IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ボーイング・カンパニーの特許一覧

特許7381310結合アセンブリについての予測による表面調節
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-07
(45)【発行日】2023-11-15
(54)【発明の名称】結合アセンブリについての予測による表面調節
(51)【国際特許分類】
   G05B 19/418 20060101AFI20231108BHJP
   G01N 29/07 20060101ALI20231108BHJP
【FI】
G05B19/418 Z
G01N29/07
【請求項の数】 11
【外国語出願】
(21)【出願番号】P 2019216302
(22)【出願日】2019-11-29
(65)【公開番号】P2020123322
(43)【公開日】2020-08-13
【審査請求日】2022-11-17
(31)【優先権主張番号】16/221,278
(32)【優先日】2018-12-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500520743
【氏名又は名称】ザ・ボーイング・カンパニー
【氏名又は名称原語表記】The Boeing Company
(74)【代理人】
【識別番号】100135389
【弁理士】
【氏名又は名称】臼井 尚
(74)【代理人】
【識別番号】100086380
【弁理士】
【氏名又は名称】吉田 稔
(74)【代理人】
【識別番号】100103078
【弁理士】
【氏名又は名称】田中 達也
(74)【代理人】
【識別番号】100130650
【弁理士】
【氏名又は名称】鈴木 泰光
(74)【代理人】
【識別番号】100168099
【弁理士】
【氏名又は名称】鈴木 伸太郎
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(74)【代理人】
【識別番号】100200609
【弁理士】
【氏名又は名称】齊藤 智和
(72)【発明者】
【氏名】ロジャー ダブリュー.エンゲルバート
(72)【発明者】
【氏名】ジェームズ エル.シェーラー
(72)【発明者】
【氏名】クリストファー エム.ヴァッカロ
(72)【発明者】
【氏名】ブライアン スタッツマン
(72)【発明者】
【氏名】ジョージ イー.ビブル
(72)【発明者】
【氏名】ジェフリー ジェイ.キルウィン
【審査官】石田 宏之
(56)【参考文献】
【文献】特開2018-41439(JP,A)
【文献】米国特許出願公開第2010/42242(US,A1)
【文献】特表2009-519175(JP,A)
【文献】特開2004-148700(JP,A)
【文献】米国特許第9068809(US,B1)
【文献】米国特許第9586367(US,B2)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 19/418
G01N 29/07
(57)【特許請求の範囲】
【請求項1】
外板を下部構造に組み付けるために、当該外板に1つ以上の犠牲材料の層を付加する方法であって、前記外板は、内表面、前記内表面と反対側の外表面、及び、前記内表面と前記外表面との間の外板厚みを有し、前記下部構造は、前記外板に対する結合面を有し、前記外板に関連付けられたデジタルモデルは、前記外板厚みについての基準マップを含み、前記犠牲材料は、前記外板の前記内表面と前記下部構造との結合領域において、設計許容値よりも大きく、且つ、最小シム厚みよりも小さい空隙を埋めるために付加されるものであり、前記方法は、
a.前記内表面及び前記外表面の少なくとも一方における複数の位置で前記外板を非破壊で検査して、前記外板厚みに関するデータセットを収集するステップと、
b.前記データセットを用いて、前記複数の位置の少なくとも一部における前記外板の作製後厚みの値の組を算出するステップと、
c.前記下部構造の前記結合面に対する、前記外板の前記内表面における前記結合領域を特定するステップと、
d.前記外板の前記内表面における前記結合領域について、前記作製後厚みの値の組において前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出し、これによって犠牲材料層データの組を生成するステップと、を含む方法。
【請求項2】
前記犠牲材料層データの組と、前記作製後厚みの値の組において前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する前記逸脱量の組と、用いて、犠牲材料除去データの組を生成するステップをさらに含む、請求項1に記載の方法。
【請求項3】
前記1つ以上の犠牲材料の層を前記外板に付加するステップと、前記犠牲材料除去データの組に基づいて、前記外板から前記犠牲材料の一部を除去するステップと、をさらに含む、請求項2に記載の方法。
【請求項4】
前記犠牲材料層データの組を用いて、前記1つ以上の犠牲材料の層を準備するステップをさらに含む、請求項1~3のいずれかに記載の方法。
【請求項5】
前記犠牲材料層データの組を生成する前記ステップは、前記外板の前記内表面における前記結合領域について、前記設計許容値を超える前記逸脱量を補償するのに十分な1つ以上の犠牲材料の領域を特定することを含む、請求項1~4のいずれかに記載の方法。
【請求項6】
前記下部構造に対する前記外板の前記結合領域を特定するステップは、前記外板の前記作製後厚みの値の組を算出するステップに先行し、さらに、前記外板の前記作製後厚みの値は、前記外板の前記結合領域についてのみ算出される、請求項1~5のいずれかに記載の方法。
【請求項7】
前記下部構造について用いる、請求項1~6のいずれかに記載の方法であって、前記下部構造は、所与の厚みを有しており、前記下部構造に関連付けられたデジタルモデルは、前記下部構造厚みについての基準マップを含み、前記方法は、
a.前記下部構造を非破壊で検査して、前記下部構造厚みに関するデータセットを収集するステップと、
b.前記下部構造データセットを用いて、前記下部構造の作製後厚みの値の組を算出するステップと、
c.前記外板の前記内表面における前記結合領域について、前記作製後厚みの値の組において前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出し、これによって、前記外板及び前記下部構造の少なくとも一方について用いる犠牲材料層データの組を生成するステップと、を含む方法。
【請求項8】
第1結合面を有する第1部品であって、第2結合面を有する第2部品に組み付けるための前記第1部品に1つ以上の犠牲材料の層を付加するためのシステムであって、前記第1部品には、2つの水平寸法と1つの厚み寸法についての第1基準マップを含む第1デジタルモデルが関連付けられており、前記第2部品には、2つの水平寸法についての第2基準マップを含む第2デジタルモデルが関連付けられており、前記1つ以上の犠牲材料の層は、前記第1部品の前記結合面と前記第2部品の前記結合面の間に設計許容値を超える空隙が存在する領域を前記1つ以上の犠牲材料の層が覆うように設定されたアウトラインを有するように構成されるものであり、前記システムは、
a.前記第1部品を検査して、当該第1部品に関するデータセットを収集するよう構成された非破壊検査システムと、
b.前記非破壊検査システムに接続されているとともに、前記第1部品に関する前記データセットを受信して、前記第1部品の前記第1基準マップ、前記第2部品の前記第2基準マップ、及び、前記設計許容値を格納するよう構成されたコンピュータと、を含み、前記コンピュータは、プロセッサエレメントを含み、当該プロセッサエレメントは、前記第1部品に関する前記データセットから、前記第1部品の少なくとも一部分についての作製後厚みプロファイルを算出し、前記第1部品の前記第1基準マップを前記第2部品の前記第2基準マップに仮想的に重畳して、前記第1部品と前記第2部品の結合領域を特定し、前記結合領域において、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出することによって、犠牲材料層データの組を生成するように構成されている、システム。
【請求項9】
寸法データの組により規定されるシムを作製する際に用いる、請求項8に記載のシステムであって、前記非破壊検査システムに接続された前記コンピュータの前記プロセッサエレメントは、さらに、前記結合領域において、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップからシム設計許容値を超えて逸脱する逸脱量の組を算出することにより、前記シム寸法データの組を生成するよう構成されており、前記システムは、前記シム寸法データを受信すべく前記コンピュータに接続されているとともに、前記シムを作製するよう構成された付加製造装置をさらに含む、システム。
