IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-燃料電池システム 図1
  • 特許-燃料電池システム 図2
  • 特許-燃料電池システム 図3
  • 特許-燃料電池システム 図4
  • 特許-燃料電池システム 図5
  • 特許-燃料電池システム 図6
  • 特許-燃料電池システム 図7
  • 特許-燃料電池システム 図8
  • 特許-燃料電池システム 図9
  • 特許-燃料電池システム 図10
  • 特許-燃料電池システム 図11
  • 特許-燃料電池システム 図12
  • 特許-燃料電池システム 図13
  • 特許-燃料電池システム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-07
(45)【発行日】2023-11-15
(54)【発明の名称】燃料電池システム
(51)【国際特許分類】
   H01M 8/04858 20160101AFI20231108BHJP
   H01M 8/0432 20160101ALI20231108BHJP
   H01M 8/04537 20160101ALI20231108BHJP
   H01M 8/04701 20160101ALI20231108BHJP
   B60L 3/00 20190101ALN20231108BHJP
   B60L 9/18 20060101ALN20231108BHJP
   B60L 50/60 20190101ALN20231108BHJP
   B60L 50/75 20190101ALN20231108BHJP
   H01M 8/10 20160101ALN20231108BHJP
【FI】
H01M8/04858
H01M8/0432
H01M8/04537
H01M8/04701
B60L3/00 N
B60L9/18 J
B60L50/60
B60L50/75
H01M8/10 101
【請求項の数】 1
(21)【出願番号】P 2019037567
(22)【出願日】2019-03-01
(65)【公開番号】P2020140930
(43)【公開日】2020-09-03
【審査請求日】2021-09-21
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】小川 朋宏
(72)【発明者】
【氏名】馬屋原 健司
(72)【発明者】
【氏名】川口 亮太
(72)【発明者】
【氏名】村田 裕治
【審査官】藤森 一真
(56)【参考文献】
【文献】特開2005-108773(JP,A)
【文献】特開2019-013062(JP,A)
【文献】特開2012-244715(JP,A)
【文献】特開2007-282440(JP,A)
【文献】特開2009-054397(JP,A)
【文献】特開2017-084451(JP,A)
【文献】特開2017-195030(JP,A)
【文献】特開2012-003850(JP,A)
【文献】特開2008-091351(JP,A)
【文献】特開2005-094917(JP,A)
【文献】特開2004-185820(JP,A)
【文献】特表2014-535138(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/04 - 8/0668
(57)【特許請求の範囲】
【請求項1】
燃料電池システムであって、
反応ガスの供給を受けて発電する燃料電池の複数のセルを有する燃料電池スタックと、
前記燃料電池スタックの出力電流を測定する電流測定部と、
前記燃料電池スタックの出力電圧を測定する電圧測定部と、
前記燃料電池システムに対して要求される発電量に対する、前記燃料電池スタックの発電量の不足分を補う二次電池と、
前記二次電池の温度を測定する温度測定部と、
前記燃料電池スタックが出力する電力および前記二次電池が出力する電力を負荷へ供給する電源回路と、
前記燃料電池スタックの出力電圧によって表されるセルの電圧が下限電圧以上となるように前記燃料電池スタックが出力する電力を制御するとともに、前記二次電池の温度が上限温度未満となるように前記二次電池が出力する電力を制御して、前記電源回路から前記負荷へ供給する電力を制御する制御部と、
一定の時間周期ごとに前記二次電池の出力の平均値を取得する出力取得部と、
を備え、
前記制御部は、前記二次電池の出力の平均値が前回の前記二次電池の出力の平均値よりも大きい場合に、前記下限電圧の値を再設定し、前記再設定において、前記下限電圧の値は、前記二次電池の出力の前記平均値が大きいほど低く設定される、
燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムに関する。
【背景技術】
【0002】
燃料電池システムは、燃料電池における燃料ガスと酸化剤ガスとの電気化学反応により電力を得ることができる。燃料電池システムは、例えば、動力を発生する駆動用モータで走行する車両の駆動用モータに電力を供給する電源装置として利用が可能である。燃料電池システムでは、燃料電池を構成する複数のセル(以下、セルを「単セル」とも呼ぶ)に含まれる発電体としての膜電極接合体(「MEA」と呼ばれる)の劣化を抑制して、燃料電池の耐久性を向上させることが望ましい。
【0003】
特許文献1には、燃料電池の電流-電圧特性を測定し、その測定結果から回復可能な可逆的な性能劣化と回復不可能な不可逆的な性能劣化と、を判別し、回復可能な性能劣化に関しては適切な回復処理を図ることで、燃料電池の耐久性を向上させる技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2009-21194号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、単セルの電圧が一定の低電圧(例えば、0.6V)以下となると、膜電極接合体のカソードの触媒の露出が発生する。また、単セルの電圧が酸化還元電圧(例えば、0.85V)を超える高電圧となると、カソードの露出した触媒の溶融が発生する。このため、発電によって発生するセル電圧が上記低電圧と高電圧との間で上下変動を繰り返すことで、カソードの触媒の劣化が促進され、単セルの劣化が促進される。このような単セルの劣化を抑制して、所望な耐久性を確保する目的で、例えば、単セルのセル電圧を、上記低電圧よりも高い動作下限電圧Vcl(例えば、0.65V~0.7V)から酸化還元電圧以下の動作上限電圧Vcu(例えば、0.8V~0.85V)までの範囲とする耐久性制御が行なわれる。しかしながら、この耐久性制御においては以下の問題が発生する。
【0006】
回復可能な性能劣化か不可逆的な性能劣化に関わらず燃料電池に性能劣化が発生した場合、上記耐久制御が行なわれると、動作電圧の低下が制限されて、燃料電池システムに対して要求される発電量に対して実際に燃料電池から出力可能な発電量(具体的には、電流量)が低下する場合がある。この場合、燃料電池システムに備える二次電池からの出力量(具体的には、電流量)を増加させて、燃料電池からの出力の不足分を補うことになる。二次電池からの出力量が増大すると、これに伴い二次電池に温度上昇が発生する。二次電池は、一般的に、自身の温度上昇に応じて可能な出力量に制限を有している。このため、二次電池の温度が上昇すると、二次電池によって燃料電池の出力の不足分を補うことが不可となり、燃料電池システムが要求出力に対応する電力を出力できなくなってしまう可能性がある。この結果、燃料電池システムを搭載した装置において、その装置の出力に制限が掛かることになってしまう可能性がある。
