IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェラインの特許一覧

特許7379526無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法
<>
  • 特許-無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法 図1a
  • 特許-無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法 図1b
  • 特許-無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法 図2
  • 特許-無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法 図3
  • 特許-無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法 図4
  • 特許-無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-06
(45)【発行日】2023-11-14
(54)【発明の名称】無線通信ネットワークにおいて通信するためのデバイス、ならびにデバイスを動作および試験するための方法
(51)【国際特許分類】
   H04B 7/06 20060101AFI20231107BHJP
   H04W 16/28 20090101ALI20231107BHJP
   H04W 24/02 20090101ALI20231107BHJP
【FI】
H04B7/06 960
H04B7/06 956
H04W16/28
H04W24/02
【請求項の数】 63
(21)【出願番号】P 2021558541
(86)(22)【出願日】2020-03-27
(65)【公表番号】
(43)【公表日】2022-06-06
(86)【国際出願番号】 EP2020058650
(87)【国際公開番号】W WO2020201049
(87)【国際公開日】2020-10-08
【審査請求日】2021-11-25
(31)【優先権主張番号】19166302.0
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】EP
(31)【優先権主張番号】19172249.5
(32)【優先日】2019-05-02
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】500341779
【氏名又は名称】フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン
(74)【代理人】
【識別番号】100085660
【弁理士】
【氏名又は名称】鈴木 均
(74)【代理人】
【識別番号】100149892
【弁理士】
【氏名又は名称】小川 弥生
(74)【代理人】
【識別番号】100185672
【弁理士】
【氏名又は名称】池田 雅人
(72)【発明者】
【氏名】レザー,ポール サイモン ホルト
(72)【発明者】
【氏名】アスカー,ラメズ
(72)【発明者】
【氏名】シュミーダー,マティス
(72)【発明者】
【氏名】ハウシュタイン,トマス
【審査官】大野 友輝
(56)【参考文献】
【文献】国際公開第2017/196612(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/06
H04W 16/28
H04W 24/02
(57)【特許請求の範囲】
【請求項1】
無線通信ネットワークにおいて通信するためのデバイスであって、
前記デバイスはアンテナ配置を有し、前記アンテナ配置を使用して複数の送信ビームパターンをビームフォーミングするように構成され、
前記デバイスは、
無線信号を受信し、前記無線信号に対応する対応するビームパターンを決定し、
前記複数の送信ビームパターンから、前記対応するビームパターンとさらなる送信ビームパターンとを含むサブセットを選択し、選択された前記サブセットを形成し、
形成された前記サブセットに基づいた、選択された前記サブセットの少なくとも1つの送信ビームパターンを示す応答情報を受信し、
前記応答情報に示された前記送信ビームパターンを使用する、
ように構成されるデバイス。
【請求項2】
前記デバイスは、前記応答情報に示された前記送信ビームパターンを対応するビームパターンとして使用するように、および/または前記複数の送信ビームパターンの各々を、関連付けられた受信方向に対応づける対応情報を適合させるように構成される、請求項1に記載のデバイス。
【請求項3】
前記デバイスは、前記複数の送信ビームパターンの各々を、前記無線信号を受信するための関連する受信ビームパターンと関連付ける対応情報を格納したメモリを備え、前記デバイスは、異なる送信ビームパターンを前記受信ビームパターンに関連付けるように、前記応答情報に基づいて前記対応情報を更新するように構成される、請求項1または2に記載のデバイス。
【請求項4】
前記デバイスは、第1のモードで動作し、前記無線信号に応答して第1のモードで、前記対応するビームパターンを形成する一方で、他のビームパターンを形成しないように適合され、前記デバイスは、前記サブセットを形成する要求を示す要求信号を受信し、前記要求信号に基づいて第2のモードに切り替え、前記第2のモードで前記サブセットを形成するように構成され、および/または
前記デバイスは、送信ビームパターンの前記サブセットを自律的に選択して形成するように構成される、請求項1から3のいずれか一項に記載のデバイス。
【請求項5】
前記デバイスは、受信したコマンド信号またはトリガ信号に基づいて、前記サブセットの前記送信ビームパターンを順次、選択的に、重ね合わせて、および/または要求に応じて適用するように構成される、請求項1から4のいずれか一項に記載のデバイス。
【請求項6】
前記デバイスは、
前記無線信号のソースに向かう、または前記無線信号の前記ソースの方向の送信電力が閾値を上回り、かつ/又は前記無線信号のソースに対する位置が、前記無線信号の送信ビームパターンの区域/ゾーンまたは領域をカバーする、いくつかの送信ビームパターンを、前記サブセットとして選択するように構成される、請求項1から5のいずれか一項に記載のデバイス。
【請求項7】
前記デバイスは、前記デバイスの動作パラメータに基づいて、または受信したコマンド信号またはトリガ信号に基づいて要求に応じて、前記サブセットから、前記複数の送信ビームパターンからの少なくとも1つの送信ビームパターンを除外するように前記サブセットを選択するように構成される、請求項1から6のいずれか一項に記載のデバイス。
【請求項8】
前記動作パラメータは、前記動作パラメータが指定する位置/方向を指すすべての送信ビームパターンが前記サブセットから除外されるように、前記位置/方向を指定する、請求項7に記載のデバイス。
【請求項9】
前記デバイスは、所定数(M)のビームパターンを含むように、および前記サブセットの前記所定数(M)のビームパターンがビームパターンの主方向の局所的分散によって互いに相関されるように、前記サブセットを選択するように構成される、請求項1から8のいずれか一項に記載のデバイス。
【請求項10】
前記デバイスは、前記所定数(M)のビームパターンが前記対応するビームパターンの周囲の領域を局所的にカバーするように前記サブセットを選択するように構成される、請求項9に記載のデバイス。
【請求項11】
前記デバイスは、前記所定数(M)のビームパターンが前記対応するビームパターンの周りで最大密度を有するように前記サブセットを選択するように構成される、請求項9または10に記載のデバイス。
【請求項12】
前記デバイスは、前記所定数(M)のビームパターンが、前記対応するビームパターンによって照射される領域を含む球の少なくとも一部である拡散領域で拡散されるように前記サブセットを選択するように構成される、請求項9から11のいずれか一項に記載のデバイス。
【請求項13】
前記デバイスは、前記所定数(M)のビームパターンが、前記デバイスの能力内で、前記拡散領域と共に均一に分布するように、前記サブセットを選択するように構成される、請求項12に記載のデバイス。
【請求項14】
前記デバイスは、静的な所定の値に基づいて、または信号の一部として受信された可変な値に基づいて、前記拡散領域のサイズを選択するように構成される、請求項12または13に記載のデバイス。
【請求項15】
前記デバイスは、前記サブセットが前記所定数(M)のビームパターンを含むことを示すサブセット指示を含む信号を送信するように構成され、および/または
前記デバイスは、前記所定数(M)のビームパターンを含むように前記サブセットを選択し、サブセット要求に基づいて前記所定数(M)のビームパターンを含むように前記サブセットを選択するように前記デバイスが要求されていることを示す前記サブセット要求を含む信号を受信するように構成される、請求項9から14のいずれか一項に記載のデバイス。
【請求項16】
前記デバイスは、要求に基づいて応答信号を送信するように構成され、前記応答信号は、前記デバイスが前記要求に従って動作することを示し、および/または
前記デバイスは、要求された動作が前記デバイスの能力または現在サポートされている動作のモードを超えると決定するように構成されており、前記応答信号は、前記デバイスが前記要求に従って動作しないことを示す、請求項15に記載のデバイス。
【請求項17】
前記デバイスは、
専用信号、
専用フラグ、および
複数のビットのうちの少なくとも1つを使用して前記サブセット指示を送信するように構成される、請求項16に記載のデバイス。
【請求項18】
前記デバイスは、追加の不適切なビームパターンを含ませて前記所定数(M)のビームパターンに到達するように前記サブセットを選択するように構成され、前記所定数(M)は好ましくは8である、請求項9から17のいずれか一項に記載のデバイス。
【請求項19】
前記デバイスは、前記サブセットの候補と見なされる選択されたビームパターンの数が前記所定数(M)を超えることを示す情報をシグナリングするように構成される、請求項9から18のいずれか一項に記載のデバイス。
【請求項20】
前記サブセットは第1のサブセットであり、前記デバイスは、前記サブセットの候補と見なされる選択されたビームパターンの数が前記所定数(M)を超えることを示す前記情報のシグナリングに応答して、少なくとも第2のサブセットを形成する要求を示す信号を受信し、前記第2のサブセットよりも以前の前記第1のサブセットと比較したときに少なくとも1つの異なるビームパターンを含む少なくとも前記第2のサブセットを選択して形成するように構成される、請求項19に記載のデバイス。
【請求項21】
前記デバイスは、前記第1のサブセットおよび第2のサブセットのビームパターンが前記デバイスの周囲の球の異なる領域を少なくとも部分的にカバーするように、前記第2のサブセットを選択するように構成される、請求項20に記載のデバイス。
【請求項22】
前記デバイスは、最大で前記所定数(M)のビームパターンからなる、前記第1のサブセット又は前記第2のサブセットの後続のサブセットを選択するように構成される、請求項20または21に記載のデバイス。
【請求項23】
前記後続のサブセットのうちの各サブセットの前記ビームパターンは、前記各サブセットよりも以前に選択されたサブセットの前記ビームパターンと比較して異なる、請求項22に記載のデバイス。
【請求項24】
前記デバイスは、前記対応するビームパターンを少なくとも1つの追加のビームパターンと関連付ける事前構成されたコードブック/状態/アルファベット/LUT/レジスタ/リストに基づいて前記サブセットを選択するように構成される、請求項1から23のいずれか一項に記載のデバイス。
【請求項25】
前記コードブック/状態/アルファベット/LUT/レジスタ/リストは、前記対応するビームパターンを、前記対応するビームパターンと共にビームパターンの前記所定数(M)まで加算するいくつかのビームパターンと関連付ける、請求項24に記載のデバイス。
【請求項26】
前記デバイスは、それぞれの要求を示す信号に基づいて前記コードブック/状態/アルファベット/LUT/レジスタ/リストを使用して前記サブセットを選択するように構成される、請求項24または25に記載のデバイス。
【請求項27】
前記デバイスは、前記要求に基づいて応答信号を送信するように構成され、前記応答信号は、前記デバイスが前記要求に従って動作することを示し、および/または
前記デバイスは、要求された動作が前記デバイスの能力または現在サポートされている動作のモードを超えると決定するように構成されており、前記応答信号は、前記デバイスが前記要求に従って動作しないことを示す、請求項26に記載のデバイス。
【請求項28】