【請求項10】
寸法データの組により規定されるシムを作製する際に用いる、請求項8に記載のシステムであって、前記非破壊検査システムに接続された前記コンピュータの前記プロセッサエレメントは、さらに、前記結合領域において、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップからシム設計許容値を超えて逸脱する逸脱量の組を算出することにより、前記シム寸法データの組を生成するよう構成されており、前記システムは、前記犠牲材料層データを受信すべく前記コンピュータに接続されているとともに、前記1つ以上の犠牲材料の層を切断するよう構成されたプライ切断装置と、さらに、前記シム寸法データを受信すべく前記コンピュータに接続されているとともに、前記シムを作製するよう構成された付加製造装置と、をさらに含む、システム。
【請求項11】
前記コンピュータは、前記第1部品の前記作製後厚み、前記第2部品の前記第2デジタルモデル、前記シム寸法データ、及び、前記犠牲材料層データを用いて仮想外板フィットチェックを実行するよう構成されている、請求項10に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、部品の非破壊検査データを収集して、当該部品の組み立てに利用する技術に関する。より具体的には、本開示の実施形態は、そのようなデータを利用して、結合部分における部品と部品の表面の間の空隙(gap)を小さくするために犠牲材料の付加及び犠牲材料の機械加工が必要であるかを判定するためのシステム及び方法に関する。
【背景技術】
【0002】
組み立て用の部品は、複合材料や金属材料から製造することができ、いずれの種類の部品についても、組み立て前に非破壊検査を行うことができる。非破壊検査には、超音波、渦電流、X線、磁気共鳴、光学イメージング、及び、マイクロ波を使用する方法がある。
【0003】
非破壊検査は、一般的に、部品の品質を特徴づけるために行われる。例えば、炭素繊維強化ポリマーなどの複合材料からなる部品の場合、隣り合う炭素繊維層が分離してしまう層間剥離の可能性があり、その程度や影響を検査によって特徴づけることができる。また、部品の構造体には、望ましくないボイドが含まれる可能性があり、ボイドの影響を受ける空隙率を測定し、位置を特定することが可能である。超音波検査などの非破壊検査では、そのような特徴の検出及び位置特定の過程で、部品についてのデータを収集することが一般的である。
【0004】
例えば、空力(又はエアロ)面あるいは外板をスパーやリブなどの下部構造に取り付ける場合など、部品を適切に組み立てるには、例えば、結合面と結合面の間に所定のシム許容値(shim allowance)より大きな空隙がないようにするなど、定められた要件を満たすように部品を結合する必要がある。所定のシム許容値より大きな空隙がある場合は、空力性能及び構造的な一体性を確保するため、シムを埋め込むことがある。
【0005】
結合部分における空隙の有無、及び、シムの要否及びそのサイズや形状を判定するには、部品の作製及び非破壊検査に続いて、手間のかかるプロセスを繰り返し行う必要がある。例えば、部品の仮組み立てを行って、外板と下部構造との間の空隙を目視で検査及び測定し、その後、部品を分解して、所定のシム許容値より大きな空隙については、シムを試作する。次いで、再度部品を組み立てて、シムを仮配置して、適合具合をチェックする。これが二回目の仮組み立てであり、この作業は、シムが適切に適合するまで繰り返し行わなければならない。あるいは、部品の仮組み立て品に空隙が見つかっても、所定のシム許容値より小さいものであれば、埋めずにそのまま放置される。
【0006】
したがって、部品の非破壊検査によって得られた情報を、当該部品のデジタルモデルと組み合わせて用いることで、シムの寸法を特定し、そのようなシムを作製するための方法及びシステムに対するニーズがある。これにより、製造フローへの影響が大きく、相当量の手作業を必要とする時間のかかるプロセスを繰り返し実行する必要を排除することができる。また、部品の非破壊検査によって得られた情報を、当該部品のデジタルモデルと組み合わせて用いることで、所定のシム許容値よりも小さい空隙の有無を判定するとともに、犠牲材料を付加する必要性、及び、犠牲材料を機械加工して適切な量を切削する必要性を判定するための方法及びシステムに対する要望がある。これにより、製造フローへの影響が大きく、相当量の手作業を必要とする時間のかかるプロセスを繰り返し実行する必要を排除することができる。
【発明の概要】
【0007】
本開示は、部品の結合部における1つ以上の空隙を、及び、設計許容値より大きく、且つ、所定のシム許容値より小さな空隙を予測し、1つ以上の犠牲材料の層を付加し、犠牲材料を機械加工することで、空隙を小さくするためのシステム及び方法を提供する。いくつかの実施形態において、外板を下部構造に組み付けるために、当該外板に1つ以上の犠牲材料の層を付加する方法は、前記外板の内表面及び外表面の少なくとも一方における複数の位置で前記外板を非破壊で検査して、前記外板厚みに関するデータセットを収集するステップを含んでもよい。前記方法は、前記データセットを用いて、前記複数の位置の少なくとも一部における前記外板の作製後厚みの値の組を算出するステップをさらに含んでもよい。前記方法は、前記下部構造の前記結合面に対する、前記外板の前記内表面における結合領域を特定するステップをさらに含んでもよい。前記方法は、前記外板の前記内表面における前記結合領域について、前記作製後厚みの値の組が前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出し、これによって犠牲材料層データの組を生成するステップをさらに含んでもよい。前記方法は、前記犠牲材料層データの組と、前記作製後厚みの値の組において前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する前記逸脱量の組と、用いて、犠牲材料除去データの組を生成するステップをさらに含んでもよい。前記方法は、前記1つ以上の犠牲材料の層を前記外板に付加するステップと、前記犠牲材料除去データの組に基づいて、前記外板から前記犠牲材料の一部を除去するステップと、をさらに含んでもよい。
【0008】
他の実施形態において、外板を下部構造に組み付けた結合アセンブリにおける空隙を小さくするための方法は、前記外板の内表面及び外表面の少なくとも一方における複数の位置で前記外板を非破壊で検査して、前記外板厚みに関するデータセットを収集するステップを含んでもよい。前記方法は、前記データセットを用いて、前記複数の位置の少なくとも一部における前記外板の作製後厚みの値の組を算出するステップをさらに含んでもよい。前記方法は、前記下部構造の前記結合面に対する、前記外板の前記内表面における結合領域を特定するステップをさらに含んでもよい。前記方法は、前記外板の前記内表面における前記結合領域について、前記作製後厚みの値の組が前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出するステップをさらに含んでもよい。前記方法は、設計許容値より大きく、且つ、最小シム厚み以上の逸脱量に関して、当該逸脱量の組に合致するアウトライン及びプロファイルを有するシムを作製するステップをさらに含んでもよい。前記方法は、前記設計許容値より大きく、且つ、最小シム厚みより小さい逸脱量に関して、前記外板の前記内表面と前記下部構造との前記結合領域に1つ以上の犠牲材料の層を準備するステップをさらに含んでもよい。前記方法は、前記1つ以上の犠牲材料の層を前記外板に配置するステップをさらに含んでもよい。前記方法は、前記外板上の前記1つ以上の犠牲材料の層を硬化させるステップをさらに含んでもよい。前記方法は、前記外板上の前記1つ以上の犠牲材料の層を機械加工するステップをさらに含んでもよい。
【0009】
