捻じれ(雑巾を絞るような捻じれ)の程度や捻じれ数(回転数)等で示され得る。
「ループ状態」は、大腸モデル30の長手方向にループ形状をなすループ変形の状態を意味し、ループ形状のタイプやループの数、ループの大きさ等で示され得る。ここで、大腸内視鏡の手技においてS状結腸や横行結腸等に内視鏡を挿入するにあたり、ループ形状を作って内視鏡を挿入する手技がある。このようなループ形状には、αループ、逆αループ、γループ、逆γループ、Nループ、Mループ等と呼ばれるループ形状のタイプが存在し得る。検出モジュール101は、このようなループ形状のタイプをループ状態として検出してもよい。
【0068】
本実施形態では、二台のカメラ6の姿勢パラメータを正確に保持しておくことができるため、二台のカメラ6からの撮像画像により既知のステレオ画像法などを用いることで、各マーカの三次元位置情報が取得可能である。結果、各マーカリング43の三次元位置をそれぞれ取得することができ、結果として、対象部位に関して屈曲状態、伸縮状態、捻じれ状態、ループ状態等の形状情報が検出可能となる。
但し、各マーカの三次元位置情報を取得しなくても、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、ループ状態等は検出可能である。例えば、臓器収容部2に収容された状態における大腸モデル30の当該対象部位の表面、裏面及びその中間にそれぞれ異なる色又は形のマーカを配置しておく。これにより、二台のカメラ6からの撮像画像における各マーカの写り込み状態に基づいて、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、ループ状態等が検出可能である。撮像画像内における表面を示すマーカの認識数、裏面を示すマーカの認識数、及びその中間を示すマーカの認識数のパターンと、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、ループ状態等との関係を予め保持しておき、この関係を用いてもよい。
更に言えば、本実施形態では、肛門保持部31及び臓器保持部32にも保持部マーカ41及び42が設けられている。これにより、保持部マーカ41及び42からその位置が算出可能であるため、肛門保持部31と臓器保持部32との間の距離も算出可能である。
【0069】
しかしながら、内視鏡手技に伴う大腸モデル30の変形や変位によって、死角が生じ、マーカが検出できないマーカリング43が存在する場合があり得る。
そこで、検出モジュール101は、第一ワイヤ部材37又は第二ワイヤ部材38を含む可変長部材の長さを検出して、その長さを更に用いて、当該対象部位の変位又は変形を検出するようにしてもよい。例えば、検出モジュール101は、第一ワイヤ部材37を巻き取るワイヤリールの回転量を検出するセンサからの検出信号に基づいて、第一ワイヤ部材37の送り出し量(長さ)を検出することができ、ひいては、大腸モデル30のS状結腸領域のワイヤ連結部位の変位又は変位量を検出することができる。検出モジュール101は、第一ワイヤ部材37の長さに関して検出されるワイヤ連結部位の変位又は変位量で、上述のマーカを用いて検出された対象部位の三次元位置情報を補足することで、仮に一部のマーカリング43が検出できない場合であっても、当該対象部位の変位又は変形(屈曲状態、伸縮状態、捻じれ状態、ループ状態等)を精度の低下なく検出することができる。
【0070】
上述したとおり、本実施形態では、大腸モデル30における肛門保持部31と臓器保持部32との間の領域が当該対象部位とされたが、検出モジュール101は、大腸モデル30のそれ以外の領域(例えば、横行結腸領域等)の変位又は変形を検出してもよい。この場合、複数のマーカが横行結腸領域に設けられ、必要に応じて、第二ワイヤ部材38の長さ情報が用いられればよい。
【0071】
モード管理モジュール102は、本シミュレータにおける訓練モード情報を取得する。例えば、モード管理モジュール102は、入出力パネル15からの信号を入出力I/Fユニット13を介して受信することで、入出力パネル15に対する操作で、訓練開始が指定されたか、訓練中止が指定されたか、或いは指定された訓練難易度を当該訓練モード情報として取得することができる。
モード管理モジュール102は、取得された訓練モード情報が訓練開始又は訓練中止を示す場合には、計測モジュール104及び評価モジュール105にその旨を通知する。
【0072】
また、モード管理モジュール102は、取得された訓練モード情報により示される訓練難易度に応じて、臓器保持部32の位置を決め、対応するモータを制御してその決められた位置に臓器保持部32をスライドさせる。訓練難易度は予め決められた段階数(例えば5段階)で指定可能とされており、訓練難易度の段階数ごとに臓器保持部32の位置がそれぞれ決められていてもよい。この場合、訓練難易度が高い程、臓器保持部32が肛門保持部31に近い位置に決められていればよい。決められた位置への臓器保持部32のスライドは、モータの回転量を用いて制御されてもよいし、位置センサ(フォトセンサ等)からの検出信号を用いて制御されてもよい。
【0073】
発話処理モジュール103は、被訓練者の発話情報を取得する。例えば、発話処理モジュール103は、マイク16から得られる音声信号を入出力I/Fユニット13を介して受信し、その音声信号に対して音声認識処理を適用することで、被訓練者の発話情報を取得することができる。発話処理モジュール103は、被訓練者を識別しても識別しなくてもよく、得られる発話情報を被訓練者の発話情報としてもよい。以上より、発話処理モジュール103は、発話取得手段と表記できる。
【0074】
更に、発話処理モジュール103は、取得された発話情報に基づいて、予め定められた複数種の所定発話のうち被訓練者が発した一以上の所定発話を特定することができる。
大腸内視鏡の手技において、医師は、上述したとおり、内視鏡挿入をサポートするべく、介助者に腹部圧迫を指示する場合がある。この腹部圧迫の指示に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「腹部圧迫」、「圧迫サポート」といった部分的な発話情報が保持され、発話処理モジュール103は、取得された発話情報にそのような所定発話が含まれているか否かで、被訓練者が発した所定発話を特定することができる。
同様に、腹部圧迫の解除の指示に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「圧迫解除」、「圧迫止めて」といった部分的な発話情報が保持されてもよい。
【0075】
また、医師は、上述したとおり、内視鏡挿入をスムーズに行うために、被検者(患者)に深く息を吸うよう依頼する場合がある。この深く息を吸う依頼に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「深く息を吸ってください」、「息を吸って止めてください」といった発話情報が保持され、発話処理モジュール103は、取得された発話情報がそのような所定発話であるか否かを判別することで、被訓練者が発した所定発話を特定することができる。
このような依頼の後、医師は、通常の呼吸に戻すよう依頼する。この通常の呼吸に戻す依頼に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「息を吐いてもいいですよ」、「通常の呼吸に戻してください」といった発話情報が保持されてもよい。
【0076】