前記デバイスは、前記コードブック/状態/アルファベット/LUT/レジスタ/リストを可変的に格納し、それぞれの信号に応答して前記コードブック/状態/アルファベット/LUT/レジスタ/リストを更新するように、または
前記コードブック/状態/アルファベット/LUT/レジスタ/リストを静的に格納するように構成される、請求項24から27のいずれか一項に記載のデバイス。
【請求項29】
前記デバイスは、前記コードブック/状態/アルファベット/LUT/レジスタ/リストを、
測定または試験手順の開始時、
デバイス製造業者のソフトウェア更新中、
ネットワークプロバイダのソフトウェア更新中のうちの少なくとも1つで更新するように構成される、請求項24乃至27のいずれか一項に記載のデバイス。
【請求項30】
前記デバイスは、局所的なビームスイーピングを実行しながら前記サブセットを形成するように構成される、請求項1から29のいずれか一項に記載のデバイス。
【請求項31】
前記デバイスは、ユーザによる前記デバイスの使用を示すユーザ対話情報に基づいて、前記複数の送信ビームパターンを示すルックアップテーブルを更新するように構成される、請求項1から30のいずれか一項に記載のデバイス。
【請求項32】
前記デバイスは、ユーザによる前記デバイスの使用を示すユーザ対話情報に基づいて前記複数の送信ビームパターンを決定するアルゴリズムに関連するパラメータ設定を更新するように構成される、請求項1から31のいずれか一項に記載のデバイス。
【請求項33】
前記デバイスは、少なくとも所定のリンクカバレッジを提供するように前記サブセットを選択するように構成される、請求項1から32のいずれか一項に記載のデバイス。
【請求項34】
前記デバイスは、前記無線信号を複数の所定の値と比較するメトリックに基づいて前記対応するビームパターンを選択するように構成される、請求項1から33のいずれか一項に記載のデバイス。
【請求項35】
前記デバイスは、送信ビームパターンのセットである前記サブセットを形成するために使用されるものと同じアンテナ配置または異なるアンテナ配置で前記無線信号を受信するように構成される、請求項1から34のいずれか一項に記載のデバイス。
【請求項36】
送信および/または受信に使用される多数のアンテナ配置またはアンテナパネルを有する、請求項1から35のいずれか一項に記載のデバイス。
【請求項37】
前記デバイスは、前記無線信号のソースの位置/方向を指すリンクを確立するように構成される、請求項1から36のいずれか一項に記載のデバイス。
【請求項38】
前記デバイスは、等価等方放射電力または有効等方放射電力(EIRP)に基づいて前記対応するビームパターンを選択するように構成される、請求項1から37のいずれか一項に記載のデバイス。
【請求項39】
前記複数のビームパターンの少なくとも一つが、選択された前記サブセットに含まれない、請求項1から38のいずれか一項に記載のデバイス。
【請求項40】
前記サブセットは、前記対応するビームパターンおよび少なくとも1つの追加のビームパターンを含む、請求項1から39のいずれか一項に記載のデバイス。
【請求項41】
前記サブセットは、前記対応するビームパターンおよび少なくとも1つの追加のビームパターンを含み、前記追加のビームパターンは、閾値を超えるおよび/または許容範囲内の前記無線信号のソースに向かって信号電力を提供する、請求項1から40のいずれか一項に記載のデバイス。
【請求項42】
前記送信ビームパターンは送信に適用されるビームパターンである、請求項1から41のいずれか一項に記載のデバイス。
【請求項43】
前記デバイスは、前記サブセットの各送信ビームパターンを個別にラベリングまたは識別するように構成される、請求項1から42のいずれか一項に記載のデバイス。
【請求項44】
前記デバイスは、送信ビームパターンの前記サブセットから少なくとも2つの送信ビームパターンを示す応答情報を受信するように構成され、前記デバイスは、前記応答情報に示された前記送信ビームパターンのうちの1つを、リンクを確立するための前記送信ビームパターンとして選択するように構成される、請求項1から43のいずれか一項に記載のデバイス。
【請求項45】
前記デバイスは、前記デバイスが接続を確立しようとする試みに応答して、または前記無線通信ネットワークによって始動されるイベントによって前記無線信号を受信するように構成される、請求項1から44のいずれか一項に記載のデバイス。
【請求項46】
前記デバイスは、多入力多出力(MIMO)のために、および同時に形成される送信ビームパターンの少なくとも1つのペアを含むように前記サブセットを提供するように、ならびに前記少なくとも1つのペアのうちの少なくとも1つを示す応答情報を受信するように構成される、請求項1から45のいずれか一項に記載のデバイス。
【請求項47】
送受信デバイスに向けて刺激信号を送信し、
前記送受信デバイスから複数の送信ビームパターンを受信し、
前記複数の送信ビームパターンから対応するビームパターンを選択し、および
応答情報を前記送受信デバイスに送信するように構成され、前記応答情報は前記対応するビームパターンを示す、デバイス。
【請求項48】
前記デバイスは、前記複数の送信ビームパターンの前記送信ビームパターンの各々からの受信信号電力に基づいて前記対応するビームパターンを選択するように構成される、請求項47に記載のデバイス。
【請求項49】
前記デバイスは、
前記刺激信号に応答した第1の送信ビームパターンを受信し、
前記複数の送信ビームパターンを形成するように前記送受信デバイスに要求することを示す要求信号を前記送受信デバイスに送信し、および
前記要求信号に応答した前記複数の送信ビームパターンを受信するように構成される、請求項47または48に記載のデバイス。
【請求項50】
前記デバイスは、基地局、または基地局をエミュレートする機器、または測定機器、または無線通信ネットワークで動作するように装備された装置、またはユーザ機器である、請求項47から49のいずれか一項に記載のデバイス。
【請求項51】
前記デバイスは、前記複数の送信ビームパターンから少なくとも1つの送信ビームパターンを評価し、メトリック/基準により性能インジケータまたはランク付けされた順序を表す情報を前記送受信デバイスに送信するように構成され、前記情報は、前記送受信デバイスで前記対応するビームパターンおよび/または送信ビームのサブセットを選択/選定するために選択または入力される前記対応するビームパターンを示す、請求項47から50のいずれか一項に記載のデバイス。
【請求項52】
前記デバイスは、少なくとも2つの送信ビームパターンを示すように前記応答情報を送信するように構成される、請求項47から51のいずれか一項に記載のデバイス。
【請求項53】
前記デバイスは、前記刺激信号を自律的に送信するように構成される、請求項47から52のいずれか一項に記載のデバイス。
【請求項54】
前記デバイスは、多入力多出力(MIMO)のために、および少なくとも1つのペアの送信ビームパターンを含むようにサブセットを受信するように、ならびに前記少なくとも1つのペアのうちの少なくとも1つを示す応答情報を送信するように構成される、請求項47から53のいずれか一項に記載のデバイス。
【請求項55】
請求項1から46のいずれか一項に記載の少なくとも1つのデバイスと、
請求項47から54のいずれか一項に記載の少なくとも1つのデバイスと、を備える、システム
【請求項56】
前記システムは、測定環境または無線通信ネットワークまたは無線通信システムである、請求項55に記載のシステム。
【請求項57】
アンテナ配置を有するデバイスを動作させるための方法であって、前記デバイスは、前記アンテナ配置を使用して複数の送信ビームパターンをビームフォーミングするように構成され、前記方法は、
無線信号を受信し、前記無線信号に対応する対応するビームパターンを決定するステップと、
ブセットが対応する送信ビームパターンを含むように、前記複数の送信ビームパターンから前記サブセットを選択するステップ、および選択された前記サブセットを形成するステップと、
選択された前記サブセットの少なくとも1つの送信ビームパターンを示す応答情報を受信するステップと、
前記応答情報に示された前記送信ビームパターンを使用するステップと、を含む方法。
【請求項58】
送信および/または受信のために多数のアンテナ配置またはアンテナパネルを使用するステップを含む、請求項57に記載の方法
【請求項59】
デバイスを動作させるための方法であって、前記方法は、
刺激信号を送受信デバイスに送信するステップと、
前記送受信デバイスから複数の送信ビームパターンを受信するステップと、
前記複数の送信ビームパターンから少なくとも1つの対応する送信ビームパターンを選択するステップと、
応答情報を前記送受信デバイスに送信するステップであって、前記応答情報は少なくとも1つの送信ビームパターンを示すステップと、を含む方法。
【請求項60】
アンテナ配置を有するデバイスを試験または更新するための方法であって、前記方法は、
刺激信号のソースとのリンクを確立するように前記デバイスを刺激するために、受信方向に沿って前記デバイスに前記刺激信号を送信するステップと、
複数の送信ビームパターンを前記デバイスから受信するステップと、
前記複数の送信ビームパターンのうちの少なくとも1つを選択するステップであって、前記複数の送信ビームパターンは、前記刺激信号に対応する送信ビームパターンとして前記デバイスによって選択される対応する送信ビームパターンを含む、ステップと、
択された少なくとも1つの送信ビームパターンを示す情報を前記デバイスに送信するステップと、
前記選択された少なくとも1つの送信ビームパターンを示す前記情報に基づいて前記デバイスのメモリの情報を更新するステップと、を含む方法。
【請求項61】
前記選択された少なくとも1つの送信ビームパターンを示す前記情報を送信する前記ステップが、前記送信ビームパターンに関連付けられたビームIDまたはSRSを参照するステップを含む、請求項60に記載の方法。
【請求項62】
アンテナ配置を有するデバイスの試験または更新を行うための方法であって、前記方法は、
前記刺激信号のソースとのリンクを確立するように前記デバイスを刺激するために、受信方向に沿って前記デバイスに刺激信号を送信するステップと、
送信ビームパターンを前記デバイスから受信するステップと、
前記送信ビームパターンの品質尺度を前記デバイスに報告するステップと、
前記試験中にカバーされるべき領域を選択し、前記領域を照射するように前記デバイスにより形成可能なビームパターンのサブセットを選択するステップと、
ビームパターンの前記サブセットを形成するステップと、
前記デバイスを評価するためにビームパターンの前記サブセットを測定するステップと、を含む方法。
【請求項63】
前記領域の選択は、前記刺激信号の測定値から決定される、請求項62に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線通信ネットワークにおいて通信するためのデバイス、およびそのようなデバイスを動作/試験するための方法に関する。本発明はさらに、局所的なビームスイーピング/ビームセットの選択に関する。
【背景技術】
【0002】
ビーム対応(BC)の無線(OTA)測定手順では、最良のビームがシステムシミュレータ(SS)/試験機器(TE)によって選択/決定される。ユーザ機器UEにおけるビーム対応関係ルックアップテーブル(LUT)は、製造業者によって事前設定される。しかしながら、そのようなLUTは不正確であり得る。
【発明の概要】
【発明が解決しようとする課題】
【0003】
したがって、正確なビームフォーミングを可能にする必要がある。
したがって、本発明の目的は、高精度のビームフォーミングを可能にすることである。
【課題を解決するための手段】
【0004】
この目的は、独立請求項に定義される主題によって達成される。
本発明者らは、対応LUTを更新することによって、すなわち最良のビームを選択することによって、事前設定された構成からの逸脱およびデバイスの寿命中の変動が補償され得ることを見出した。
【0005】
一実施形態によれば、無線通信ネットワークにおいて通信するためのデバイスであって、デバイスはアンテナ配置を有し、デバイスは、アンテナ配置を使用して複数の送信ビームパターンをビームフォーミングするように構成され、デバイスは無線信号を受信し、無線信号に対応する対応するビームパターンを決定するように構成され、複数の送信ビームパターンから、対応するビームパターンとさらなる送信ビームパターンとを含むサブセットを選択し、選択されたサブセットを形成するように構成され、形成されたサブセットに基づいた、選択されたサブセットの少なくとも1つの送信ビームパターンを示す応答情報を受信するように構成され、示された送信ビームパターンを使用するように構成される。これにより、対応するビームパターンの外部補正または適合が可能になる。この情報は、デバイスによって1回使用されてもよく、および/またはさらなる使用のためにLUTに格納されてもよい。