他の実施形態において、第1結合面を有する第1部品であって、第2結合面を有する第2部品に組み付けるための前記第1部品に1つ以上の犠牲材料の層を付加するためのシステムは、前記第1部品を検査して、当該第1部品に関するデータセットを収集するよう構成された非破壊検査システムを含んでもよい。前記システムは、前記非破壊検査システムに接続されているとともに、前記第1部品に関する前記データセットを受信して、前記第1部品の前記第1基準マップ、前記第2部品の前記第2基準マップ、及び、前記設計許容値を格納するよう構成されたコンピュータをさらに含んでもよい。前記コンピュータは、プロセッシングエレメントを含み、当該プロセッサエレメントは、前記第1部品に関する前記データセットから、前記第1部品の少なくとも一部分についての作製後厚みプロファイルを算出し、前記第1部品の前記第1基準マップを前記第2部品の前記第2基準マップに仮想的に重畳して、前記第1部品と前記第2部品の結合領域を特定するように構成されている。前記コンピュータは、前記結合領域において、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出することによって、犠牲材料層データの組を生成する構成でもよい。前記システムは、前記犠牲材料層データを受信すべく前記コンピュータに接続されているとともに、前記1つ以上の犠牲材料の層を切断するよう構成されたプライ切断装置をさらに含んでもよい。前記システムは、前記シム寸法データを受信すべく前記コンピュータに接続されているとともに、前記シムを作製するよう構成された付加製造装置をさらに含んでもよい。前記システムは、前記コンピュータが、前記第1部品の前記作製後厚み、前記第2部品の第2デジタルモデル、前記シム寸法データ、及び、前記犠牲材料層データを用いて仮想外板フィットチェックを実行する構成であることを含んでもよい。
【0010】
本開示は、また、部品の結合部に用いるためのシムについての寸法データの組を予測するためのシステム及び方法を提供し、当該システム及び方法は、前記シムの作製と、前記シムを前記結合部に取り付けることを含んでもよい。いくつかの実施形態において、外板を下部構造に装着する際に用いるシムを作製するための方法は、前記外板の表面における複数の位置において、前記外板を非破壊で検査して、前記外板の厚みに関するデータセットを収集することを含んでもよい。前記方法は、前記外板厚みに関する前記データセットを用いて、前記複数の位置の少なくとも一部における前記外板の作製後厚みの値の組を算出するステップをさらに含んでもよい。前記方法は、前記下部構造の前記結合面に対する、前記外板の前記内表面における結合領域を特定するステップをさらに含んでもよい。前記方法は、前記外板の前記内表面における前記結合領域において、前記作製後厚みの値が前記外板厚みについての基準マップからシム設計許容値を超えて逸脱する逸脱量の組を算出することにより、前記シム寸法データの組を生成するステップを含んでもよい。前記シム寸法データの組は、シム輪郭を三次元で規定するものでもよい。前記方法により予測されたシムは、前記外板の前記内表面と前記下部構造との前記結合領域における、シム設計許容値より大きな空隙をすべて埋めるように構成される。
【0011】
特徴、機能、利点は、本開示における種々の実施形態によって個別に達成可能であり、また、さらに別の実施形態と組み合わせることも可能であり、その詳細は、以下の説明及び図面を参照することにより明らかであろう。
【図面の簡単な説明】
【0012】
図1】下部構造に結合される領域を含む外板の断面図であり、外板の厚みプロファイルを外板の予定厚みと比較した逸脱量の組が示されている。
図2図1の外板の断面図であり、外板の厚みプロファイルと外板の予定厚みとの間の空隙を埋めるために付加された犠牲材料が機械加工される前の状態が示されている。
図3図2で外板に付加された犠牲材料が機械加工された後の外板の断面図である。
図4】下部構造に結合された外板の断面図であり、厚みプロファイルにおける逸脱量の組が示されており、外板の内側結合面と下部構造の上側結合面との間に空隙がある状態である。
図5図4に示す部品の間の空隙を埋めるアウトライン及びプロファイルを有するシムの断面図である。
図6】部品の非破壊検査用の超音波システムの概略図であって、超音波送信機と超音波受信機とが部品から見て同じ側に示されており、パルス反射法によって部品を分析する構成である。
図7】部品の非破壊検査用の超音波システムの概略図であって、超音波送信機が部品から見て一方の側に示されており、また、超音波受信機が部品から見て他方の側に示されており、超音波透過法によって部品を分析する構成である。
図8】超音波検査システムの透視図であって、空力面又は外板であって、具体的には、航空機フラップである超音波検査の対象部品が、検査のための移動を行うガントリに取り付けられた状態が示されている。また、蛇腹式の囲い部を備える伸長可能なアームとエンドエフェクタが示されており、エンドエフェクタは、放水ノズル及び超音波トランスデューサを含むパルス反射法のシステム、又は、検査中の部品の後ろに(隠れて見えない)アームをさらに含む透過法のシステムである。
図9】本開示の実施形態による、シムを予測、作製するための、及び/又は、1つ以上の犠牲材料の層を準備するためのシステムのブロック図であり、図8に示す空力面などの部品やコンポーネントのモデルを格納したコンピュータシステムと、非破壊検査された部品やコンポーネントに関するデータセットと、図6図7又は図8に示す超音波機器などの非破壊検査システムと、3Dプリンタなどの付加製造システムと、が含まれている。
図10図8の空力面の検査結果を示す平面図であって、空力面の水平寸法における作製後厚みの値の組をハッチング及びドットで示す。
図11図8に示す空力面のデジタルモデルの平面図であって、空力面の水平寸法における設計厚みプロファイル又は空力面のアウトラインのいずれかの基準マップを表しており、この例では、設計厚みプロファイルは、空力面の水平寸法において一定である。また、水平方向のアウトラインは、胴体ステーション(FS)と船尾線(BL)による航空機座標系で示されている。
図12】空力面の作製後厚みの値を、空力面の基準マップのデジタルモデルに仮想的に重畳する様子を示す平面図である。
図13】空力面の作製後厚みを空力面の基準マップのデジタルモデルに仮想的に重畳した結果を航空機座標系で示す平面図である。また、この空力面が取り付けられる予定の下部構造のアウトラインのデジタルモデルを、空力面の作製後厚みの値とデジタルモデルを組み合わせた結果に仮想的に重畳する様子も示されている。
図14】空力面の作製後厚みと基準マップのデジタルモデルを仮想的に重畳した結果を示す平面図である。また、この空力面が取り付けられる予定の下部構造のアウトラインのデジタルモデルを、空力面の作製後厚みの値とデジタルモデルを組み合わせた結果に重畳する様子も一緒に示されている。
図15】作製後厚みの値が空力面厚みについての基準マップから逸脱する逸脱量の組を算出するために、図12図14に示す仮想的な重畳結果に対して行う変換を示す等角図である。
図16】空力面と下部構造との結合領域について算出された、作製後厚みの値が空力面厚みについての基準マップから設計許容値を超えて逸脱する逸脱量の組を示す等角図である。
図17】本開示による、付加製造により作製されて外板と下部構造との間に挿入された一対のシムの断面図である。
図18】シムに関するデータを生成するために本開示の1つ以上の実施形態において実行される処理を示す図であり、外板と下部構造との結合領域を仮想的に特定するステップが示されており、当該ステップは、基準厚み値に対する作製後厚みの値の逸脱量の組を算出するステップの前に実行され、逸脱量の算出は、結合領域についてのみ実行される。
図18a】1つ以上の犠牲材料の層に関するデータを生成するために本開示の1つ以上の実施形態において実行される処理を示す図であり、外板と下部構造との結合領域を仮想的に特定するステップが示されており、当該ステップは、基準厚み値に対する作製後厚みの値の逸脱量の組を算出するステップの前に実行され、逸脱量の算出は、結合領域についてのみ実行される。
図19】シムに関するデータを生成するために本開示の1つ以上の実施形態において実行される処理を示す図であり、外板と下部構造との結合領域を仮想的に特定するステップが示されており、当該ステップは、基準厚み値に対する作製後厚みの値の逸脱量の組を算出するステップの後に実行され、逸脱量算出ステップは、外板のアウトライン全体について実行される。
図19a】1つ以上の犠牲材料の層に関するデータを生成するために本開示の1つ以上の実施形態において実行される処理を示す図であり、外板と下部構造との結合領域を仮想的に特定するステップが示されており、当該ステップは、基準厚み値に対する作製後厚みの値の逸脱量の組を算出するステップの後に実行され、逸脱量算出ステップは、外板のアウトライン全体について実行される。
図20】空力面の作製後厚みと基準マップのデジタルモデルを仮想的に重畳した結果を示す平面図である。また、この空力面が取り付けられる予定の下部構造のアウトラインのデジタルモデルを、空力面の作製後厚みの値とデジタルモデルを組み合わせた結果に仮想的に重畳する様子も示されている。
図21図20の空力面の作製後厚みと基準マップのデジタルモデルとを示す平面図であって、空力面の厚み基準値に対する作製後厚みの逸脱量が設計許容値より大きいが、シム許容値よりは小さい領域(この場合、3つの領域)が示されている。
図22図20の空力面の作製後厚みと基準マップのデジタルモデルとを示す平面図であって、図21に示した3つの領域を覆うように付加される犠牲材料層が示されている。