【0007】
なお、特許文献1の燃料電池システムでは、燃料電池の回復可能な性能劣化に対して回復を図ることで、上記の問題の発生可能性を低減することは可能である。しかしながら、不可逆的な性能劣化の場合には、上記問題の発生可能性を低減することはできない。従って、上記問題を解決する上で、特許文献1に記載の技術では不十分であり、燃料電池の劣化した性能の回復が可能か否かを問わず、燃料電池の性能劣化によって燃料電池システムが要求出力に対応する電力を出力できなくなってしまう、という問題を改善することが望まれている。
【課題を解決するための手段】
【0008】
本開示は、以下の形態として実現することが可能である。
燃料電池システムであって、
反応ガスの供給を受けて発電する燃料電池の複数のセルを有する燃料電池スタックと、
前記燃料電池スタックの出力電流を測定する電流測定部と、
前記燃料電池スタックの出力電圧を測定する電圧測定部と、
前記燃料電池システムに対して要求される発電量に対する、前記燃料電池スタックの発電量の不足分を補う二次電池と、
前記二次電池の温度を測定する温度測定部と、
前記燃料電池スタックが出力する電力および前記二次電池が出力する電力を負荷へ供給する電源回路と、
前記燃料電池スタックの出力電圧によって表されるセルの電圧が下限電圧以上となるように前記燃料電池スタックが出力する電力を制御するとともに、前記二次電池の温度が上限温度未満となるように前記二次電池が出力する電力を制御して、前記電源回路から前記負荷へ供給する電力を制御する制御部と、
一定の時間周期ごとに前記二次電池の出力の平均値を取得する出力取得部と、
を備え、
前記制御部は、前記二次電池の出力の平均値が前回の前記二次電池の出力の平均値よりも大きい場合に、前記下限電圧の値を再設定し、前記再設定において、前記下限電圧の値は、前記二次電池の出力の前記平均値が大きいほど低く設定される、
燃料電池システム。
【0009】
本開示の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、反応ガスの供給を受けて発電する燃料電池の複数のセルを有する燃料電池スタックと、前記燃料電池スタックの出力電流を測定する電流測定部と、前記燃料電池スタックの出力電圧を測定する電圧測定部と、二次電池と、前記二次電池の温度を測定する温度測定部と、前記燃料電池スタックが出力する電力および前記二次電池が出力する電力を負荷へ供給する電源回路と、前記燃料電池スタックの出力電圧によって表されるセルの電圧が下限電圧以上となるように前記燃料電池スタックが出力する電力を制御するとともに、前記二次電池の温度が上限温度未満となるように前記二次電池が出力する電力を制御して、前記電源回路から前記負荷へ供給する電力を制御する制御部と、前記燃料電池スタックの出力状態と前記二次電池の出力状態のいずれか一方から前記燃料電池スタックの劣化度合いを検出する劣化検出部と、を備え、前記下限電圧の値は、求められた前記燃料電池スタックの劣化度合いが大きいほど低く設定される。
この形態の燃料電池システムによれば、燃料電池スタックの劣化度合いが大きいほど、下限電圧の値を低下させて、燃料電池スタックが出力する電力を制御することができるので、燃料電池スタックの出力不足の発生量を抑制することができる。これにより、二次電池からの出力電力が増加して、二次電池の温度が上昇してしまうことを抑制することができる。そして、二次電池によって燃料電池スタックの出力不足分を補うことが不可となって、負荷が要求する電力に対応する電力を燃料電池システムが出力できなくなってしまうことを抑制することができる。
本開示は、種々の形態で実現することも可能である。例えば、燃料電池システムを搭載した燃料電池車両、燃料電池システムの制御方法、この制御方法を実現するためのコンピュータプログラム、このプログラムを記憶する記憶媒体等の形態で実現することができる。
【図面の簡単な説明】
【0010】
図1】第1実施形態における燃料電池システムの概略構成を示す説明図。
図2】二次電池のSOCと出力制限との関係の一例を示す説明図。
図3】二次電池の温度と出力制限との関係の一例を示す説明図。
図4】下限電圧制御部による下限電圧制御のフローチャート。
図5】下限電圧制御部によって設定される下限電圧について示す説明図。
図6】第2実施形態における燃料電池システムの制御部を示す機能ブロック図。
図7】下限電圧制御部による下限電圧制御のフローチャート。
図8】劣化度合いと下限電圧との関係の一例を示す説明図。
図9】下限ガード回数測定部による下限ガード回数測定のフローチャート。
図10】下限ガード回数の測定について示す説明図。
図11】第3実施形態における燃料電池システムの制御部を示す機能ブロック図。
図12】下限電圧制御部による下限電圧制御のフローチャート。
図13】二次電池出力平均と下限電圧との関係の一例を示す説明図。
図14】二次電池出力測定部による二次電池出力平均測定のフローチャート。
【発明を実施するための形態】
【0011】
A.第1実施形態:
図1は、第1実施形態における燃料電池システム10の概略構成を示す説明図である。燃料電池システム10は、例えば、不図示の車両(以下、「燃料電池車両」とも呼ぶ)に搭載され、車両の動力を発生するトラクションモータ20や後述のエアコンプレッサ320等の補機に電力を供給するためのシステムとして機能する。トラクションモータ20は、例えば、三相交流モータであり、電動機または発電機として機能し得る。トラクションモータ20は、後述する電源回路500を介して燃料電池スタック100および二次電池(「BAT」とも呼ぶ)550から供給される電力により燃料電池車両を駆動する。
【0012】
燃料電池システム10は、燃料電池スタック100と、アノード側ガス供給排出機構200と、カソード側ガス供給排出機構300と、燃料電池循環冷却機構400と、電源回路500と、二次電池550と、制御部700とを備える。
【0013】
燃料電池スタック100は、固体高分子型燃料電池であり、複数の発電体としての単セル110が積層されたセルスタックを有する。各単セル110は固体高分子電解質膜を挟んで設けられる膜電極接合体のアノード側触媒電極層に供給される燃料ガスと、カソード側触媒電極層に供給される酸化剤ガスとを反応ガスとして用いた電気化学反応により電力を発生する。本実施形態において、燃料ガスは水素ガスであり、酸化剤ガスは空気である。触媒電極層は、触媒、例えば、白金(Pt)を担持したカーボン粒子や電解質を含んで構成される。単セル110において両電極側の触媒電極層の外側には、多孔質体により形成されたガス拡散層が配置されている。多孔質体としては、例えば、カーボンペーパーおよびカーボンクロス等のカーボン多孔質体や、金属メッシュおよび発泡金属等の金属多孔質体が用いられる。燃料電池スタック100の内部には、燃料ガス、酸化剤ガス、および冷却媒体を流通させるためのマニホールド(図示省略)が積層方向に沿って形成されている。燃料電池スタック100は、セルスタックの両端を挟む一対の電極板111を備えている。一対の電極板111は、燃料電池スタック100における総合電極として機能する。
【0014】