【0006】
一実施形態によれば、デバイスは、送受信デバイスに向けて刺激信号を送信するように、送受信デバイスから複数のビームパターンを受信するように、複数のビームパターンから対応するビームパターンを選択するように、および応答情報を受信デバイスに送信するよう構成され、応答情報は対応するビームパターンを示す。
【0007】
一実施形態によれば、システムは、受信信号を受信するように構成された少なくとも1つのデバイスと、刺激信号を送信するように構成された少なくとも1つのデバイスとを備える。システムは、例えば、測定環境または無線通信ネットワーク、例えばそのセルであってもよい。
【0008】
一実施形態によれば、アンテナ配置を有するデバイスを動作させるための方法であって、デバイスは、アンテナ配置を使用して複数のビームパターンをビームフォーミングするように構成され、無線信号を受信し、前記無線信号に対応する対応するビームパターンを決定するステップ、サブセットが対応する送信ビームパターンを含むように、複数の送信ビームパターンからサブセットを選択し、選択されたサブセットを形成するステップ、選択されたサブセットの少なくとも1つの送信ビームパターンを示す応答情報を受信するステップ、および示された送信ビームパターンを使用するステップを含む。
【0009】
一実施形態によれば、デバイスを動作させるための方法は、刺激信号を送受信デバイスに送信するステップ、送受信デバイスから複数の送信ビームパターンを受信するステップ、複数のビームパターンから少なくとも1つの対応する送信ビームパターンを選択するステップ、および応答情報を送受信デバイスに送信するステップであって、応答情報は少なくとも1つの送信ビームパターンを示す、ステップを含む。
【0010】
一実施形態によれば、アンテナ配置を有するデバイスを試験または更新するための方法は、デバイスを刺激して受信方向に沿って刺激信号のソースとのリンクを確立するように、デバイスに刺激信号を送信するステップ、複数の送信ビームパターンをデバイスから受信するステップ、複数の送信ビームパターンのうちの少なくとも1つを選択するステップであって、対応するビームパターンを含む複数は、刺激信号に対応する送信ビームパターンとしてデバイスによって選択される、ステップ、選択された少なくとも1つの送信ビームパターンを示す情報をデバイスに送信するステップ、および少なくとも1つの選択されたビームパターンを示す情報に基づいて、デバイスのメモリの情報を更新するステップを含む。
【0011】
さらなる有利な実施形態は、従属請求項に定義されている。
これから本発明の実施形態を、添付の図面に関連してより詳細に説明する。
【図面の簡単な説明】
【0012】
図1a】一実施形態によるシステム100の概略ブロック図である。
図1b】サブセットのための所定数のビームパターンの選択を示す概略斜視図である。
図2】デバイスを試験または更新するための一実施形態による方法の概略フローチャートである。
図3】デバイスを動作させるために使用することができる一実施形態による方法の概略フローチャートである。
図4】別のデバイスを動作させるために実装することができる一実施形態による方法の概略フローチャートである。
図5】実施形態において使用することができるネットワーク支援アップリンクビームスイーピング手順のフローチャートである。
【発明を実施するための形態】
【0013】
同一または同等の要素、または同一もしくは同等の機能を伴う要素は、異なる図で発生する場合であっても、以下の説明では同一または同等の参照番号で示される。
【0014】
以下の説明では、本発明の実施形態のより徹底的な説明を提供するために、複数の詳細が記載される。しかしながら、本発明の実施形態がこれらの具体的な詳細なしに実施できることは、当業者には明らかであろう。他の例では、本発明の実施形態を不明瞭にすることを避けるために、周知の構造およびデバイスが詳細ではなくブロック図形式で示されている。加えて、以下に説明する異なる実施形態の特徴は、特に明記しない限り、互いに組み合わせることができる。
【0015】
ここに記載の実施形態は、デバイスにより形成されるビームパターンに関する。そのようなビームパターンは、送信ビームパターンおよび/または受信ビームパターン、すなわち、信号の送信および/または受信のための好ましい方向の空間パターンであってもよい。
【0016】
そのようなビームパターンの各々は、メインローブと、場合によっては1つまたは複数のサイドローブとを含むことができる。任意選択で、2つの隣接するローブの間に、いわゆるヌルが配置されてもよい。
【0017】
本明細書に記載の実施形態に関連してビームパターンを形成することは、静的ビームパターンに関連し得るが、動的、すなわちスイーピングビームパターンにも関連し得る。スイーピングビームパターンは、空間的または周波数的に移動される、例えば回転または横方向にシフトされる一定のまたは変化するパターンとして理解することができる。そのようなスイーピングは、ビームパターンのローブおよび/またはヌルの方向を調整することを可能にすることができる。
【0018】
本実施形態に関連して説明される方向は、実施形態の範囲を方向の狭い意味、すなわち単一のベクトルに限定するものではない。方向という用語は、通信相手の場所/位置、エリア/ゾーンまたはボリュームでの受信信号に大きく寄与する支配的な角度成分のセットも含むように理解されるべきである。これは、異なる到来マルチパス成分を収集して実効受信アンテナ入力信号に重み付けする複雑な3D受信ビームパターンに相当し得る。したがって、方向は1つの線に限定されず、受信パターンによって収集された方向からの信号の集約をカバーすることができる。送信戦略は、送信機からターゲット受信機/通信相手への良好な信号電力伝送を提供する送信ビームパターンを選択することができる。
【0019】
ビームフォーミングを行うことができる本明細書に記載のデバイスは、アンテナ配置を備えることができ、アンテナ配置は、1つまたは複数のアンテナパネルを有し、各アンテナパネルは、1つまたは複数のアンテナ素子を備えることができる。すなわち、各アンテナパネルは、そのようなパネルまたはそのサブパネルがコヒーレントなビームフォーミングを実行することができるように、放射/受信アンテナ素子の配置を備える。すなわち、ビームフォーミングを行うために、アンテナパネルにグループ化されたアンテナ素子の数、アンテナパネルの数、したがってアンテナ素子の総数は任意であり得る。
【0020】
図1aは、一実施形態によるシステム100の概略ブロック図を示す。システム100は、デバイス10およびデバイス20を備える。デバイス10は、ユーザ機器と呼ばれてもよいが、デバイス10の1つまたは複数の側に配置された1つまたは複数のアンテナパネル12および/または12を有するアンテナ配置を備える任意のデバイスに関連してもよく、アンテナ配置12および/またはパネル12および12は、ビームパターン14を生成するように構成される。例は、静止デバイス、移動デバイスおよび/または衛星であってもよい。各ビームパターン14から14は、単一のメインローブのみを有するように図示されているが、ビームパターンは、同じまたは異なる数のメインローブおよび/またはサイドローブおよび/またはヌルを有する他のビームパターンから独立して形成され、送信ビームパターンまたは受信ビームパターンであってもよい。
【0021】
デバイス20は、例えば、無線通信ネットワークの基地局であってもよく、代替的に、測定機器、例えば、システムシミュレータ(SS)または試験機器(TE)であってもよい。代替的に、デバイス20は、おそらく、基地局なしで動作することができるピアツーピアネットワークまたはダイレクトネットワークを構築するとき、別のデバイス10、例えばUEまたは衛星として構成されてもよい。すなわち、無線通信ネットワークは、いくつかのアクセスポイント/基地局を備えることができるが、単一のアクセスポイント/基地局を有する必要はない。最小の場合は、同じメカニズムを使用して互いに通信する2つのデバイスに向けられ得る。これは、衛星の世界で使用されるのと同様に、アップリンクおよびダウンリンクに順方向リンクおよび逆方向リンクを使用すると理解され得る。
【0022】
したがって、実施形態はまた、実施形態が衛星への直接無線リンクアクセスまたは衛星バックホールにも関連するように、衛星への直接無線リンクアクセスに関する。
【0023】
デバイス20は、リンクアンテナ18を使用して指向的または無指向的に刺激信号16を送信するように構成されてもよく、デバイス10は、刺激信号16を受信信号または無線信号として受信する。デバイス10は、受信信号16が受信される受信方向22、すなわち、信号16のソースが推定されるデバイス10に対する向きを決定するように構成され得る。リンクアンテナは、測定条件下で固定ビームパターンを含むことができる。後述するように、デバイス20は、異なって実装されてもよく、任意選択的に、コヒーレントなビームフォーミングが可能なアンテナ配置を備えてもよい。
【0024】
すなわち、ダウンリンクアンテナ基準信号は、リンクを確立するためにアップリンクビームを選択するようにデバイス10、例えばUEを刺激するために提供される。別のデバイスへのリンクを確立することは、データおよび/または信号を交換することに関連し得、電波が到来する方向の暗黙的または明示的な推定を含み得る。そうするために、デバイス10は、受信ビームフォーマを使用することができ、そのような受信ビームフォーマに適用されたメトリックにより、デバイス10は、通信相手に応答するか、または通信相手に回答する適切な送信ビームフォーマを決定することができる。選択されたビームパターンは、対応するビームパターンと呼ばれる場合がある。対応するビームパターンは、場合によっては自律的に、および/または測定された受信信号もしくは任意の他のメトリック/方法に基づいて、デバイス10UEによって選択された送信ビームパターンに関連し得る。
【0025】
UEは、対応するアップリンクビームを(独立して、または支援して)選択/提供することができる。例えば、デバイスは、受信信号を複数の所定の値と比較するメトリックに基づいて、対応するビームパターンを選択するように構成されてもよい。すなわち、UEは、例えば、本明細書で説明されるEIRPとして言及されるように、受信ビームの異なる/選択を用いて受信信号を評価するために使用されるメトリックに基づいてアップリンクビームを選択することができる。これは、1つまたは複数の閾値および範囲の使用を含むことができる。
【0026】
例えば、パターン相反性が与えられる場合には、ベースバンドにおける転置されたビームは、最良または選択された最良の受信パターンに対応するパターンで送信するために使用され得る。対応するビームパターンは、受信方向に少なくとも最も近いパターンの意味で対応する主方向を含む、および/または到来信号が送信されたソースの位置に向かって無線信号電力を伝送するように適合されたビームパターンとして理解され得る。
【0027】
それに基づいて、最適なまたはエラーのない環境では、ビームパターン14は、例として、受信方向に沿ってメインローブまたはサイドローブまたはヌルの方向を含むようにアンテナ配置12で生成され得るビームパターンであり、すなわち、ビームパターン14は、エラーのない状態の対応するビームパターンであり得る。
【0028】
様々な理由により、デバイス10は、対応するビームパターンとしてビームパターン14(または任意の他のビームパターン)を選択することができる。例えば、デバイスは、等価等方放射電力(EIRP)などの送信電力基準に基づいて対応するビームパターンを選択するように構成されてもよい。EIRPに関する詳細は、[6]から知られている。そのような不完全な決定の理由は、アンテナ配置12の少なくとも一部の位置ずれ、受信アンテナと送信アンテナの位置間の逸脱、または伝送路に沿った干渉であり得る。例えば、人体の一部、例えば手または頭部は、デバイス10の測定および推定が誤りがちであり、誤った受信方向22が決定されるように、デバイス20とデバイス10との間に配置されてもよい。本明細書で説明するように、デバイスの決定は正確であり得るが、異なるビームパターンのために選択する可能性がある異なる理由が存在し得る。デバイス10が複数の適切なビームパターンからビームパターンを選択することを可能にする応答情報を受信することが有利であり得る。
【0029】
