IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ デントスプリー シロナ インコーポレイテッドの特許一覧

特許7379333センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品
<>
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図1
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図2
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図3
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図4
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図5
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図6
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図7
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図8
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図9
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図10
  • 特許-センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-06
(45)【発行日】2023-11-14
(54)【発明の名称】センサの視野を拡張し、合成放射線写真を取得するための方法、システム、装置、およびコンピュータプログラム製品
(51)【国際特許分類】
   A61B 6/14 20060101AFI20231107BHJP
   A61B 6/02 20060101ALI20231107BHJP
   G06T 3/00 20060101ALI20231107BHJP
   G06T 1/00 20060101ALI20231107BHJP
【FI】
A61B6/14 300
A61B6/02 301D
A61B6/02 353C
G06T3/00 720
G06T1/00 290
【請求項の数】 19
(21)【出願番号】P 2020531617
(86)(22)【出願日】2018-12-11
(65)【公表番号】
(43)【公表日】2021-02-18
(86)【国際出願番号】 US2018064826
(87)【国際公開番号】W WO2019118387
(87)【国際公開日】2019-06-20
【審査請求日】2021-10-26
(31)【優先権主張番号】62/597,189
(32)【優先日】2017-12-11
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/640,267
(32)【優先日】2018-03-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517264281
【氏名又は名称】デンツプライ シロナ インコーポレイテッド
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【弁理士】
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【弁理士】
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100208580
【弁理士】
【氏名又は名称】三好 玲奈
(74)【代理人】
【識別番号】100191086
【弁理士】
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】デューワー,フレデリック ダブリュー.
【審査官】佐々木 創太郎
(56)【参考文献】
【文献】特開2015-144862(JP,A)
【文献】米国特許出願公開第2016/0220212(US,A1)
【文献】特表2013-543784(JP,A)
【文献】国際公開第2011/016508(WO,A1)
【文献】特開2015-061601(JP,A)
【文献】特開平01-088792(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00 - 6/14
G06T 1/00 - 1/40
3/00 - 7/90
G06V 10/00 -20/90
30/418
40/16
40/20
(57)【特許請求の範囲】
【請求項1】
複数の投影画像に基づいて3次元の再構成されたボリュームから2次元画像を生成する方法あって、
歯の解剖学的構造の検出器上の前記複数の投影画像を取得し、
前記複数の投影画像の各投影画像の無効性マトリックスを決定し、
再構成のための開始ボリュームを作成し、
反復処理を実行して前記開始ボリュームを繰り返し更新し、再構成されたボリュームを取得し、
終了基準が満たされたときに、前記再構成されたボリュームを再投影して、前記2次元画像を取得し、
前記反復処理は、前記複数の投影画像のうち1つの投影画像を選択することを含み、
前記反復処理は、前記無効性マトリックスによって行われる前記選択された投影画像の潜在的に問題のあるピクセルの前記再構成されたボリュームへの寄与を除去するために重みを下げる処理をさらに含み、
前記決定する工程は、決定開始時においてバイナリマスクである無効性マトリックスにおいて前記潜在的に問題のあるピクセルに対応する無効領域を特定し、各ピクセルについて、当該各ピクセルと最も近い前記無効領域に属しない有効ピクセルとの距離、及び、当該各ピクセルと最も近い前記無効領域に属する無効ピクセルとの距離を計算し、これらの距離の組み合わせに応じて、当該各ピクセルにおける無効性マトリックスの値を取得することをさらに含む、方法。
【請求項2】
前記複数の投影画像へのマーカー粒子の寄与を除去することをさらに含む、請求項1に記載の方法。
【請求項3】
前記複数の投影画像の数は41である、請求項1に記載の方法。
【請求項4】
前記開始ボリュームは、空白のボリュームである、請求項1に記載の方法。
【請求項5】
前記再投影する工程は、再投影面の面積および前記開始ボリュームのサイズを使用して、前記2次元画像の少なくとも1つの特性を制御することをさらに含む、請求項1に記載の方法。
【請求項6】
前記再投影面は半円形の面である、請求項5に記載の方法。
【請求項7】
トモシンセシススキャンのスキャン角度の開き角度に一致する負の深さの仮想焦点を使用して、再構成された歯の解剖学的構造を前記再投影面に再投影して、前記2次元画像を取得することをさらに含み、
前記2次元画像は、前記検出器の視野よりも広い視野を有する、請求項5に記載の方法。
【請求項8】
前記再投影面は、前記歯の解剖学的構造の形状に一致するように動的に構成される、請求項5に記載の方法。
【請求項9】
前記再投影面は平面である、請求項5に記載の方法。
【請求項10】
複数の投影画像に基づいて3次元の再構成されたボリュームから2次元画像を生成するシステムであって、
歯の解剖学的構造の検出器上の複数の投影画像を取得すること、
前記複数の投影画像の各投影画像の無効性マトリックスを決定すること、
再構成のための開始ボリュームを作成すること、
反復処理を実行して前記開始ボリュームを繰り返し更新し、再構成されたボリュームを取得すること、および、
終了基準が満たされたときに、前記再構成されたボリュームを再投影して、前記2次元画像を取得すること、の動作が可能な少なくとも1つのプロセッサを有し、
前記反復処理は、前記複数の投影画像のうちの1つの投影画像を選択することを含み、
前記反復処理は、前記無効性マトリックスによって行われる前記選択された投影画像の潜在的に問題のあるピクセルの前記再構成されたボリュームへの寄与を除去するために重みを下げる処理をさらに含み、
前記プロセッサは、決定開始時においてバイナリマスクである無効性マトリックスにおいて前記潜在的に問題のあるピクセルに対応する無効領域を特定し、各ピクセルについて、当該各ピクセルと最も近い前記無効領域に属しない有効ピクセルとの距離、及び、当該各ピクセルと最も近い前記無効領域に属する無効ピクセルとの距離を計算し、これらの距離の組み合わせに応じて、当該各ピクセルにおける無効性マトリックスの値を取得することにより、前記無効性マトリックスを決定するように動作可能である、システム。