加えて、医師は、内視鏡挿入をスムーズに行うために、被検者(患者)又は介助者に体位変換を依頼する場合がある。この体位変換の依頼に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「仰向け」又は「横向き」といった部分的な発話情報が保持され、発話処理モジュール103は、取得された発話情報にそのような所定発話が含まれているか否かで、被訓練者が発した所定発話を特定することができる。
このように発話処理モジュール103は、発話特定手段と呼ぶこともできる。但し、本実施形態において特定されるべき所定発話はこのような例のみに限定されない。また、予め定められた各所定発話として、発話処理モジュール103は、様々なバリエーションを保持するようにしてもよい。音声認識処理は、既存のあらゆる認識手法を用いた処理とすることができる。
【0077】
発話処理モジュール103は、予め定められた複数種の所定発話のうち、第一スライド壁部35又は第二スライド壁部34のスライドに対応する所定発話を特定した場合には、対応するモータを制御して第一スライド壁部35又は第二スライド壁部34をスライドさせる。
本実施形態では、発話処理モジュール103は、「腹部圧迫」を含む所定発話が特定された場合には、第一スライド壁部35を下方にスライドさせ、「圧迫止めて」を含む所定発話が特定された場合には、第一スライド壁部35を上方にスライドさせて元の位置に戻す。また、発話処理モジュール103は、「深く息を吸ってください」といった所定発話が特定された場合には、第二スライド壁部34を下方にスライドさせ、「息を吐いてもいいですよ」といった所定発話が特定された場合には、第二スライド壁部34を上方にスライドさせて元の位置に戻す。
【0078】
また、発話処理モジュール103は、体位変換に対応する所定発話を特定した場合には、体位変換モータ71を制御して臓器収容部2を揺動させる。例えば、発話処理モジュール103は、「仰向け」を含む所定発話が特定された場合には、臓器収容部2が左側臥位状態から仰臥位状態へ揺動するように体位変換モータ71を動作させ、「横向き」を含む所定発話が特定された場合には、臓器収容部2が仰臥位状態から左側臥位状態へ揺動すうりょうに体位変換モータ71を動作させる。
このように本実施形態では、音声認識により、第一スライド壁部35及び第二スライド壁部34のスライド、並びに臓器収容部2の揺動が実行されたが、それらは、入出力パネル15の表示に対する操作入力により実行されるようにしてもよい。
また、発話処理モジュール103は、内視鏡の先端部が存在する位置とその位置で医師が発声すべき所定発話との対応関係を保持しておき、対象となる位置に内視鏡の先端部が存在しているもののその位置で発声すべき所定発話が所定時間内に特定されなかった場合には、自発的に、第一スライド壁部35若しくは第二スライド壁部34のスライド、又は臓器収容部2の揺動を実行するようにしてもよい。このようにすれば、被訓練者を手助けすることができるため、内視鏡操作に不慣れな被訓練者もサポートを受けながら訓練を継続し易くなる。
【0079】
計測モジュール104は、内視鏡手技に関する時間情報を取得する。上述したとおり、本実施形態では、肛門保持部31、臓器保持部32、及び肛門領域を保持する保持機構に物体検出センサがそれぞれ設けられており、各物体検出センサからの検出信号によれば、大腸モデル30におけるその物体検出センサが設けられている位置を内視鏡の先端部が通過したことを検出することができる。このため、大腸モデル30における各物体検出センサが設けられた位置をチェックポイントと表記することができ、計測モジュール104は、大腸モデル30の管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを内視鏡の先端部が通過したことを判定すると表記できる。
【0080】
計測モジュール104は、上記判定に基づいて、二つのチェックポイント間の内視鏡の先端部の滞在時間を取得する。本実施形態では、計測モジュール104は、大腸モデル30における肛門保持部31に保持される領域から臓器保持部32に保持される領域に到達するまでの時間を計測し、臓器保持部32に保持される領域から盲腸領域に到達するまでの時間を計測する。
ここで大腸内視鏡手技は、内視鏡を肛門から盲腸周辺まで挿入し、その後、肛門から引き抜くまでが一連の手技となる。
そこで、計測モジュール104は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、第二のチェックポイントを通過してから第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得する。本実施形態では、計測モジュール104は、大腸モデル30における盲腸領域から臓器保持部32に保持される領域に到達するまでの時間を更に計測し、臓器保持部32に保持される領域から肛門保持部31に保持される領域に到達するまでの時間を更に計測する。
計測モジュール104は、上述のような部分的な滞在時間だけでなく、大腸内視鏡手技のトータル時間も計測することができる。即ち、計測モジュール104は、内視鏡を肛門から盲腸周辺まで挿入し、その後、肛門から引き抜くまでのトータル時間を計測することができる。
【0081】
評価モジュール105は、計測モジュール104により取得された内視鏡手技に関する時間情報、発話処理モジュール103により特定された所定発話に関する情報などを用いて、被訓練者の手技を評価する。
例えば、評価モジュール105は、二つのチェックポイント間ごとに基準滞在時間を予め設定しておき、計測モジュール104で取得された二つのチェックポイント間の滞在時間とその基準滞在時間を比較することで、二つのチェックポイント間ごとに評価ポイントを算出することができる。この場合、基準滞在時間以上の滞在時間となった場合にはベース得点が付与され、基準滞在時間より短い滞在時間となった場合にはベース得点に短縮時間に対応する得点を加点することで、評価ポイントが算出されてもよい。このようにチェックポイント間ごとに算出された評価ポイントが合計される。
【0082】
また、評価モジュール105は、内視鏡の挿入手技に関する当該滞在時間と内視鏡の戻し手技に関する当該滞在時間とを別個の評価方式でそれぞれ評価するようにしてもよい。即ち、評価モジュール105は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、第二のチェックポイントを通過してから第一のチェックポイントを通過するまでの第二の滞在時間とに対して別個の評価方式でそれぞれ評価してもよい。
例えば、挿入時については上述のような基準滞在時間よりも短い滞在時間となる場合に加点される評価方式とし、戻し時については基準滞在時間に所定の時間幅を設け、当該滞在時間がその時間幅内に収まるか否かでベース得点が付与されるか否かが決定される評価方式とされてもよい。更に戻し時には当該所定の時間幅における最短基準滞在時間よりも短い滞在時間となった場合には減点されるようにしてもよい。
【0083】
一般的には、内視鏡手技において挿入時と戻し時とでは手技の評価観点が異なる。挿入時はできるだけ素早くかつ優しく目的地点まで内視鏡を挿入することが大切であるため、内視鏡操作の良し悪しが評価観点とされる。一方で戻し時はしっかり観察することがより大切になるため、観察を適切に行っているか否かが評価観点とされる。
上述のように、内視鏡の挿入手技に関する当該滞在時間と内視鏡の戻し手技に関する当該滞在時間とで別個の評価方式で評価することで、挿入時には素早く操作できた場合に高得点となり、戻し時には適切な時間を費やして観察できた場合に高得点となるため、内視鏡手技に関する時間に基づいて適切な観点で評価することができる。
【0084】