デバイス10は、複数のビームパターン14から14からサブセットを選択するように構成され、サブセットは、UEによって選択された対応するビームパターン、すなわち、不完全な受信方向22’と一致するビームパターン14を含む。サブセットは、少なくとも1つのさらなるビームパターンを含む。可能なビームパターン14から14がサブセットの一部であるかどうかを決定するための選択基準は、様々なパラメータに基づくことができる。可能なパラメータは、例えば、受信信号16のソースに向かう送信電力である。例えば、ビームパターン14、14、14および14は、不完全な受信方向22’に沿って関連する送信電力を有すると決定され得る。対照的に、ビームパターン14、14、147、および14は、受信方向22’に沿って関連する送信電力を有しないか、または少なくとも有しないと決定され得る。
【0030】
サブセットの追加のビームパターンは、デバイス10が生成することができる任意の他のビームパターンであってもよい。例えば、これらのビームパターンは、多かれ少なかれ電力による同じパターンの膨張または収縮、または/およびそのようなパターンのメインローブおよびサイドローブ上の異なる重み(電力および方向)を排除または含むことができる。サブセットの一部となる少なくとも1つのビームパターンの選択は、無線チャネルを通る信号の伝搬後、他端での受信電力が閾値を上回るか、または範囲もしくは許容範囲内にあるようなものであってもよく、好ましくは、これらの送信ビームパターンは、対応するビームと重複するカバレッジを提供し、すなわち、サブセットは、ボリューム/ゾーン内およびその周囲の方向内およびその周囲の受信を提供する送信ビームパターンを含んでもよい。
【0031】
サブセットがデバイス10によって選択される基準を再び参照すると、1つの可能なパラメータは、閾値を上回る、受信信号のソース、すなわちデバイス20に向かう送信電力である。代替または追加のパラメータは、受信方向22に対するビームパターンのカバー範囲またはカバー領域またはカバーボリュームまたはカバーゾーンの位置であってもよい。言い換えれば、例えば、基地局または測定機器(例えば、gNB、SSまたはTE)のようなデバイス20は、オプション2により、受信方向22の中および/または周りの球状セグメント/ゾーンをオプション1によりカバーするために、リンクアンテナの方向に十分な、すなわち、所定のリンクカバレッジを提供するいくつかのビーム(UEによって形成され得るすべての可能なビームのサブセットまたは一部)を提供する(選択する)ようにUEに要求し得る。領域は、球または球状セグメントの切断として理解することができる。ボリュームは、他の通信相手が位置する3D領域として理解することができ、場合によってはその周りの空間を含む。これは、送信されたビームパターンから来る受信電力が閾値/合理的な信号レベルを上回る一種の相当なゾーンであり得る。トーチの類推を検討するとき、ソース(送信デバイス)から宛先(測定/リンクアンテナまたはgNBまたは3D空間のどこかに位置する別のデバイス)に十分な光を伝送するすべてのビームを使用する(それらをサブセットの一部にする)ことができる。
【0032】
デバイス10は、ビームパターンの選択されたサブセットを形成することができる。ビームパターンは、同時に形成されてもよいが、順次形成されることが好ましい。例えば、デバイス10は、ビームパターン14から14を順次形成してもよい。ビームパターン14から14の区別を可能にするために、デバイス10は、サブセットの各パターンを個別にラベル付け、マーキング、または識別するように構成されてもよい。ビームパターン14から14を識別する方法は、特定のビームパターン14から14を識別するサウンディング基準シンボル(SRS)リソースの使用であってもよく、すなわち、デバイス20は、どのビームパターンが受信されたかを決定することができ、サブセットの異なるビームパターン間を区別することができる。したがって、デバイス20は、サブセットの形成されたビームパターンのうちの1つまたは複数、好ましくはすべてを受信する。ビームパターンのサブセットがラベル付けされると、デバイス20は、例えば、ビームパターンを受信するときに最も高い信号電力を有する、デバイス10への最も有望なリンクを提供するビームパターンを識別することができる。
【0033】
デバイス20は、例えば送信電力または任意の他の適切なパラメータに基づいて、サブセットからビームパターン14から14のうちの1つを選択するように構成され得る。例えば、最も有望なリンク品質、例えば信号電力に関連付けられたパラメータが使用され得る。すなわち、デバイス20は、受信したサブセットから本当の対応するビームパターンを選択することができる。デバイス20は、応答情報24、例えば、そのような情報を含む信号をデバイス10に送信するように構成され得る。応答情報24は、デバイス20によって選択された対応するビームパターン、本例ではビームパターン14を示すことができる。
【0034】
デバイス10は、応答情報24を受信することができ、示されたビームパターン14を対応するビームパターンとして使用するように構成することができる。例えば、デバイス10は、ビームパターン14を使用してデバイス20へのリンクを確立することができる。代替的または追加的に、デバイス10は、デバイス10のメモリ26に格納されている対応情報を更新してもよい。対応情報は、複数のビームパターン14から14の各々を、対応する受信方向22と関連付けてもよい。対応情報を更新することにより、不完全なまたは誤った受信方向の影響を少なくとも部分的に補償することができる。例えば、デバイス10は、受信ビームを変化させてもよく、または異なる受信ビームパターンを適用して、適切な対応する送信ビームパターンを選択してもよい。修正または更新された情報に基づいて、デバイス10は、対応情報を更新することができる。
【0035】
示されたビームを使用することは、それらの組合せを含む、異なる可能な動作に関連し得る。例えば、オプションAによれば、トランシーバ/デバイス10は、デバイスが同様の状況にあるときに指示されたビームを新しい対応するビームとして使用するように構成されるようにフィードバックに従うことができる。これは、例えば、センサまたは外部情報(場所、環境など)を使用して、その状況が何であるかを決定するための手段を含むことができる。オプションBによれば、トランシーバ/デバイス10は、対応するビームとして将来選択されるべき示されたビームを考慮するようにフィードバックに従うことができ、ルックアップテーブル(LUT)の関連するエントリを更新する。これは、デバイス製造業者が依然として自分のアルゴリズムに関する完全な制御を有し、デバイスが不完全なメッセージに騙される可能性が低いという利点を提供する。
【0036】
デバイス10は、オプション3により、ビームパターンのサブセットを自律的に選択し形成するように構成することができる。すなわち、刺激信号16を受信するデバイス10は、それに応答するサブセットを選択することができる。言い換えれば、UE(デバイス10)は、リンクアンテナの方向、すなわち受信方向22に十分なリンクカバレッジを提供するいくつかのビーム(UEによって形成され得るすべての可能なビームのサブセット)を自律的に提供(選択)することができる。
【0037】
所定のまたは十分なリンクカバレッジとして、通信相手がいる方向に沿って少なくとも十分な信号電力が送信されることを理解することができる。すなわち、所定のリンクカバレッジは、ビームのサブセットのすべてのメンバが合理的に通信/信号品質が提供されることを可能にし、それらのいくつかが、デバイスの瞬時位置およびその受信アンテナの指向性に応じてさらに良好な信号を提供するのに適しているように、ユーザ/通信相手の方向および/または位置ならびにより近い/局所的な近傍に伝送される少なくとも十分な信号電力を提供する方法として理解され得る。
【0038】
オプション1、2、および3の各々において、サブセットのビームパターンの形成は、自動的に行われてもよいし、自律的に行われてもよい。サブセットまたはその少なくとも一部の形成は、自動的にまたはコマンドもしくはトリガに応答して開始または始動され得る。コマンドは、通信相手、例えばデバイス20から、またはデバイス内のプロトコルインスタンスから受信され得る。トリガは、受信機からの観測された状態のイベントまたは進展であり得、例えば、受信機は、到来無線信号を追跡し、アルゴリズムは、選択されたサブセットの別のメンバの使用が所与の状態、時点などで使用されることがより適切であると結論/決定する。言い換えれば、コマンドは、何をいつすべきかを伝えることができ、トリガは、別のアルゴリズムループを起動するか、または実行されるように事前構成された動作を始動するだけでよい。
【0039】
代替的または追加的に、サブセットのビームパターンは、外部から示された順序で、またはデバイス10によって決定された順序で順次、並列に、すなわち同時に、選択的に、重ね合わせて、および/または要求に応じて形成されてもよく、それぞれのオプションの詳細は、コマンドまたはトリガによって示されてもよい。
【0040】
代替的または追加的に、デバイス10は、第1の動作モードで動作するように適合されてもよい。第1の動作モードでは、デバイス10は、対応するビームパターン、例えばビームパターン14のみを選択するように適合されている。例えば、これは、屋外での通常の動作モードであってもよい。このモードでは、リンクを確立するための他のビームパターンは形成されない可能性がある。デバイスは、記載されたサブセットを形成する要求を示す、場合によってはデバイス20によって送信される、要求信号を受信するように適合され得る。この要求信号は、単一の対応するビームパターン14のみを形成した後に、またはこの代替としてのいずれかで、サブセットが形成される第2のモードに切り替えるようにデバイス10に命令することができる。一実施形態によれば、要求を示す要求信号を生成する情報は、異なるタイプの刺激信号16がデバイス10で異なる反応をもたらし得るように刺激信号に含まれてもよい。代替的または追加的に、デバイス10は、異なるモードの間で選択することができる。例えば、刺激信号16が閾値未満の信号品質または信号電力で受信されたとき、刺激信号は、可能な限り最良のビームパターンをデバイス20によって選択させる機会を得るようにサブセットを提供することができる。
【0041】
要求信号または追加の要求は、サブセットの個々のメンバ間、ビームパターン間をスイープまたは切り替えるようにデバイス10に要求することができる。基本的に、これは、特定のモードにおいて、または要求に応じて追加のビームサブセットの使用を明示的または暗黙的にアクティブ化するために実施形態に関連して有利に使用することができるビーム識別にリンクされ得る。
【0042】
正確性のために、または他の方法でより良好なビームパターンをチェックするために、選択された対応するビームパターンを外部からチェックすることによって、デバイス10は、そのままで新しいLUTを学習するように更新され、又は/及びそのままで新しいLUTを学習することを可能にされ得る。
【0043】
名前付きのオプション1、2および3は、EIRP測定の拡張を提供する(EIRP=等価同位体放射電力)。EIRPに関連して、本発明者らは、測定要件が最小ピークEIRPと球状カバレッジの両方の決定に関連し得ることを見出した。そのような手順では、UEは、アップリンクビームスイーピングを利用してもよい。
【0044】
アップリンクビームスイーピングを使用するいくつかのEIRP試験手順が使用され得る([2]を参照)。[3]で述べたように、この方法は、適合性試験のベースラインを形成し、3GPP TR 38.810に対する変更要求[4]で承認された。[3]によれば、試験時間を短縮するために、アップリンクビームスイーピングに使用されるSRSリソースセットを制限することができ、すなわち、「SRSリソースの上限:試験時間」を短縮するために、SRSリソース(M)の上限数は、TEから4、または8または16である。
【0045】
本発明によれば、a)WF[3]において合意されたベースラインEIRP測定手順、b)アップリンクビームスイーピングセットを含むビームの数、およびc)SRSリソースセットのサイズについて説明される。
ネットワーク支援アップリンクビームスイーピング手順[2][4]のフローチャートが図5に提示されており、以下のステップが参照される。
1.UEは試験位置に配置される。
2.測定グリッド上の各点について、UEとシステムシミュレータ(SS)との間のリンクは、PolLink=Θで測定アンテナを通して確立される。
3.UEは、ダウンリンク基準信号に基づいて、構成された基準信号(SRS)のセットを用いてアップリンクビームスイープを実行する。
4.SSは、それ自体の測定能力を使用してすべてのアップリンクスイーピングビームの電力を決定する。「最良のビーム」の識別情報がUEに返される。
5.UEは「最良のビーム」を構成し、ビームロックを可能にする。
6.両方の偏波に対する全成分EIRPは、EIRP試験機器(TE)、例えばスペクトルアナライザまたは電力メータを使用して決定される。