アノード側ガス供給排出機構200は、「燃料ガス供給部」に相当し、燃料電池スタック100への燃料ガスの供給、燃料電池スタック100からのアノードオフガスの排出、および、アノードオフガス中の燃料ガスの燃料電池スタック100への循環供給を行なう。
【0015】
アノード側ガス供給排出機構200は、タンク210と、遮断弁220と、調圧弁221と、インジェクタ222と、気液分離器250と、循環用ポンプ240と、パージ弁260と、燃料ガス供給流路231と、第1アノードオフガス排出流路232と、ガス循環路233と、第2アノードオフガス排出流路262と、第1圧力センサ271と、第2圧力センサ272と、第3圧力センサ273と、を備える。
【0016】
タンク210は、燃料ガスとして高圧の水素ガスを貯蔵している。タンク210は、燃料ガス供給流路231を介して燃料電池スタック100に燃料ガスを供給する。遮断弁220は、タンク210における燃料ガスの供給口近傍に配置され、タンク210からの燃料ガスの供給の実行と停止とを切り替える。調圧弁221は、燃料ガス供給流路231において遮断弁220の下流側且つインジェクタ222の上流側に配置されている。調圧弁221は、自身の上流側圧力(「一次圧」とも呼ぶ)を、あらかじめ設定されている自身の下流側圧力(「二次圧」とも呼ぶ)に調整する。インジェクタ222は、燃料ガス供給流路231において調圧弁221の下流側に配置され、燃料電池スタック100に燃料ガスを噴射する。このとき、インジェクタ222における燃料ガスの噴射周期および噴射デューティ(噴射周期の一周期あたりに水素ガスを噴射する時間の割合)が調整されることにより、燃料電池スタック100への燃料ガスの供給量及び圧力が調整される。なお、第1圧力センサ271は上記一次圧を測定し、第2圧力センサ272は二次圧を測定し、第3圧力センサ273はインジェクタ222の下流側圧力を測定する。
【0017】
気液分離器250は、第1アノードオフガス排出流路232に配置され、燃料電池スタック100から排出されたアノードオフガスに含まれる液体を分離して第2アノードオフガス排出流路262に排出するとともに、液体が分離された後のアノードオフガスをガス循環路233に排出する。また、気液分離器250は、アノードオフガスから分離された液体を貯留し、パージ弁260が開いた場合には、貯留された液体を第2アノードオフガス排出流路262に排出する。アノードオフガスに含まれる液体とは、例えば、各単セル110における電気化学反応によりカソード側にて生じた生成水であって電解質膜を介してアノード側に透過した生成水が該当する。液体が分離された後のアノードオフガスには、各単セル110における電気化学反応で用いられなかった水素ガス、および、各単セル110において固体高分子膜を介してカソード側からアノード側へと透過した窒素ガスが含まれ得る。
【0018】
循環用ポンプ240は、ガス循環路233に配置され、気液分離器250から排出されたアノードオフガスを燃料ガス供給流路231に送出する。パージ弁260は、第2アノードオフガス排出流路262に配置され、開弁されることにより、気液分離器250によって分離された液体を第2アノードオフガス排出流路262へと排出する。このとき、一部のアノードオフガスもパージ弁260を介して第2アノードオフガス排出流路262へと排出される。
【0019】
燃料ガス供給流路231は、燃料電池スタック100内に設けられた図示しない燃料ガス供給用のマニホールドと連通している。燃料ガス供給流路231には、インジェクタ222から燃料ガスが供給され、また、循環用ポンプ240からアノードオフガスが供給される。循環用ポンプ240から供給されるアノードオフガスは主として各単セル110で用いられずに排出された水素ガスを含み、この水素ガスを燃料ガス供給流路231に戻して、燃料電池スタック100に循環供給することにより、燃費の向上が図られる。第1アノードオフガス排出流路232は、燃料電池スタック100内に設けられた図示しないアノードオフガス排出用のマニホールドと連通しており、このマニホールドから燃料電池スタック100の外部へと排出されるアノードオフガスを、気液分離器250へと送出する。第2アノードオフガス排出流路262の一端は、パージ弁260に接続され、他端は、後述のカソードオフガス排出流路331に接続されている。第2アノードオフガス排出流路262は、パージ弁260が開いたときに気液分離器250から排出される液水およびアノードオフガスを、カソードオフガス排出流路331に供給する。後述するように、カソードオフガス排出流路331は、主として空気からなるカソードオフガスを排出するため、第2アノードオフガス排出流路262から排出され、水素ガスを含んだアノードオフガスは、カソードオフガスにより希釈されて外部へと排出される。
【0020】
カソード側ガス供給排出機構300は、「酸化剤ガス供給部」に相当し、燃料電池スタック100への酸化剤ガスの供給および燃料電池スタック100からのカソードオフガスの排出を行なう。カソード側ガス供給排出機構300は、酸化剤ガス供給部分391と、カソードオフガス排出部分392とを備える。
【0021】
酸化剤ガス供給部分391は、燃料電池スタック100に酸化剤ガスとしての空気を供給する。酸化剤ガス供給部分391は、酸化剤ガス供給流路330と、温度センサ305と、エアクリーナ310と、エアコンプレッサ320と、カソードバイパス流路333と、エア分流弁340とを備える。
【0022】
酸化剤ガス供給流路330は、大気から取り込まれる酸化剤ガスとしての空気を燃料電池スタック100内に設けられた図示しない酸化剤ガス供給マニホールドへと導く。温度センサ305は、酸化剤ガス供給部分391へと取り込まれる空気の温度を測定する、すなわち、外気温を測定する。エアクリーナ310は、酸化剤ガス供給流路330に配置され、自身の内部に備えるフィルタにより空気中の塵等の異物を除去し、異物除去後の空気をエアコンプレッサ320に供給する。エアコンプレッサ320は、酸化剤ガス供給流路330に配置され、エアクリーナ310から供給される空気を圧縮して下流側へと供給する。カソードバイパス流路333は、酸化剤ガス供給流路330におけるエアコンプレッサ320の下流かつ燃料電池スタック100の上流において、酸化剤ガス供給流路330と接続されている。カソードバイパス流路333は、エア分流弁340の開度に応じてエアコンプレッサ320から供給される圧縮空気の少なくとも一部を、後述のカソードオフガス排出流路331へと導く。エア分流弁340は、酸化剤ガス供給流路330とカソードバイパス流路333との接続箇所に配置されている。エア分流弁340は、エアコンプレッサ320から供給されるエア流量のうち、燃料電池スタック100へと供給される流量と、カソードバイパス流路333へと供給される流量とを調整する。
【0023】
カソードオフガス排出部分392は、カソードオフガス排出流路331と、カソード背圧弁350と、マフラ360とを備える。
【0024】
カソードオフガス排出流路331は、燃料電池スタック100内に設けられた図示しないカソードオフガス排出マニホールドと接続され、このマニホールドから排出されるカソードオフガスおよび液水を、外部へと導く。カソード背圧弁350は、カソードオフガス排出流路331と上述のカソードバイパス流路333との接続箇所の上流に配置されている。カソード背圧弁350は、開度を調整することにより、燃料電池スタック100のカソード側の背圧を調整する。マフラ360は、カソードオフガス排出流路331における第2アノードオフガス排出流路262との接続箇所の下流側に配置されている。マフラ360は、混合ガスの排出音を低減させる。