更に、評価モジュール105は、発話処理モジュール103により特定された所定発話に関する情報に基づいて、一以上の所定発話の組合せが正しく発声されたか否かを判定し、この判定結果を更に加味して、被訓練者の手技を評価することもできる。例えば、介助者に対する腹部圧迫の指示に対応する所定発話とその腹部圧迫の解除の指示に対応する所定発話とがセットで行われたか否かで評価ポイントが加点又は減点されてもよい。当該二つの所定発話のセットが行われている場合には加点され、一方のみが行われた場合には減点されるようにしてもよい。
同様に、深く息を吸う依頼に対応する所定発話と通常の呼吸に戻す依頼に対応する所定発話とがセットで行われたか否かが評価されてもよい。
また、評価モジュール105は、内視鏡の先端部が存在する位置とその位置で医師が発声すべき所定発話との対応関係を保持しておき、各位置の物体検出センサからの検出信号と発話処理モジュール103により特定された所定発話とに基づいて、各位置で医師が発声すべき発話を行ったか否かを評価するようにしてもよい。各位置で発声すべき発話が行われた場合には評価ポイントを加点し、行われなかった場合には評価ポイントを減点するようにしてもよい。
このようにすれば、医師と患者とのコミュニケーションという観点でも内視鏡手技を評価することができる。
【0085】
更に、評価モジュール105は、大腸モデル30の所定部位にかかる負荷情報を取得し、その取得された負荷情報が閾値を超えた負荷を示す場合に、上述のように取得される滞在時間を用いて点数付けされた評価ポイントからその負荷情報に対応する減点を行うことで、被訓練者の手技の評価ポイントを算出するようにしてもよい。
大腸モデル30の所定部位にかかる負荷情報は、大腸モデル30自体、大腸モデル30を保持する保持機構、或いは大腸モデル30に当接し得る壁面に設けられた圧力センサで検出することができるし、大腸モデル30の所定部位に連結された可変長部材(第一ワイヤ部材37等)の伸びの長さから換算することもできる。
本実施形態では、第一スライド壁部35又は第二スライド壁部34の下向き壁面に圧力センサが設けられており、評価モジュール105は、その圧力センサからの検出信号を取得し、その検出信号で示される圧力値が閾値を超えている間、圧力値を累積し、圧力累積値が所定閾値を超えた場合に、評価ポイントを減点するようにしてもよい。
大腸等の臓器にかかる負荷は、被検者(患者)に対する負担となり、その負荷が大き過ぎた場合には臓器が損傷する可能性もある。上述のように、大腸モデル30の所定部位にかかる負荷情報に応じて被訓練者の手技を評価することで、内視鏡手技に関して適切な評価を行うことができる。
【0086】
また、評価モジュール105は、気圧センサの検出信号で示される大腸モデル30の管腔内の気圧情報に基づいて、被訓練者の手技を評価することもできる。大腸内視鏡手技において大腸の管腔を拡げて観察し易くするために内視鏡から送気を行う手技がある。但し、過度な送気は、大腸の管腔を拡げ過ぎることになり、被検者(患者)にとって負担になる。
そこで、評価モジュール105は、例えば、チェックポイント間ごとに適切な気圧閾値をそれぞれ予め設定しておき、二つのチェックポイント間に内視鏡の先端部が滞在している際に測定された管腔内の気圧と気圧閾値との比較結果を更に用いて、被訓練者の手技を評価してもよい。
【0087】
また、評価モジュール105は、検出モジュール101により検出された大腸モデル30の当該対象部位の屈曲状態、伸縮状態、捻じれ状態、若しくはループ状態のいずれか一つ又はいずれか複数を更に用いて、被訓練者の手技を評価することもできる。例えば、検出モジュール101で当該対象部位の伸縮の程度が検出される場合、評価モジュール105は、二つのチェックポイント間に内視鏡の先端部が滞在している際に検出された対象部位の伸縮の程度をチェックポイント間ごとに保持しておき、チェックポイント間ごとの対象部位の伸縮の程度と基準となる伸縮の程度との比較に基づいて、評価ポイントに加点又は減点するようにしてもよい。また、評価モジュール105は、屈曲の程度や、ループの数、ループ形状のタイプ、捻じれの度合なども評価対象とするようにしてもよい。
【0088】
図9は、本実施形態に係る医療シミュレータにおける訓練時の表示例を示す図であり、
図10は、本実施形態に係る医療シミュレータにおける訓練評価の表示例を示す図である。
評価モジュール105は、モード管理モジュール102により取得された訓練モード情報が訓練開始を示す場合に、
図9に示すような表示を入出力パネル15に表示させる。
【0089】
図9の例では、肛門保持部31に設けられた物体検出センサで内視鏡の先端部の通過が検出されてからの経過時間が領域DS1に表示されており、下壁部21から延設されたカメラ支持プレート61で支持されるカメラ6で撮像された映像が領域DS2に表示されている。
領域DS2では更に、検出モジュール101により検出された4つのマーカリング43の各位置に数字を含むマーク表示MK1、MK2、MK3及びMK4が配置されている。合わせて、各マーク表示を結ぶ線表示も表示されることで、大腸モデル30の変形及び形状情報が提示されている。
また、領域DS3にはマーク表示MK1とマーク表示MK2との間の伸縮の程度がバー表示されており、領域DS4にはマーク表示MK2とマーク表示MK3との間の伸縮の程度がバー表示されており、領域DS5にはマーク表示MK3とマーク表示MK4との間の伸縮の程度がバー表示されている。
「テスト中止」の操作ボタンOPの操作により、訓練中止を示す訓練モード情報が生成される。
【0090】
図10の例では、領域DS10に被訓練者の手技の評価結果を示す文字列が表示されている。当該文字列には、評価結果に伴う被訓練者へのアドバイスを示す文字列(例えば「横行結腸への挿入時に息を吸ってもらうよう適切な声かけをしましょう」)が含まれている。
領域DS11には、100点満点中の71点という評価ポイントが表示されている。
領域DS12には、5つの評価項目に関するレーダーチャートが表示されている。コミュニケーションの評価項目には、発話処理モジュール103により特定された所定発話に関する情報に基づく評価結果(
図10では「D」)が示され、器官への負荷の評価項目には、負荷情報に基づく評価結果(
図10では「A+」)が示され、手技時間の評価項目には、計測モジュール104で取得される内視鏡の挿入時の時間に基づく評価結果(
図10では「B+」)が示され、観察の評価項目には、計測モジュール104で取得される内視鏡の戻し時の時間に基づく評価結果(
図10では「C+」)が示され、送気の評価項目には、大腸モデル30の管腔内の気圧に基づく評価結果(
図10では「A+」)が示されている。
【0091】
しかしながら、本シミュレータで表示される訓練時の表示内容及び訓練評価の表示内容は、
図9及び
図10に示される例に限定されない。
例えば、訓練時の表示に、大腸モデル30の対象部位のループの数の変化が時系列に示されるグラフ表示や、大腸モデル30の対象部位の伸縮の度合の変化が時系列に示されるグラフ表示や、負荷の変化が時系列に示されるグラフ表示が含まれてもよい。また、訓練評価の表示に、大腸モデル30の対象部位の伸縮についての評価結果が含まれてもよい。また、5つの評価項目の各項目に基づく評価結果は記号ではなく、数字による採点であってもよい。
【0092】