【請求項11】
前記プロセッサは、前記複数の投影画像へのマーカー粒子の寄与を除去するように動作可能である、請求項10に記載のシステム。
【請求項12】
前記複数の投影画像の数は41である、請求項10に記載のシステム。
【請求項13】
前記開始ボリュームは、空白のボリュームである、請求項10に記載のシステム。
【請求項14】
前記プロセッサは、再投影面の面積および前記開始ボリュームのサイズを使用して、前記2次元画像の少なくとも1つの特性を制御することによって再投影するように動作可能である、請求項10に記載のシステム。
【請求項15】
前記再投影面は半円形の面である、請求項14に記載のシステム。
【請求項16】
前記プロセッサは、トモシンセシススキャンのスキャン角度の開き角度に一致する負の深さの仮想焦点を使用して、再構成された歯の解剖学的構造を前記再投影面に再投影して、前記2次元画像を取得するように動作可能であって、
前記2次元画像は、前記検出器の視野よりも広い視野を有する、請求項14に記載のシステム。
【請求項17】
前記再投影面は、前記歯の解剖学的構造の形状に一致するように動的に構成される、請求項14に記載のシステム。
【請求項18】
前記再投影面は平面である、請求項14に記載のシステム。
【請求項19】
プログラムを格納する非一時的なコンピュータ可読記憶媒体であって、コンピュータシステムによって実行されると、コンピュータシステムに、
歯の解剖学的構造の検出器上の複数の投影画像を取得すること、
前記複数の投影画像の各投影画像の無効性マトリックスを決定すること、
再構成のための開始ボリュームを作成すること、
反復処理を実行して前記開始ボリュームを繰り返し更新し、再構成されたボリュームを取得すること、および、
終了基準が満たされたときに、前記再構成されたボリュームを再投影して、2次元画像を取得すること、を含む手順を実行させ、
前記反復処理は、前記複数の投影画像のうち1つの投影画像を選択することを含み、
前記反復処理は、前記無効性マトリックスによって行われる前記選択された投影画像の潜在的に問題のあるピクセルの前記再構成されたボリュームへの寄与を除去するために重みを下げる処理さらに含み、
前記決定することは、決定開始時においてバイナリマスクである無効性マトリックスにおいて前記潜在的に問題のあるピクセルに対応する無効領域を特定し、各ピクセルについて、当該各ピクセルと最も近い前記無効領域に属しない有効ピクセルとの距離、及び、当該各ピクセルと最も近い前記無効領域に属する無効ピクセルとの距離を計算し、これらの距離の組み合わせに応じて、当該各ピクセルにおける無効性マトリックスの値を取得することをさらに含む、コンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
(関連技術の相互参照)
この出願は、2017年12月11日に出願された米国仮出願第62/597,189号および2018年3月8日に出願された米国仮出願第62/640,267号の利益を主張するものであり、その内容は、参照により本明細書に組み込まれる。
【0002】
本出願は、一般に、歯科環境で口腔内画像を取得することに関し、より詳細には、無効性マトリックス、反復再構成、および再投影を使用して3次元(3D)の再構成されたボリュームから画像アーティファクトを除去した2次元(2D)画像を生成する方法、システム、装置、およびコンピュータプログラム製品に関し、3Dの再構成されたボリュームは、複数の投影画像に基づく。ここで、X線センサ/検出器の視野は、センサ/検出器の面積よりも大きい面積を有する2次元(2D)画像を生成するために拡張される。2次元画像は、視野を最大化しながら幾何学的歪みを最小化する再投影アルゴリズムと組み合わせた反復再構成アルゴリズムに加え、異なるX線源位置で撮影された画像に基づいて生成される。また、マーカー粒子を含まない2次元放射線写真を可能にするために、標準(非合成)放射線写真と同等のノイズである合成放射線写真の生成についても説明される。
【背景技術】
【0003】
X線撮影は、オブジェクト(例えば、患者またはその一部)の片側にX線源を配置し、X線源からオブジェクトを通して、オブジェクトの反対側に位置するX線検出器に向かってX線を放射させることにより実行することができる。X線がX線源からオブジェクトを通過すると、そのエネルギーはオブジェクトの構成に応じてさまざまな程度に吸収され、X線検出器に到達したX線は、オブジェクトを通過した累積吸収に基づいて2次元のX線画像(放射線写真とも呼ばれる)を形成する。
【0004】
口腔内X線撮影は、イメージセンサを患者の口の内側に配置し、口の外側のX線源を使用してセンサにX線を照射する手法である。口内の硬組織のX線減衰により、センサ上に臨床画像が形成される。口腔内X線画像は、歯、骨、および支持組織の高レベルの詳細を提供する。また、歯科医が虫歯の発見、歯根の検査、歯の周りの骨の状態の評価、歯周病であるかまたはその懸念があるかの確認、歯の発達の状態の監視などを行うことを可能にする。
【0005】
第一に、適用されるX線量を増加させると、通常、画像に寄与するX線光子の数が改善される。X線画像は、通常、ポアソンノイズが支配的であるため、追加のX線量を適用すると、信号対雑音比(SNR)が向上する。したがって、通常、最小のX線量は、臨床的に関心のある所定の機能を正常に視覚化するために必要である。その放射線量を超えて、放射線量を増加させることは、必ずしも有意な追加の臨床的有用性をもたらすとは限らない。
【0006】
上述の従来のX線撮影は、2次元画像を生成する。しかし、トモシンセシスは、コンピュータ断層撮影(CT)またはコーンビームコンピュータ断層撮影(CBCT)のスキャン角度より小さいスキャン角度内(例えば、±20°、CBCTで少なくとも180°と比較)で多数の視点から撮影された患者のX線画像から再構成された断層画像スライスの形式での患者に関する3次元情報を提供する。ただし、トモシンセシスは歯科において比較的未発達の分野である。
【0007】
従来のX線撮影およびトモシンセシスの両方において、口腔内センサ/検出器は、患者の口の中に配置され得る。複数の歯を含む診断画像の場合、または画像内に1本の歯を完全にキャプチャする必要がある診断タスクの場合、一般的な口腔内センサのサイズは非常に大きくなり得る。人間の口腔内は限られたスペースであるため、口腔内センサの物理的なサイズも限られる。さらに、患者は、患者の不快感のために口腔内センサの使用を制限する一定の条件(例えば、歯のトーラス)があり得る。口腔内センサの視野を拡張するいくつかのアプローチがある。一部のアプローチは、口腔内センサの物理的な変化に焦点をあてている。例えば、あるアプローチは、角をなくした口腔内センサを使用することであり、それによって口の中により簡単にフィットさせることができる。これは、より大きな口腔内センサを可能にし得るが、このアプローチでは視野をわずかに増加させるだけである。別のアプローチは、適応性のある口腔内センサを開発することである。しかしながら、このアプローチでは、製造パラメーターを大幅に変更する必要があり、視野もそれほど大きくなることはない。別のアプローチは、平行照明で撮影された一連の画像をキャプチャして組み合わせることである。しかしながら、口腔内イメージングの一般的なシステムジオメトリでは、このアプローチで重大なスティッチングアーティファクトが発生し、結合されるサブボリューム間の位置ずれが発生する。他のアプローチは、再構成されたボリュームを増加させるための再構成方法に依存している。これらのアプローチは、撮像されるサンプルが回転する外部(すなわち、非口腔内)断層撮影システム用であり、口腔内で達成することは不可能である。
【0008】
したがって、標準的なセンサで見ることができるよりも多くの歯を見ることを可能にするために、または逆に、標準的なサイズのセンサに耐えることができない患者の標準的なサイズの口腔内画像を取得ことを可能にするために、センサの有効サイズを増やすことができるデバイス、方法、およびコンピュータプログラム製品が望まれている。
【0009】