【0025】
燃料電池循環冷却機構400は、燃料電池スタック100を介して冷却媒体を循環させることにより燃料電池スタック100の温度を調整する。本実施形態では、冷却媒体として不凍液を用いるものとするが、不凍液に代えて、純水等の任意の媒体を利用することもできる。燃料電池循環冷却機構400は、ラジエータ410と、温度センサ420と、冷却媒体排出流路442と、冷却媒体供給流路441と、冷却媒体バイパス流路443と、冷却媒体分流弁444と、循環用ポンプ430とを備える。
【0026】
ラジエータ410は、冷却媒体排出流路442と冷却媒体供給流路441とに接続されており、冷却媒体排出流路442から流入する冷却媒体を、図示しない電動ファンからの送風等により冷却してから冷却媒体供給流路441へと排出する。温度センサ420は、冷却媒体排出流路442における燃料電池スタック100との接続箇所の近傍に配置され、冷却媒体排出流路442を流れる冷却媒体の温度を測定する。温度センサ420により測定された温度は、燃料電池スタック100の温度として扱われてもよい。冷却媒体排出流路442は、燃料電池スタック100内に設けられた図示しない冷却媒体排出用のマニホールドと接続されている。また、冷却媒体排出流路442は、冷却媒体分流弁444を介して冷却媒体バイパス流路443に接続されている。冷却媒体排出流路442は、燃料電池スタック100から排出された冷却媒体を、ラジエータ410または冷却媒体バイパス流路443へと導く。冷却媒体供給流路441の一端は、ラジエータ410に接続されている。冷却媒体供給流路441の他端は、燃料電池スタック100内に設けられた図示しない冷却媒体供給用のマニホールドに接続されている。冷却媒体バイパス流路443の一端は、冷却媒体分流弁444に接続され、他端は冷却媒体供給流路441に接続されている。燃料電池スタック100から排出された冷却媒体の少なくとも一部は、冷却媒体分流弁444の開度に応じて冷却媒体バイパス流路443へと導かれる。冷却媒体分流弁444は、燃料電池スタック100から排出された冷却媒体のうち、ラジエータ410へと供給される流量と、冷却媒体バイパス流路443へと供給される流量とを調整する。循環用ポンプ430は、冷却媒体供給流路441における冷却媒体分流弁444との接続箇所の下流に設置されている。循環用ポンプ430は、ラジエータ410、冷却媒体供給流路441、燃料電池スタック100内部の冷却媒体流路、および冷却媒体排出流路442により形成される冷却媒体循環流路における冷却媒体の流量を調整する。
【0027】
電源回路500は、燃料電池スタック100と二次電池550とのうちの少なくとも一方からトラクションモータ20やエアコンプレッサ320等の補機類に電力を供給する。また、電源回路500は、燃料電池スタック100の出力電流(以下、「FC電流」と呼ぶ)を調整する。また、電源回路500は、二次電池550への充電を制御する。電源回路500は、燃料電池制御用コンバータ530と、インバータ(「INV」とも呼ぶ)520と、二次電池制御用コンバータ560と、二次電池温度センサ552と、二次電池測定部(「BAT測定部」とも呼ぶ)555と、電流測定部570と、セルモニタ580とを備える。
【0028】
燃料電池制御用コンバータ530は、DC/DCコンバータであり、燃料電池スタック100の出力電圧を昇圧する。また、燃料電池制御用コンバータ530は、内蔵されているスイッチング素子のスイッチング周波数を制御部700からの指示に従って調整することにより、FC電流を調整する。電流測定部570は、燃料電池スタック100の電極板111と燃料電池制御用コンバータ530とを接続する配線に流れるFC電流を測定する。セルモニタ580は、「電圧測定部」に相当し、各単セル110の電圧(「セル電圧」とも呼ぶ)を測定し、燃料電池スタック100の電圧(「スタック電圧」とも呼ぶ)を測定する。
【0029】
二次電池550は、リチウムイオン電池により構成され、燃料電池スタック100と共に燃料電池システム10における電力供給源として機能する。なお、リチウムイオン電池に代えて、ニッケル水素電池などの他の任意の種類の電池により構成されてもよい。
【0030】
二次電池制御用コンバータ560は、DC/DCコンバータであり、二次電池550の出力電圧を昇圧する。また、二次電池制御用コンバータ560は、トラクションモータ20の回生電力と燃料電池スタック100の出力電力とのうちの少なくとも一方を降圧して二次電池550に供給する。インバータ520は、燃料電池スタック100および二次電池550にそれぞれ電気的に接続されており、燃料電池スタック100および二次電池550から出力される直流電圧を交流電圧に変換する。変換された交流電圧は、トラクションモータ20に供給される。また、インバータ520は、トラクションモータ20から出力される回生電力の交流電圧を直流電圧に変換して二次電池制御用コンバータ560に出力する。
【0031】
二次電池測定部555は、二次電池温度センサ552の出力値から二次電池550の温度を検出する。また、二次電池測定部555は、二次電池550と二次電池制御用コンバータ560を接続する配線に流れる電流を測定するとともに、配線間の電圧を測定する。そして、二次電池測定部555で測定された二次電池550の温度、電流および電圧は、制御部700に供給されて、制御部700における二次電池制御用コンバータ560の制御に利用される。二次電池測定部555は、二次電池550の温度を測定する「温度測定部」に相当する。
【0032】
制御部700は、マイクロプロセッサと、ROM(Read Only Memory)やRAM(Ramdom Access Memory)等の記憶装置と、を備えるコンピュータとして構成されている。マイクロプロセッサは、あらかじめROMに記憶されている制御用プログラムを、RAMを利用しながら実行することにより、燃料電池システム10の動作を制御する機能部として動作する。制御部700は、上述の遮断弁220、圧力センサ271~273、循環用ポンプ240、パージ弁260、エアコンプレッサ320、エア分流弁340、カソード背圧弁350、モータ冷却分流弁370、循環用ポンプ430、冷却媒体分流弁444、インバータ520、燃料電池制御用コンバータ530、二次電池制御用コンバータ560にそれぞれ電気的に接続され、これらを制御する。また、制御部700は、上述の圧力センサ271~273、温度センサ305、二次電池測定部555、電流測定部570、セルモニタ580にそれぞれ電気的に接続され、これらセンサの測定値を取得する。
【0033】
なお、図1には、制御部700の機能部として、システム制御部710とFC制御部720とBAT制御部730とFC特性測定部740と下限電圧制御部750と記憶部760とが示されている。記憶部760は不揮発性の書き換え可能な記憶装置で構成される。
【0034】
システム制御部710は、システム全体の制御を担う機能部であり、FC制御部720およびBAT制御部730の動作を制御する。
【0035】
FC制御部720は、アノード側ガス供給排出機構200、カソード側ガス供給排出機構300、燃料電池循環冷却機構400を制御して、燃料電池スタック100による発電を制御するとともに、燃料電池制御用コンバータ530の動作を制御する。より具体的には、FC制御部720は、燃料電池スタック100の出力電圧によって表される単セル110の電圧が、下限電圧と上限電圧で定められる動作範囲内となるように、燃料電池スタック100が出力する電力を制御する。
