IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許-噴射制御装置 図1
  • 特許-噴射制御装置 図2
  • 特許-噴射制御装置 図3
  • 特許-噴射制御装置 図4
  • 特許-噴射制御装置 図5
  • 特許-噴射制御装置 図6
  • 特許-噴射制御装置 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-07
(45)【発行日】2023-11-15
(54)【発明の名称】噴射制御装置
(51)【国際特許分類】
   F02D 41/20 20060101AFI20231108BHJP
   F02D 41/22 20060101ALI20231108BHJP
   F02D 45/00 20060101ALI20231108BHJP
   F02M 51/00 20060101ALI20231108BHJP
【FI】
F02D41/20
F02D41/22
F02D45/00 345
F02D45/00 368F
F02M51/00 A
F02M51/00 F
【請求項の数】 2
(21)【出願番号】P 2020093307
(22)【出願日】2020-05-28
(65)【公開番号】P2021188548
(43)【公開日】2021-12-13
【審査請求日】2022-07-14
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110000567
【氏名又は名称】弁理士法人サトー
(72)【発明者】
【氏名】菅沼 洋平
(72)【発明者】
【氏名】稲葉 雅司
【審査官】津田 真吾
(56)【参考文献】
【文献】国際公開第2004/053317(WO,A1)
【文献】特開2003-27995(JP,A)
【文献】特開平10-2245(JP,A)
【文献】実開平3-123955(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
F02D 41/00
F02D 43/00
F02D 45/00
F02M 51/00
(57)【特許請求の範囲】
【請求項1】
燃料噴射弁(2)を電流駆動して前記燃料噴射弁から燃料を噴射させる際に、前記燃料噴射弁に流れる電流の面積補正を実施して通電時間補正量(ΔTi)を算出する面積補正部(5d)と、
前記面積補正部から今回入力された通電時間補正量(ΔTi)を含んで今回以前の通電時間補正量(ΔTi)を平均化する補正量算出部(11)と、
内燃機関の状態を検出し定常運転状態であるか否かを判定する定常運転状態判定部と、
前記定常運転状態であるときの平均化された今回以前の噴射の通電時間補正量(ΔTi)を用いて次回以降の噴射の通電指令時間を補正する通電指令時間算出部(10)と、
を備える噴射制御装置。
【請求項2】
A/Fセンサを用いてA/F値を取得可能なA/F値取得部(12)と、
前記通電指令時間算出部により通電時間補正量(ΔTi)の補正を反映した噴射に応じた前記A/F値を前記A/F値取得部により取得し、当該取得したA/F値の目標A/F値からのずれに基づいて異常を判定する異常判定部(13)と、
を備える請求項1記載の噴射制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料噴射弁を開弁・閉弁制御する噴射制御装置に関する。
【背景技術】
【0002】
噴射制御装置は、燃料噴射弁を開弁・閉弁することで燃料を内燃機関に噴射するために用いられる(例えば、特許文献1参照)。噴射制御装置は、電気的に駆動可能な燃料噴射弁に電流を通電することで開弁制御する。近年では、指令噴射量に基づく通電電流の理想電流プロファイルが定められており、噴射制御装置は、理想電流プロファイルに基づいて燃料噴射弁に電流を印加することで開弁制御している。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-33343号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