7.[ループA]UEは、ビームのロックを解除する。PolLink=Φの測定アンテナへのSSの切り替えステップ3~6は、ステップ8に移動する前に1回繰り返される。
8.[ループB]グリッド上の次の測定点に移動する。グリッド上のすべての測定点が評価されるまで、ステップ2から7を繰り返す。
【0046】
ネットワーク支援アップリンクビームスイーピング手順は、比較的短い測定時間およびネットワーク性能の適度に良好なエミュレーションを提供するが、アップリンクを正確に評価するSSの能力に依存する。測定時間の増加を犠牲にしてより高い精度を提供する代替方法が[5]で提案されたことに留意されたい。
【0047】
これにもかかわらず、構成された基準信号のセット(アップリンクビームスイープを定義するもの)がグリッド上の試験点の各々について同じであるかどうか、または各試験点ごとに異なるビームのセットが使用されるかどうかは不明である。
【0048】
EIRPを確実に決定するために、最良のビーム、すなわちSSまたはEIRP TE(TE)と確立されたリンクの方向において最も高い電力を伴うアップリンクビームが、スイープビームのセットの一部を形成することが有利である。UEコードブックの可用性は、SSまたはTEのいずれにおいても仮定することができないため、UEは、最良のビームが失われないように、すべての利用可能なビームをスイープしなければならない。
【0049】
他方、SSまたはTEがUEコードブックの完全または部分的な知識を有する場合、スイープセットのビームの数を減らすことができる。これは、SRSリソースの凝縮されたセットのサイズに正比例して測定時間を短縮するという利点を有する。
【0050】
観察1:UEコードブックの知識がなければ、最良のビームを逃さないために、利用可能なすべてのビームをスイープする必要がある。
観察2:UEコードブックの完全または部分的な知識をSSまたはTEに装備すると、SRSリソースの凝縮されたセットのサイズに正比例して試験時間が短縮される。
【0051】
実施形態1による提案:インテリジェントSRS選択を可能にするために、UEコードブックの知識をSSまたはTEに提供する。
【0052】
RAN4#90 WF[3]には、試験時間を短縮するために、SRSリソース(M)が上限を有するべきことが記載されている。現在、4から16の間の値が説明されている。
【0053】
観察3:RAN4は、SRSリソース(M)を制限する利点を識別している。
前述の説明を考慮して、実施形態は、M、すなわち、区別可能なビームパターンの数、および任意選択的にビームパターンのサブセットの最大サイズが、アンテナアレイの寸法(例えば、4×nまたは8×n)に従って、および結果として得られるアップリンクビームスイープセットを使用して球状カバレッジを達成できるように選択または選定されることを定義する。例えば、4×nアレイおよび8×nアレイのハーフ電力ビーム幅(HPBW)は、約26°および13°であり、それぞれ約64個および約256個のビームのビームセットをもたらす。適切なサイズのSRSリソースのセットがなければ、「最良のビーム」が結果として得られるアップリンクスイープセットの一部であることを確保することはできない。
【0054】
実施形態2による提案:SRSリソースセット(M)のサイズは、アンテナアレイ寸法に従って選択されるものとする。
【0055】
サブセットを選択するために、デバイスは、代替的または追加的に、デバイスの動作パラメータを考慮してもよい。例えば、動作パラメータは、複数のビームパターンからビームパターンを除外するようにデバイス10を導くことができる。例えば、測定低減のために、選択されたサブセットは、UE/デバイスが形成することができるすべての可能な送信ビームと比較して非常に小さくなり得る。例えば、64個または256個のビームパターンのうち、4個または8個という少数である。
【0056】
一例として、デバイス10は、デバイス20に対して関連するもしくは十分な伝送特性を有するか、または最良の特性を有する所定数を含むように、サブセットにそれらのビームパターンのみを含むことができる。代替的または追加的に、デバイス10は、対応するビームパターン(ただし、場合によっては正しく決定される)またはサブセットの異なるビームパターンが現在望ましくないかまたは許容されないという知識を有することができる。これは、例えば、デバイス10の最大電力をユーザに向けることを回避するように、ユーザの位置がサブセットから除外されるように、デバイスのユーザの位置、例えばその頭部であってもよい。特定のビームパターンを除外するための任意の他の基準が実装されてもよい。デバイス10は、ユーザによるデバイスの使用を示すユーザ対話情報に基づいて複数のビームパターンを示すルックアップテーブルを更新するように構成され得る。例えば、デバイス10は、ユーザ対話を示す1つまたは複数のセンサまたは入力デバイスを実装することができる。例えば、近接センサは、例えばマイクロフォンおよび/またはスピーカを備えるデバイス10の側にいるユーザの頭部を指示または感知することができる。代替的または追加的に、デバイス10は、デバイスを保持するユーザの手を検知することができる。例えば、ユーザ対話情報は、手の中、頭部近くなどにデバイスを保持することを含むことができ、その結果、SARレベル要件(SAR:比吸収率)を満たすために特定のビームパターンを使用/除外するべきではない。
【0057】
すなわち、例えば、他のユーザ、他のデバイス、またはアクセスポイント/基地局/eNB/gNBへの干渉のために、それらの位置を指す送信ビームパターンが除外されるように、既知の位置に基づいてビームパターンをサブセットから除外することができる。例えば、デバイス10は、空間の他のデバイスまたは受信機、例えば、デバイス10に妨害されないままであるそれらの存在および/または要求を直接または間接的に示す他のUEまたは他のgNBに関するフィードバックを受信することができる。例えば、干渉を受けているデバイスは、UEが特定のビームパターンを使用しているときに望ましくない干渉電力レベルを経験することを、制御チャネルを通してデバイス10またはサービングgNBに直接報告する。結果として、UEは、これらのビームをそれ自体で、または、例えば、別のデバイスがこのような干渉ビームを受けている/受けていないであろう時間スロットにおいて、協調したやり方で使用しないことを決定することができる。代替的に、さらなるオプションとして、電力バックオフが実施されてもよい。
【0058】
代替的に、またはこれに加えて、干渉を受けたデバイスは、干渉を受けたと感じるリソース上で干渉チャネルを効果的に反転させる応答を送信する。このようにして、干渉を引き起こすデバイス、すなわちデバイス10も同様に干渉され、他のデバイスから実質的な信号電力を収集した受信パターンに関連付けられた方向への送信を適応的に回避することができる。
【0059】
したがって、実施形態は、アルゴリズムに関連するパラメータ設定を更新するように構成されたデバイスが、ユーザによるデバイスの使用を示すユーザ対話情報に基づいて複数のビームパターンを決定することを可能にする。すなわち、デバイスは、初期状態とは別に、ユーザによって使用されるときに異なるビームパターンを適用することができることを知ることができる。
【0060】
デバイス10は、ビームパターン14から14を形成するように適合された同じアンテナ配置12を用いて刺激信号16および/または応答情報24を受信するように構成されてもよい。代替的に、デバイス10は、信号16および24を受信し、ビームパターンを形成するための異なるアンテナ配置を備えてもよい。
【0061】
好ましくは、サブセットは、複数のビームパターン14から14の厳密なサブセットである。すなわち、可能なビームパターン14から14の少なくとも1つは、選択されたサブセットに含まれないことが好ましい。これは、すべてのビームパターンの試験と比較するとき、最良のビームパターンを選択、評価、または選定する時間が短くなり得るという特定の利点を有し得る。特に測定環境における不要な測定時間は、対応するビームパターンの適切な候補ではないことが知られているサブセットの一部としてビームパターンを選択しないことによって低減され得る。
【0062】
システム100は、1つのデバイス10および1つのデバイス20を有するものとして示されているが、システム100は、デバイス10タイプの複数のデバイスおよび/またはデバイス20タイプの複数のデバイスを備えてもよい。
【0063】
限定することなく他の実施形態と組み合わせることができる実施形態は、ビームパターンのサブセットの選択に対処する。例えば、通常のネットワーク動作中および/または測定中の動作は、制限され得るか、または規制に依存し得る。例えば、デバイス10は、サブセットとして最大で、またはさらに正確に所定数のビームパターンを実行するために必要とされ得る。そのような数Mは、任意の適切な数、例えば、5、6、8、12、または異なるもしくはさらに高い数であってもよい。
【0064】
例えば、デバイス10は、サブセットに最大M個のビームパターンを与えるという要件に従う。すなわち、デバイス10がサブセットに適した最大で所定数、すなわちMの数を推定する場合、デバイス10は、本明細書に記載の他の実施形態に関連して説明したようにサブセットを形成する。代替的に、デバイス10は、所定の数に到達するように、サブセットに追加の、場合によってはあまり適していないまたは不適切なビームパターンを含むことができる。例えば、デバイス10は、正確に所定数のビームパターンを含むようにサブセット15を選択するように構成されてもよく、所定数はMである。適合性は、例えば、特定のエリア、例えば、リンクアンテナ18の位置を照射する放射電力に関連付けられてもよい。
【0065】
図1bは、サブセットのための所定数のビームパターンの選択を示す概略斜視図を示す。所定数Mは、例えば、8(または異なる数)であり、Mの対応するビームパターンの例の値は、2、4、8、16、またはそれらの間もしくはそれより大きな任意の他の数を含む。形成されるビームパターン14から14は、「ビーム」として示されるサブセット15の一部であってもよく、iはインデックスa、...、xであり、すなわち、デバイス10が形成することができるi個のビームパターンのうち、サブセット15が選択である。
【0066】
選択は、少なくとも、それぞれのモードがデバイス10によって実行されるように要求されていることを示す信号17の受信によって影響され得る。例えば、デバイス10は、所定数Mのビームパターンを含むようにサブセット15を選択するように構成されてもよい。所定数Mは、デバイス10が形成することができるビームパターンの数の最小値、例えば1、2、3、4、または8、16、32、48、64などのより高い数、およびシステムから許容される最大数と考えることができる。例えば、ビームパターンの数がシステムによって許容される最大数(本例では8)よりも少ない場合、前者が適用され得るが、反対の場合には後者が適用される。デバイス10は、サブセットで識別されたおよび/またはその後にデバイス10によって形成されたビームパターンの数が所定数以下になるようにサブセットを形成することができ、すなわち、所定数は、サブセット15のビームパターンカウントを制限することができる。
【0067】
サブセット15のビームは、ビームパターンの主方向の局所分散によって互いに相関させることができる。例えば、デバイスは、ビームパターン14から14について示されるように、所定数のビームパターンが対応するビームパターンの周りの領域を局所的にカバーするようにサブセットを選択するように構成されてもよく、すなわち、ビームパターン14から14は、リンクアンテナ18を局所的にカバーまたは照射するように選択される。例えば、サブセットは、送信された電力に関してリンクアンテナに空間的に最も近いビームの所定数を含むことができる。例えば、デバイスは、所定数のビームパターンが対応するビームパターンの周りに最大密度を有するようにサブセット15を選択するように構成されてもよい。
【0068】
代替的または追加的に、デバイスは、例えば、続いてまたは代替モードとして、サブセット15を選択するように構成されてもよく、ビームパターン14’から14’について示されるように、所定数のビームパターンは、対応するビームパターンによって照射される領域を含む球21の少なくとも一部である拡散領域で拡散される。球21の比較的小さな領域または部分19a、すなわち、例えば測定機器によってスパンされるかまたは評価される可能な仮想投影面と比較すると、領域または部分、すなわち拡散領域19bは大きくてもよい。例えば、領域19bは、全球またはその関心領域であってもよい。領域19bのサイズは、例えば、また信号16であってもよい信号17の使用によって示されてもよく、またはデバイス10によって事前設定または決定されてもよい。すなわち、デバイスは、静的な所定の値に基づいて、または信号の一部として受信された可変な値に基づいて、拡散領域19bのサイズを選択するように構成されてもよい。