さらに、口腔内X線撮影は、虫歯および他の歯科病理をスクリーニングするために使用される既知の一般的に使用される技術である。静止したX線源を使用して1枚の画像を取得する代わりに、既知の方法で線源の位置を変化させながら一連の画像を取得する。その一連の画像を使用して、サンプリングされたボリューム内のX線減衰係数の推定値を作成することができる。口腔内のX線撮影は、臨床医が評価にかなりの経験を有する既知のよく知られた技術である。したがって、臨床医に口腔内放射線写真と歯科トモシンセシススキャンの両方を提供することは、診断能力を向上させる。これは、トモシンセシススキャンの中心投影を放射線写真として表示することにより、過去に解決された。しかし、トモシンセシススキャンの各投影は通常低線量で行われるため、中心投影は高線量の放射線写真と同等ではない。スキャンされるX線源をスキャン位置の中心に移動し、高線量の口腔内放射線写真を取得することにより、過去に別の解決策が試みられてきた。しかしながら、この解決策はまた、望ましくない追加の高線量画像を必要とすることにより、患者への放射線量を増加させる。
【0010】
乳房トモシンセシスの場合、著しく高い信号対雑音比を有する1枚の2次元画像を生成するための解決策は、トモシンセシススキャンを再構成し、次にボリュームのスライスを合計することによって、低ノイズのマンモグラムを得るために、結果のボリュームを再投影することを含む。ここでは、投影が取得され、一般化されたフーリエフィルターを使用してフィルタリングされる非反復再構成法が使用される。フィルタリングされた投影画像は、逆投影されて再構成されたボリュームを作成する。次に、再構成されたボリュームを再投影して、再構成されたボリュームを構成するスライスを合計することにより2D画像を得ることができる。フィルタリングされた逆投影は、一般的な非反復再構成技術である。各画像はフィルタリングされ、ボリュームを通じて逆投影される。フィルターは通常、ボリュームを通じた逆投影が元の投影と一致するように選択される。外挿された画像が再構成されたボリュームの全範囲をカバーするように、入力画像をスムーズに外挿することにより、アーティファクトを最小限に抑えることができる。残念ながら、この解決策では、投影拡張が、実現が難しい大きな高周波機能を外挿しようとしているため、ハイコントラスト機能が視野から外れると、画像アーティファクトが生成される。
【0011】
この解決策のもう1つの問題は、スキャン中に撮像された画像に、異なる重複ボリュームからの情報が含まれていることである。ただし、コントラストの変化は比較的小さい。したがって、この方法はこれまで、コントラストの変化が大きい歯の解剖学的構造などの硬組織や、口腔内スキャンの使用中には適用されていなかった。歯科組織は、ほとんどの乳房組織とは異なり、特に金属を含む重要な歯科作業を行う患者では、極端なコントラスト変化の領域が含まれている。このコントラストの変化により、再投影された放射線写真に現れる再構成されたデータに大きな切断アーティファクトが生じる。切断アーティファクトは、高コントラストの境界に隣接する複数の細い平行線として、または高減衰領域に隣接する暗い陰影として表示される。それらは、再構成されたデータの異なる領域に寄与する投影の数の変化の結果として発生する。さらに、乳房トモシンセシスとは異なり、歯科トモシンセシスのシステムジオメトリは正確に把握されておらず、患者はスキャン中に実質的に静止したままではない。口内のさまざまな位置での臨床使用を可能にするために、X線源はフレキシブルアームに据え付けられうる。ユーザによって線源の配置に大きな変動が見込まれるため、このアームは手動で配置および位置合わせされる。さらに、X線源の移動により、スキャン中にアームが屈曲および振動する。第二に、乳房トモシンセシスは通常、大幅に大きいピクセルサイズで、および、乳房組織は調整可能なパドルを使用して所定の位置に固定されて、実施される。結果として、患者の動きは、乳房トモシンセシスよりも口腔内トモシンセシスの方がはるかに重大なアーティファクトを生成することとなる。そのため、システムジオメトリと患者の位置を正確に測定する必要がある。最も簡単な方法は、システムジオメトリを決定するために使用できる投影に可視化されるマーカー粒子を使用することである。残念ながら、マーカー粒子を使用すると、再投影され放射線写真にアーティファクトが発生する。
【0012】
したがって、低線量のトモシンセシススキャンがされた標準的な放射線写真に匹敵する特徴を備えた低ノイズの口腔内放射線写真の提供を可能にするデバイスが望まれるであろう。
【発明の概要】
【0013】
前述に関連する既存の制限、および同様に他の制限も、無効性マトリックス、反復再構成、および再投影を使用して、3次元再構成されたボリュームから画像アーティファクトが除去された2次元画像を生成する方法によって克服することができ、3Dの再構成されたボリュームは複数の投影画像に基づく。ここで、複数の投影画像は、以下で説明する、無効性マトリックスによって行われる画像アーティファクトを除去するためのスムーズな重みを下げる処理を用いることにより、画像アーティファクトを操作するために反復再構成アルゴリズムによって処理される。適切な再投影面を選択することにより、3Dの再構成されたボリュームを再投影して、画像アーティファクトが除去された最終的な2次元画像を取得でき、ここで、最終的な2次元画像はセンサの領域よりも広い領域、または最終的な2次元画像は、標準的な(非合成)放射線写真と同等のノイズの合成2次元放射線写真である。この方法に従って動作するシステム、装置、およびコンピュータプログラムもまた、既存の制限を克服する。
【0014】
本明細書での例示的な実施形態によれば、複数の投影画像に基づいて3Dの再構成されたボリュームから2次元画像を生成する方法は、投影された画像を作成するためにオブジェクトを通して投影を取得すること、取得された投影された画像を較正すること、トモシンセシスシステムのジオメトリを推定すること、取得された各投影画像の無効性マトリックスを決定すること、取得された投影画像へのマーカー粒子の寄与を除去すること、再構成用の開始ボリュームを作成すること、開始ボリュームの反復的な更新のための反復処理を実行すること、および最終的な2次元画像を取得するために最終的な再構成されたボリュームを再投影することを含む。
【0015】
本明細書の1つの例示的な実施形態では、取得することは、スキャン角度中の様々な位置でいくつかの投影を撮ることを含むトモシンセシススキャンを実行することを含む。本明細書の一実施形態では、投影の数は41である。本明細書の別の実施形態では、スキャン角度は-20°の開始角から20°の終了角までであり、中心投影は0°の角度で発生する。
【0016】
本明細書の別の例示的な実施形態では、較正手順は、較正ファントムの投影画像のピクセルのグレーレベル値をファントムの材料の厚さの推定値に変換することを含む。これは、オブジェクト/歯の解剖学的構造の材料の厚さの推定に利用できる。
【0017】
本明細書のさらなる例示的な実施形態では、トモシンセシスシステムのジオメトリを推定することは、X線源に対する歯の解剖学的構造の位置を決定するためにマーカー粒子を使用することを含む。
【0018】
本明細書の例示的な実施形態では、無効性マトリックスを決定することは、バイナリマスク内の無効領域(例えば、投影エッジ、マーカー粒子)を特定し、問題のピクセルが無効かどうかに応じて、無効領域内の距離(正)と無効領域外の距離(負)を計算することを含む。例えば、有効と無効のバイナリ定義から始めて、最も近い有効なピクセルからのピクセルの距離を測定できる。これは、例えば、そのピクセル自体が有効なピクセルであれば、0になり得る。最も近い無効なピクセルからそのピクセルまでの距離も測定できる。これは、例えば、そのピクセル自体が無効であれば、0になり得る。これらの数値を組み合わせてピクセルの値を取得し、プロセスを繰り返して選択した投影の各ピクセルの値を取得し、前記選択した投影の無効性マトリックスを作成する。無効性マトリックスは、反復再構成のボリューム更新プロセス中に、取得された投影画像の各ピクセルによる再構成されたボリュームへの寄与の決定を可能にする。
【0019】
本明細書の別の例示的な実施形態では、取得された投影画像へのマーカー粒子の寄与を除去することは、空白領域を作成するためにマーカー粒子を表す画像の部分を差し引いて、空白領域に近い画像の領域などの偽のデータで空白領域を内挿することを含む。
【0020】
本明細書におけるさらに別の例示的な実施形態では、再構成用の開始ボリュームを構成することは、最初のボリューム更新プロセスのための開始ボリュームを構成することを含み、前記開始ボリュームは空白または空のボリュームである。
【0021】