燃料噴射弁の通電電流の勾配が、周辺温度環境、経年劣化等の様々な要因を理由として理想電流プロファイルよりも低下してしまうと、実噴射量が指令噴射量から大きく低下してA/F値の悪化や失火の虞がある。これらを防ぐためには、予めばらつきを見込んで燃料噴射弁への通電指令時間を長めに調整することが望ましいが、通電指令時間を長めに確保すると反対に燃費が悪化してしまう虞がある。
【0005】
そこで出願人は、目標ピーク電流に達するまでの目標電流となる理想電流プロファイルの積算電流と、検出電流の積算電流との積算電流差に基づいて通電時間を補正する技術を提案している。しかしながら、例えば分解能の低いA/D変換器を備えたICやECUを用いた場合、例えば検出電流のA/D変換処理などで必要なS/Nを確保できないと、通電時間補正量を適切に算出できず誤補正しやすくなる。
【0006】
本開示の目的は、検出電流のS/Nを確保できない場合であっても通電時間補正量を極力適切に算出できるようにした噴射制御装置を提供することにある。
【課題を解決するための手段】
【0007】
請求項1記載の発明によれば、面積補正部から今回入力された通電時間補正量を含んで今回以前の通電時間補正量を平均化する補正量算出部と、内燃機関の状態を検出し定常運転状態であるか否かを判定する定常運転状態判定部を備える。通電指令時間算出部が定常運転状態であるときの今回以前の通電時間補正量を用いて次回の通電指令時間を算出しているため、今回以前の通電時間補正量の傾向を次回の通電指令時間に反映できる。このため、燃料噴射弁に通電制御する際に、通電時間補正量算出部で算出される通電時間補正量をゼロもしくは小さい値にでき、通電時間補正量を適切な値に設定できる。
【図面の簡単な説明】
【0008】
図1】一実施形態における噴射制御装置の電気的構成図
図2】マイコンと制御ICとの間で通信する情報の説明図
図3】積算電流差の算出方法の説明図
図4】ピーク電流推定値の算出方法の説明図
図5】補正量算出処理の流れを概略的に示すフローチャート
図6】通電指令時間の算出処理の流れを概略的に示すフローチャート
図7】異常判定処理の流れを概略的に示すフローチャート
【発明を実施するための形態】
【0009】
以下、噴射制御装置の幾つかの実施形態について図面を参照しながら説明する。図1に示すように、電子制御装置1(ECU:Electronic Control Unit)は、例えば自動車などの車両に搭載された内燃機関に直接燃料を噴射供給するソレノイド式の燃料噴射弁2(インジェクタとも称される)を駆動する噴射制御装置として構成される。以下では、ガソリンエンジン制御用の電子制御装置1に適用した形態を説明するが、ディーゼルエンジン制御用の電子制御装置に適用しても良い。
【0010】
図1には、4気筒分の燃料噴射弁2を図示しているが、3気筒、6気筒、8気筒でも適用できる。燃料噴射弁2は、ニードル状の弁体を備えており、ソレノイドコイル2aに通電制御して弁体を移動させることで燃料を噴射できる。
【0011】
電子制御装置1は、昇圧回路3、マイクロコンピュータ4(以下、マイコン4と略す)、制御IC5、駆動回路6、及び電流検出部7としての電気的構成を備える。マイコン4は、1又は複数のコア4a、ROM、RAMなどのメモリ4b、A/D変換器などの周辺回路4cを備えて構成され、メモリ4bに記憶されたプログラム、及び、各種のセンサ8から取得されるセンサ信号Sに基づいて各種制御を行う。
【0012】
例えばガソリンエンジン用のセンサ8は、クランク軸が所定角回転するごとにパルス信号を出力するクランク角センサ、内燃機関のシリンダブロックに配置され冷却水温を検出する水温センサ、吸気量を検出する吸気量センサ、内燃機関に噴射する際の燃料圧力を検出する燃圧センサ、内燃機関の空燃比すなわちA/F値を検出するA/Fセンサ9、などである。図1にはセンサ8を簡略化して示した。
【0013】
マイコン4は、クランク角センサのパルス信号によりエンジン回転数を算出すると共に、アクセル信号からアクセル開度を取得する。マイコン4は、水温センサの冷却水温から燃料噴射弁2の温度を推定すると共に、アクセル開度、油圧、A/F値に基づいて、内燃機関に要求される目標トルクを算出し、この目標トルクに基づいて目標となる要求噴射量を算出する。
【0014】