また、訓練時の表示において、検出されたループ形状のタイプ(αループ、逆αループ、γループ、逆γループ、Nループ、Mループ等)がリアルタイムに表示されるようにしてもよい。このとき、検出されたループ形状のタイプに応じて、そのループを解除するための内視鏡の操作に関するアドバイスが合わせて表示されてもよい。例えば、ループ形状のタイプとしてαループが検出された場合には、「内視鏡の軸の反時計回りに回すとループを解除できます」といったアドバイスが表示され、γループが検出された場合には、「内視鏡の軸の時計回りに回すとループを解除できます」といったアドバイスが表示されてもよい。
この場合、検出モジュール101は、ループ形状の各タイプとそのタイプに対応するアドバイス文字列情報との対応関係を予め保持しておき、検出されたループ形状のタイプに応じて、そのタイプに対応するアドバイス文字列を入出力パネル15に表示されるようにすればよい。
このような訓練時のリアルタイムのアドバイスは、表示のみでなく、音声で出力されてもよい。
【0093】
[変形例]
上述の実施形態は一例である。医療シミュレータは、上述の構成のみに限定されるわけではなく、上述の少なくとも一部の構成を有していれば、部分的に適宜変形されてもよい。
【0094】
例えば、上述の実施形態では、管腔臓器モデルとして、大腸モデル30が例示されたが、食道、胃、十二指腸などの消化管や、尿管、血管等を模擬したモデルが管腔臓器モデルとして採用されてもよい。
このため、上述の実施形態では、大腸内視鏡の検査手技の訓練について主に記載されたが、本シミュレータで訓練可能な医療手技は、そのような手技にのみ限定されない。大腸内視鏡の治療に関する手技も訓練可能であるし、その他の管腔臓器に対する検査や治療、挿管に関する手技も訓練可能である。
また、訓練に用いられる対象装置(医療具)として内視鏡が例示されたが、本シミュレータでは、血管内視鏡カテーテルなどのような内視鏡以外の医療具が利用されてもよいし、訓練専用の用具或いは機器が利用されてもよい。
【0095】
例えば、医療シミュレータは、管腔臓器モデルと、管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、検出手段とを少なくとも備えていればよい。この場合、管腔臓器モデルは、長手方向の異なる位置に、臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により臓器収容部の内部空間内で変位可能な可動領域とを含み、検出手段は、少なくとも訓練時において、当該内部空間内における管腔臓器モデルの可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であればよい。
このため、管腔臓器モデルの対象部位の変位又は変形を検出するために、マーカのみが利用されてもよいし、可変長部材のみが利用されてもよい。
更に言えば、マーカも可変長部材もいずれも利用することなく、管腔臓器モデルの対象部位の変位又は変形が検出されてもよい。例えば、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態のいずれか一つ又は複数における様々な状態を示す複数の画像を教師用画像として準備し、各教師用画像に対して各状態情報を関連付けた(タグ付けした)複数の教師データに基づいて機械学習された学習済みモデルを生成しておく。検出手段(検出モジュール101)は、この学習済みモデルに対してカメラ6からの撮像画像を与えることで、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態のいずれか一つ又は複数を検出(推定)することができる。
また、検出精度を上げるためには、2台以上のカメラ6により相互に異なる方向から撮像された複数の撮像画像を入力とし、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態のいずれか一つ又は複数を出力する学習済みモデルが利用されることが好ましい。この場合には、当該対象部位の一つの状態を示す、相互に異なる方向から撮像された複数の撮像画像が教師用画像として準備され、教師データでは、それら撮像画像に対して当該一つの状態を示す状態情報が関連付けられていればよい。
このような学習済みモデルが利用される場合には、管腔臓器モデルの対象部位にはマーカが配置されていてもよいし、配置されていなくてもよい。
マーカが配置される場合にはそのマーカで画像が特徴付けされるため、検出精度の向上が見込める。この場合には、撮像画像からマーカ自体を認識する必要はないが、マーカ画像を用いているといえるため、撮像画像に含まれるマーカ画像に基づいて、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能であると表記できる。
また、臓器保持部32、第一スライド壁部35、又は第二スライド壁部34のいずれか一つ又は複数はスライド不能に固定されていてもよい。この場合には対応するモータも不要となる。
同様に、体位変換は手動で行われてもよく、この場合には、体位変換モータ71は不要となる。
【0096】
また、上述の実施形態では、2台のカメラ6が臓器収容部2における下側及び左側から腹側に向けて離間した位置に設けられていたが(
図2参照)、カメラ6の台数及び配置は、上述の実施形態の例に限定されない。大腸モデル30の対象部位に設けられたマーカの画像認識で当該対象部位の三次元位置が取得される場合には、平面視において直交する方向を向く2台のカメラ6を含む2台以上のカメラ6が設けられることが好ましい。また、
図9に例示されるような大腸モデル30全体を俯瞰する映像を表示する場合には、その俯瞰映像を撮像する1台のカメラ6が更に設けられてもよい。また、1台のカメラ6のみが設けられてもよい。この場合には死角が増えるため、可変長部材の長さの検出により、大腸モデル30の変形又は変位の検出が補足されることが好ましい。
また、カメラ6の少なくともレンズ部は、臓器収容部2の内側或いは臓器収容部2の外側ではあるが
図2に示される位置よりも臓器収容部2の窓部25に近接した位置に配置されてもよい。この場合には、カメラ6のレンズ部が大腸モデル30に近くなるため、広角レンズが利用されることが好ましい。
また、本シミュレータは、暗室での利用も想定し、臓器収容部2の内側若しくは外側又は両方にLED等のような照明材が設けられてもよい。照明材が臓器収容部2の内側に設けられる場合には、窓部25の内側表面での表面反射を抑制するために、窓部25の内側表面にも、表面反射を抑制するフィルムや素材、剤があってもよい。
このような大腸モデル30を撮像する構成の具体的な変形例の一つは後述される。
【0097】
また、上述の実施形態では、臓器収容部2の揺動により仰臥位状態と左側臥位状態との間の体位変換を模擬することを例示したが、更に、仰臥位状態と右側臥位状態との間の体位変換を模擬することもできる。これは、例えば、右側壁部23に設けられているタイヤ部20a、20b及び20cを左右対称に左側壁部24にも設け、かつ、臓器収容部2が仰臥位状態である場合に、左側臥位状態へ遷移する際とは逆の回転方向へ出力シャフト75を回動させることで実現可能である。
【0098】
内視鏡は提供元メーカごとに太さ(径)が異なるため、肛門保持部31に大腸モデル30の管腔断面積を可変とする機構を設けることで、複数種の内視鏡に対応するようにしてもよい。この場合、管腔断面積を可変とする機構として、吸気及び排気が可能なエアポンプ等が挙げられる。また、大腸モデル30の肛門側端部に大腸モデル30の外周面から突出したフランジ蓋部が設けられている場合には、そのフランジ蓋部と臓器収容部2の下壁部21の外側面(下面)との間に、大腸モデル30の肛門側端部領域を挿通可能な貫通孔を持つ中間プレートを介在させて、大腸モデル30のフランジ蓋部と臓器収容部2の下壁部21の外側面とを係合させる。そして、各内視鏡の太さ(径)に対応して貫通孔の大きさが異なる複数種の中間プレートが付け替え可能とされてもよい。