図23図20の空力面の作製後厚みと基準マップのデジタルモデルとを、その下に位置する下部構造のアウトラインとともに示す平面図であって、図21に示した3つの領域のうち、空力面が下部構造に結合される領域のみに付加される犠牲材料層が示されている。
図24図20の空力面の作製後厚みと基準マップのデジタルモデルとを、その下に位置する下部構造のアウトラインとともに示す平面図であって、図23に示すように付加された犠牲材料層のうち、犠牲材料の機械加工後に残る部分が示されている。
図25】本開示の1つ以上の実施形態において実行される処理を示す図であり、非破壊検査によりデータを収集するステップ、及び、部品の作製後厚みとデジタルモデルを比較して、外板と下部構造との間の空隙を小さくするために外板に付加すべき犠牲材料の位置、領域及び厚み、並びに、準備すべきシムの位置及び大きさを特定するステップが示されている。
【発明を実施するための形態】
【0013】
本明細書において、例えば、外板と下部構造など、結合する部品同士の間の空隙を小さくするための方法及びシステムについて様々な実施形態を記載する。これらの方法及びシステムは、一方又は両方の部品の非破壊検査のデータを用いて、両部品の間に付加する材料を準備するべきか否か、また、どの程度準備すべきかを判定することができる。本明細書に記載するように、非破壊検査のデータを用いることで、シムのサイズ及び形状、及び、シムを使用可能であるか否かを予測することができる。以下に、犠牲材料を付加する必要性、及び、付加した材料を機械加工する必要性を、非破壊検査で得られる寸法データに基づいて判定することを含む実施形態について、添付図面を参照して説明する。別段の記載がない限り、方法及びシステム、及び/又は、その様々な構成要素は、必須ではないが、本明細書に記載、図示、及び/又は、援用したコンポーネント、機能、及び/又は、その変形のうちの少なくとも1つを含む。さらに、本教示に関連して本明細書に記載、図示、及び/又は、援用した構造、コンポーネント、機能、及び/又は、その変形は、類似する別の実施形態に、例えば、予測したシムの作製、及び/又は、犠牲材料及びその機械加工の必要性を判定するような実施形態に、必須ではないが、含めることができる。以下に記載する様々な実施形態は、あくまでも例示であって、本開示、その用途や使用を限定する意図ではない。加えて、後述するように実施形態により得られる効果は、あくまでも例示であって、すべての実施形態が同じ効果、又は、同じ程度の効果を実現するとは限らない。
【0014】
本開示の実施形態によれば、部品の仮組み立て(pre-assembling)を不要にすることができ、例えば、外板と下部構造の仮組み立てを行って空隙の状況を手作業で測定し、犠牲材料を付加する位置、サイズ、及び、後に行う機械加工の予測、及び/又は、シムの位置、輪郭、寸法を予測する必要をなくすことができる。本開示の実施形態は、必要なシム及び/又は犠牲材料の位置、形状、及び、サイズを特定するためのデータ収集プロセスの自動化に関し、自動化されたシム作製システム、及び/又は、プライ切断装置と加工機器が必要とするすべてのデータを自動で供給することが可能である。本開示の実施形態は、組み立て作業を行う前に、シム及び犠牲材料の要件を確立して、必要なシムを作製及び/又は設置し、プライを切断、配置、及び、機械加工することができる。その結果として、クリティカルパスに相当する組み立て作業の労働コスト及びサイクルタイムの効果的で大幅な削減が期待される。本開示の実施形態は、統計的工程管理(SPC)データを自動で収集及び分析する技術を提供することで、工程能力判定をサポートして、処理の効率、品質、再現性を向上させる。本開示の実施形態は、将来的に作製、組み立てを行う段階でシムや犠牲材料が必要になる状況を低減することを意図しており、特に、データ分析によって示される再現性欠如の可能性を、設計工程及び製造工程に変更を加えることで緩和可能な場合を想定している。本開示の実施形態は、ディテール部分(detail part)、下部構造、外板を、設計上最終的に必要なすべての穴が形成された完全な状態で作製することを可能にする、フルサイズの部品基準組み立て及び精密組み立て(FSDA/PA: Full Size to Full Size Determinate Assembly and Precision Assembly)をサポートする。これにより、組み立て作業の際に、組み立て品に穿孔作業を行う必要がないので、組み立て作業における労働コスト及びサイクル時間を大幅に削減し、不適合率を下げ、職場で記録されるレベルの怪我や作業日の損失を発生させうる主な要因を排除することができる。本開示の実施形態によれば、1以上の仮組み立て作業を排除することが可能であり、大幅なコスト削減が可能である。
【0015】
図1図3は、他の部品に組み付けるために整列配置されるコンポーネントを示しており、当該コンポーネントの作製後厚みと、当該コンポーネントのデジタルモデルにおいて予定される厚みとの間に、空隙、即ち、逸脱がある。より具体的には、空力面又は外板20などのコンポーネントは、内表面22及び外表面24を規定する。通常、外板20が複合材製の場合は、両表面22と24との間に炭素繊維を含む1つ以上の層が含まれている。例えば、外板20は、ポリマー樹脂を注入した繊維強化材を含む。あるいは、外板20は、樹脂を事前含浸した繊維強化材(「プリプレグ」としても知られている)の複数の層を含む。プリプレグが積層され、硬化され、及び/又は、固化される(consolidated)ことで、最終的な複合材が作製される。繊維強化材は、例えば、炭素、ガラス、又は、他の適切な材料であり、樹脂は、例えば、エポキシ又は他の適当な材料である。
【0016】
いくつかの例では、内表面22と外表面24は、互いに略平行である。外板20は、両表面22と24の間に作製後厚み26を規定し、その値は、表面領域全体でばらついている場合がある。厚み26は、少なくとも一方の表面に対して垂直な方向に規定されており、両表面が略平行な場合であれば、両表面に対して垂直な方向に規定されている。
【0017】
外板20は、予定表面340によって規定される予定厚み326を有する。外板20の作製後厚み26は、予定厚み326から逸脱している可能性があり、内表面22は予定表面340から逸脱している可能性がある。これは、例えば、処理条件のばらつきや、外板20の作製に利用される原材料寸法のばらつきなど、部品構造のばらつきを理由とするこのような逸脱のため、外板の作製後厚み寸法やプロファイルが設計厚みプロファイルから逸脱した領域が存在する。予定厚み326からの逸脱量を、図1図3では、内表面22のばらつきとして示しているが、予定厚みからの逸脱は、実際には、内表面と外表面のいずれのばらつきに関連する可能性もあり、また、両方のばらつきに関連する可能性もがある。何れの場合でも、本明細書に記載のシステム及び方法は、設計厚みプロファイルからの実際の逸脱量に対処する構成である。
【0018】
高さの異なる矢印334a~eが示すように、空隙332は、逸脱がある領域の中でもばらついている。図1の断面図は、設計厚みプロファイルに対する作製後厚みプロファイルの逸脱のうち、第1寸法に沿った逸脱量の組を示している。逸脱は、第2寸法に沿っても分散しており、この2つの寸法における逸脱量によって、空隙の領域のアウトラインが規定される。図1は、作製後厚みプロファイルと設計厚みプロファイルの間の逸脱量についての設計許容値342も示しており、逸脱量が設計許容値を超える部分には、空隙を埋める処理が必要な場合があり、設計許容値を超えない部分には不要な場合がある。
【0019】
図2は、外板20を示しており、図2では、空隙332の領域において外板20の内表面22に1つ以上の犠牲材料350の層が付加された状態である。図2及び図3では、犠牲材料を模式的に示しているが、実際の犠牲材料は、外板20より大きい場合も、小さい場合もある。通常、犠牲材料350は、空隙332を埋めるのに足りるだけ外板20の厚み26に付加するか、あるいは、多めに付加しておき、後から機械加工によって余剰分を切削して所望の厚みにする。
【0020】
複合材料製の外板20の場合は、犠牲材料は、ガラス繊維/エポキシのプリプレグなど、任意の適当な材料であってもよい。犠牲材料は、外板20に付加された後、外板20上で(一般的には、真空バッグアセンブリを用いて)圧縮され、(一般的には、赤外線、抵抗加熱ブランケット、又は、他の適当な代替手段により加熱されて)硬化される。
【0021】
硬化後の犠牲材料350は、適当な切削ツールを用いて機械加工により外板20の厚みを調整して、図3に示す予定厚み326に対してより確実に適合させる。付加する犠牲材料の層は、機械加工プロセスにおいて、外板20における炭素繊維層など犠牲材料の下にある層を、切削ツールが貫通したり、傷つけたりしないように十分な厚みとする。
【0022】