またマイコン4は、この目標となる要求噴射量、及び、燃圧センサにより検出される燃料圧力に基づいて指令TQの通電指令時間Tiを算出する。したがって、マイコン4は、前述した各種のセンサ8から入力されるセンサ信号Sに基づいて各気筒に対する噴射指令タイミングを算出し、この噴射指令タイミングにおいて燃料の指令TQを制御IC5に出力する。
【0015】
なおマイコン4は、クランク角センサのパルス信号により算出されるエンジン回転数に基づいて、各気筒における噴射開始時間を算出できる。またマイコン4は、周辺回路4cの内部にタイマを備え、この内部タイマにより、連続して噴射される気筒間噴射の噴射終了時間から噴射開始時間までの噴射インターバルを算出できる。
【0016】
制御IC5は、例えばASICによる集積回路装置であり、例えばロジック回路、CPUなどによる制御主体と、RAM、ROM、EEPROMなどの記憶部、コンパレータを用いた比較器など(何れも図示せず)を備え、ハードウェア及びソフトウェアに基づいて各種制御を実行するように構成される。制御IC5は、昇圧制御部5a、通電制御部5b、及び電流モニタ部5cとしての機能を備える。
【0017】
昇圧回路3は、バッテリ電圧VBを入力して昇圧動作する。昇圧制御部5aは、昇圧回路3に入力されたバッテリ電圧VBを昇圧制御し、昇圧回路3から昇圧電圧Vboostを駆動回路6に供給させる。
【0018】
駆動回路6は、バッテリ電圧VB及び昇圧電圧Vboostを入力して構成され、制御IC5の通電制御部5bの通電制御により各気筒の燃料噴射弁2のソレノイドコイル2aに電圧(昇圧電圧Vboost又はバッテリ電圧VB)を印加することで燃料噴射弁2を駆動して燃料を噴射させる。
【0019】
電流検出部7は、電流検出抵抗により構成される。制御IC5の電流モニタ部5cは、例えばコンパレータによる比較部及びA/D変換器等(何れも図示せず)を用いて構成され、燃料噴射弁2のソレノイドコイル2aに流れる電流を電流検出部7を通じてモニタする。
【0020】
また、図2にはマイコン4及び制御IC5の機能的構成を概略的に示している。マイコン4は、コア4aがメモリ4bに記憶されたプログラムを実行することで、通電指令時間算出部10、補正量算出部11、A/F値取得部12、及び異常判定部13として動作する。また制御IC5は、前述した昇圧制御部5a、通電制御部5b、電流モニタ部5cとしての機能の他、面積補正部としての通電時間補正量算出部5dの機能も備える。
【0021】
通電指令時間算出部10は、各種センサ8のセンサ信号Sに基づいて噴射制御の開始時に要求噴射量を演算し、指示TQの通電指令時間Ti、及び補正係数α、βを演算する。指示TQの通電指令時間Tiは、噴射制御時に電圧(例えば昇圧電圧Vboost)を燃料噴射弁2に印加指示する時間を示している。補正係数αは、燃料噴射弁2に流す目標電流となる通常電流プロファイルPIと実際の通電電流EIとの電流差を推定するために用いられる係数であり、燃料噴射弁2の負荷特性などを用いて算出される係数である。補正係数βは、噴射制御のピーク電流推定値Ipa1を推定するために用いられる係数であり、燃料噴射弁2の負荷特性などにより算出される係数である。制御IC5の通電制御部5bは指示TQの通電指令時間Tiを入力し、通電時間補正量算出部5dは補正係数α、βを入力する。
【0022】
制御IC5の通電制御部5bは、指示TQの通電指令時間Tiを入力すると駆動回路6を通じて電圧を燃料噴射弁2に通電制御する。他方、制御IC5の通電時間補正量算出部5dは、通電制御部5bにより燃料噴射弁2を電流駆動して燃料噴射弁2から燃料を噴射させる際に、燃料噴射弁2に流れる電流Iを取得して当該電流の面積補正を実施することで通電時間補正量ΔTiを算出する。
【0023】
通電時間補正量算出部5dは、通電時間補正量ΔTiを算出すると通電制御部5bにフィードバックする。通電制御部5bは、個々の噴射に対応して入力される指示TQの通電指令時間Tiに対して通電時間補正量ΔTiをリアルタイムに反映して燃料噴射弁2に通電制御する。
【0024】
他方、マイコン4の補正量算出部11は、制御IC5の通電時間補正量算出部5dから通電時間補正量ΔTiを入力する。補正量算出部11は、今回入力された通電時間補正量ΔTiを含んで今回以前の通電時間補正量ΔTiを平均化し、平均化した通電時間補正量ΔTiを通電指令時間算出部10に出力する。