【0069】
例えば、デバイス10は、所定数が、デバイスの能力内で、拡散領域内に均一に分布するように、サブセット15を選択するように構成されてもよい。すなわち、ビームパターン14’から14’(例えば、ビームパターンの最大もしくは最小放射電力、または異なる基準点の位置)は、球21の1つまたは複数の方向に沿って均一または不均一に分布してもよい。
【0070】
代替的または追加的に、デバイス10は、サブセットが所定数を含むことを示すサブセット指示を含む信号23を送信するように構成されてもよい。すなわち、デバイス10は、所定数に制限されているサブセット15のみを使用することを他のデバイスおよび/または測定機器または基地局に示すことができる。代替的または追加的に、デバイスは、信号、例えば、信号16および/または17、あるいはサブセット要求を含む異なる信号を受信するように構成されてもよい。サブセット要求は、信号に含まれるビット/フラグまたはシーケンス/複数のビットであってもよく、または専用信号であってもよく、デバイス10が所定数Mを含むようにサブセット15を選択するように要求されていることを示してもよい。デバイス10は、サブセット要求に基づいて所定数Mを含むようにサブセット15を選択してもよい。
【0071】
場合によっては、デバイスは、そのような要求に1回または繰り返し従うことができないことがある。例えば、おそらくユーザの位置がさらに除外されるため、いくつかの可能なビームパターンが(現時点では)許容されないため、必要な数のビームパターンを形成することができない場合がある。デバイス10は、要求された動作がデバイス10の能力を超えていると決定するように構成されてもよい。デバイス10は、デバイス10が要求に従って動作しないことを示す応答信号25を送信することができる。代替的または任意選択的に、デバイス10は、要求に基づいて応答信号25を送信するように構成されてもよく、応答信号25は、例えば肯定応答として、デバイス10が要求に従って動作することを示す。応答信号25はまた、その存在または不在によって情報を含むことができる。すなわち、不在は、肯定的な応答または否定的な応答を示し得る。
【0072】
デバイス10は、サブセット15のビームパターンの数、したがって後の選択の基礎として形成されるビームパターンの数を制限するように要求され得るが、特に測定目的の観点から、所定数を超えるビームパターンを有することが適切であり得る。例えば、球21の2方向に沿って分布し、デバイス10の周りの球の大きなまたは最大の可能なビームカバレッジエリアをカバーするように生成された8つのビームパターンの数を想定されたい。そのような状況および他の状況では、デバイス10は、多数または複数のサブセットを、例えば順次次々に生成することができ、異なるサブセットは、少なくとも部分的に異なるビームパターンを有する。一実施形態によれば、サブセットは、選択されたビームパターンおよび/またはカバー領域に関して重なり合わないかまたは分離していてもよい。
【0073】
場合によっては、サブセットのうちの1つまたは複数は、対応するビームパターンを有しないように選択されてもよい。これにより、広い拡散領域19bをカバーすること、および/または拡散領域19bを高密度のビームパターンでカバーすることが可能になり得る。例えば、デバイス10は、サブセット15の候補と見なされる選択されたビームパターンの数が所定数Mを超えることを示す、例えば信号25または異なる信号を使用して情報をシグナリングするように構成され得る。これは、さらなるサブセットが可能/必要であることの指示であり得る。デバイス10は、デバイス10が追加のサブセットを提供する、すなわち、選択して形成するように要求されていることを示す、そのような信号に対する応答を受信することができる。したがって、デバイス10は、ビームパターンの第1のサブセットと比較したときに異なる少なくとも1つのビームパターンを含む第2のサブセットを少なくとも選択して形成するために、少なくとも第2のサブセットを形成する信号/要求を受信してもよい。
【0074】
異なるサブセットを選択することにより、球21の異なる、場合によっては部分的に重なり合う領域を照射することができ、そのサブセット、そのビームパターンはそれぞれ、デバイス10の周りの球21の異なる領域を少なくとも部分的にカバーするものである。
【0075】
言い換えれば、DuT/UEによって提供されるM個のビームの数が限られているため、球の全体またはかなりの部分をカバーするオプションは限られており、ビームの狭さに応じて、局所的なビームスイーピングであっても、リンクアンテナに向かう方向の周りのすべての可能な/適切なビームをカバーすることはできない。
【0076】
したがって、DuTとME/BSとの間のさらなる情報交換がサポートされ得る。測定機器または測定環境はまた、基地局エミュレータまたは試験プラットフォームであってもよい。この交換を最小限に制限するために、実施形態は、以下のメカニズムおよび関連する実装オプションを提供する。
【0077】
オプションA:以下のフラグ/信号/ビットの導入
A.1:UE/デバイスが、SRSまたはSSB(すなわち、サウンディング基準シンボルによって区別可能である)によってマーク/識別されたM個のビームを、球をカバーするように、または局所的なビームスイーピングのために局所的に、分散していることをシグナリングすることを可能にする。
A.2:ME/BSがUEに、SRSまたはSSBによってマーク/識別されたM個のビームを、球をカバーするように、または局所的なビームスイーピングのために局所的に、分散するように要求することを可能にする。
【0078】
所与の方向の周りにいくつかのビームを有すること、または関連性/関心のある球状領域/ゾーン/区域をカバーすることは、スイーピングのための局所ビームのセットと呼ぶことができる。
【0079】
代替的または追加的に実施され得る実施形態は、対応するビームパターンを少なくとも1つの追加のビームパターンと関連付ける事前構成されたコードブック/状態/アルファベット/LUT/レジスタ/リストに基づいてサブセット15を選択するように構成されたデバイス10などのデバイスに関する。
【0080】
コードブック/状態/アルファベット/LUT/レジスタ/リストは、対応するビームパターンを、説明したMなどの所定数のビームパターンまで対応するビームパターンと共に加算したいくつかのビームパターンに関連付けることができる。すなわち、対応するビームパターンごとに、サブセット15を事前定義または事前設定することができる。
【0081】
デバイス10は、それぞれの要求を示す信号、例えば信号16または17に基づいてコードブック/状態/アルファベット/LUT/レジスタ/リストを使用してサブセット15を選択するように構成されてもよい。デバイスは、応答信号、例えば要求に基づく信号25を送信するように構成されてもよく、応答信号は、デバイスが要求に従って動作することを示し、および/または、例えば、要求された動作がデバイスの能力または現在の動作モードを超えるとデバイスが決定した場合、応答は、デバイスが前述のように要求に従って動作しないことを示すことができる。
【0082】
デバイスは、コードブック/状態/アルファベット/LUT/レジスタ/リストを可変的に格納し、それぞれの信号に応答してコードブック/状態/アルファベット/LUT/レジスタ/リストを更新するように、および/またはコードブック/状態/アルファベット/LUT/レジスタ/リストを静的に格納するように構成されてもよい。すなわち、コードブック/状態/アルファベット/LUT/レジスタ/リストは、例えば製造業者によって実装されてもよく、長期間にわたっておそらく変化しないままであってもよいが、特定の試験または動作モードの開始時に設定されてもよい。デバイス10は、コードブック/状態/アルファベット/LUT/レジスタ/リストを、測定手順の開始時、デバイス製造業者のソフトウェア更新中、およびネットワークプロバイダのソフトウェア更新中のうちの少なくとも1つで更新するように構成されてもよい。
【0083】
デバイス10は、局所的なビームスイーピングを実行しながらサブセット15を形成するように構成されてもよく、すなわち、ビームパターンの少なくとも一部(ローブおよび/またはヌル)の向きは、ビームパターンを空間中に移動させるように変更されてもよい。
【0084】
言い換えれば、実施形態によれば、
オプションB:UE/デバイスは、局所的または球状カバレッジビームスイーピングと同等のものをカバーする事前構成状態を使用/適用する。
B1:事前構成された状態/アルファベット/(空間)/ルックアップテーブル/レジスタ/リストコードブックは、UE/デバイスに知られており、または/およびフラグを設定する/フラグにより挙動/動作する要求を受信することの先験性がUE/デバイスにプログラムされる。
B2:事前構成された状態/アルファベット/(空間)コードブック/ルックアップテーブル/レジスタ/リストは、ME/BSまたはUE/デバイスと通信する任意の他のエンティティによって設定/構成され得る。そのような事前構成された状態は、状態/アルファベット/(空間)コードブック/ルックアップテーブル/レジスタ/リストを設定/構成する時点とそれらを適用する時点との間のかなりの期間にわたってデバイス/UEによって記憶されなければならない。
【0085】
オプションB1に関して、事前構成されたビームのセットは、例えばDL(ダウンリンク)測定、UEの特定の向き、またはデバイス/UEとME/測定アンテナとの特定の空間的関係に対する応答として、またはデバイス/UEに近い身体もしくは物質、例えば頭部に関して選択され得る。
【0086】
オプションB2に関して、期間の持続時間は、適切な時間量を含むことができ、例えば、それらは、例えば、製造業者による定期的なソフトウェア更新中に、ならびに/あるいは新しい/異なる/特別な無線ネットワークおよび/または国/地理的地域/再販売市場のためのソフトウェア更新に関連して、デバイス10を再構成するために、後に呼び出される測定手順の開始時のプログラミングを可能にすることができる。例えば、デバイス10のチップセットは、パネルおよび/またはアンテナの異なる構成を装備することができ、あるいはそれらはデバイス10で異なるように分散/配置または整列され得る。コードブック/状態/アルファベット/LUT/レジスタ/リストは、特定のビームが形成されることを可能にする位相および振幅値の組合せとして理解され得る。位相および振幅値は、アナログ、デジタルビームフォーミングおよびハイブリッドオプションを含む、離散的または連続的であり得る。
【0087】
そのようなシグナリング能力および測定手順へのその適用に関連して、実施形態は、以下のUE能力を提供することができる。
1.)それは、そのようなコマンド/フラグを適切な動作で処理/応答することができる
a.球の全方向でサポート/局所的なビームスイーピングすることができる、または
b.特定の方向のみでサポート/局所的なビームスイーピングすることができる。
2.)UEは、このようなコマンド/フラグを適切な動作で処理/応答することができない
a.全くサポート/局所的なビームスイーピングできない
【0088】
本明細書で説明される他の実施形態として、サブセット15に関連する説明された概念、すなわち、所定数を伴うビームパターンのサブセットの選択は、ユーザ機器、ならびにリレーまたは基地局などの他のデバイスに適用可能である。したがって、デバイスは、基地局またはリレーであってもよく、ビームのマーキング/識別は、デバイスによって形成された特定のビームを示すSSB(同期シグナルグロック)などである。
【0089】
M個のビームパターンを伴う限定されたサブセットを有する記載された態様はまた、以下に関し得る。
1.デバイス(UE)は、局所的なビームスイープを行うかどうかの能力を有することができる。これは、既知であってもよいし、またはデバイスケイパビリティレジスタのビットを使用せずに間接的にシグナリングされてもよい。
2.テスタ、例えば測定機器/環境(ME)は、測定されるSRSの数を最小限に抑えるために、M個例えば比較的小さい4つのビームパターンによる局所的なビームスイープを強制するようにフラグ/パラメータを設定することができ、例えば、ビームパターンが異なる複数のMを構成することができる必要はない。例えば、ビームフォーミング能力が制限されている単純で低コストのUEの試験を可能にするために、Mをさらに低減することができる。これは、モード/状態/Mをシグナリングするために余分なビットを犠牲にする。したがって、「m」の値は、Mの最大値よりも小さく選択されてもよい。
3.例えばCSI-RSを使用してUE/デバイスによって行われたダウンリンク測定に基づいて実行されるべき局所スイープの周りの中心/方向/領域を識別する必要があり得る。