【0036】
BAT制御部730は、二次電池制御用コンバータ560を制御して二次電池550の充放電を制御する。図2は、二次電池550のSOCと出力制限との関係の一例を示す説明図である。図3は、二次電池550の温度と出力制限との関係の一例を示す説明図である。SOCは、二次電池の充電状態[%]を意味する。これらの関係は、それぞれ、テーブルとして記憶部760に格納されている。BAT制御部730は、二次電池測定部555で取得された二次電池550の電圧、電流、および温度から求められるSOCに対応する出力制限Pbt_soc[W]をテーブルから取得する。また、BAT制御部730は、二次電池550の温度に対応する出力制限Pbt_tmp[W]をテーブルから取得する。そして、BAT制御部730は、二次電池550の出力が、取得した出力制限Pbt_socと出力制限Pbt_tmpのうちの小さいほうの値以下となるように、二次電池制御用コンバータ560の動作を制御する。これにより、二次電池550は、その温度が上限温度未満で動作するように制御される。
【0037】
FC特性測定部740は、燃料電池スタック100による発電動作中において、電流測定部570およびセルモニタ580による測定値を利用して、燃料電池スタック100の出力特性として、電流-電圧特性(「IV特性」とも呼ぶ)を測定する。なお、初期のIV特性は記憶部760に格納されている。
【0038】
下限電圧制御部750は、以下で説明するように検出される燃料電池スタック100の劣化の度合いに応じて燃料電池スタック100の下限電圧を制御する。
【0039】
図4は、下限電圧制御部750による下限電圧制御のフローチャートである。下限電圧制御部750は、例えば、システム起動時、一定の運転時間の経過時等において、FC特性測定部740によってIV特性の測定を行ない、その測定結果が記憶部760に記憶された後、以下で説明する下限電圧制御を実行する。
【0040】
まず、ステップS101において、下限電圧制御部750は、あらかじめ記憶部760に記憶されている燃料電池スタック100の最大出力電力Pmaxと、以前のIV特性の測定時に取得されて記憶部760に記憶されているFC電流の最大値(以下、「FC最大電流」とも呼ぶ)Ibmaxと、を記憶部760から読み出す。なお、以下では、以前のIV特性の測定時に取得されたFC最大電流Ibmaxを「前回FC最大電流Ibmax(p)」とも呼ぶ。また、最大出力電力Pmaxは、燃料電池システム10の運用開始前の燃料電池スタック100に劣化がない初期状態において、初期設定される下限電圧VLoと、出力電圧Vfcが下限電圧VLoである場合の出力電流Ifcの値Iomax(「初期FC最大電流Iomax」とも呼ぶ)との積である。また、前回FC最大電流Ibmax(p)の初期値は、初期FC最大電流Iomaxである。なお、燃料電池スタック100の出力電圧Vfcは、燃料電池スタック100の1つの単セル110の電圧(「セル電圧」とも呼ぶ)である。このセル電圧は、セルモニタ580(図1参照)によって測定される燃料電池スタック100の電極板111間の電圧を単セル110の数で除算することで求められる平均値であり、通常、0.65V~0.85Vの範囲内とされる。また、下限電圧VLはセル電圧の下限電圧であり、通常、0.65V~0.7Vの範囲内で設定される。初期の下限電圧VLoは、通常、0.7Vに設定される。
【0041】
次に、ステップS102において、下限電圧制御部750は、FC特性測定部740によって測定されたIV特性から算出される電流-電力特性(「IP特性」とも呼ぶ)に基づいて、最大出力電力Pmaxに対応する出力電流Ifcを現在の最大出力電流Ibmax(「現在FC最大電流Ibmax」とも呼ぶ)として取得する(ステップS102)。
【0042】
ここで、現在FC最大電流Ibmaxが前回FC最大電流Ibmax(p)よりも大きいことは(ステップS103:YES)、燃料電池スタック100の劣化の度合いが大きくなっていることを意味する。そこで、この場合には、下限電圧制御部750は、ステップS104において、最大出力電力Pmaxを燃料電池スタック100の劣化の度合いを示す現在FC最大電流Ibmaxで除算することで、現在FC最大電流Ibmaxを出力可能とする燃料電池スタック100の出力電圧Vfcの値を、下限電圧VLとして算出する。そして、ステップS105において、下限電圧制御部750は、算出した下限電圧VLを記憶部760に記憶して、処理を終了する。一方、現在FC最大電流Ibmaxが前回FC最大電流Ibmax(p)以下の場合には(ステップS103:NO)、燃料電池スタック100の劣化の度合いは大きくなっていないので、下限電圧制御部750は、下限電圧VLを算出することなく、処理を終了する。
【0043】
図5は、下限電圧制御部750によって設定される下限電圧VLについて示す説明図である。図5の上段のグラフは、燃料電池スタック100のIV特性を示すグラフであり、図5の下段のグラフは、上段のIV特性から算出されるIP特性を示している。なお、図5の実線で示すIV特性CIVoおよびIP特性CIPoは、初期状態の特性を示しており、あらかじめ記憶部760に記憶されている。また、図5の一点鎖線で示すIV特性CIVbは、燃料電池システム10が運用されて燃料電池スタック100が劣化した状態で、FC特性測定部740によって測定されたIV特性の一例を示している。また、一点鎖線で示すIP特性CIPbは、IV特性CIVbから算出されるIP特性を示している。なお、FC特性測定部740によるIV特性の測定は、燃料電池スタック100による発電が実行されている間において、接近した時間帯で複数の出力電圧Vfcおよび出力電流Ifcを測定することによって実行される。この際、現在設定されている下限電圧VLよりも低い出力電圧Vfc及びこれに対応する出力電流Ifcについては、外挿法を用いて算出される。
【0044】
燃料電池スタック100の劣化が進行すると、図5に示したIV特性CIVbおよびIP特性CIPbのように、初期状態のIV特性CIVoおよびIP特性CIPoに比べて出力性能が低下する。このため、燃料電池スタック100は、初期状態における下限電圧VLoでは、初期FC最大電流Iomaxおよび最大出力電力Pmaxの出力が可能であったのに対して、劣化状態における下限電圧VLoでは、初期FC最大電流Iomaxおよび最大出力電力Pmaxの出力ができなくなる。
【0045】
そこで、第1実施形態の下限電圧制御(図4参照)では、劣化した状態の燃料電池スタック100のIP特性CIPbに基づいて、最大出力電力Pmaxに対応する現在FC最大電流Ibmaxを求める。そして、最大出力電力Pmaxおよび現在FC最大電流Ibmaxを出力可能とする出力電圧Vfcの値VLbを求めて、下限電圧VLとして設定することとした。これにより、燃料電池スタック100の劣化が進行しても、劣化の度合いが大きいほど下限電圧VLを低く設定することができる。この結果、下限電圧VLによる出力電圧Vfcの制限によって燃料電池スタック100の出力不足の発生およびその発生量を低減することが可能となる。そして、燃料電池スタック100の出力不足分を補うために、二次電池550がその不足分に対応する電力を増加して出力することを低減することが可能となる。これにより、二次電池550の出力増加によって発生する二次電池550の温度上昇を抑制することができる。この結果、二次電池550の温度が上昇することによって二次電池550に出力制限が発生し(図3参照)、二次電池550によって燃料電池スタック100の出力不足分を補うことが不可となって、トラクションモータ20等の負荷が要求する電力を燃料電池システム10が出力できなくなってしまうことを抑制することが可能となる。そして、運転者が感じるドライバビリティの低下を抑制することが可能となる。