【0025】
通電指令時間算出部10は、各種センサ8のセンサ信号Sに基づいて次の噴射制御の開始時に要求噴射量を演算し、前述で平均化された通電時間補正量ΔTiを反映した指示TQ、及び補正係数α、βを演算し前述した噴射制御を繰り返す。したがって、通電指令時間算出部10は、今回以前の噴射の通電時間補正量ΔTiを用いて次回の噴射の通電指令時間Tiを算出して噴射制御を繰り返すことになる。
【0026】
またマイコン4は、A/F値取得部12によりA/Fセンサ9からA/F値を取得する。マイコン4は、A/F値取得部12により前述した噴射指令タイミングとは非同期でA/F値を取得する。異常判定部13は、通電指令時間算出部10により通電時間補正量ΔTiの補正を反映した噴射に応じたA/F値をA/F値取得部12により取得し、当該取得したA/F値の目標A/F値からのずれに基づいて異常を判定する。
【0027】
以下、燃料噴射弁2からパーシャルリフト噴射する場合の動作説明を行う。パーシャルリフト噴射では、燃料噴射弁2が完全に開弁完了するまでに弁を閉塞する噴射処理を実行する。
【0028】
バッテリ電圧VBが電子制御装置1に与えられると、マイコン4及び制御IC5は起動する。制御IC5の昇圧制御部5aは、昇圧制御パルスを昇圧回路3に出力することで昇圧回路3の出力電圧を昇圧させる。昇圧電圧Vboostは、バッテリ電圧VBを超えた所定の昇圧完了電圧に充電される。
【0029】
図3に示すように、マイコン4は、通電指令をするオンタイミングt0にて通電指令時間算出部10により要求噴射量を演算すると共に、指示TQの通電指令時間Tiを演算し、制御IC5の通電制御部5bに出力する。これによりマイコン4は、制御IC5に対し指示TQにより通電指令時間Tiを指令する。
【0030】
制御IC5は、燃料噴射弁2に通電する目標電流となる通常電流プロファイルPIを内部メモリに記憶しており、通常電流プロファイルPIに基づいて、通電制御部5bの制御により燃料噴射弁2に昇圧電圧Vboostを印加することで目標ピーク電流Ipkに達するようにピーク電流制御を行う。
【0031】
制御IC5は、指示TQの通電指令時間Tiに基づいて通常電流プロファイルPIの示す目標ピーク電流Ipkに達するまで燃料噴射弁2の端子間に昇圧電圧Vboostを印加し続ける。燃料噴射弁2の通電電流EIが急激に上昇し開弁する。図3に示すように、燃料噴射弁2の通電電流EIは、燃料噴射弁2の構造に基づき非線形的に変化する。
【0032】
通電時間補正量算出部5dは、通常電流プロファイルPIと燃料噴射弁2に通電する実電流EIとの積算電流差ΣΔIを算出する。積算電流差ΣΔIは、非線形の電流曲線に囲われた領域となり、詳細に算出するには演算負荷が大きくなりやすい。このため、図3 及び(1)式に示すように、(t、I)=(t1n、It1)、(t、It1)、(t2n、It2)、(t、It2)、を頂点とした台形の面積を積算電流差ΣΔIと見做して簡易的に算出すると良い。
【数1】
【0033】
通電時間補正量算出部5dは、電流閾値It1に達する理想到達時間t1nから電流閾値It2に達する理想到達時間t2nまでの通常電流プロファイルPIと、実際に電流閾値It1に達する到達時間tから電流閾値It2に達する到達時間tまでの燃料噴射弁2の通電電流EIとの間の積算電流差ΣΔIを算出する。これにより、通電時間補正量算出部5dは、電流閾値It1、It2に達する到達時間t、tを検出することで積算電流差ΣΔIを簡易的に算出できる。
【0034】
また通電時間補正量算出部5dは、(2)式に示すように、通電指令時間算出部10から入力される補正係数αを積算電流差ΣΔIに乗ずることで不足エネルギEiを算出する。
【数2】
【0035】
通電時間補正量算出部5dは、図4に示すように、噴射指令信号のオンタイミングt0から電流閾値It1に達する到達時間tまでの電流勾配を算出し、補正係数βを切片として加算し、指示TQの示す通電指令時間Tiを経過した時点のピーク電流推定値Ipa1を算出する。このとき(3)式に基づいてピーク電流推定値Ipa1を算出すると良い。
【数3】
【0036】