本明細書のさらに別の例示的な実施形態では、反復処理を実行することは、更新が取得されたすべての投影、および、画像のアーティファクトが除去されるような各投影の無効性マトリックスに基づく開始ボリュームで始まる、ボリュームを繰り返し更新することを含む。この処理はさらに、無効性マトリックスによって行われるピクセルのスムーズな重み下げに基づき、潜在的に問題のあるピクセルは、問題のないピクセルよりも更新されるボリュームに寄与しないようにされる。本明細書のさらに別の例示的な実施形態では、反復処理を実行することは、終了基準に対してテストすることと、終了基準が満たされない場合に反復処理を繰り返すこととをさらに含む。
【0022】
本明細書の別の例示的な実施形態では、最終的な再構成されたボリュームを再投影することは、センサの視野が最大化するように再投影面を決定することを含む。本明細書のさらに別の例示的な実施形態では、最終的な再構成されたボリュームを再投影することは、合成放射線写真が得られるように再投影面を決定することを含む。
【0023】
この方法は、標準的なセンサで見ることができるよりも多くの歯を見ることを可能にするセンサの有効サイズを増やすため、または標準的なサイズのセンサに耐えることができない患者の標準的なサイズの口腔内画像を取得するために有用であり得る。この方法はまた、トモシンセシススキャンにおけるいずれの単一の投影画像よりも高い信号対雑音比を有する合成(非標準)放射線写真を得るためにも有用であり得る。これは、例えば、トモシンセシススキャン後に患者を追加のX線放射に曝す必要なく、分析のために歯科医によって個別に撮影される標準的な高線量の2次元放射線写真の画像と置き換えることができる。
【0024】
さらなる特徴および利点、ならびに本明細書の様々な実施形態の構造および動作は、添付の図面を参照して以下で詳細に説明される。
【0025】
例示的な実施形態は、以下の本明細書に示される詳細な説明および添付の図面からより完全に理解され、同様の要素は同様の参照符号によって表され、これらは、例としてのみ与えられ、したがって、本明細書の例示的な実施形態を限定するものではない。
【図面の簡単な説明】
【0026】
図1】解剖学的構造の異なる部分が異なる投影によってどのように画像化されるかを示すシステム図である。
図2図1のトモシンセシスシステムの例示的なコンピュータシステムのブロック図を示す。
図3】反復再構成を使用するシステムの全体的な動作を示すフローチャートである。
図4】再構成された解剖学的構造が再投影面に再投影される様子を表す図である。
図5】非反復再構成において、サポートの変化による不連続性がどのように生成されるかを示す図である。
図6】非反復再構成において、サポートの変化による不連続性がどのように生成されるかを示す図である。
図7】反復再構成における無効性マトリックスの使用を示す図である。
図8】反復再構成における無効性マトリックスの使用を示す図である。
図9】無効性マトリックスと対応する選択された入力投影のグレースケール表示を示す図である。
図10】サイズ1のセンサで撮影された患者の上顎前部領域のX線画像を示す図である。
図11】本明細書の一実施形態による、拡張された視野を有する画像での図10と同じ上顎前部域のX線画像。
【発明を実施するための形態】
【0027】
異なる図面は、同じ構成要素を識別するために同じである少なくともいくつかの参照番号を有する場合があるが、そのような各構成要素の詳細な説明は、各図に関して以下に提供されない場合がある。
【0028】
本明細書で説明する例示的な態様によれば、複数の投影画像に基づいて3次元の再構成されたボリュームから2次元画像を生成するための方法、システム、装置、およびコンピュータプログラムが提供される。
【0029】
(X線システム)
図1は、口腔内画像を取得するための口腔内X線システム300のブロック図を示し、これは、本明細書における少なくとも1つの例示的な実施形態に従って構成および操作される。X線検出器306およびX線サブシステム322は、コンピュータシステム316に電気的に連結される。X線サブシステム322は、X線源302を備える。コンピュータシステム316は、ユーザディスプレイユニット320と、ユーザディスプレイユニット320が出力および/または入力ユーザインターフェースであるユーザ入力ユニット318と、電気的に連結される。X線源302が右から左に移動すると、投影が撮られ、歯の解剖学的構造308の投影画像が各投影について検出器306上に形成され、画像は処理のためにコンピュータシステム316によって収集される。システム300は、1以上のサブオブジェクト(図示せず)をさらに含み得る、対象の歯の解剖学的構造308の1以上の画像を取得するように操作され得る。例えば、歯の解剖学的構造308は、患者の歯(または複数の歯)および周囲の歯列であってもよく、サブオブジェクトは、歯内の歯根構造であってもよい。
【0030】
システム300は、X線検出器306およびX線サブシステム322を含み、それらの両方は、それらのサブコンポーネントを含み、コンピュータシステム316に電気的に連結される。本明細書の1つの例示的な実施形態では、X線サブシステム322は、歯の解剖学的構造308に対して自由に配置されるように、天井または壁に据え付けられた機械アーム(図示せず)から吊り下げられる。X線サブシステム322は、電動ステージ(図示せず)に据え付けられ得るX線源302をさらに含む。
【0031】
X線検出器306は、オブジェクト50の片側に配置され、X線検出器306の受信面は、デカルト座標系のx-y平面に延在する。X線検出器306は、例えば、ピクセルの相補型金属酸化膜半導体(CMOS)デジタル検出器配列、ピクセルの電荷結合素子(CCD)デジタル検出器配列等を含む小型の口腔内X線センサであり得る。本明細書の例示的な実施形態では、X線検出器306のサイズは、患者のタイプ、およびX線検出器によって占有されるのに利用可能な口腔内の空間の容積に従って変化する。一実施形態では、小型のX線検出器306は、以下で論じるプロセスを採用することにより、X線検出器306のサイズよりも大きなサイズの画像を取得するために、システムによって使用され得る。X線検出器306はまた、歯科産業で使用される標準的なサイズの1つであり得る。標準的な歯科用サイズの例は、サイズが約27×37mmで一般的に成人患者に使用される「サイズ2」検出器、サイズが約21×31mmで一般的にサイズ2の成人患者よりも小さい患者に使用される「サイズ1」検出器、および、サイズが約20×26mmで一般的に小児患者に使用さる「サイズ0」検出器を含む。本明細書のさらなる例示的な実施形態では、X線検出器306の各ピクセルは15μmのピクセル幅を有し、それに対応して、サイズ2検出器は1700×2400ピクセル配列に約400万ピクセルを有し、サイズ1検出器は1300×2000ピクセル配列に約270万ピクセルを有し、そして、サイズ0検出器は1200×1600ピクセル配列に約190万ピクセルを有する。X線検出器306の色解像度は、本明細書の1つの例示的な実施形態では、12ビットグレースケール解像度であり得る。その他の例には、8ビットグレースケール解像度、14ビットグレースケール解像度、16ビットグレースケール解像度が含まれる。
【0032】
X線源302は、歯の解剖学的構造のX線検出器306から反対側に配置される。X線源302は、歯の解剖学的構造308を通過してX線検出器306によって検出されるX線10を放射する。X線源302は、図1に示されるようにデカルト座標系の少なくとも1つのz軸方向に、X線検出器306の受信面に向かってX線304を放射するように方向に付けられ、ここで、z軸はX線検出器306の受信面に関連するx-y平面に直交する。
【0033】