図4は、組み立て用に整列配置した2つのコンポーネント又は部品を示しており、両部品の間には空隙がある状態である。図5は、その空隙を埋めるシムを示している。より具体的には、空力面又は外板20などの第1コンポーネント又は部品は、内表面22及び外表面24を規定する。通常、内表面22と外表面24は、互いに略平行である。外板20は、表面22と表面24の間の厚み26を規定する。厚みの値は、表面領域全体ではばらついている場合がある。厚み26は、少なくとも一方の表面に対して垂直な方向に規定されており、両表面が平行である場合は、両表面に対して垂直な方向に規定されている。図4における外板20は、例えば、スパー構造やリブ構造などの下部構造28などの第2部品と整列するように配置されている。下部構造28は、上側結合面30を含む。外板20の内表面22が、下部構造28の上側結合面30に合わせられる。
【0023】
例えば、外板の作製後厚み寸法又はプロファイルが、ある領域において設計厚みプロファイルから逸脱しているなど、1つ又は複数の部品構造のばらつきの理由により、表面22と表面30の間には空隙32がある。高さの異なる矢印34a~eが示すように、空隙32は、逸脱がある領域の中でもばらついている。図4の断面図は、設計厚みプロファイルに対する作製後厚みプロファイルの逸脱のうち、第1寸法に沿った逸脱量の組を示している。逸脱は、第2寸法に沿っても分散しており、この2つの寸法方向における逸脱量によって、空隙の領域のアウトラインが規定される。図4では、1つの部品の厚みに逸脱があることによって空隙32が生じているが、部品構造に他のばらつきがある場合でも、空隙は生じうる。
【0024】
図5は、空隙を埋めるためのシム36を示しており、シムは、通常、シムの工学的な計許容値(engineering design allowance)40(図4)に対応する最小厚み38を有する。例えば、空力面を下部構造に結合する際の工学的な要件では、通常、約0.005インチから0.008インチのシム設計許容値が規定され、場合によっては、0.005インチから0.015インチの範囲の許容値が規定されることもあり、この規定は、空力的な事項及び構造的な事項に依存し、逸脱量がシム設計許容値を超える空隙については、シム調整を行う必要がある。設計許容値の範囲は、組み立てる部品のサイズや幾何形状によっても異なるので、設計許容値は、例示の範囲よりも大きかったり、小さかったりすることが多い。一般的に、空隙についてのシム設計許容値は、特定の部品の厚みの設計公差に対応し、シムは、その部品の厚みが設計公差を超えて逸脱する部分に対応したサイズ及び形状にされる。部品構造の他のばらつきに由来する空隙がある場合や、両方の部品の厚みが大幅に逸脱している場合は、厚みの逸脱量とシムのサイズ及び形状の関係は、より複雑になる。
【0025】
シム36は、空隙32を実質的に埋めるように構成されたプロファイル42及びアウトライン44を有する。例えば、図5において1つの寸法に沿ったアウトライン44が示すように、シム36は、概ねくさび型のプロファイルを有しており、最小厚みを有する左エッジ48から右エッジ50に向かって、厚みの値46a~fが大きくなっている。これは、外板20の設計厚みプロファイルに対する作製後厚みの逸脱量に関連する空隙32の高さ34a~fの変化に概ね対応している。シムのアウトラインは、二次元であって、結合面の一方又は両方の面に対して概ね面一な平面において規定されている。アウトライン44の第2寸法(図5には示されていない)は、エッジ48及びエッジ50に沿っている。
【0026】
図5に示すように、シム36のエッジ48、50は、下部構造28の一対のエッジ52、54に一致している。つまり、シム36のアウトラインは、両部品の結合面の間の空隙を埋める形状であり、通常は、結合面を超えて延出するものではない。あるいは、シム36は、結合面よりも先まで延びるアウトラインを有するものでもよく、このような構成は、特定の用途においては最適である。シム36は、外板20の内表面22と結合する上面56と、下部構造28の上面30に結合する下面58と、を有する。
【0027】
図5の例に示すように、シム36のプロファイル42は、空隙32の形状に対応するので、単純なくさび型をしている。一般的に、シムプロファイルは、空隙がどのような形状であっても、その空隙を埋めるように構成される。例えば、シムは、2つの水平寸法及び1つの厚み寸法を有する構造であって、外板の作製後厚みが外板の設計厚みプロファイルの設計許容値を逸脱する逸脱量を埋め合わせるように設定されている。後述するように、そのようなシムは、くさび型よりも複雑な構造であってもよい。
【0028】
上述したように、組み立て前の部品に対して、例えば、空隙率や層間剥離のチェックなど、部品の品質を特徴づけるための非破壊検査が必要とされ、実行される場合がある。加えて、非破壊検査は、検査対象の部品の寸法情報を提供することができるので、上述した、犠牲材料を付加する方法とシムを用いる方法の一方又は両方において有用である。
【0029】
超音波分析は、非破壊検査の一例である。超音波システムは、パルス反射法又は透過法を用いて検査を行って、データを収集する。一般的に、パルス反射法では、検査システムのアームは、図6に示すように、放水ノズルを保持するエンドエフェクタ60と、送信と受信の両方の機能を有する超音波トランスデューサとを有している。エンドエフェクタ60は、検査対象の部品の表面の上方を移動し、及び/又は、部品自体が移動する場合もある。放水ノズルは、トランスデューサからの超音波信号62を部品20に伝達する水流を供給する。超音波は、部品20の一方の表面、例えば表面24から入射し、部品20の中を通って、部品の他方の表面、例えば、表面22で反射されて、送信元であるトランスデューサに戻る。同様に、図7に示すように、透過式の超音波システムは、一対のエンドエフェクタ64、66を有し、一方のエンドエフェクタが超音波信号68を送出する機能を有し、他方がこれを受信する機能を有する。通常、各エンドエフェクタは、少なくとも一方の表面に対して、また、両表面が略平行な場合は、両表面に対して垂直な方向に超音波を送信し、及び/又は、受信するような位置に配置されている。
【0030】
通常、材料中の音の伝達速度は既知であり、また、送信機/受信機とこれに隣接する部品表面との間の距離も既知である。よって、超音波システムは、例えば、A-スキャントレースのゲ―ティングにより(by gating an A-scan trace)、超音波信号が部品を通過するのに要する時間を測定することができる。このシステムは、通常、2つの水平寸法の座標の対によって規定される各位置について測定と記録を行う。なお、この位置は、両方の表面について同じ位置とする。超音波システム又はそれに接続されたコンピュータは、システムがエンドエフェクタを移動させた各位置における材料厚みを、このデータから算出する(速度×時間=距離)。この検査では、例えば、経路に沿った超音波データを生成するスキャンを連続して行う。連続スキャンの結果から、部品の二次元領域内の複数の位置における部品の厚みの値の全体画像を構成することができる。
【0031】
図8に超音波検査システム70の一例が示されている。この例では、部品20は、航空機のフラップであって、ガントリ72に搭載されており、検査中に移動させることができる。アーム74は、上下及び左右の寸法方向に移動可能であるとともに、アーム74を延出及び後退させて部品20の表面24に近づけたり、遠ざけたりすることを可能にする蛇腹式囲い部76を含む。エンドエフェクタ64は、表面24(又は表面22)に水流を供給する放水ノズル78を含む。エンドエフェクタ64は、部品を検査するための超音波信号を水流を介して発信する超音波送信機を含む。透過法システムの場合は、超音波受信機を有するエンドエフェクタ66を、アーム74に対応するアーム(図8では、検査対象部品の影に隠れており見えない)に取り付ける。あるいは、アーム74に超音波トランスデューサを搭載して、パルス反射法により部品を検査する構成でもよい。
【0032】
図6図8に示されるように、超音波検査システムによれば、部品20を非破壊で検査して、部品20に関するデータセット100(図9を参照)を収集することができる。データセット100は、作製後の状態の部品20の構成について、2つの水平寸法80、82における情報、例えば、厚み寸法に関する超音波の伝播時間などを含む。通常、厚み寸法は、水平寸法80、82に対して直交する方向で規定される。超音波伝播時間及びその関連情報(例えば、材料密度、材料構造、又は、当該材料における音速)は、作製後の部品20の構造について厚みの値の組を算出するために用いられる。厚みの値は、部品20における各位置、例えば、水平寸法80、82の組において規定される。
【0033】