補正係数βは、印加オフタイミング時のピーク電流推定値Ipa1を精度良く推定するためのオフセット項を示している。またここでは、噴射指令信号のオンタイミングt0から電流閾値It1に達する到達時間tまでの電流勾配を(3)式の第1項に用いたが、オンタイミングt0から電流閾値It2に達する到達時間tまでの電流勾配を(3)式の第1項に用いても良い。
【0037】
次に通電時間補正量算出部5dは、不足エネルギEiを補うための通電時間補正量ΔTiを算出する。具体的には、通電時間補正量算出部5dは、(4)式に示すように、推定したピーク電流推定値Ipa1により、算出された不足エネルギEiを除することで通電時間補正量ΔTiを算出する。
【数4】
【0038】
この(4)式における分母、分子の1/(1024×0.03)は、検出電流IのA/D変換値を物理量に変換するためのゲインを表している。またα2=α/2である。不足分のエネルギEi及びピーク電流推定値Ipa1に依存した(4)式を用いて通電時間補正量ΔTiを導出することで、不足分のエネルギEiを補うだけの延長時間を簡易的に算出でき、演算量を劇的に少なくできる。
【0039】
通電時間補正量算出部5dは、算出した通電時間補正量ΔTiを通電制御部5bに出力すると、通電制御部5bは、電流モニタ部5cの検出電流Iがピーク電流推定値Ipa1に達するタイミングtbまでの間に、指示TQの通電指令時間Ti+通電時間補正量ΔTiを実行TQの実効通電指令時間として通電指令時間Tiを補正する。これにより、指示TQの通電指令時間Tiを簡易的に補正でき、通電指令時間Tiをリアルタイムで延長できる。このような方式を用いることで、失火を防ぐために予めばらつきを見込んで通電指令時間Tiを調整しておく必要がなくなり、燃費を極力悪化させることなく失火対策できる。
【0040】
通電時間補正量算出部5dは、電流閾値It2に到達してからピーク電流推定値Ipa1に達するまでの間に通電時間補正量ΔTiを算出している。このため、余裕をもって通電指令時間Tiを補正できる。(1)式~(4)式に基づいて通電時間補正量ΔTiを算出する形態を示したが、この数式は一例を示すものであり、この方法に限られるものではない。
【0041】
<制御説明>
図5は、マイコン4が行う処理内容を概略的に示している。マイコン4は、S1において制御IC5により通電時間補正量ΔTiが正常に算出されたか否かを判定することで面積補正処理が正常に行われているか否かを判定する。マイコン4は、何らかの影響で通電時間補正量ΔTiの算出処理に異常を生じ、制御IC5により通電時間補正量ΔTiが正常に求められていなければ、S8において補正完了フラグをオフすることで、制御IC5による今後の面積補正処理を中止する。
【0042】
制御IC5により面積補正が正常に行われていれば、マイコン4は、S2において内燃機関の状態を検出し定常運転状態であるか否かを判定する。このときマイコン4は、各種センサ8のセンサ信号Sからエンジン回転数が所定の定常範囲に入っているか否か、吸気量が所定の定常条件を満たしているか否かを判定することで定常運転状態であるか否かを判定する。
【0043】
特に、触媒急速暖機運転時などの定常運転状態では、通電時間補正量ΔTiが概ね同一量に設定される傾向にある。このためマイコン4は、定期的に実施される噴射の諸条件(例えば、要求噴射量、エンジン回転数、吸気量)が安定した所定範囲内にあるか否かを判定することで定常運転状態であるか否かを判定し、通電時間補正量ΔTiが所定範囲内となる条件であるか否かを判定することで定常運転状態であるかを判定すると良い。
【0044】
次にマイコン4は、S2において定常運転状態であると判定すればS2でYESと判定し、S3において前回の噴射において制御IC5が面積補正を実施したか否かを判定する。マイコン4は、前回、面積補正を実施していればS3にてYESと判定し、マイコン4の補正量算出部11は、通電時間補正量算出部5dから通電時間補正量ΔTiを入力する。マイコン4は、制御IC5にて面積補正していないと判定すればS3にてNOと判定してルーチンを抜ける。
【0045】