【0046】
なお、下限電圧VLの値は、課題で説明したように、膜電極接合体のカソードの触媒の露出が発生する一定の低電圧(例えば、0.6V)以下とならないようにするために設定されるものであり、マージンを考慮して、下限電圧VLの初期値VLoは、0.7V程度に設定される。従って、下限電圧VLの値を初期値VLoより低くしても、上記一定の低電圧よりも大きい値であれば、カソードの触媒の劣化への影響は抑制することができる。そこで、上記したように、劣化の度合いに応じて下限電圧VLを初期値VLoよりも低い値に設定することにより、下限電圧VLのマージンは小さくなるが、上記した効果を得ることができる。
【0047】
なお、以上説明した第1実施形態において、制御部700、より具体的には、FC制御部720およびBAT制御部730が「制御部」に相当する。また、下限電圧制御部750が「劣化検出部」に相当し、FC最大電流Ibmaxが「燃料電池スタックの出力状態」に相当する。
【0048】
B.第2実施形態:
図6は、第2実施形態における燃料電池システム10Bの制御部700Bを示す機能ブロック図である。図6において、制御部700B以外の構成は、第1実施形態の燃料電池システム10(図1参照)と同じであるので、図示および説明を省略する。
【0049】
制御部700Bは、第1実施形態の制御部700の下限電圧制御部750に替えて下限電圧制御部750Bを備えるとともに、下限ガード回数測定部755Bを備える。下限ガード回数測定部755Bは、以下で説明するように、下限電圧によって燃料電池スタック100の出力電圧が制限される回数(以下、「下限ガード回数」とも呼ぶ)を測定する。下限電圧制御部750Bは、以下で説明するように、下限ガード回数から検出される燃料電池スタック100の劣化の度合いに応じて燃料電池スタック100の下限電圧を制御する。
【0050】
図7は、下限電圧制御部750Bによる下限電圧制御のフローチャートである。下限電圧制御部750Bは、例えば、システム起動時や一定の時間周期で、以下で説明する下限電圧制御を実行する。
【0051】
まず、ステップS111において、下限電圧制御部750Bは、記憶部760に記憶されている運転時間Tdと、以前の下限電圧制御の実行時に取得されて記憶部760に記憶されている前回劣化度合いKg(p)と、を記憶部760から読み出す。
【0052】
次に、燃料電池スタック100から電力を供給可能な状態を意味するシステム起動状態である場合には(ステップS112:YES)、下限電圧制御部750Bは、ステップS113において、運転時間Tdに一定時間dtを加算し、加算後の運転時間Tdを記憶部760に記憶する。そして、下限電圧制御部750Bは、運転時間Tdが所定値Trよりも大きくなるまでの間(ステップS115:NO)、ステップS112~S114による運転時間Tdの計測を実行する。所定値Trは、燃料電池スタック100の劣化速度に依存して決定される値であり、劣化の進行がIV特性の変化として現れる時間に設定される。この所定値Trは単セル110の構造や燃料電池システム10の動作方法に依存する。
【0053】
運転時間Tdが所定値Trよりも大きくなった場合(ステップS115:YES)、ステップS116において、下限電圧制御部750Bは、記憶部760から下限ガード回数Ntを読み出し、ステップS117において、下限ガード回数Ntを運転時間Tdで除算することで、単位時間当たりの下限ガード回数の値を現在の劣化度合いKgとして算出する。なお、下限ガード回数Ntについては、後述する下限ガード回数測定部755Bによる下限ガード回数測定において説明する。
【0054】
ここで、現在の劣化度合いKgが前回劣化度合いKg(p)よりも大きいことは(ステップS118:YES)、燃料電池スタック100の劣化の度合いが大きくなっていることを意味する。そこで、この場合には、下限電圧制御部750Bは、ステップS119において、記憶部760にあらかじめ記憶されているテーブルを用いて、現在の劣化度合いKgに対応する下限電圧VLを決定する。
【0055】
図8は、劣化度合いKgと下限電圧VLとの関係の一例を示す説明図である。この関係を示す情報は、テーブルとして記憶部760にあらかじめ記憶されている。下限電圧制御部750Bは、テーブルを用いて、例えば、現在の劣化度合いKgの値Kgbに対応する下限電圧VLの値VLbを決定することができる。
【0056】
次に、下限電圧制御部750Bは、ステップS120において、算出した現在の劣化度合いKgを前回劣化度合いKg(p)として記憶部760に記憶するとともに、決定した下限電圧VLを記憶部760に記憶する。そして、下限電圧制御部750Bは、ステップS121において、下限電圧決定フラグをONとし、ステップS122において記憶部760に記憶されている運転時間Tdをリセットして、処理を終了する。
【0057】
一方、現在の劣化度合いKgが前回劣化度合いKg(p)以下の場合には(ステップS118:NO)、燃料電池スタック100の劣化の度合いが大きくなっていないので、この場合には、下限電圧制御部750Bは、ステップS119,S120を行なわずに、ステップS121,S122を行なって、処理を終了する。
【0058】
図9は、下限ガード回数測定部755Bによる下限ガード回数測定のフローチャートである。下限ガード回数測定部755Bは、例えば、一定の時間周期で、以下で説明する下限ガード回数測定を実行する。
【0059】
まず、ステップS131において、下限ガード回数測定部755Bは、記憶部760に記憶されている下限ガード回数Ntを読み出す。そして、下限ガード回数測定部755Bは、燃料電池スタック100に対する要求電力Pfcrqが所定値Pfcrよりも大きく、かつ、燃料電池スタック100の出力電圧Vfcがガード判定電圧Vd未満となるまでの間(ステップS132:NO)、待機する。そして、下限ガード回数測定部755Bは、燃料電池スタック100の出力電圧Vfcがガード判定電圧Vdよりも大きくなるまでの間(ステップS133:NO)、待機する。そして、下限ガード回数測定部755Bは、燃料電池スタック100の出力電圧Vfcがガード判定電圧Vdよりも大きくなった場合に(ステップS133:YES)、ステップS134において下限ガード回数Ntに回数1を加算し、ステップS135において、下限ガード回数Ntを記憶部760に記憶する。
【0060】
図10は、下限ガード回数の測定について示す説明図である。ガード判定電圧Vdは、現在設定されている下限電圧VLにマージン電圧Vαを加算した電圧である。出力電圧Vfcがガード判定電圧Vdよりも低くなった場合には、下限電圧VLで制限される状態となっていることを示している。そして、この状態が継続した後、出力電圧Vfcがガード判定電圧Vdよりも大きくなった場合には、出力電圧Vfcが下限電圧VLで制限される状態から脱出したことを示している。なお、マージン電圧Vαは、下限電圧VLによる出力電圧Vfcの制限が実行されている間の制御応答に依存して発生しうる電圧のばらつきによる誤判定を無くすためのマージンである。そこで、図9のステップS132~S134は、出力電圧Vfcがガード判定電圧Vd未満となった後、ガード判定電圧Vdよりも大きくなったことで、出力電圧Vfcが下限電圧VLで制限される下限ガードの状態が1回発生したことを測定するものである。