また、エアポンプ等で管腔臓器モデルの管腔内に空気を注入することで、訓練の難易度を下げるようにしてもよい。管腔臓器モデルの管腔内に空気が注入されることで、管腔臓器モデルが膨らむため、内視鏡が挿入し易くなるからである。この場合、エアチューブを介してエアポンプから管腔臓器モデルの管腔内に空気を注入可能な構成を付加し、例えば、入出力パネル15の表示に対する入力操作で訓練の難易度を下げることが選ばれた場合にエアポンプの動作が開始されればよい。
【0099】
また、本実施形態のように、管腔臓器モデルの対象部位の伸び度合が検出可能である場合には、その伸び度合が第一閾値を超えた場合に、スピーカに苦しい状態を示すうなり音声(例えば「ウーッ」という音声)を出力させることもできる。更に、その伸び度合が第一閾値より大きい第二閾値を更に超えた場合には、臓器の損傷を示すべくエラー音を出力させるようにしてもよい。
また、上述の計測モジュール104は、内視鏡の先端部が一定場所で一定時間留まっていることを上述の手法で検出することができるため、このような検出がなされた場合に、制御部10は、体位変換モータ71等の対応するモータを動作させることで、第一スライド壁部35、第二スライド壁部34、若しくは臓器保持部32のスライド、又は臓器収容部2の揺動を自動で実行し、内視鏡の挿入を自動でサポートするようにしてもよい。
このようにすれば、内視鏡操作に不慣れな被訓練者もサポートを受けながら訓練を継続し易くなる。
【0100】
加えて、上述の大腸モデル30の管腔臓器モデルには、管腔内に潤滑液を送り込むための注入部が更に設けられてもよい。この注入部は、管腔臓器モデルの外側から管腔に貫通する極細の注入孔を含む。この注入孔は潤滑液容器に繋がるノズルやチューブを挿入可能であり、かつ管腔内に注入された潤滑液が外部に漏れ出すのを抑制する程度の細さであることが好ましい。また、送液チューブを介して潤滑液容器から潤滑液を管腔内に注入する場合には、注入部には、送液チューブの端部と連結するチューブ連結部が装着されてもよい。
潤滑液は、管腔臓器モデルの管腔内の滑りをよくする剤であればよく、例えば、揮発性のシリコン離型剤が利用される。
このように管腔臓器モデルに外部からシリコン離型剤のような潤滑液を注入可能とすることで、管腔臓器モデルの管腔内を実物により近付けることができ、内視鏡を挿入した際の感触をリアルに再現することができる。更に、注入する潤滑液として揮発性の離型剤を用いることで、利用時のみ注入すれば利用後には揮発するため、管腔臓器モデルのメンテナンス負荷を低減することができる。
【0101】
更に、上述のように管腔臓器モデルの管腔内に潤滑液が注入される場合には、管腔臓器モデルは、管腔を画定する内壁面に、その管腔内に注入された潤滑液を滞留させ得る複数の微小凹溝を有することが好ましい。微小凹溝の幅は、その凹溝がない内壁面よりも潤滑液が長く滞留し得る大きさであればよく、少なくとも内視鏡の径よりも小さい必要があり、1mm未満であることが好ましい。また、当該微小凹溝の幅は、挿入された内視鏡と管腔臓器モデルの内壁面との摩擦面積を軽減させ得る大きさであればよい。
図11は、本実施形態における大腸モデル30の内壁面を示す図である。
図11のP1には、大腸モデル30の内壁面が模式的に示されており、P2には、内壁面を拡大した模式図が示されている。P2には、極細の凹溝と内壁のベース面とが凹凸状に示されている。このように、
図11の例では、大腸モデル30の内壁面には、大腸モデル30の長手方向に略直交する方向に延びる線状の極細の凹溝が複数略平行に設けられている。
このような線状の凹溝は、大腸モデル30の内壁面の全領域に亘って設けられてもよいし、該内壁面の特定領域にのみ設けられてもよい。
また、このような線状の微小凹溝は、中子を用いた管腔臓器モデルの内壁面の型取りにより当該内壁表面に積層痕として形成することができる。また、微小凸形状が表面に施されている中子を用いても、大腸モデル30の内壁面の微小凹溝を形成することができる。このように、当該微小凹溝の形成方法については何ら限定されない。
また、
図11の例では、当該微小凹溝は、線状に形成されているが、穴として形成されていてもよい。
このような微小凹溝を大腸モデル30の内壁面に設けることで、管腔内に挿入する医療具と当該内壁面との摩擦面積が軽減され或いは当該微小凹溝に潤滑液が滞留するため、その医療具の挿入時及び戻し(抜去)時の不要な抵抗感を低減させることができる。
【0102】
また、管腔臓器モデルとして上部消化管モデルが適用される場合には、計測モジュール104で時間情報が取得される当該チェックポイントは、食道入口部、接合部(噴門部)、十二指腸部等に設定されればよい。また、評価モジュール105で取得される負荷情報は咽頭部への圧力値とされればよい。医療シミュレータにおいて咽頭反射や曖気が模擬されている場合には、咽頭反射や曖気が行われる度に、評価モジュール105は評価ポイントを減点するようにしてもよい。また、気圧センサで管腔臓器モデルの管腔内の気圧が検出される場合には、内視鏡の先端部が開始から十二指腸部に挿入されるまでの間の気圧、十二指腸部から当該先端部が抜かれた後の気圧、接合部(噴門部)から抜かれた後の気圧などが評価対象とされてもよい。また、評価モジュール105は、接合部(噴門部)の周辺に内視鏡の先端部が存在する場合に、「息を吸ってください」、「息を止めてください」、及び「楽にしてください」という所定発話のセットが発話処理モジュール103により特定されたか否かで評価することもできる。
【0103】
以下、
図12及び
図13を用いて、臓器収容部2の内部空間を撮像する構成(カメラ6を含む)及び臓器収容部2の変形例について説明する。
図12は、変形例に係る人体模型部1の外観を示す斜視図であり、
図13は、変形例に係る人体模型部1における臓器収容部200と遮光部210とを分離させた分解図である。
本変形例では、臓器収容部200は、腹側の構造が上述の実施形態における臓器収容部2と相違し、それ以外の構造は臓器収容部2と同様である。
臓器収容部200は、略直方体状の箱体であり、透明な材質で成形されている窓部201で腹側が封鎖されている。この窓部201によれば、臓器収容部200内の大腸モデル30を臓器収容部200の外側からカメラ6で撮像可能となるだけでなく、人体の腹膜を模擬することもできる。
【0104】
遮光部210は、略直方体形状を有し、臓器収容部200の腹側に着脱自在に装着される。遮光部210は、装着状態において窓部201を腹側から覆って、臓器収容部200の下壁部21、上壁部22、右側壁部23及び左側壁部24と共に、臓器収容部200の内部空間を外光から遮光する。これにより、臓器収容部200内の大腸モデル30を撮像するカメラ6の映像が外光に影響を受けないようにすることができる。
遮光部210は、下壁部221、上壁部222(
図13では図示せず)、右側壁部223、左側壁部224、腹側壁部225を有し、それらにより上下左右及び腹側が覆われている一方で、背側が開放されている。
遮光部210の右側壁部223及び左側壁部224の背側縁部と、臓器収容部200の右側壁部23及び左側壁部24の腹側端縁とはそれぞれ上下方向に直線状に延在しており、相互に係合可能な構造を有している。これにより、遮光部210を臓器収容部200に対して上下方向にスライドさせることで、遮光部210は臓器収容部200に装着及び離脱が可能となっている。このように、遮光部210が臓器収容部200に対して着脱自在とされることで、大腸モデル30の交換作業や臓器収容部200内のメンテナンス作業を容易化することができる。