マイコン4は、入力される通電時間補正量ΔTiを今回の通電時間補正量と判断し、S4において入力した通電時間補正量ΔTiをメモリ4bに記憶させる。マイコン4は、S5において連続した噴射毎の通電時間補正量ΔTiの記憶回数が所定以上であるか否かを判定する。マイコン4は、S5にてYESと判定した場合、補正量算出部11の処理によってメモリ4bに記憶した今回の通電時間補正量ΔTiを過去の通電時間補正量ΔTiに積算すると共に積算回数で除算することで今回以前の通電時間補正量ΔTiの平均値を算出しメモリ4bに記憶させる。そしてマイコン4は、S7において補正完了フラグをONすることで補正完了した旨を記憶保持させる。補正量算出部11は通電時間補正量ΔTiの変換値を通電指令時間算出部10に出力する。
【0046】
本形態では、今回以前の所定回数分の通電時間補正量ΔTiの平均値を算出して通電時間補正量ΔTiの変換値を出力する形態を示すが、単純移動平均に限定されるものではなく、今回以前の各回の通電時間補正量ΔTiに対する重み付けを適宜変更して加重移動平均を変換値として求めても良い。
【0047】
マイコン4は、図6のS9において補正完了フラグがONであるか否かを判定し、S9にてYESと判定されたことを条件として、通電指令時間算出部10は、補正量算出部11で算出された通電時間補正量ΔTiの変換値を入力し、S10において、変換値を加算して次回の指示TQの通電指令時間Tiを算出する。
【0048】
他方、マイコン4は、前述の噴射タイミングとは非同期で数ms毎にタイマ割込みによりA/F値を取得する。マイコン4は、噴射タイミングとは非同期でA/F値を取得するため、燃料噴射弁2から燃料を噴射中にA/Fセンサ9からA/F値を取得することもあれば、燃料を噴射した後にA/F値を取得することもある。マイコン4は、前述の補正完了フラグがONに設定されている場合、通電指令時間算出部10の通電時間補正量ΔTiを反映した噴射に対応したA/F値をA/F値取得部12から取得できる。
【0049】
マイコン4は、図7のS21において前述の補正完了フラグがONとされていることを条件として、S22において、取得したA/F値と目標A/F値との差を検出し、異常判定部13によりこの差が所定以上となる時間が所定時間以上継続したか否かを判定する。
【0050】
マイコン4は、S22の判定結果がYESであるときには通電時間補正量ΔTiの異常であると判定する。つまり、定常運転状態においてA/Fセンサ9から取得されるA/F値が所定時間以上経過しても、目標A/F値から所定以上離れている状態を継続したときには、マイコン4は通電時間補正量ΔTiの補正異常であると判定する。
【0051】
マイコン4は、通電時間補正量ΔTiの補正異常であると判定すると、図5の補正量算出処理のステップS1において面積補正が正常でないと判定し、補正完了フラグをOFFとする。マイコン4は、面積補正が正常でないと判定すると補正完了フラグをOFFとすることで、その後の通電時間補正量ΔTiの補正処理を停止する。図5のS1でNO、図6のS9でNO、図7のS21でNOを参照。
【0052】
つまりマイコン4は、通電時間補正量ΔTiの補正異常と判定した場合には、通電時間補正量ΔTiを用いて面積補正を行っても意図通りの噴射を実行できないと判定し、その後の通電時間補正量ΔTiの補正処理を停止する。これによりフェールセーフできる。
【0053】
マイコン4は、今回以前の通電時間補正量ΔTiを次回の指示TQの通電指令時間Tiに反映した後のA/Fセンサ9のA/F値を用いて通電時間補正量ΔTiの補正異常を判定している。これにより、通電時間補正量ΔTiの補正異常を極力正確に判断できる。
【0054】
特に、触媒急速暖機などの定常運転状態では、通電時間補正量ΔTiが概ね同一値となることから、今回以前の噴射時の通電時間補正量ΔTiを次回噴射時の通電指令時間Tiに反映させることで、それ以降の制御IC5における通電時間補正量ΔTiを小さくでき、異常判定時のS/Nを確保できる。
【0055】
<本実施形態のまとめ>
本実施形態によれば、通電指令時間算出部10が今回以前の通電時間補正量ΔTiを用いて次回の指示TQの通電指令時間Tiを算出しているため、今回以前の通電時間補正量ΔTiの傾向を次回の指示TQの通電指令時間Tiに反映できる。
【0056】