図1に示す一実施形態では、X線システムはトモシンセシスX線システムであり、X線源302は、スキャン角度328(図4に示す)内の複数の異なる場所のそれぞれに配置されている間、X線304を投射することができ、ここで、スキャン角度328の0°位置は、z軸に沿ってX線304を放射するための位置に相当する。本明細書の一例示的実施形態では、ユーザは、最初に、X線源302を歯の解剖学的構造308に対して所定の開始位置に配置する。次に、コンピュータシステム316は、搭載モータコントローラ(図示せず)を制御して、既知の開始位置に基づいて電動ステージ(図示せず)を介してX線源302を移動させ、スキャン角度328内の異なる場所のそれぞれでステップを実行する。コンピュータシステム316は、X線源302を制御して、線源302にX線306を放射させ、それらの位置のそれぞれにX線を投射することができる。本明細書の例示的な実施形態では、トモシンセシススキャンには41の投影があり、スキャン角度範囲は-20°から+20°であり、0°の位置は、図4に示すように、X線がX線検出器306に向ってz軸方向に投射されるX線源302の位置(線源位置♯21)であり、線源位置♯21は中心線源位置336であり、線源位置♯41は、41個の投影を有する例示的なトモシンセシスシステムにおける最後の線源位置338である。X線304は、実質的に焦点314に集束し得る。しかしながら、焦点314は、スキャン角度328の外側の限界から投射されるX線の一部となるように配置され得、例えば、線源位置♯1および線源位置♯41に対応する外側の限界は、X線検出器306に当たらない。以下で説明するステップは、とりわけ、検出器(および、したがって、検出器306のエッジに近い検出器ピクセル)に当たらないこのようなX線、およびマーカー粒子(および、したがって、投影された画像内のマーカー粒子に対応するピクセル)に当たるX線による、再構成されたボリュームへの寄与が最小限に抑えられることを保証する。
【0034】
1つの例示的な実施形態では、X線検出器306は、最初にX線304を光学画像に変換し、次に光学画像を電気信号変換する間接タイプの検出器(例えば、シンチレータX線検出器)であってよく、別の例示的な実施形態では、X線検出器306は、X線304を電気信号に直接変換する直接タイプの検出器(例えば、半導体X線検出器)であってよい。コンピュータシステム316は、電気信号を処理して2次元投影画像を形成し、2次元投影画像は、再構成されたボリューム310に処理されてから、歯の解剖学的構造の最終的な2次元画像に処理される。本明細書の1つの例示的な実施形態では、2次元投影画像の画像サイズは、X線検出器306の面積およびピクセル数に対応する。しかしながら、最終的な2次元画像の画像サイズは、投影画像および/またはX線検出器の画像サイズ(面積とピクセル数)より大きくなり得る。
【0035】
システム300は、上述のように、最初にX線源302を少なくとも0°の位置を含む異なる角度に配置し、それらの異なる角度のそれぞれで、歯の解剖学的構造308を通ってX線検出器306に向かって、X線304を放射することにより、複数の投影画像を収集し得る。
【0036】
(X線撮影用コンピュータシステム)
複数の投影画像に基づいて3次元の再構成されたボリュームから2次元画像を生成するシステム300について説明してきたが、ここで、本明細書の例示的な実施形態の少なくともいくつかに従って使用されうるコンピュータシステム600のブロック図を示す図2を参照する。この例示的なコンピュータシステム600に関して様々な実施形態が本明細書で説明されるが、この説明を読んだ後、当業者には、他のコンピュータシステムおよび/または構造を使用して本開示を実施する方法が明らかになるであろう。
【0037】
本明細書の1つの例示的な実施形態では、コンピュータシステム600の少なくともいくつかの構成要素(これらすべての構成要素、または構成要素628以外のすべてなど)は、図1のコンピュータシステム316を形成、またはコンピュータシステム316に含めることができる。コンピュータシステム600は、少なくとも1つのコンピュータプロセッサ622を含む。コンピュータプロセッサ622は、例えば、中央処理装置、複数処理装置、特定用途向け集積回路(「ASIC(Application-Specific Integrated Circuit)」)、フィールドプログラマブルゲートアレイ(「FPGA」)等を含みうる。プロセッサ622は、通信インフラストラクチャ624(例えば、通信バス、クロスオーバーバーデバイス、またはネットワーク)に接続されている。
【0038】
コンピュータシステム600はまた、ディスプレイユニット628(1つの例示的な実施形態では、図1のディスプレイユニット320を形成するか、またはそれに含めることができる)に表示するために、ビデオグラフィックス、テキスト、および他のデータを通信インフラストラクチャ624から(またはフレームバッファ(図示せず)から)転送するディスプレイインターフェース(または他の出力インターフェース)626を含む。例えば、ディスプレイインターフェース626は、画像処理装置を備えたビデオカードを含むことができる。
【0039】
コンピュータシステム600はまた、コンピュータシステム600のユーザがコンピュータプロセッサ622に情報を送信するために使用することができる入力ユニット630を含む。本明細書の1つの例示的な実施形態では、入力ユニット630は、図1の入力ユニット318を形成するか、またはそれに含めることができる。入力ユニット630は、キーボードデバイスおよび/またはマウスデバイスまたは他の入力デバイスを含み得る。 一例では、ディスプレイユニット628、入力ユニット630、およびコンピュータプロセッサ622は、集合的にユーザインターフェースを形成することができる。
【0040】
タッチスクリーンを含み得るさらに別の実施形態では、入力ユニット630およびディスプレイユニット628は、組み合わされてもよく、または同じユーザインターフェースを表してもよい。そのような実施形態では、ユーザがディスプレイユニット628に触れると、対応する信号がディスプレイユニット628からディスプレイインターフェース626に送信され、これらの信号をプロセッサ622などのプロセッサに転送することができる。本明細書の例示的な実施形態では、壁に据え付けられた機械アーム(図示せず)を備えたシステムには、壁に取り付けられたモジュールを有し、このモジュールは、プロセッサ622と、X線源304、電動ステージ(図示せず)、およびX線検出器との通信を制御するための搭載電子機器と、を含む。プロセッサ622は、本明細書で説明される手順のいずれかの一部(またはすべて)を実行するように構成され得る。例えば、図3に示される手順の1以上のステップは、コンピュータ読み取り可能なプログラム命令の形式で非一時的な記憶装置に記憶することができる。手順を実行するために、プロセッサ622は、記憶装置に格納されている適切な命令をメモリ632にロードし、次いで、ロードされた命令を実行する。
【0041】
さらに、コンピュータシステム600は、ランダムアクセスメモリ(「RAM」)であり得るメインメモリ632を含み得、また、二次メモリ634を含み得る。二次メモリ634は、例えば、ハードディスクドライブ636および/またはリムーバブルストレージドライブ638(例えば、フロッピーディスクドライブ、磁気テープドライブ、光ディスクドライブ、フラッシュメモリドライブ等)を含み得る。リムーバブルストレージドライブ638は、周知の方法でリムーバブルストレージユニット640からの読み取りおよび/またはリムーバブルストレージユニット640への書き込みを行う。リムーバブルストレージユニット640は、リムーバブルストレージドライブ638によって書き込みおよび読み取りされる、例えば、フロッピーディスク、磁気テープ、光ディスク、フラッシュメモリデバイスなどであってもよい。リムーバブルストレージユニット640は、コンピュータ実行可能なソフトウェア命令および/またはデータを格納する非一時的なコンピュータ可読記憶媒体を含み得る。
【0042】
さらなる代替実施形態では、二次メモリ634は、コンピュータシステム600にロードされるコンピュータ実行可な能プログラムまたは他の命令を格納する他のコンピュータ可読媒体を含み得る。そのようなデバイスはリムーバブルストレージユニット644およびインターフェース642(例えば、ビデオゲームシステムで使用されるものと同様のプログラムカートリッジおよびカートリッジインターフェース)と、リムーバブルメモリチップ(例えば、消去可能なプログラマブル読み出し専用メモリ(「EPROM(Erasable Programmable Read Only Memory)」)またはプログラマブル読み出し専用メモリ(「PROM(Programmable ROM)」)および関連するメモリソケットと、ソフトウェアおよびデータがリムーバブルストレージユニット644からコンピュータシステム600の他の部分に転送されることを可能にする他のリムーバブルストレージユニット644およびインターフェース642と、を含みうる。
【0043】