また、図8に示されるように、検査システムのガントリ72は、作製後の部品の検査測定を補助する様々な位置決め及びアライメントツール84a~cを含む。作製後の状態の部品は、アライメント・インジケータ(alignment indicator)86を1つ以上有しており、各アライメント・インジケータは、例えば、アライメント用のマーク、及び/又は、組立穴の形成予定位置を示すマーク、あるいは、予め形成された(元々の構造に形成されていた、あるいは、予め穿孔した)組立穴などである。通常、アライメント・インジケータ86は、測定された既知の位置であって、部品の設計において定められた位置に対応する位置に設けられている。検査システムは、作製後の部品についての測定値を、部品の設計に関連付ける際に、1つ以上のアライメント・インジケータを利用することができる。
【0034】
図9に示すように、システム102は、部品20を検査するとともに、空隙の状況を予測し、シム36を作製し、及び/又は、他の部品に部品20を組み付ける際に1つ以上の犠牲材料350の層を用いる必要が在るか否かを判定するように構成されている。システム102は、超音波システム70などの非破壊検査機器を含む。この機器は、部品20に超音波信号62又は68を供給し、超音波測定によるデータ104をコンピュータシステム106に送信するよう構成されている。図9では、コンピュータシステム106は、超音波システム70と別個のものであるが、この代わりに、コンピュータシステムにおける1つ又は複数の部分、或いは、全体が、超音波システム70に内蔵された構成でもよい。検査データ及びシムの予測、製造についてのデータを処理する他の構成は、本開示の実施形態の特定の用途に合わせて最適な態様で実装することができる。
【0035】
コンピュータシステム106は、外板20の非破壊検査による1つ以上のデータセット100を格納する。コンピュータシステム106は、また、外板20及び下部構造28などの部品のデジタルモデル108も格納する。モデル108は、例えば、外板20及び/又は下部構造28の設計に用いた別個のCADシステムから、又は、その他のソースから供給される。あるいは、部品の設計に用いたCADシステムがコンピュータシステム106に一体化された構成でもよい。
【0036】
外板20などの部品のデジタルモデル108は、2つの水平寸法と1つの厚み寸法とで規定される、外板の基準マップ(nominal map)を含んでもよい。下部構造28などの部品のデジタルモデル108は、2つの水平寸法と1つの厚み寸法とで規定される、下部構造の基準マップを含んでもよい。コンピュータシステム106は、1つ以上のプロセッサエレメント110を含み、デジタルモデルと非破壊検査によるデータセットとを用いて、シム36、及び/又は、1つ以上の犠牲材料350の層のサイズ及び形状を予測する。デジタルモデル、検査のデータセット、及び、シム予測のためのデータ処理についての詳細な説明は、図10図16を参照して後述する。犠牲材料の予測については、図10図16及び図20図24を参照して後述する。
【0037】
また、図9に示すように、コンピュータシステム106は、3Dプリンタを例とする付加製造装置112などの機器、及び/又は、数値制御(NC)プログラムを用いてシム36を加工する、その他のシム構成手段と通信可能に接続されている。例えば、コンピュータシステム106は、シム36のデジタルモデル114を生成する。加えて、コンピュータシステム106は、モデル114を付加製造装置112に送信し、3Dプリンタやその他の機器は、このデジタルモデルを用いてシムを作製する。これに加えて、或いは、これに代えて、装置112は、犠牲材料の層を準備するプライ切断装置を含んでもよい。コンピュータシステム106は、犠牲材料350の1つ以上の層についてのデジタルモデル114を生成し、送信する。このデジタルモデルは、犠牲材料を配置、硬化した後に行う機械加工についてのデータをさらに含んでもよい。
【0038】
シム36のモデル114は、シム36の水平座標の対と厚みの値との組を複数含む。通常、そのような厚みの値は、外板のデジタルモデルに対する外板の作製後厚みの値の逸脱量34に対応する。典型的には、そのような厚みの値は、シム設計許容値40よりも大きい値のみを含める。シム36のモデル114は、三次元で規定されたシム輪郭、又は、シム寸法データを含み、いずれも、外板厚みの基準マップに対する、外板の作製後厚みの値の逸脱量34(典型的には、設計公差よりも大きい逸脱量のみ)に対応する。モデル114は、位置の組と、外板の作製後厚みの値の外板の設計厚みプロファイルからの逸脱量(典型的には、設計公差よりも大きい逸脱量)の値の組とを含む、シム36のアウトライン44及びプロファイル42も含んでもよい。シム36のモデル114が上記のいずれの場合でも、シム36を作製する際に形成して、外板及び下部構造の一方又は両方に予め形成されている組立穴と位置合わせされるべき組立穴(図17を参照)の定義をモデル114が含む。犠牲材料350のモデル114は、水平座標の組と、配置、硬化及び機械加工の前と後の犠牲材料の厚みの値との組を複数含む。通常、そのような厚みの値は、外板のデジタルモデルに対する、外板の作製後厚みの値の逸脱量334に対応する。典型的には、そのような厚みの値には、設計許容値342よりも大きい値のみを含める。1つ以上の犠牲材料層350のモデル114は、各犠牲材料層のサイズ、即ち、アウトラインと厚みを特定するプライ切断プラン(ply-cutting plan)を含み、これにより、外板厚みの基準マップに対する外板の作製後厚みの逸脱量334(典型的には、設計公差342よりも大きい逸脱量)に対応する犠牲材料層データを三次元で定義する。モデル114は、配置及び硬化後の層の厚みに関するデータセット、及び、外板20に配置し、硬化させた犠牲材料の機械加工に関するデータセットをさらに含んでもよい。犠牲材料層350のモデル114が上記のいずれの場合でも、モデル114は、犠牲材料層350に形成して、外板及び下部構造の一方又は両方に予め形成されている組立穴と整列させるべき組立穴(図17を参照)の定義を含む。
【0039】
図10は、外板20の超音波スキャン118を示しており、この例では、外板は複合材製である。複合材製の外板を形成するプロセスでは、外板の厚みにばらつきが生じる可能性がある。他の形成方法でも、部品の厚みにばらつきが生じる可能性がある。図10には、超音波スキャン118によって特定された、外板20の二次元領域における厚みの値のばらつきが示されている。ブランク部分120は、最小厚みの領域を表しており、ドット部分122は、中間の厚みの領域を表しており、ライン部分124は、最大厚みの領域を表している。
【0040】
図10は、外板20の作製後厚みのプロファイルを2つの二次元寸法と1つの厚み寸法とで表したものであり、2つの水平寸法で規定される複数の位置における外板20の厚みの値を表示している。この表示は、図示の便宜上簡略化されているが、通常は、非破壊検査では、作製後厚みの値及び水平寸法の位置座標について、正確で高精度(例えば、0.0001インチのレベル)な測定値が生成される。作製後の構造の部品の超音波検査は、超音波検査が正確であるので、他の部品検査方法(手作業で行うものも、自動で行うものも含めて)に比べて、組み立て時に生じる空隙を予測し、及び/又は、シム調整及び/又は犠牲プライの付加を行う必要性を判定する際に有利である。このような検査により得られた、設計厚みプロファイルに対する作製後厚みプロファイルの逸脱量などの結果は、データベースに記録され、後に他の外板を作製する際に用いられる。この結果は、アセンブリ作製の工程能力を確立し、制御するために、即ち、作製におけるばらつきの傾向を特定するために有用であり、これにより、設計構造に対する作製後構造の逸脱量を小さくするように生産変数を調整することができる。
【0041】
図11に示す外板20のデジタルモデル108aの表現は、外板20の設計厚みプロファイルの基準マップを表している。この場合、設計厚みプロファイルは、ドットもラインもない領域126が表すように、外板の水平寸法全体にわたって一定の厚みを有している。外板20のデジタルモデル108aは、水平位置を特定する1つ以上の座標系を含んでもよい。例えば、図9に示す寸法80、82を用いたものなどの部品固有の座標系、あるいは、図11に示す胴体ステーション(FS)及び船尾線(BL)で規定されるものなどの航空機固有の座標系を含んでもよい。一般的に、各座標系は、他の座標系に関連付け(registering)、合わせる(synchronizing)ための1つ以上の基準位置を含む。
【0042】
図12は、外板20の作製後厚みの値の超音波スキャン118を外板20の基準マップのデジタルモデル108aに仮想的に重畳する様子を示している。コンピュータシステム106は、このような仮想的な重畳、シム及び/又は犠牲材料を必要とする可能性がある領域の予測、並びに、そのようなシム及び/又は犠牲材料の作製を、すべて自動で行うことができる。あるいは、シム調整及び/又は犠牲材料の付加を必要とする可能性がある領域の選択は、オペレータが作製後厚みプロファイルを表示するグラフィックインターフェースを使って手動で行ってもよい。グラフィックインターフェースは、さらに、作製後厚みプロファイルを、外板のデジタルモデル、及び/又は、下部構造のデジタルモデル、及び/又は、作製後の下部構造を表す表示に対して重畳して、シム調整及び/又は犠牲材料の付加を必要とする可能性がある領域を選択する作業を補助する。