【0105】
遮光部210は、下壁部221、上壁部222、右側壁部223、左側壁部224、及び腹側壁部225で画定された内部空間を開放された背側空間と腹側空間とに区画する仕切りプレートを更に有している。仕切りプレートは、上下左右の端縁部が下壁部221、上壁部222、右側壁部223及び左側壁部224に接続されることで固定されている。
仕切りプレートで区画される腹側空間の内壁面には発光ユニット215が設けられている。発光ユニット215は、所定の長さで延在している。各発光ユニット215は、LED(Light Emitting Diode)のような複数の光源が列に並んで形成されていてもよいし、一つの長い光源により形成されていてもよい。
また、仕切プレートの略中央に、カメラ6のレンズ部が遮光部210の背側空間に向かって露出するようにカメラ6が設置されている。これにより、遮光部210の背側空間は開放されているため、カメラ6は、臓器収容部200の窓部201を介して大腸モデル30を撮像可能な位置及び向きに設置されているといえる。
【0106】
仕切プレートは、遮光領域211及び透光領域212で形成されている。
遮光領域211は、遮光部210の腹側空間内に設けられている発光ユニット215からの光を背側空間側へできるだけ透過しないように遮断可能な部材又は材料で形成されている。例えば、遮光領域211は、遮光性を有するフィルムが仕切プレートの腹側表面に貼付されることで形成されていてもよいし、遮光性を有する剤が仕切プレートの腹側表面に塗布されることで形成されていてもよいし、遮光性を有する材料で成形された部分プレートとして形成されていてもよい。
透光領域212は、遮光部210の腹側空間内に設けられている発光ユニット215からの光を背側空間側へ透過可能な部材又は材料で形成されている。
遮光領域211及び透光領域212の配置は、窓部201の表面反射を抑制するべく発光ユニット215からの光で間接的に臓器収容部200の内部空間を照らすことができるように、発光ユニット215及びカメラ6の位置に応じて決められればよい。このため、仕切プレートの遮光領域211及び透光領域212は、光源(発光ユニット215)と窓部201との間に設けられておりその光源からの光で間接的に臓器収容部200の内部空間を照らす間接照明部と表記することができる。
【0107】
図13の例では、遮光領域211及び透光領域212が上下方向に連設されて仕切プレートが形成されており、透光領域212は、遮光領域211の1/5から1/6程度の広さで下方(肛門側)に配置されており、遮光領域211は、仕切プレートの残りの領域として上方に配置されている。また、二つの発光ユニット215が遮光部210の腹側空間の左右の内壁面に設けられており、遮光領域211は二つの発光ユニット215の光源の背側を覆う位置に配置されており、透光領域212は当該発光ユニット215の光源のない位置に配置されている。
このように遮光部210で臓器収容部200の内部空間を外光から遮光しつつ、遮光部210の内部空間に設けられた発光ユニット215からの光を用いた間接照明で臓器収容部200の内部空間を照らすことで、窓部201の表面反射や映り込みを抑制しつつ臓器収容部200の内部空間内の大腸モデル30を適切に撮像することができる。ひいては、大腸モデル30に関する画像認識精度を維持することができる。
但し、発光ユニット215の位置及び数、並びに遮光領域211及び透光領域212の配置は、発光ユニット215からの光で間接的に臓器収容部200の内部空間を照らすことができれば、
図13の例に限定されず適宜変形可能である。
また、本変形例において、窓部201は、表面反射を抑制する部材又は材料を含むようにしてもよいし、含まなくてもよい。
【0108】
更に、臓器収容部200の内壁面においても表面反射を抑制する部材又は材料を含むようにしてもよい。更に言えば、臓器収容部200の内壁面のうち、少なくとも、変形や変位の検出対象とされる大腸モデル30の対象部位の周囲の領域が、表面反射を抑制する部材又は材料を含むようにしてもよい。このようにすれば、間接照明による内壁面の表面反射等も抑制することができ、大腸モデル30に関する画像認識精度を維持することができる。
また、臓器収容部200の内壁面だけでなく、臓器収容部200の内部空間に設けられている肛門保持部31、臓器保持部32、第一スライド壁部35、第二スライド壁部34、保持柱39等も表面反射を抑制する部材又は材料を含むようにしてもよい。
【0109】
図12及び
図13に示される本変形例に係る人体模型部1では、遮光部210内に設けられており臓器収容部200の内部空間の平面視映像を撮像するカメラ6に加えて、主に大腸モデル30のS状結腸領域を側方から撮像するもう一台のカメラ6(図示せず)が臓器収容部200内に設けられている。後者のカメラ6は、例えば、臓器収容部200内の右側内面付近に左側に向けて、或いは臓器収容部200内の左側内面付近に右側を向けて設けられる。このように後者のカメラ6を設けることで、大腸モデル30の前後方向(腹側背側方向)の変位及び変形についても検出することができる。
【0110】
図14は、変形例における訓練時の表示の一部を示す図である。
評価モジュール105は、訓練が開始されると、
図9に示される表示に加えて又は代えて、
図14に示されるような表示を入出力パネル15に表示させてもよい。
図14の例では、遮光部210内のカメラ6により撮像された平面視映像が領域DS21に表示され、臓器収容部200内のカメラ6により撮像された側方視映像が領域DS22に表示され、被訓練者が扱う内視鏡で撮像された内視鏡映像が領域DS23に表示され、外部のカメラ(図示せず)により撮像された被訓練者の映像が領域DS24に表示されている。このように様々な映像を表示することで、被訓練者の内視鏡手技を様々な角度から評価及び分析することができる。
また、
図9の例で領域DS3、DS4及びDS5で示されていた大腸モデル30の伸縮の程度が、
図14の例では、S状結腸の伸びとして領域DS25で表示されている。加えて、
図14の例では、第一スライド壁部35の下向き壁面に設けられた圧力センサで検出された圧力の程度が圧迫壁への圧力として領域DS26に表示されている。更に、上部には実行中の訓練の難易度(
図14では初級)及びそのときの体位(
図14では左側臥位)も表示されている。
【0111】
本変形例において、検出モジュール101は、遮光部210内及び臓器収容部200内の各カメラ6により撮像された平面視映像及び側方視映像の画像データを取得し、この画像データから大腸モデル30を認識することで、大腸モデル30の可動領域の少なくとも一部が予め決められた評価位置を超えたことを検出するようにしてもよい。大腸モデル30の認識は、周知の画像認識技術を用いて色の特徴等に基づいて実現することができる。
評価位置は、例えば、平面視映像では臓器収容部200の内部空間の上下方向の所定位置に左右方向に延びる線として設定され、側方視映像では臓器収容部200の内部空間の前後方向(腹側背側方向)の所定位置に上下方向に延びる線として設定される。検出モジュール101は、平面視映像及び側方視映像のそれぞれについて当該評価位置(評価線)を予め保持しておき、認識された大腸モデル30の画像領域の少なくとも一部がその評価位置を超えたことを検出する。
また、検出モジュール101は、大腸モデル30の可動領域の少なくとも一部が当該評価位置を超えたことの検出に加えて、当該評価位置を超えた当該可動領域の面積を算出するようにしてもよい。
【0112】