【0090】
実施形態はさらに、多数のMを必要最小限、例えばM=4に設定することによって、多数のMを克服する方法として識別される局所的なビームスイーピングに関することができる。このようにして、MEによって測定されるSRSの数を減らすことができ、単純なUEならびにより複雑なものがサポートされる。この方法は、特に、より狭いビームを形成することができる4つを超えるアンテナ素子を超えるより大きなアンテナアレイを使用するUE/デバイスについて、測定時間/労力の低減および測定不確実性(MU)の低減をもたらす局所的なビームスイーピングを使用する最適化されたビーム対応関係評価を可能にする。
【0091】
一実施形態による測定手順、すなわちデバイスを評価する方法は、例えば、
刺激信号のソースとのリンクを確立するようにデバイスを刺激するために、受信方向に沿ってデバイスに刺激信号を送信するステップ、
送信ビームパターンをデバイスから受信するステップ、
送信ビームパターンの品質尺度をデバイスに報告する、
試験中にカバーされるべき領域を選択し、その領域を照射するようにデバイスにより形成可能なビームパターンのサブセットを選択するステップ、
ビームパターンのサブセットを形成するステップ、および
デバイスを評価するためにビームパターンのサブセットを測定するステップを含み得る。
【0092】
言い換えれば、そのような手順は、以下を含み得る、すなわち、
ステップ1:DL(ダウンリンク)信号に基づいて、UL(アップリンク)ビームがUE/デバイスによって選択され、そのEIRPが測定機器(ME)によって測定される。例えばCSI-RSおよびさらなる知識に基づくDL測定に基づいて、局所ビームスイーピングのために選択されたビームのセットによってカバーされるべき領域が選択される。例えば、ULビームを選択するために、DLビームに使用されるのと同じULビームフォーミング係数(空間フィルタ)を使用することができる。
ステップ2:この後、局所領域をカバーする局所スイープに適したビームのセットを提供するために、UE/デバイスによってさらなるビームが選択される。スイープのためのビームのセットに属するすべてのビームのEIRPは、MEによって測定されるべきである。
【0093】
所定数のMは、例えば、ネットワークによって設定される固定値であってもよい。代替的に、値Mは可変である値であってもよい。例えば、基地局または試験機器、例えばデバイス20は、例えば適切な信号の使用によってMの値を示すことができる。そのような信号または異なる信号は、例えば特定の距離の基地局をカバーするように、例えば、実行される特定の試験モード又は1つまたは複数の方向に沿って取得される特定の開口角に応じて、ビームパターンのサブセットによってカバーされる領域を示すために使用され得る。領域の選択は、例えば刺激信号の測定値から決定されてもよい。
【0094】
図2は、デバイス、例えばデバイス10を試験または更新するための方法200の概略フローチャートを示す。方法200は、無線刺激信号が、例えば受信方向に沿ってデバイスに送信されて、デバイスを刺激して受信方向に沿って刺激信号のソースとのリンクを確立するステップ210を含む。ステップ220において、複数のビームパターンがデバイスから、例えばデバイス20で受信される。ステップ230において、複数のビームパターンの少なくとも1つが選択される。複数のビームパターンは、刺激信号に対応するビームパターンとしてデバイスによって選択される対応するビームパターンを含む。この選択されたビームパターンは、正しくまたは誤って決定され得る。ステップ240は、少なくとも1つの選択されたビームパターンを示す情報、例えば応答情報24をデバイスに送信することを含むことができる。応答情報24は、デバイス10によって行われた選択に従ってもよいが、それから逸脱してもよい。ステップ250は、対応するビームパターンの将来の選択を変更するように、少なくとも1つの選択されたビームパターンを示す情報に基づいてデバイスのメモリの情報を更新することを含むことができる。このステップは、選択情報がデバイス10によって行われた選択に従っているとき、すなわち、関連するエラーが発生していないときには不要である可能性があるため、オプションであってもよい。
【0095】
図3は、デバイス、例えばデバイス10を動作させるために使用され得る一実施形態による方法300の概略フローチャートを示す。方法300は、無線受信信号を受信することおよび無線信号に対応する、例えば信号を受信するために使用される受信ビームに対応する対応するビームパターンを決定することを含むステップ310を含む。ステップ320は、サブセットが受信方向に対応する主方向を含む対応するビームパターンを含むように、生成され得る複数のビームパターンからサブセットを選択することを含む。選択されたサブセットは、場合によってはサブセットのビームパターンによって順次形成されることによって形成される。ステップ330は、選択されたサブセットの1つのビームパターンを示す応答情報を受信することを含む。ステップ340は、示されたビームパターンを、例えば対応するビームパターンとして使用すること、またはメモリ、例えばLUTを更新することを含む。
【0096】
図4は、デバイス、例えばデバイス20を動作させるために実施され得る方法400の概略フローチャートを示す。ステップ410は、例えば受信方向(全方向送信を含む)に沿って、無線信号を受信デバイス、例えばデバイス10の誘導送信に基づいて送受信デバイスであるデバイス10に送信することを含む。ステップ420は、受信デバイスから複数のビームパターンを受信することを含む。ステップ430は、複数のビームパターンから対応するビームパターンを選択することを含む。ステップ440は、応答情報を受信デバイスに送信することを含み、応答情報は対応するビームパターンを示す。
【0097】
本明細書に記載の例は、様々なシナリオで使用することができる。1つのシナリオは、ユースケースの変動性に起因して、ユーザの身体とデバイスとの対話が、例えば、受信および送信に使用される異なるパネルに起因して、受信ビームおよびアップリンクビームのパターンをもたらし得る一例によって説明される。実施形態は、UEが必要なゾーン内に完全なまたは少なくとも十分なリンクカバレッジを提供する適切なビームのセットを生成することを可能にするか、またはさらには強制することを可能にする。(ライブ動作中の)SSまたはgNBは、UEが所与のセットアップ/無線伝搬環境における最良の、または少なくともより良好な対応するビームについて知るのを支援することができる。リンク方向の信号/信号分散は、所定の範囲、例えば、20dB、15dB、10dB、または5dB以内を満たすことができる。これは、メインローブ、分割ビーム、およびサイドローブを含むことができる。一実施形態によれば、サブセットの一部となるべき選択されたビームパターンは、リンク方向にメインローブのみを含むことができる。これは、リンク方向に沿って配置されているメインローブを有するそれらのビームパターンのみを選択することによって取得することができる(すなわち、メインローブは、少なくとも部分的にリンク方向に向いている)。実施形態は、局所的なビームスイープに必要なビームのセットを選択する手段を備えるUEに向けられる。局所的なビームスイープは、無線リンクの意味を有する所与の方向およびその周りで実行することができる。既知のデバイスは対応するビームを選択するように実装されているが、実施形態は、最良のビームパターン、すなわち高いまたは最大のマッチングを含むビームパターンを得るために、この選択を検証することを可能にする。
【0098】
前述の実施形態のいくつかは、UEによって行われた対応するビームパターンの選定または選択を適合または補正することに関する。他の実施形態によれば、UEの選択を変更し、および/またはどの送信ビームを使用するかを決定するための更新または変更された基礎をUEに提供するための他の理由があり得る。
【0099】
例えば、図1aのデバイス10は、サブセットを提供することができる。しかし、デバイス20でただ1つのビームパターンを示す代わりに、デバイス20はまた、常に、自身の決定に基づいて、またはデバイス10から受信した要求に応答して、サブセットの少なくとも2つのビームパターンの選択を提供することができる。選択は、例えば、重要業績評価指標(KPI)などのパラメータ情報に基づいて行うことができる。例えば、より大きなエリアをともにカバーし、個々の受信ビームがカバレッジオーバーラップを有する受信ビームパターンのセットが与えられると、デバイス10は、同じまたはほぼ同じまたはより大きな領域をカバーする送信ビームのセットを定義することができる。それらのビームパターンは、仮想パス対応を取得/学習/定義することができ、受信ビームスポット/領域を通る/それに沿った特定の最適化された軌道が、送信ビームスポット/領域を通る/それに沿った軌道に対応することを意味する。この概念は、1つのサービス提供基地局からのハンドオーバ(HO)がトリガされる/トリガされ得る特定の比率の電力でいくつかの基地局が受信されたときに、近隣基地局の信号強度を観察する(これらは近隣リストによって知られており、この場合、使用される受信ビームセットおよび送信ビームセットのサブセットに相当する)セルラネットワークでナビゲートするUEに類似し得る。同じように、異なる受信ビームを使用して受信電力を観察することによって、UEは、いつ別の送信ビームが使用され得る/より適切であるように見えるときに、円滑に/積極的に/遅延させるように決定することができる。このメカニズムは、観測された評価された受信ビーム信号に基づいて、対応する送信ビームのより堅牢で曖昧な選択をサポートする。
【0100】
例えば、デバイス20から受信した応答情報は、決定、つまり、サブセットのどのビームパターンが、デバイス10がそれ自体で実施されるビームパターンを選択することを可能にするように十分なリンク品質を提供するものとして識別され、例えば、それに基づいて、どのビームパターンが何らかの種類の空間マージンまたは電力マージンを有するかを含むことができる。例えば、アンテナパネルでより中央に配置されるか、または必要な電力がより少ないビームパターンが好ましい場合がある。より集中化されたビームパターンは、とりわけ、アンテナパネル間の切り替え間のより長い時間を可能にし、したがってアンテナハンドオーバを遅延させることができる。
【0101】
代替的または追加的に、応答情報は、ビームパターンの順序またはシーケンス、例えばランキングなどを含むことができる。代替的または追加的に、例えばKPIなどのさらなる情報が送信されてもよく、デバイス20は、送信される情報を決定することができ、および/またはデバイス10は、それぞれの情報を要求することができる。この概念は、対応情報の更新に制限なく組み合わせることができる。
【0102】
本明細書に記載の実施形態は、対応するビーム選択を補正すること、および/または選択を変更すること、例えば、使用されるパターンの選択をデバイスに提供することに関することができる。さらなる実施形態は、デバイスがその経験から学習することに関する。例えば、リンクがデバイスに対して特定の方向に確立され、次いで特定のビームがそれから選択されるビームのセット(サブセット)が提供されたことを学習することによって、将来、(学習/経験により)デバイスが既に知識を有するものに対して同様の方向にリンクが要求されるときには、例えば製造後の構成において、「学習の初期」に提供したセットとは異なるビームのセットを返す。例えば、(ビームの適合性を試験し、ビーム選択の能力を試験するために)以前に含まれていなかったビームを導入するビームのより小さいサブセットまたはサブセットを使用することができる。そのような情報は、例えば、特定のシナリオの単一の送信ビームパターンを重み付けするために、対応情報に加えて使用されてもよく、および/または対応情報に直接含まれてもよい。
【0103】
さらなる実施形態は、リンクを確立するためのデバイスの試みに応答してサブセットを提供することを要求するためにデバイス10に送信される信号に応答するだけでなく、ネットワークまたは基地局によってトリガされるイベントに代替的または追加的に応答してその対応情報を更新するデバイスに関する。例えば、デバイス20は、デバイス10が使用されていないかまたは移動されていないことを認識または推定することができ、これは、ユーザ干渉がほとんどまたは全く予想されないことを示すことができ、且つ刺激信号を送信することによって対応情報の更新を自律的にトリガすることができる。これにより、例えば実験室環境などの製造中にデバイス10のルックアップテーブルをプログラミングまたは製造するための基礎となったデバイス10の状態からの逸脱を補償することが可能であり得る。デバイス10の異なるカバー、ハウジング、または変更に基づいて、その特性が変化した可能性があり、これは更新のネットワーク側トリガによって補償され得る。すなわち、デバイスは、示された送信ビームパターンを対応するビームパターンとして使用するように、および/または関連付けられた送信ビームパターンを示す対応情報を示す情報を適合させるように構成されてもよい。