このためマイコン4が、次回の指示TQの通電指令時間Tiを通電制御部5bに指令し、制御IC5の通電制御部5bが燃料噴射弁2に通電制御する際に、制御IC5では通電時間補正量算出部5dで算出される通電時間補正量ΔTiをゼロもしくは小さい値にでき、通電時間補正量ΔTiのS/Nを確保できる。このため、たとえ制御IC5に構成されるA/D変換器の分解能の性能が悪く、検出電流IのS/Nを高く取得できなくても、通電時間補正量ΔTiを適切に算出できる。
【0057】
またマイコン4は、通電指令時間算出部10により通電時間補正量ΔTiの補正を反映した噴射に応じたA/F値をA/F値取得部12により取得し、異常判定部13により取得したA/F値の目標A/F値からのずれに基づいて異常を判定している。これにより、通電時間補正量ΔTiが異常値であるか否かを判定できる。また通電時間補正量ΔTiに異常を生じているとき、マイコン4は通電時間補正量ΔTiの補正処理を停止するため、フェールセーフ処理を適切に実行できる。
【0058】
(他の実施形態)
本発明は、前述した実施形態に限定されるものではなく、種々変形して実施することができ、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。例えば以下に示す変形又は拡張が可能である。前述した複数の実施形態を必要に応じて組み合わせて構成しても良い。
【0059】
マイコン4が、今回以前の通電時間補正量ΔTiを用いて次回の通電指令時間Tiを補正する形態を示したが、次回の次以降、すなわち今回の次々回以降の噴射の通電指令時間Tiを補正する形態に適用しても良い。マイコン4と制御IC5が別体の集積回路により構成されている形態を適用して説明したが一体に構成しても良い。一体構成する場合には、高速処理可能な演算処理装置などを用いて構成すると良い。
【0060】
前述実施形態では、制御IC5が、燃料噴射弁2の通電電流EIの台形の面積を算出することで簡易的に積算電流差ΣΔIを算出する形態を示したが、これに限られない。燃料噴射弁2の通電電流EIは、目標ピーク電流Ipkに達する前、目標ピーク電流Ipkに達した後の何れにおいても非線形的に変化する。このため、三角形、長方形、台形などの多角形を用いて電流の積算電流を近似算出することで、簡易的に積算電流差を算出すると良い。これにより、演算量を劇的に削減できる。
【0061】
前述実施形態では、内燃機関の燃焼室の中に直接噴射する筒内噴射に適用したが、これに限定されることはなく、周知の吸気バルブの手前で燃料を噴射するポート噴射に適用しても良い。
【0062】
マイコン4、制御IC5が提供する手段及び/又は機能は、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ソフトウェア、ハードウェア、あるいはそれらの組み合わせによって提供することができる。例えば、制御装置がハードウェアである電子回路により提供される場合、1又は複数の論理回路を含むデジタル回路、又は、アナログ回路により構成できる。また、例えば制御装置がソフトウェアにより各種制御を実行する場合には、記憶部にはプログラムが記憶されており、制御主体がこのプログラムを実行することで当該プログラムに対応する方法を実施する。
【0063】
前述した複数の実施形態を組み合わせて構成しても良い。また、特許請求の範囲に記載した括弧内の符号は、本発明の一つの態様として前述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。前述実施形態の一部を、課題を解決できる限りにおいて省略した態様も実施形態と見做すことが可能である。また、特許請求の範囲に記載した文言によって特定される発明の本質を逸脱しない限度において、考え得るあらゆる態様も実施形態と見做すことが可能である。
【0064】
本発明は、前述した実施形態に準拠して記述したが、本発明は当該実施形態や構造に限定されるものではないと理解される。本発明は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本発明の範畴や思想範囲に入るものである。
【符号の説明】
【0065】
図面中、1は電子制御装置(噴射制御装置)、2は燃料噴射弁、5dは通電時間補正量算出部(面積補正部、10は通電指令時間算出部、11は補正量算出部、12はA/F値取得部、13は異常判定部、を示す。
図1
図2
図3
図4
図5
図6
図7