更に、評価モジュール105は、検出モジュール101による上記検出結果を更に用いて、記被訓練者の手技を評価するようにしてもよい。例えば、評価モジュール105は、大腸モデル30の可動領域の少なくとも一部が評価位置を超えたことが検出された場合、或いは評価位置を超えた当該可動領域の面積が所定面積以上となった場合に、評価ポイントを減点する。また、評価モジュール105は、大腸モデル30の少なくとも一部が評価位置を超えている時間に応じて、減点するポイント数を増加させてもよいし、大腸モデル30の少なくとも一部が評価位置を超えた回数に対応するポイント数分、評価ポイントを減点するようにしてもよい。また、検出モジュール101は、検出された面積とその検出時間とに応じて減点するポイント数を増加させてもよいし、評価位置を超えた当該可動領域の面積が所定面積以上となった回数に対応するポイント数分、評価ポイントを減点するようにしてもよい。
また、評価モジュール105は、
図14において領域DS21及び領域DS22において表示されるように、評価位置を示す線DS211及びDS221を平面視映像又は側方視映像に重畳して表示させることもできる。
このような評価によれば、被訓練者による内視鏡手技が大腸に負担をかけ過ぎているか否かを評価することができる。また、評価位置を示す線を表示することで、被訓練者に自身の手技の状況を把握させ易くすることができる。
【0113】
上述した各実施形態の内容は、次のように特定することもできる。
(付記1)
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
検出手段と、
を備え、
前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能である、
医療シミュレータ。
(付記2)
前記管腔臓器モデルの前記可動領域の少なくとも一部の外側周囲又は外側表面には、前記管腔臓器モデルの軸方向に離間する位置に複数のマーカが配置されており、
前記検出手段は、カメラにより撮像された前記臓器収容部内の画像を取得し、該画像に含まれるマーカ画像に基づいて、前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である、
付記1に記載の医療シミュレータ。
(付記3)
前記臓器収容部は、前記管腔臓器モデルを収容した状態で前記内部空間を腹側から封鎖する腹壁カバー部を含み、
前記腹壁カバー部は、少なくとも前記内部空間内の前記管腔臓器モデルが視認可能となるように透明な窓部を含み、
前記窓部は、前記カメラにより撮像される画像における前記管腔臓器モデルの認識精度の低下を防ぐための、前記窓部の表面反射を抑制する部材又は材料を含む、
付記1又は2に記載の医療シミュレータ。
(付記4)
前記臓器収容部に着脱自在に装着され、装着状態で前記臓器収容部の内部空間を外光から遮光する遮光部、
を更に備え、
前記臓器収容部は、前記管腔臓器モデルを収容した状態で前記臓器収容部の内部空間を腹側から封鎖する腹壁カバー部を含み、
前記腹壁カバー部は、透明な窓部を含み、
前記遮光部は、前記窓部を介して前記管腔臓器モデルを撮像可能な位置及び向きに設置された前記カメラと、光源と、該光源と前記窓部との間に設けられており該光源からの光で間接的に前記臓器収容部の内部空間を照らす間接照明部とを含む、
付記1又は2に記載の医療シミュレータ。
(付記5)
前記臓器収容部の内壁面のうち、少なくとも、前記検出手段の検出対象とされる前記管腔臓器モデルの前記対象部位の周囲の領域は、表面反射を抑制する部材又は材料を含む、
付記3又は4に記載の医療シミュレータ。
(付記6)
前記管腔臓器モデルの前記可動領域は、可変長部材と連結された特定可動領域を含み、
前記検出手段は、前記可変長部材の長さを検出することで、前記対象部位の変位又は変形を検出可能である、
付記1から5のいずれか一つに記載の医療シミュレータ。
(付記7)
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部及び前記臓器収容部に対してスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられた臓器保持部を含み、
前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域及び前記臓器保持部に保持される領域を含み、
前記大腸モデルの前記臓器保持部に保持される領域は、下行結腸からS状結腸までの範囲の一部に相当する領域であり、
前記臓器保持部のスライドにより、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの間の屈曲度合が変化する、
付記1から6のいずれか一つに記載の医療シミュレータ。
(付記8)
前記臓器保持部のスライド範囲は、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの長さが前記肛門保持部から前記臓器保持部までの距離の2倍となる位置を含む、
付記7に記載の医療シミュレータ。
(付記9)
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記管腔臓器モデルの前記局所固定領域は、前記大腸モデルの肛門側端部領域を含み、
前記管腔臓器モデルの前記可動領域は、前記大腸モデルにおける横行結腸に相当する横行結腸領域及び前記大腸モデルにおける直腸に相当する直腸領域を含み、
前記臓器収容部は、前記大腸モデルの前記横行結腸領域の収容位置よりも下方かつ前記肛門側端部領域を保持する肛門保持部及び前記大腸モデルの前記直腸領域の収容位置よりも上方に位置し下向きの壁面を持つ補助壁部を含む、
付記1から8のいずれか一つに記載の医療シミュレータ。
(付記10)
前記補助壁部は、前記肛門保持部への距離が変化する方向にスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能である、
付記9に記載の医療シミュレータ。
(付記11)
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記大腸モデルは、横行結腸に相当する横行結腸領域、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
前記臓器収容部は、前記内部空間の上方に下向きの壁面を持って立設されており、下方へスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられたスライド壁部を含み、
前記大腸モデルの少なくとも前記脾彎曲領域及び前記肝彎曲領域は、前記スライド壁部の下方へのスライドに伴い、下方へ変位する、
付記1から10のいずれか一つに記載の医療シミュレータ。
(付記12)
前記大腸モデルは、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
前記大腸モデルの前記脾彎曲領域及び前記肝彎曲領域は、前記大腸モデルの管腔内で撮像される内視鏡画像において前記脾彎曲領域及び前記肝彎曲領域で色調変化を生じさせる色調変化領域を含む、
付記11に記載の医療シミュレータ。
(付記13)
モータと、
前記モータを収容するモータ収容部と、
前記モータの回転動力を用いて駆動される出力シャフトと、
前記モータ収容部を保持する基台と、
を更に備え、
前記臓器収容部は、前記内部空間の上方を封鎖すると共に前記出力シャフトの一端を固定する上端壁部を更に含み、前記モータの回転動力により前記出力シャフトが駆動される場合には、前記基台又は前記臓器収容部に回動自在に設けられたタイヤ部を介して前記基台の腹側支持面に支持されながら前記出力シャフトと共に揺動する、
付記1から12のいずれか一つに記載の医療シミュレータ。