【0061】
なお、ステップS132における要求電力Pfcrqが所定値Pfcrよりも大きいとする条件は、以下の状態を除外するものである。すなわち、トラクションモータ20等(図1参照)の負荷への電力供給の要求が発生していない状態、例えば、燃料電池スタック100の出力電圧Vfcを一定の電圧範囲内に維持するために断続的に微小な発電を実行する間欠運転の状態、において発生する出力電圧Vfcの低下を除外するものである。所定値Prは、例えば、間欠運転で実行される微小発電の電力を除外するために、微小発電の電力よりも大きい電力に設定される。
【0062】
そして、下限ガード回数測定部755Bは、図7のステップS121において下限電圧決定フラグがONとされるまでの間(ステップS136:NO)、ステップS131~S135を繰り返して、下限ガード回数Ntの測定を実行する。一方、下限ガード回数測定部755Bは、下限電圧決定フラグがONとなった場合には(ステップS136:YES)、ステップS137において記憶部760に記憶されている下限ガード回数Ntをリセットするとともに、下限電圧決定フラグをOFFとし、処理を終了する。
【0063】
以上説明したように、第2実施形態では、単位時間当たりに発生する下限ガード回数を劣化度合いKgとして求めて、劣化度合いKgに対応する下限電圧VLを求めている(図8参照)。これにより、燃料電池スタック100の劣化が進行しても、劣化の度合いが大きいほど下限電圧VLを低く設定することができる。これにより、第1実施形態の場合と同様の効果を得ることが可能となる。
【0064】
なお、以上説明した第2実施形態において、制御部700B、より具体的には、FC制御部720およびBAT制御部730が「制御部」に相当する。また、下限電圧制御部750Bが「劣化検出部」に相当し、下限ガード回数Ntが「燃料電池スタックの出力状態」に相当する。
【0065】
C.第3実施形態:
図11は、第3実施形態における燃料電池システム10Cの制御部700Cを示す機能ブロック図である。図11において、制御部700C以外の構成は、第1実施形態の燃料電池システム10(図1参照)と同じであるので、図示および説明を省略する。
【0066】
制御部700Cは、第1実施形態の制御部700の下限電圧制御部750に替えて下限電圧制御部750Cを備えるとともに、二次電池出力測定部758Cを備える。二次電池出力測定部758Cは、以下で説明するように、二次電池550の出力状態を示す二次電池出力平均を測定する。下限電圧制御部750Cは、以下で説明するように、二次電池出力平均から検出される燃料電池スタック100の劣化の度合いに応じて燃料電池スタック100の下限電圧を制御する。
【0067】
図12は、下限電圧制御部750Cによる下限電圧制御のフローチャートである。下限電圧制御部750Cは、例えば、システム起動時や一定の時間周期で、以下で説明する下限電圧制御を実行する。
【0068】
まず、ステップS141において、下限電圧制御部750Cは、記憶部760に記憶されている運転時間Tdと、以前の下限電圧制御の実行時に取得されて記憶部760に記憶されている前回二次電池出力平均Pbm(p)と、を記憶部760から読み出す。
【0069】
次に、システム起動状態である場合には(ステップS142:YES)、下限電圧制御部750Cは、ステップS143において、運転時間Tdに一定時間dtを加算し、加算後の運転時間Tdを記憶部760に記憶する。そして、下限電圧制御部750Bは、運転時間Tdが所定値Trよりも大きくなるまでの間(ステップS145:NO)、ステップS142~S144による運転時間Tdの計測を実行する。なお、システム起動状態、および、所定値Trは第2実施形態と同様である。
【0070】
運転時間Tdが所定値Trよりも大きくなった場合(ステップS145:YES)、ステップS146において、下限電圧制御部750Cは、記憶部760から二次電池出力平均Pbmを読み出す。二次電池出力平均Pbmについては、後述する二次電池出力測定部758Cによる二次電池出力平均測定において説明する。
【0071】
ここで、現在の二次電池出力平均Pbmが前回二次電池出力平均Pbm(p)よりも大きいことは(ステップS147:YES)、燃料電池スタック100の劣化の度合いが大きくなっていることを意味する。そこで、この場合には、下限電圧制御部750Cは、ステップS148において、記憶部760にあらかじめ記憶されているテーブルを用いて、現在の二次電池出力平均Pbmに対応する下限電圧VLを決定する。
【0072】
図13は、二次電池出力平均Pbmと下限電圧VLとの関係の一例を示す説明図である。この関係を示す情報は、テーブルとして記憶部760にあらかじめ記憶されている。下限電圧制御部750Cは、テーブルを用いて、例えば、現在の二次電池出力平均Pbmの値Pbmbに対応する下限電圧VLの値VLbを決定することができる。
【0073】
次に、下限電圧制御部750Cは、図12のステップS149において、現在の二次電池出力平均Pbmを前回二次電池出力平均Pbm(p)として記憶部760に記憶するとともに決定した下限電圧VLを記憶部760に記憶する。そして、下限電圧制御部750Cは、ステップS150において、下限電圧決定フラグをONとし、ステップS151において記憶部760に記憶されている運転時間Tdをリセットして、処理を終了する。
【0074】
一方、現在の二次電池出力平均Pbmが前回二次電池出力平均Pbm(p)以下の場合には(ステップS147:YES)、燃料電池スタック100の劣化の度合いが大きくなっていないので、この場合には、下限電圧制御部750Cは、ステップS148,S149を行なわずに、ステップS150,S151を行なって、処理を終了する。
【0075】
図14は、二次電池出力測定部758Cによる二次電池出力平均測定のフローチャートである。二次電池出力測定部758Cは、例えば、一定の時間周期で、以下で説明する二次電池出力平均測定を実行する。
【0076】
まず、ステップS161において、二次電池出力測定部758Cは、記憶部760に記憶されている二次電池出力平均Pbmを読み出す。そして、二次電池出力測定部758Cは、燃料電池システム10に対する要求電力Prqが所定値Prよりも大きい場合に(ステップS162:YES)、ステップS163において二次電池出力平均Pbmを算出し、ステップS164において算出した二次電池出力平均Pbmを現在の二次電池出力平均Pbmとして記憶部760に記憶する。そして、二次電池出力測定部758Cは、図12のステップS150において下限電圧決定フラグがONとされるまでの間(ステップS165:NO)、ステップS161~S164を繰り返して、二次電池出力平均Pbmの測定を実行する。一方、二次電池出力測定部758Cは、下限電圧決定フラグがONとされた場合には(ステップS136:YES)、ステップS166において記憶部760に記憶されている現在の二次電池出力平均Pbmをリセットするとともに、下限電圧決定フラグをOFFとし、処理を終了する。