【0043】
下部構造28も、例えば、超音波などの非破壊プロセスによって同様に検査して、作製後の状態の下部構造28についての情報を収集することができる。作製後の状態についての情報を、下部構造のデジタルモデルと比較し、この結果を単独、あるいは、外板の作製後の状態についての情報と組わせて用いて、外板と下部構造の結合部分に用いるシムの予測及び作製に、及び/又は、犠牲材料の切断、配置、硬化、機械加工の予測にすることができる。
【0044】
図12の矢印130は、作製後厚みプロファイルの座標系を、設計厚みプロファイルのデジタルモデルに関連付け、合わせるプロセスを示している。例えば、作製後部品のスキャンの座標系は、スキャン固有の座標系でもよいし、又は、スキャンされた部品の種類に固有の座標系でもよい。そのような座標系における情報は、部品のデジタルモデルに対応した座標系に変換する必要がある。そのようなデジタルモデルとしては、例えば、航空機座標系があり、スキャン座標系に関連付け、合わせる必要がある。通常、超音波スキャン上の各点は、座標で規定されており、対応する航空機座標系にマッピング可能である。
【0045】
図13に示す複合マップ(combined map)140は、外板の基準マップのデジタルモデルに作製後厚みプロファイルを仮想的に重畳した結果である。複合マップ140は、航空機座標FS、BLを含み、これは、図13にも示すように、外板20組み付ける予定の下部構造28のデジタルモデル108bに関連付け、合わせる次のステップにおいて有用である。下部構造28のデジタルモデル108bは、航空機座標系に基づくものでもよく、この場合、複合マップ140への仮想的な重畳が容易に行える。あるいは、デジタルモデル108bが他の座標系に基づく場合は、デジタルモデル108bを複合マップ140に関連付け、合わせるためには、変換プロセスが必要になる。何れの場合も、矢印142は、仮想的な重畳を示しており、この際に、特定の用途においては、説明したように関連付け、合わせる必要がある。
【0046】
図14に示す仮想アセンブリマップ150は、(外板20のモデルに生成時の状態を重畳した)複合マップ140に下部構造28のデジタルモデル108bを仮想的に重畳した結果である。仮想アセンブリマップ150は、航空機座標系を含んでもよく、あるいは、仮想的に重畳するマップ150のコンポーネントを関連付け、合わせるために最適な他の座標系を用いてもよい。
【0047】
図13及び図14に示すデジタルモデル108bは、下部構造28における1つ以上の結合領域138を示しており、ここでは、下部構造28の上面30(図17)が、外板20を接触させ、組み付ける面となる。結合領域138は、下部構造28の上面30における複数の領域であってもよく、上面30の略全体であってもよい。典型的には、結合領域138である上面30の部分は、デジタルモデル108bにおいて特定される。
【0048】
図15は、外板と下部構造それぞれのデジタルモデルのアウトラインを関連付けることにより、外板20のうち、下部構造28に結合される1つ以上の結合領域160が特定される過程を示している。上述したように、下部構造28における結合領域138は、仮想アセンブリマップ150において、外板20の製造後の状態と設計の複合マップ140に関連付けられ、合わせられることによって、外板20のデジタルモデル108aに関連づけられている。図13図15に示す仮想的な重畳を行うことは、少なくとも外板20についての作製後厚み及びデジタルモデルと、下部構造28のデジタルモデルと、外板における結合領域160と、下部構造における結合領域138と、を用いた仮想外板フィットチェック(virtual skin up net fit check)であるとみなされる。
【0049】
外板20の結合領域160が特定されれば、コンピュータシステム106は、外板20の結合領域160内の作製後厚みの値について、設計厚みプロファイルからの逸脱がある複数の位置と逸脱量との組を算出することによって、シム36及び/又は、犠牲材料350のアウトライン及びプロファイルのデジタルモデル114を生成する。シムを付加する位置、及び、犠牲材料を付加する位置の特定については、図25を参照して後述する。あるいは、コンピュータシステム106は、結合領域160を特定する前に、作製後厚みの値について、設計厚みプロファイルからの逸脱がある複数の位置との逸脱量との組を算出してもよい。この代替的なケースでは、通常、この後、結合領域160を特定するか、あるいは、シムや犠牲材料を付加する可能性のある領域を特定し、シム36又は犠牲材料350のデジタルモデル114は、特定された領域についてのみ生成する。シム調整については図18及び図19を参照し、犠牲材料については図18a及び図19aを参照のこと。
【0050】
図15の矢印170は、部品20と部品28の機械的な結合をシミュレーションする際に、作製後厚みの値を示すスキャン118を反転させて重畳することを示している。そのような反転を行うことにより、図16に示すように、該当する設計公差よりも大きな逸脱量34又は334を容易に算出することができる。このような逸脱量は、シム36や犠牲材料350のデジタルモデル114に利用される。一般的に、犠牲材料の方がシムに比べて、より小幅な厚みの付加が可能であり、また、犠牲材料は、部品20又は部品28に配置した後で、機械加工によって犠牲材料の厚みを減らすことができるので、犠牲材料の方が設計公差が小さい。
【0051】
上述したように、シム36又は犠牲材料350のモデル114に対する逸脱量34又は334の算出は、自動で行うことも可能であるし、基準マップからの逸脱量を可視化したものを用いて、オペレータが、下部構造との結合領域において、シムや犠牲材料が必要な可能性のある外板の領域を個々のケースごとに分析することを含んでもよい。例えば、オペレータは、結合領域の様々なスライスデータを使って、シムや犠牲材料のプロファイルを取得するようにしてもよい。何れの場合も、シム又は犠牲材料(機械加工の前と後の両方)のプロファイルが特定されれば、シム又は犠牲材料のモデル114を作製し、エクスポートすることができる。シムのモデルは、機械加工用のNCプログラムに、あるいは、3D印刷用の付加製造設備にエクスポートされる。犠牲材料のモデルは、通常、プライ切断装置にエクスポートされる。
【0052】
図17に示すように、外板20の内表面22を下部構造28の上面30に組み付けたアセンブリ180は、シム36a、36b、又は、適宜機械加工された犠牲材料350a、350bを含む。アセンブリ180は、外板20に予め形成された穴182と、下部構造28に予め形成された穴184と、シム36b又は犠牲材料350bに予め形成された穴186を伴う。1つ以上のファスナ188は、部品同士を、穴182と穴184において、及び、同様に他の穴の組において固定する。通常、外板及び下部構造に予め形成された穴182及び184は、高精度にアライメントされていなければならない。シム36b又は犠牲材料350bの穴186は、同じく高精度で予め形成することができる。これは、超音波検査によって、外板の厚みにおける逸脱の位置が正確に特定されること、及び、シム36bや犠牲材料350bにおける穴186の位置を、航空機座標系など、外板と下部構造の両方に共通する座標系において特定できることによる。
【0053】
図18は、下部構造28と外板20の間の空隙32を埋めるシム36の位置、アウトライン、及び、プロファイルを予測するために実行される一組の処理202を示すフローチャートである。処理202は、外板及び下部構造の設計のデジタルモデルを提供するステップ204を含む。処理202は、外板を作製し、当該外板の作製後厚みの値を特定するステップ206を含む。処理202は、外板及び下部構造のそれぞれにおける結合領域138、160を特定するステップ208を含む。処理202は、結合領域における外板の作製後厚みについて、外板のデジタルモデルからの逸脱量の組を算出するステップ210を含む。処理202は、工学的なシム設計許容値よりも大きい、逸脱量の組に対応するシムのデジタルモデルを生成するステップ212を含む。処理202は、デジタルモデルに基づいてシムを作製するステップ214を含む。図18に示す1つ以上の実施形態では、下部構造28及び外板20のそれぞれにおける結合領域138、160を仮想的に特定するステップは、外板の作製後厚みについて外板の基準厚みの値からの逸脱量を算出するステップの前に行われる。逸脱量を算出するステップは、結合領域138、160の特定後、結合領域についてのみ行ってもよい。シム36のデジタルモデル114の生成は、逸脱量を用いることによって実行可能である。