(付記14)
前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部を含み、
前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域を含み、
前記肛門保持部は、前記大腸モデルの前記肛門側端部領域が挿通される貫通孔、及び前記貫通孔の断面積が上方に向かって漸次拡大するテーパ状壁面部を含み、
前記テーパ状壁面部は、前記テーパ状壁面部の下端から上端までの傾斜が急峻な第一壁面部と該第一壁面部よりも該傾斜が緩やかな第二壁面部とを含み、
前記第一壁面部及び前記第二壁面部は、前記貫通孔の軸方向視で対向する位置に少なくとも存在する、
付記1から13のいずれか一つに記載の医療シミュレータ。
(付記15)
前記管腔臓器モデルは、管腔を画定する内壁面に、該管腔内に注入された潤滑液を滞留させ得る複数の微小凹溝を有する、
付記1から14のいずれか一つに記載の医療シミュレータ。
(付記16)
前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを前記対象装置の部位が通過したことを判定する判定手段と、
二つのチェックポイント間の前記部位の滞在時間を取得する時間取得手段と、
前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価する評価手段と、
を更に備える付記1から15のいずれか一つに記載の医療シミュレータ。
(付記17)
前記時間取得手段は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、該第二のチェックポイントを通過してから該第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得し、
前記評価手段は、前記第一の滞在時間及び前記第二の滞在時間に対して別個の評価方式でそれぞれ評価する、
付記16に記載の医療シミュレータ。
(付記18)
前記管腔臓器モデルの所定部位にかかる負荷情報を取得する負荷取得手段、
を更に備え、
前記評価手段は、前記取得される負荷情報が閾値を超えた負荷を示す場合に、前記取得される滞在時間を用いて点数付けされた評価ポイントから該負荷情報に対応する減点を行うことで、前記被訓練者の手技の評価ポイントを算出する、
付記16又は17に記載の医療シミュレータ。
(付記19)
前記被訓練者の発話情報を取得する発話取得手段と、
前記取得された発話情報に基づいて、予め定められた複数種の所定発話のうち前記被訓練者が発した一以上の所定発話を特定可能な発話特定手段と、
を更に備え、
前記評価手段は、前記特定された一以上の所定発話の組合せに基づいて加点又は減点することで、前記評価ポイントを算出する、
付記18に記載の医療シミュレータ。
(付記20)
前記管腔臓器モデルの管腔内の気圧を測定する測定手段、
を更に備え、
前記評価手段は、前記対象装置の部位が二つのチェックポイント間に滞在している際に測定された気圧と気圧閾値との比較結果を更に用いて、前記被訓練者の手技を評価する、
付記16から19のいずれか一つに記載の医療シミュレータ。
(付記21)
前記評価手段は、前記検出手段が前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である場合に、検出された屈曲状態、伸縮状態、捻じれ状態、又はループ状態を更に用いて、前記被訓練者の手技を評価する、
付記16から20のいずれか一つに記載の医療シミュレータ。
(付記22)
前記検出手段は、少なくとも訓練時において、前記管腔臓器モデルの前記可動領域の少なくとも一部が前記臓器収容部の内部空間における前後方向の評価位置又は上下方向の評価位置を超えたことを検出し、
前記評価手段は、前記検出手段による前記評価位置が超えられたことの検出結果を更に用いて、前記被訓練者の手技を評価する、
付記16から21のいずれか一つに記載の医療シミュレータ。
(付記23)
柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、前記管腔臓器モデルを内部空間に収容する臓器収容部と、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のセンサとを少なくとも備える医療シミュレータを制御する制御部により実行される医療シミュレータを用いた手技評価方法であって、
前記複数のセンサによる検出信号に基づいて、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを対象装置の部位が通過したことを判定し、
二つのチェックポイント間の前記部位の滞在時間を取得し、
前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価する、
ことを含む医療シミュレータを用いた手技評価方法。
(付記24)
第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、該第二のチェックポイントを通過してから該第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得することを更に含み、
前記評価では、前記第一の滞在時間及び前記第二の滞在時間に対して別個の評価方式でそれぞれ評価する、
付記23に記載の医療シミュレータを用いた手技評価方法。
(付記25)
前記管腔臓器モデルの所定部位にかかる負荷情報を取得し、
前記取得される負荷情報が閾値を超えた負荷を示す場合に、前記取得される滞在時間を用いて点数付けされた評価ポイントから該負荷情報に対応する減点を行うことで、前記被訓練者の手技の評価ポイントを算出する、
ことを更に含む付記23又は24に記載の医療シミュレータを用いた手技評価方法。
(付記26)
前記被訓練者の発話情報を取得し、
前記取得された発話情報に基づいて、予め定められた複数種の所定発話のうち前記被訓練者が発した一以上の所定発話を特定する、
ことを更に含み、
前記評価ポイントの算出では、前記特定された一以上の所定発話の組合せに基づいて加点又は減点することで、前記評価ポイントを算出する、
付記25に記載の医療シミュレータを用いた手技評価方法。
(付記27)
前記管腔臓器モデルの管腔内の気圧を測定する、
ことを更に含み、
前記評価では、前記対象装置の部位が二つのチェックポイント間に滞在している際に測定された気圧と気圧閾値との比較結果を更に用いて、前記被訓練者の手技を評価する、
付記23から26のいずれか一つに記載の医療シミュレータを用いた手技評価方法。
(付記28)
前記内部空間内における前記管腔臓器モデルの対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出する、
ことを更に含み、
前記評価では、前記検出された屈曲状態、伸縮状態、捻じれ状態、又はループ状態を更に用いて、前記被訓練者の手技を評価する、
付記23から27のいずれか一つに記載の医療シミュレータを用いた手技評価方法。
(付記29)
前記管腔臓器モデルの少なくとも一部が前記臓器収容部の内部空間における前後方向の評価位置又は上下方向の評価位置を超えたことを検出する、
ことを更に含み、
前記評価では、前記管腔臓器モデルの少なくとも一部が前記評価位置を超えたことの前記検出の結果を更に用いて、前記被訓練者の手技を評価する、
付記23から28のいずれか一つに記載の医療シミュレータを用いた手技評価方法。
(付記30)
付記23から29のいずれか一つに記載の医療シミュレータを用いた手技評価方法を前記制御部に実行させるコンピュータプログラム。