コンピュータシステム600はまた、ソフトウェアおよびデータがコンピュータシステム600と外部デバイスとの間で転送されることを可能にする通信インターフェース646を含み得る。このようなインターフェースは、モデム、ネットワークインターフェース(イーサネットカードやIEEE 802.11ワイヤレスLAN(Local Area Network)インターフェース)、通信ポート(ユニバーサル・シリアル・バス(「USB」)ポート、またはFireWire(登録商標)ポート)、パーソナルコンピュータメモリカード国際協会(「PCMCIA(Personal Computer Memory Card International Association)」)インターフェースなどを含み得る。通信インターフェース646を介して転送されるソフトウェアおよびデータは、通信インターフェース646によって転送および/または受信されることができる電子、電磁気、光学または別のタイプの信号であり得る信号の形式であってよい。信号は、通信経路648(例えば、チャネル)を介して通信インターフェース646へ提供される。通信経路648は、信号を搬送し、ワイヤまたはケーブル、光ファイバ、電話回線、セルラーリンク、無線周波数(「RF(Radio-Frequency)」)リンクなどを使用して実装され得る。通信インターフェース646は、コンピュータシステム600とリモートサーバまたはクラウドベースストレージ(図示せず)との間でソフトウェアもしくはデータまたは他の情報を転送するために使用され得る。
【0044】
1以上のコンピュータプログラムまたはコンピュータ制御ロジックは、メインメモリ632および/または二次メモリ634に格納され得る。コンピュータプログラムはまた、通信インターフェース646を介して受信され得る。コンピュータプログラムは、コンピュータプロセッサ622によって実行されると、コンピュータシステム600に、本明細書で説明され、図3-9に示されるプロセスを実行させるコンピュータ実行可能な命令を含む。したがって、コンピュータプログラムは、コンピュータシステム316および口腔内トモシンセシスシステムの他の構成要素(例えば、X線検出器306およびX線源302)を制御し得る。
【0045】
別の実施形態では、ソフトウェアは、非一時的なコンピュータ可読記憶媒体に格納され、リムーバブルストレージドライブ638、ハードディスクドライブ636および/または通信インターフェース646を使用してコンピュータシステム600のメインメモリ632および/または二次メモリ634にロードされてもよい。制御ロジック(ソフトウェア)は、プロセッサ622によって実行されると、コンピュータシステム600、より一般的には口腔内トモシンセシスシステムに、本明細書で説明されているプロセスを実行させる。
【0046】
最後に、別の例示的な実施形態では、ASIC、FPGAなどのハードウェア構成を使用して、本明細書で説明する機能を実行することができる。本明細書に記載された機能を実行するためのそのようなハードウェア構成の実装は、この説明を考慮すれば、当業者には明らかであろう。
【0047】
(複数の投影画像に基づいて3次元の再構成されたボリュームから2次元画像を生成する方法)
図2のコンピュータシステム316について説明したが、ここで、口腔内トモシンセシスX線システム300を、無効性マトリックス、再構成プロセス、および再投影プロセスを使用して、複数の投影画像に基づいて3次元の再構成されたボリュームから2次元画像を生成するための、本明細書の例示的実施形態によるプロセスのフロー図を示す図3に関連してさらに説明する。
【0048】
ステップS202において、口腔トモシンセシスシステム300は、トモシンセシススキャン中にX線源の異なる空間位置についての歯の解剖学的構造308の複数の投影画像を取得する。例えば、X線源302は、電動ステージ(図示せず)および制御回路によってスキャン角度328内の異なる位置に移動され、コンピュータシステム316は、X線304を各ポジションで放射するためにX線源302を制御する。本明細書の1つの例示的な実施形態では、最初の投影330が最初の投影画像を取得するために行われる線源位置#1、334である-20°から、中心投影が中心投影画像を取得するために行われる線源位置#21、336である0°を通って、最終的な投影330が最終的な投影画像を取得するために行われる線源位置#41、338である20°まで、X線源を移動させることにより、X線源302はスキャンされる。本明細書の実施形態では、41の投影が、単一のトモシンセシススキャンで1°の均等に分配された増分で行われ、0°位置での角度を含む41のスキャン角度を提供するが、この例に限られない。一部の投影、例えば最初の投影330では、その最初の投影の個々のX線332のすべてが検出器306に当たるとは限らないことが分かる。
【0049】
歯の解剖学的構造308を通過するX線304は、X線検出器306に投影される前に、歯の解剖学的構造308によって減衰される。X線検出器306は、X線110を電気信号に変換し、電気信号をコンピュータシステム316に提供する。コンピュータシステム316は、複数の投影画像を取得するために各スキャン角度位置で収集された電気信号を処理し、各画像はピクセルのアレイを含む。X線源302が0°位置で取得された画像は、本明細書では中心投影画像とも呼ばれる。次に、コンピュータシステム316は、ステップS204において、既知の面積のファントム較正オブジェクトを使用する以前の投影に基づいて、投影画像のグレーレベル値を材料の厚さに変換することにより、取得された投影画像の較正を実行する。
【0050】
ステップS206では、X線源に対する歯の解剖学的構造の位置を決定するために、トモシンセシススキャンでマーカー粒子を使用することにより関連するシステムジオメトリを推定する。次に、以下で説明する無効性マトリックスは、以下で論じる反復S236の更新ステップS222中に取得された画像のピクセルの再構成されたボリュームへの寄与を決定するために、取得した各投影画像についてステップS208で決定され得る。再構成されるボリューム310へのそれらのさらなる寄与が制限されるように、ステップS210において、マーカー粒子の投影画像への寄与は特定され、除去され得る。投影画像からの前記マーカー粒子の寄与の除去は、マーカー粒子の形状に対応する投影画像内の領域を特定し、それらを投影画像から差し引くことによって達成することができる。次に、投影画像の結果として生じる空白領域は、例えば、前記空白領域を周囲の領域のデータで内挿することによってパディングされ得る。しかし、パディングされたデータは本質的に偽のデータであり、この情報は再構成されるボリューム310にさらに伝播することができる。以下で説明されるすべてのピクセルの無効性マトリックスに基づくスムーズな重みを下げる処理は、このさらなる寄与を制限するのに役立つ。ここで、偽のパディングされたデータに対応するピクセル、および検出器のエッジに近いピクセル(まとめて潜在的に問題のあるピクセルと呼ばれる)は、他のピクセルと同じように再構成されるボリューム31に寄与しないように、各投影画像について重み付けされる。
【0051】
最初のボリューム更新プロセスについての図1に示される開始ボリューム324aは、前記開始ボリューム324aが空白または空のボリュームであり、ステップS212で構成でき、ステップS216において選択された投影のシステムジオメトリを用いて開始ボリュームの前方投影を算出するために、投影はステップS214において投影リストから選択される。この開始ボリュームは、以下に説明するボリューム更新ステップS234および反復ステップS236で反復的に更新され、照射された歯の解剖学的構造を再構成する。
【0052】
例示的な実施形態では、投影の数は41であり得、S236の反復数は5回または6回であり得る。したがって、前記例示的な実施形態の各反復ステップS236において、41回のボリューム更新ステップS234が実行される。
【0053】
本明細書の別の実施形態では、照射された歯の解剖学的構造を再構成するための最初のボリューム更新ステップS234は、最初に選択された投影画像を使用して最初の反復S236で開始することができ、ボリューム更新ステップS234はその後、前記最初の反復S236中に残りの投影画像に対して繰り返される。保存された投影画像は、選択された投影画像が、以前に選択された投影画像の投影位置から離れた投影位置からのものであり、2つの投影画像が互いに実質的に異なるように、連続して選択され得る。例えば、n番目ごとの投影画像を連続的に選択することができ、ここでnは投影画像の総数を均等に分割しない。例示的な実施形態では、nは7とすることができる。あるいは、スキャン角度328において互いに最も離れている投影位置の投影画像を連続的に選択することができる。
【0054】