【0104】
限定することなく他の実施形態と組み合わせることができる、さらなる実施形態は、送信ビームパターンが一度に単一のビームパターンに限定されないことを認識する。一度に2つ以上のビームパターンを実装することも可能であり、各送信ビームパターンは、別個の関連するデータ接続を確立し維持することを可能にする。例えば、例えば月への長距離伝送は、ビームパターンの異なる偏波を実装することができる。しかし、実施形態は、長距離伝送にも偏波にも限定されない。実施形態はまた、任意の範囲および任意の区別特性、例えば、異なる時間、周波数、コード、偏波、角運動量または他の空間リソース/次元に関する。
【0105】
したがって、実施形態は、複数の送信ビームパターンを同時に形成および維持することができるデバイス、例えばデバイス10に関する。サブセットを提供するとき、デバイスは、サブセットを受信するノードに、送信ビームパターンと共に、送信ビームパターンと共にビームのペアまたはトリプレット、...として提供される関連する送信ビームパターンを提供するように構成され得る。次いで、応答情報は、送信ビームパターンのそれぞれのペア、トリプレット、...を示すことができる。MIMOでは、ビームペアは同時にアクティブである。すなわち、ビームペアのビームは(MIMOモードで)同時に送信している。
【0106】
言い換えれば、いくつかの実施形態は、「最良の」ビームがそれから選択されてその後の目的のために使用されるビームのセットを提供するデバイスを考慮する。すなわち、多くのビームのセットから、1つのビームのみが選択され、それから使用される。ここでの拡張は、最終的に1よりも多いビームが選択され、それから使用される場合を考慮する。この一例は、MIMOアプリケーションにある。
【0107】
複数のビームに向けた実施形態の拡張
・UE/BS(基地局)/IAB(統合アクセスおよびバックホールノード)(「デバイス」10)が2つ以上のビームを使用している場合には、いくつかのビームを組み合わせて選択する必要がある。
>これは、「マルチビーム(ペア)対応」の必要性を示し得る。
・同時マルチビーム動作の場合に適用可能
○チャネルおよびサポートされるMIMOモードに依存する(マルチパスダイバーシティ、1つの基地局または異なる基地局への多重化)
○次いで、実施形態は、同時ビームごとに個別のビームマーキングを可能にする手順をカバーする
・SRS(サウンディング基準シンボル)は、直交または準直交であり得るか、または、その他任意の同時SRS設計のものであり得、サウンディング基準シンボルは、特定のビームをマークするための1つのオプションである
○手順の実施は、以下のとおりであり得る。
・同時、逐次または任意(例えば、ネットワークに存在する別のエンティティによって実施される)
○IDまたはSRSは、ビームごとまたはパネルごとのビームごとに定義/適用することができる
【0108】
マルチビーム対応手順
・デバイスは、所与のMIMOスキームを達成および/またはサポートするために適切な受信ビームを推定および/または選択しており、これらの個々のビームおよびそれらの組合せに応じて、ULのための送信戦略に対応するビームのペアおよび/または組合せを選択する
・デバイスは、SSまたはTEまたはgNBまたはネットワーク動作のために装備された他の装置から応答フィードバックを得るために、ULをプローブするものとして使用される2つのビームの組合せの結合を提供することができる
○再度、ビームのペアは、他の通信相手の方向をターゲットにする/指すという以前の概念に従うことができる
・特定のメトリックおよび閾値を考慮して、適切なビームペア(またはより高次のグループ)が選択され、潜在的にLUTに格納され得る
○LUTは、デバイスのアンテナ配置に固有の特定のビームペアまたはビーム組合せ除外、または伝搬環境における長期的または短期的性質の仕様(環境内の反射およびユーザ効果または一時的に不一致のアンテナ配置)を考慮することができる
・デバイスは、ビームを選択する順序付き手順、例えばQR分解を使用することができる
○ビームの組合せは、一般に、gNBでのビームの組合せにも依存し得る(gNBでのビーム選択、アンテナ配置/パネル、ならびにUEおよび伝搬環境の機能。)
【0109】
以下の考慮事項は、他の実施形態に関連する。
・複数のビームは、以下で実装/適用することができる
○同じまたは異なる時間、周波数、コード、偏波、角運動量または他の空間リソース/次元。
・ビーム識別の例
○SRS、方法を除外しない、フレーム構造の異なるリソース(スロット、時間ベース、変調、コード化、帯域幅など)
・ビームペアを形成するビームの選択を以下のように行うことができる。
○ビームごとに個別/独立で
○順序付けられたまたは順序付けられていない方法で順次
○共同で
・ダイバーシティまたは多重化モード)で単一ユーザMIMOを使用する2つの通信デバイス間の全体的な伝送戦略は、片側または両側で独立して、反復的に、または共同で送信ビームを最適化することによって最適化することができる。
○MIMOダイバーシティモード(単一ストリーム送信)においても、いくつかの受信ビームおよび送信ビーム(効果的なMIMOシステムにおいて仮想アンテナとして機能する)を使用することができる。
○直接拡張は、gNBが複数のユーザ/リンクを同時にサポートし、ユーザごとに1つのリンク/ストリームのみがアクティブ/関連性があるマルチユーザMIMOのサポートであり得る。
・特にULにおけるマルチユーザMIMOでは、UEのビームは、gNBでの空間分離を容易にするために、空間、時間、および周波数において調整されなければならない。
【0110】
上述の実施形態、例えばQR分解に関して、単一ユーザMIMOシステムにおいて、送信および受信戦略ならびに関連するビームフォーマが固有モードビーム形成を使用する場合、最適な能力が達成され得、これは、ビームフォーマがMIMOチャネルの支配的な空間固有モードに供給することを意味する。さらに、水充填(ウォーターフィリング)と呼ばれる戦略が能力達成である。
【0111】
反復手法では、リンクの各端部はMIMOチャネルを推定することができ、QR分解を行う。次に、MIMOチャネルに供給する前にQ転置を使用して回答する。反復的に行われる場合、MIMOシステムの両端の2つのQは、MIMOチャネルの完全直交固有モードに一致する入力および出力ビームフォーマになる。
【0112】
所与の無線チャネルへのビーム対応および通信リンクの他端で使用される送信戦略(ビームフォーマ)は、Q転置基準を満たす対応するビームペアによって回答されるべきである。
【0113】
このようにして、双方向ビーム形成単一ユーザMIMOシステムは、固有モードビームフォーミングを達成する能力に収束することができる。しかし、ベースバンドまでの完全な相互性(パターン相反性)は実際には達成することが困難であるため、実施形態は、場合によってはビームID/SRSでマークされたいくつかのビーム組合せを提供することを提案し、これは問題に対処するためのはるかに実用的なアプローチである。さらに、対応する送信ビームに対する受信ビームの空間ドメイントラッキングは、無線リンクの一端または両端での固有ビームトラッキングに向かって拡張される。
【0114】
いくつかの態様を装置の文脈で説明したが、これらの態様は対応する方法の説明も表すことは明らかであり、ブロックまたはデバイスは方法ステップまたは方法ステップの特徴に対応する。同様に、方法ステップの文脈で説明される態様はまた、対応する装置の対応するブロックまたは項目または特徴の説明を表す。
【0115】
特定の実装要件に応じて、本発明の実施形態は、ハードウェアまたはソフトウェアで実装することができる。実装は、それぞれの方法が実行されるようにプログラマブルコンピュータシステムと協働する(または協働することができる)、電子的に読み取り可能な制御信号が格納されたデジタル記憶媒体、例えばフロッピーディスク、DVD、CD、ROM、PROM、EPROM、EEPROMまたはフラッシュメモリを使用して実行することができる。
【0116】
本発明によるいくつかの実施形態は、本明細書に記載の方法のうちの1つが実行されるように、プログラマブルコンピュータシステムと協働することができる電子的に読み取り可能な制御信号を有するデータキャリアを含む。
【0117】
一般に、本発明の実施形態は、プログラムコードを伴うコンピュータプログラム製品として実装することができ、プログラムコードは、コンピュータプログラム製品がコンピュータ上で実行されるときに方法のうちの1つを実行するように動作する。プログラムコードは、例えば、機械可読キャリアに格納することができる。
【0118】
他の実施形態は、機械可読キャリアに格納された、本明細書に記載の方法の1つを実行するためのコンピュータプログラムを含む。
言い換えれば、したがって、本発明の方法の一実施形態は、コンピュータプログラムがコンピュータ上で実行されるときに、本明細書に記載の方法のうちの1つを実行するためのプログラムコードを有するコンピュータプログラムである。
【0119】
したがって、本発明の方法のさらなる実施形態は、本明細書に記載の方法のうちの1つを実行するためのコンピュータプログラムを、それに記録して、含むデータキャリア(またはデジタル記憶媒体、またはコンピュータ可読媒体)である。
【0120】
したがって、本発明の方法のさらなる実施形態は、本明細書に記載の方法のうちの1つを実行するためのコンピュータプログラムを表すデータストリームまたは信号のシーケンスである。データストリームまたは信号のシーケンスは、例えば、データ通信接続を介して、例えばインターネットを介して転送されるように構成することができる。
【0121】
さらなる実施形態は、本明細書に記載の方法のうちの1つを実行するように構成または適合された処理手段、例えばコンピュータまたはプログラマブル論理デバイスを含む。
【0122】
さらなる実施形態は、本明細書に記載の方法のうちの1つを実行するためのコンピュータプログラムがインストールされたコンピュータを含む。
【0123】
いくつかの実施形態では、プログラマブルロジックデバイス(例えば、フィールドプログラマブルゲートアレイ)を使用して、本明細書に記載の方法の機能の一部またはすべてを実行することができる。いくつかの実施形態では、フィールドプログラマブルゲートアレイは、本明細書に記載の方法のうちの1つを実行するためにマイクロプロセッサと協働することができる。一般に、本方法は、任意のハードウェア装置によって実行されることが好ましい。
【0124】
上述の実施形態は、本発明の原理の単なる例示である。本明細書に記載された構成および詳細の変更および変形は、他の当業者には明らかであることが理解される。したがって、本明細書の実施形態の記載および説明として提示された特定の詳細によってではなく、直後の特許請求の範囲によってのみ限定されることが意図される。
【0125】
参考文献
[1]RP-182879、「ビーム対応でのWF」、Samsung、Apple、Nokia、Intel、ZTE、Sanechips、Qualcomm、MediaTek、パナソニック、ベライゾン、CATT、AT&T、OPPO、CMCC、ファーウェイ、HiSilicon、CAICT、vivo、LG ElectronicsおよびKT Corp.、RAN#82、ソレント、イタリア、2018年12月10日~13日。
[2]R4-1900278、「EIRP試験手順に基づくアップリンクビームスイーピングに関して」、SamsungおよびCAICT、RAN4# 92、アテネ、ギリシャ、2019年2月25日~3月1日。
[3]R4-1902684、「BC許容度要件のシミュレーション仮定に関するWF」、LG Electronics、RAN4 #92、アテネ、ギリシャ、2019年2月25日~3月1日。
[4]R4-1902683、「ビーム対応試験手順でのドラフトCRからTR 38.810まで」、SamsungおよびQualcomm、RAN4 #92、アテネ、ギリシャ、2019年2月25日~3月1日。
[5]R4-1902252、「ビーム対応についてのアドホックな議事録」、Samsung、RAN 4#92、Athens、ギリシャ、2019年2月25日~3月1日。
[6]アンテナについての用語の定義のためのIEEE規格、IEEE規格145-2013(IEEE規格145-1993の改訂)、2014年3月6日。
[7]アンテナに関するIEEE規格試験手順、ANSI/IEEE規格149-1979、ボリューム、ナンバー、pp.0_1-、1979、再確認1990、2003、2008。
図1a
図1b
図2
図3
図4
図5