【0077】
ここで、ステップS163における二次電池出力平均Pbmは、下限電圧決定フラグがONとされるまでの時間、すなわち、燃料電池スタック100の劣化の進行がIV特性の変化として現れる時間が経過するまでに、二次電池550から出力された電力の平均値である。例えば、16msecの演算周期で、運転時間Tdが160msecの間の二次電池550からの出力が、10kW、10kW、10kW、10kW、10kW、20kW、20kW、20kW、20kW、20kWであった場合、二次電池出力平均Pbmは15kWと算出される。
【0078】
また、ステップS162における要求電力Prqが所定値Prよりも大きいとする条件は、以下の理由による。すなわち、二次電池出力平均の算出は、燃料電池システム10から負荷への電力の供給が多くなり、燃料電池スタック100からの出力不足が発生して、二次電池550からの出力が多くなる状態で実施する必要があるからである。このようにしなければ、算出した二次電池出力平均の大きさによって、燃料電池スタック100の劣化によって二次電池出力が多くなったか判断することが困難だからである。例えば、二次電池出力が多くならないアイドリング動作中においても二次電池出力を平均化してしまうと、アイドリング動作が多い運転では、二次電池出力平均が小さくなり、燃料電池スタック100の劣化の指標にはならない。以上のことから、所定値Prは、例えば、燃料電池スタック100を下限電圧VLで発電した場合の出力電力に設定される。
【0079】
以上説明したように、第3実施形態では、二次電池出力平均Pbmを求めて、二次電池出力平均Pbmに対応する下限電圧VLを求めている。二次電池出力平均Pbmが多くなることは、燃料電池スタック100の劣化が進行して、燃料電池スタック100の出力不足が多くなることを示している。従って、燃料電池スタック100の劣化が進行して、劣化の度合いが大きくなっても、二次電池出力平均Pbmが大きいほど下限電圧VLを低く設定することができる。これにより、第1,第2実施形態の場合と同様の効果を得ることが可能となる。
【0080】
なお、以上説明した第3実施形態において、制御部700C、より具体的には、FC制御部720およびBAT制御部730が「制御部」に相当する。また、下限電圧制御部750Cが「劣化検出部」に相当し、二次電池出力平均Pbmが「二次電池の出力状態」に相当する。
【0081】
D.他の実施形態:
(1)第1実施形態の下限電圧制御(図4参照)において、ステップS103の燃料電池スタック100の劣化を検出する処理を省略し、ステップS101の前回FC最大電流Ibmax(p)を読み出す処理を省略するようにしてもよい。また、第2実施形態の下限電圧制御(図7参照)において、ステップS118の燃料電池スタック100の劣化を検出する処理を省略し、ステップS111の前回劣化度合いKg(p)を読み出す処理およびステップS120の劣化度合いKgを前回劣化度合いKg(p)として記憶する処理を省略してもよい。また、第3実施形態の下限電圧制御(図12参照)において、ステップS147の燃料電池スタック100の劣化を検出する処理を省略し、ステップS141の前回二次電池出力平均Pbm(p)を読み出す処理およびステップS149の二次電池出力平均Pbmを前回二次電池出力平均Pbm(p)として記憶する処理を省略するようにしてもよい。
【0082】
(2)上記実施形態では、燃料電池スタック100(図1参照)の複数の単セル110の平均のセル電圧を燃料電池スタック100の出力電圧Vfcとして説明しているが、セルモニタ580で測定されるセル電圧のうち、最も低いセル電圧を燃料電池スタック100の出力電圧Vfcとしても良い。
【0083】
(3)上記実施形態では、1つの燃料電池システムが搭載された車両を例に説明しているが、複数の燃料電池システムが搭載された車両であってもよい。この場合には、それぞれの燃料電池システムにおいて、それぞれ、燃料電池スタックの劣化度合いに応じて下限電圧が設定されるようにすれば良い。
【0084】
(4)上記実施形態では、車両に搭載された燃料電池システムを例に説明したが、これに限定されるものではなく、電力を動力発生装置(例えば、駆動モータ)の動力源とする種々の移動体に搭載される燃料電池システムにも適用可能である。また、移動体に搭載される燃料電池システムだけでなく、定置型の燃料電池システムにも適用可能である。
【0085】
(5)上記実施形態において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部をハードウェアに置き換えるようにしてもよい。例えば、制御部700の少なくとも一部の機能を、集積回路、ディスクリート回路、またはそれらの回路を組み合わせたモジュールにより実現してもよい。また、本開示の機能の一部または全部がソフトウェアで実現される場合には、そのソフトウェア(「コンピュータプログラム」とも呼ぶ)は、コンピュータ読み取り可能な記録媒体に格納された形で提供することができる。「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスクやCD-ROMのような携帯型の記録媒体に限らず、各種のRAMやROM等のコンピュータ内の内部記憶装置や、ハードディスク等のコンピュータに固定されている外部記憶装置も含んでいる。すなわち、「コンピュータ読み取り可能な記録媒体」とは、データパケットを一時的ではなく固定可能な任意の記録媒体を含む広い意味を有している。
【0086】
本発明は、上記実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
【符号の説明】
【0087】
10…燃料電池システム、20…トラクションモータ、100…燃料電池スタック、110…単セル、111…電極板、200…アノード側ガス供給排出機構、210…タンク、220…遮断弁、221…調圧弁、222…インジェクタ、231…燃料ガス供給流路、232…第1アノードオフガス排出流路、233…ガス循環路、240…循環用ポンプ、250…気液分離器、260…パージ弁、262…第2アノードオフガス排出流路、271…第1圧力センサ、272…第2圧力センサ、273…第3圧力センサ、300…カソード側ガス供給排出機構、305…温度センサ、310…エアクリーナ、320…エアコンプレッサ、330…酸化剤ガス供給流路、331…カソードオフガス排出流路、333…カソードバイパス流路、340…エア分流弁、350…カソード背圧弁、360…マフラ、391…酸化剤ガス供給部分、392…カソードオフガス排出部分、400…燃料電池循環冷却機構、410…ラジエータ、420…温度センサ、430…循環用ポンプ、441…冷却媒体供給流路、442…冷却媒体排出流路、443…冷却媒体バイパス流路、444…冷却媒体分流弁、500…電源回路、520…インバータ、530…燃料電池制御用コンバータ、550…二次電池、560…二次電池制御用コンバータ、570…電流測定部、580…セルモニタ、700…制御部、710…システム制御部、720…FC制御部、730…BAT制御部、740…FC特性測定部、750,750B,750C…下限電圧制御部、755B…下限ガード回数測定部、758C…二次電池出力測定部、760…記憶部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14