最初のボリューム更新ステップS234では、ステップS214で最初の投影画像が選択される。次に、ステップS216で、システムジオメトリを使用して、開始ボリュームの前方投影が決定される。パディングされたデータを含む、結果として得られる前方投影と選択された投影との差分画像が、ステップS218で決定される。開始ボリュームを更新するための更新は、ステップS220において、投影の無効性マトリックスに従って前記差分画像をスケーリングすることによって算出される。無効性マトリックスは、再構成されたボリューム(または、最初の反復S236の最初のボリューム更新S234の場合の開始ボリューム)の更新への潜在的に問題のあるピクセル(検出器のエッジに近いピクセルとパディングされたデータを表すピクセル)の寄与が制限されることを確実にするマトリックスである。全ての投影画像についての無効性マトリックスは、ステップS208において、バイナリマスク内のいずれかの無効領域(潜在的に問題のあるピクセル)を特定し、問題のピクセル自体が有効であるか無効であるかに応じて無効領域内の距離(正)と無効領域外側の距離(負)を計算することにより、算出できる。例えば、有効と無効のバイナリ定義で開始して、最も近い有効なピクセルからのピクセルの距離を測定できる。例えば、ピクセル自体が有効なピクセルである場合、これは0となりうる。最も近い無効なピクセルからそのピクセルまでの距離もまた測定できる。例えば、ピクセル自体が無効である場合、これは0になりうる。これらの数値は、投影画像の各ピクセルの値を取得するために組み合わせられ、プロセスを繰り返して選択した投影の各ピクセルの値を取得し、図9に示すように、選択した投影画像の無効性マトリックスを作成し、ここで、投影画像の潜在的に問題のあるピクセルはマーカー粒子520および画像のエッジ522を表す画像の部分を含む。隣接する画像では、無効性マトリックスの表示が示されている。潜在的に問題のあるピクセルに最も近いピクセルに対応する値は、色の濃い(または距離が大きい)問題の可能性があるピクセルから最も遠いピクセルに対応する値よりも明るい色(または短い距離)で表示される。潜在的に問題のあるピクセルに対応する無効性マトリックス524、526の部分は、潜在的に問題のあるピクセルと一致するため、距離が最短になることがわかる。したがって、距離が短いピクセルは、距離が大きいピクセルよりも、再構成ボリュームへの寄与が少なくなる。更新を取得するために、無効性マトリックスに従って差分画像をスケーリングした後、ステップS222において、開始ボリューム(空白または空のボリューム)は、前記開始ボリュームを用いて差分画像を逆投影して最初の再構成されたボリュームを取得することによって更新される。次に、最初の再構成されたボリュームは、すべての投影画像が選択されるまで、後続の選択された投影画像を使用してさらなるボリューム更新プロセスS234で処理される。後述する終了基準が満たされない場合、反復ステップS236が繰り返される。
ステップS222におけるボリュームの更新は、SART(Simultaneous Algebraic Reconstruction Technique)法ベースの反復再構成アルゴリズムを含み得、ここで、ボリュームVは、式V→V+ΔWV(BP(EP))に従って、現在推定されているボリュームを逆投影ボリュームと合計することによって更新される。
これは以下の入力となる。
は、iは、ステップS214においてi番目に測定/選択された投影Pを表し、Pは、投影された画像に対応する2次元マトリックスである。
BPは、iは、測定された投影と一致させるために、再構成されたボリュームのボクセルを変更するのに使用されるi番目の逆投影演算子を表す。
FPは、iはステップS216で取得したi番目の前方投影演算子を表し、ここで、前方投影演算子は、所定のボリューム内容のボリュームから生じる投影を計算するために使用される演算子である。
Δは、以下で説明する収束速度の制御に使用されるスケーリング係数である。
WVは、以下で説明するボリューム測定の重み付けマトリックスであり、
Vは、現在られて推定されているボリュームである。
これは、次の手順で実行されうる。
1.ステップS212に示すように、初期化されていないボリュームVから始める。
2.ステップS218に示すように、誤差/差分画像EP=FP(V)-Pを計算する。
3.ステップS222のように、各iについて、V→V+ΔWV(BP(EP))に従ってボリュームVを更新する。収束を高速化するために、iに関する更新の順序は、非連続であってよい。
本明細書の例示的な実施形態では、更新プロセスの各反復は、反復に関連付けられた誤差項に数を乗算するものと考えることができる。その数が1未満の大きさである場合、反復ごとに誤差項が減少し、処理が収束する。数が1より大きい場合、誤差項が増加し、処理が発散する。反復回数は少ない方が良いため、このように、収束係数は、所定のしきい値を超えることなく、できるだけ高くなるように選択される。しきい値を超えると、反復は発散し、各反復は所望のボリュームからますます遠くなってしまう。
本明細書の例示的な実施形態では、ボリューム更新の目標は、差分画像EPが0に近づくように最終ボリュームを構成することであり得る。
投影画像の各ピクセルは、ボクセルとして知られる3次元の同等物によって表すことができる。WVは、ボリューム更新プロセスS234中に更新されるボリュームへのボクセルの寄与を決定するときに、逆投影の「i番目」誤差画像の各ボクセルにどのくらいの重みを与えるかを決定する「i番目」ボリューム測定の重み付けマトリックス表す。これにより、再構成されたボリュームから「i番目」の投影の無効なピクセルの寄与を取り除くことができる。
WVは、次のように取得され得る。
無効性Iは、以下のような3項/条件表記に従って、取得される。
【数1】
ここで、dはボクセルが完全に有効であると見なされる場合の無効な領域からの距離を示す項であり、rは、マーカーの識別に関連するエッジの影響に基づくデータに摂動の範囲に基づくスケールを提供するために選択されたスケーリング係数である。
i番目の無効性マトリックスIPは、次のように計算され得る。
【数2】
ここで、IPはi番目の無効性マトリックスであり、Pは投影された画像に対応する2次元マトリックスである。DIは指定されたピクセルの最も近い有効なピクセルからの距離あり、DOは指定されたピクセルの最も近い無効なピクセルからの距離である。
そして、無効性Iは、更新の重み付け項を計算するのに用いられ得る。
【数3】
【0055】
上記のステップは、無効性マトリックスを使用してボリュームを反復的に再構成するのに用いて良い。無効性マトリックスと対応する選択された入力投影のグレースケール表現を図9に示す。無効性マトリックスは、再構成されたボリュームに対する無効なピクセルの寄与を減らすので、再構成されたボリュームにはマーカー粒子による影響がほとんどないか、まったくない。再構成されたボリュームの最初の更新後、次の非連続投影画像は最初の投影とは異なるように選択でき、プロセスはステップS216で新しい前方投影に使用される新しく再構成されたボリュームでS230を繰り返すことができる。差分画像が0に近づくまで、新しく選択された各投影で差分画像を減らすことを目標として良い。ボリューム更新プロセスS234は、すべての投影が選択されるまで繰り返される。すべての投影が選択された後(S232)、終了基準が満たされない場合、すべての投影を含む2回目の反復S236が開始され得る。ステップS224で前記終了基準に対してテストすることにより、前方投影に使用されている現在の再構成されたボリュームで終了基準が満たされない場合(S228、新しい反復S236が開始され得る。あるいは、終了基準が満たされる場合は、再構成が終了され得る。終了基準は、例えば、(i)0に近い前方投影と選択された投影の差分、または前方投影と選択された投影の前記差分の関数、または(ii)完了した反復ステップS236の固定数であり得る。固定数は、例えば5と10の間であり得る。終了基準を満たすと、再投影面が計算され得、拡張視野を有する2D画像を得るために最終的な再構成されたボリュームがステップS226におい再投影され得る。拡張視野は次のようにして得られる。再投影面の各ピクセルは、x位置、深度位置、および再投影面のピクセルと仮想焦点314の位置との間の方向によって決定され得る方向などの特性を有する。再構成されたボリューム310の最端部から開始して、ピクセルの位置および方向によって決定される線と交差するボクセルを合計して、ピクセルの総減衰を決定する。これは、拡張視野を有する2D画像を取得するために再投影面のすべてのピクセルに対して繰り返され得る。したがって、トモシンセシススキャンのスキャン角度328の開き角度に一致する負の深さ(X線源の反対方向の検出器306の位置を過ぎて)で仮想焦点314を使用して、再構成された歯の解剖学的構造310は、再投影面312に、拡張視野を有さない単一の検出器システムで利用可能なものよりも大きい領域を含む画像を取得するために、再投影され得る。より大きい領域は、図4のx-y平面における有効な検出器326の表面として示されている。図4はまた、再構成されたボリューム310がどのようにして再投影面312上に再投影されるかを示す図であり、再投影面312は、例えば、ピクセルを含む半円形の面である。再投影面は、歯の解剖学的構造のジオメトリと一致させて動的に構成することもできる。歯の解剖学的構造のジオメトリと一致する動的に得られた表面は、再構成されたボリューム310に基づき得る。
【0056】
図5および6は、非反復再構成において、サポートの変化によるの不連続性がどのように生成されるかを示し、サポートは所定のボクセルに寄与する投影の数の示すものである。ボクセル402と418は隣接するボクセルである。図5では、3つの異なる投影の光線406、408、および410がボリューム404のボクセル402を通過し、すべての投影がボクセル402に寄与することとなる。図6では、3つの異なる投影の光線412、414、および416がボリューム404のボクセル418を通過するが、光線414および412に対応する投影のみがボクセル418に寄与する。光線416は検出器306に入射しないため、光線416が投影画像のいずれのピクセルの形成にも寄与しないので、光線416に対応する投影は、再構成中にボクセル418に寄与しない。投影画像の各ピクセルは、ボクセルと呼ばれる3次元の同等物を有する。図5および6における隣接するボクセル402および418に寄与する投影の数の差は、再構成されたボリュームに不連続性を生成する。
【0057】
図7および図8は、再構成されたボリュームの不連続性を低減または排除するための反復再構成における無効性マトリックスの使用を示している。ボクセル502および518は隣接するボクセルである。図7において、光線506、508および510にそれぞれ対応する3つの異なる投影は、光線がすべて検出器306に入射するので、すべてボクセル502に寄与する。しかしながら、光線506および508に対応する投影は、光線510の投影よりも多くボクセル502に寄与する。これは、検出器のエッジの近くに入射する、投影に対応する全ての光線が検出器に当たるとは限らないため、反復再構成プロセスの更新ステップ中に、検出器のエッジに近いピクセルの寄与は、無効性マトリックスに従って重みが下げられるからである。
【0058】
図8では、光線516の投影はボクセル518への寄与を損なっている。しかし、光線512と514の投影はボクセル518に寄与している。無効性マトリックスに従うエッジに近いピクセルの再構成への寄与は0に近いため、ここでは、隣接するボクセルに寄与する投影の数の差は、不連続性を生成しない。図8から分かるように、光線512および514に対応する投影のピクセルは、無効性マトリックスに従って反復再構成の更新ステップ中に重み付けされ、ボクセル518により多く寄与する一方、光線516の投影のピクセルの寄与は0に近い。これにより、上述のステップS226の再投影ステップに備えて、照射された歯の解剖学的構造308をより代表する再構成された3次元ボリューム310が得られる。
【0059】
さらに、トモシンセシススキャンにおける単一の投影画像よりも高い信号対雑音比を有する合成放射線写真は、行われる再構成がより小さく、検出器と同じサイズの平面再投影面が再投影用に選択される上述のプロセスによって取得され得る。より小さい再構成に関し、より小さい開始ボリューム324bが選択され得、前記より小さい開始ボリューム324bは、図1に示すように、X-Y平面における長さが前記X-Y平面における検出器306の長さに一致する空白または空のボリュームである。開始ボリューム324bに関し、より大きいボリューム324aを採用するときに使用される検出器のエッジに入射する投影の数と比較して、検出器のエッジに入射するより少ない投影が反復再構成プロセスで用いられる。その結果、再構成におけるアーティファクトが減少する。さらに、上述し、図3に示すプロセスを使用して、X-Y平面における検出器の長さと同じ長さを有する平面再投影面を再投影に使用することができる。ここでは、負の深さでの仮想焦点は使用されない。むしろ、中心線源位置の前方投影演算子を再構成されたボリュームに適用して、検出器と同じ視野の2D画像を取得することにより、再構成されたボリュームを通してX線がプログラムで投影される。これにより、多くのノイズが除去され、低線量トモシンセシススキャンのいずれの単一の投影画像よりもはるかに高い信号対雑音比を維持しながら、スキャンされた歯の解剖学的構造の特徴を単一の中心投影が示すよりも多く示す2D画像が得られる。これは、歯科医が口腔内放射線写真と歯科トモシンセシススキャンの両方を提供する必要がある状況で役立つ。本明細書の実施形態では、そのような画像は、主に、3Dトモシンセシススキャンを使用してマーカー粒子のない2D放射線写真の提示を可能にし、歯科医による使用のために別途の高線量放射線写真を撮る必要をなくすために取得され得る。
【0060】
図10および11は、サイズ1のセンサで撮影された患者の上顎前部領域の画像を示している。図10では、本明細書に記載の拡張視野のないシステムを使用して、単一の高線量放射線写真を撮り、使用されるセンサと同じ視野を有する画像が得られる。図11は、本明細書に記載される拡張視野を有するトモシンセシスX線システムで、低線量でより大きい視野が得られることを示している。
【0061】
本開示によるX線システムの一般的な動作は、以下の通りであり得る。歯科医は、たとえば、患者が前記患者の左大臼歯の後ろに痛みを伴うトーラスを有することに注意し得る。さらに、患者は、ブリッジの必要性を評価する前に、歯科医が口腔内スキャンを使用して画像化したい虫歯を有し得る。したがって、歯科医は、本明細書に開示されるシステムを使用して画像を形成するために垂直に向けられたサイズ1センサを使用し得、前記画像は、従来のX線システムを使用して水平に向けられたサイズ2センサの画像よりもやや大きい。そのため、歯科医は、特定の患者の口にフィットしない大きなセンサから得られるのと似た、またはそれよりも大きなサイズの画像を取得するために、より小さく、簡単にフィットするセンサを使用し得る。このアプローチがない場合、最も迅速なアプローチは、センサを手動でシフトし、目でつなぎ合わせながら数枚の画像を撮ることである。これは、問題の領域全体を含む画像が1つもないため、歯科医による問題の理解を常に複雑にする。さらに、歯科医の主な目的が、追加の高線量放射線写真を撮ることなく、低線量トモシンセシススキャンにおけるいずれの単一の投影画像よりも信号対雑音比が高い標準の2D放射線写真を得ることである場合、再投影面は平面である本開示による装置は、そのような2D画像を生成するために同様に使用され得る。
【0062】
前述の説明に鑑みて、本明細書に記載の例示的な実施形態は、無効性マトリックス、反復再構成、および再投影を使用して、3次元の再構成されたボリュームから画像アーティファクトが除去された2次元画像を生成するためのシステム、方法、装置、およびコンピュータプログラム製品を提供することがわかり、ここで、3Dの再構成されたボリュームは複数の投影画像に基づく。
【0063】
特に定義されない限り、本明細書で使用されるすべての技術用語および科学用語は、本発明が属する技術分野の当業者によって一般に理解されるのと同じ意味を有する。本明細書に記載のものと同様または同等の方法および材料を本開示の実施または試験に使用することができるが、適切な方法および材料は上記に記載されている。本明細書で言及されているすべての出版物、特許出願、特許、およびその他の参考文献は、適用される法律および規制で許可される範囲で、参照によりその全体が組み込まれる。本開示は、その精神または本質的な属性から逸脱することなく、他の特定の形態で具現化することができ、したがって、本実施形態は、あらゆる点で例示的であり、限定的ではないと見なされることが望ましい。説明内で使用される見出しは、便宜上のものであり、法的または制限的な効果はない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11