【0054】
図19は、下部構造28と外板20の間の空隙32を埋めるシム36の位置、アウトライン、及び、プロファイルを予測するために実行される別の一組の処理220を示すフローチャートである。処理220は、外板の設計のデジタルモデルを提供するステップ222を含む。処理220は、外板を作製し、当該外板の作製後厚みの値を特定するステップ224を含む。処理220は、外板の作製後厚みについて、外板のデジタルモデルからの逸脱量の組を算出するステップ226を含む。処理220は、例えば、下部構造の設計のデジタルモデルを提供して、外板と下部構造との結合領域138、160を特定することにより、シムを付加する可能性のある領域を特定するステップ228を含む。処理220は、シムを付加する可能性のある領域内における、工学的なシム設計許容値よりも大きな逸脱量の組に対応するシムのデジタルモデルを生成するステップ230を含む。処理220は、デジタルモデルに則りシムを作製するステップ232を含む。図19に示す1つ以上の実施形態では、外板の作製後厚みについて外板の基準厚みの値からの逸脱量を算出するステップは、結合領域138、160についての情報が利用される前に、或いは、そのような情報を利用することなく実行される。また、外板及び下部構造のそれぞれにおける結合領域138、160を仮想的に特定するステップは、逸脱量の組を算出するステップの後に実行される。通常は、図19にしたがって逸脱量の組を算出するステップは、外板のアウトライン全体について実行される。図19の実施形態では、結合領域138、160が特定され、あるいは、シムを適用する可能性のある領域が特定され、シム36のデジタルモデル114は、特定された領域についてのみ生成してもよい。
【0055】
図18aは、下部構造28と外板20の間の空隙332を埋める犠牲材料350の位置、アウトライン、及び、プロファイルを予測するために実行される一組の処理402を示すフローチャートである。処理402は、外板及び下部構造の設計のデジタルモデルを提供するステップ404を含む。処理402は、外板を作製し、当該外板の作製後厚みの値を特定するステップ406を含む。処理402は、外板及び下部構造のそれぞれにおける結合領域138、160を特定するステップ408を含む。処理402は、結合領域における外板の作製後厚みについて、外板のデジタルモデルからの逸脱量の組を算出するステップ410を含む。処理402は、工学的なシム設計許容値よりも大きい、逸脱量の組に対応する犠牲材料350の1つ以上の層のデジタルモデルを生成するステップ412を含む。処理402は、デジタルモデルに則り、犠牲材料の1つ以上の層を切断するステップ414を含む。図18aに示す1つ以上の実施形態では、下部構造28及び外板20のそれぞれにおける結合領域138、160を仮想的に特定するステップは、外板の作製後厚みについて外板の基準厚みの値からの逸脱量を算出するステップの前に行われる。逸脱量を算出するステップは、結合領域138、160の特定後、結合領域についてのみ行ってもよい。犠牲材料350のデジタルモデル114の生成は、逸脱量を用いるによって実行可能である。
【0056】
図19aは、下部構造28と外板20の間の空隙332を埋める犠牲材料350の位置、アウトライン、及び、プロファイルを予測するために実行される別の一組の処理420を示すフローチャートである。処理420は、外板の設計のデジタルモデルを提供するステップ422を含む。処理420は、外板を作製し、当該外板の作製後厚みの値を特定するステップ424を含む。処理420は、外板の作製後厚みについて、外板のデジタルモデルからの逸脱量の組を算出するステップ426を含む。処理420は、例えば、下部構造の設計のデジタルモデルを提供して、外板と下部構造との結合領域138、160を特定することにより、犠牲材料を付加する可能性のある領域を特定するステップ428を含む。処理420は、工学的なシム設計許容値よりも大きい、逸脱量の組に対応する犠牲材料350の1つ以上の層のデジタルモデルを生成するステップ430を含む。処理420は、デジタルモデルにしたがって、犠牲材料の1つ以上の層を切断するステップ432を含む。図19aに示す1つ以上の実施形態では、外板の作製後厚みについて外板の基準厚みの値からの逸脱量を算出するステップは、結合領域138、160についての情報が利用される前に、或いは、そのような情報を利用することなく実行される。また、外板及び下部構造のそれぞれにおける結合領域138、160を仮想的に特定するステップは、逸脱量の組を算出するステップの後に実行される。通常は、図19aにしたがって逸脱量の組を算出するステップは、外板のアウトライン全体について実行される。図19aの実施形態では、結合領域138、160が特定され、あるいは、犠牲材料を適用する可能性のある領域が特定され、犠牲材料350のデジタルモデル114は、特定された領域についてのみ生成してもよい。
【0057】
図20に示すように、外板20の作製後厚みの値の超音波スキャン118は、外板20の基準マップのデジタルモデル108aと、さらに、下部構造28のデジタルモデル108bと、結合領域138、160と、に対して仮想的に重畳される。上述したように、コンピュータシステム106は、自動で、及び/又は、オペレータによって、この仮想的な重畳を実行して、犠牲材料を必要とする可能性のある領域、及び、犠牲材料350の位置、アウトライン、及び、プロファイルを特定する。そのような領域450a~cを図21に示しており、これら領域は、外板20における1つ以上の空隙332の位置に対応する。領域450a~cに対応する空隙332は、作製のばらつきにより生じるものであって、特定の形状には限定されず、例えば、図21に示すような不規則なアウトラインを有する場合もありうる。領域450a~cに対応する空隙332は、典型的には、シム設計許容値より小さいので、このような空隙を埋めるには、シムでは厚みが大きすぎるため、犠牲材料を用いる。図20図21に示す仮想的な重畳を行うことは、少なくとも外板20の作製後厚みと、下部構造28のデジタルモデルと、外板における結合領域160と、下部構造における結合領域138と、を用いた仮想外板フィットチェックに相当するとみなされる。
【0058】
図22に示すように、犠牲材料350のデジタルモデル114は、例えば、コンピュータシステム106によって、領域450a~cを囲むように決定されるアウトライン452a~cを含み、この領域は、例えば、略矩形である。複合材製の部品に適用する場合は、犠牲材料350は、略矩形に切断されることが多い。アウトライン452a~cは、領域450a~cより大きな略矩形であってもよく、この形状は、領域450a~cに対応するすべての空隙332を確実に犠牲材料で覆うために有用である。あるいは、アウトライン452a~cは、例えば、領域450a~cに沿った形状など、任意の適当な形状であってもよく、領域450a~cまわりを囲む多少のゆとりがあればよい。図22に示すように、アウトライン452a~cは、外板20と下部構造28の結合領域138、160に関係なく、すべての領域450a~cを取り囲んでいる。
【0059】
図23に示すように、コンピュータシステム106は、外板20と下部構造28の結合領域138、160を考慮して、結合領域138、160に重なる領域450a~cの部分を囲むように決定された領域454a~dを有する犠牲材料350のデジタルモデル114を生成してもよい。
【0060】
ガラス繊維/エポキシのプリプレグなどの犠牲材料であれば、厚みのばらつきの範囲が固定されたシート状のものが利用可能である。コンピュータシステム106は、デジタルモデル114に対して、個々の層やシートの厚みに基づいて、各領域452又は454における層やシートの数を特定することを可能とする、犠牲材料350の厚さのマップを生成し、最終的な当該数の層により結合領域の寸法の不一致に十分対処できるようにする。
【0061】
図24に示すように、犠牲材料350は、1つ以上の領域452又は454において、外板20に配置される。通常、犠牲材料350は、配置された後に硬化される。加えて、犠牲材料層データのデジタルモデル114は、犠牲材料除去データの組を含んでもよい。犠牲材料350を機械加工することによって、設計厚みよりも厚い外板20の部分を除去する。これにより、図24に示すように、領域456において、機械加工後に残っている犠牲材料が空隙332の少なくとも一部を埋めており、外板20と下部構造28の結合部の空隙が小さくなっている。
【0062】
図25は、本開示の1つ以上の実施形態を示すフローチャートであり、これによれば、取り付け先の構造に部品を実際に組み立てる前に行う部品の仮組み立ての回数を、つまり、外板フィットチェックの回数を低減する、あるいは、その必要性を排除することが可能である。方法500は、作製後の部品の厚みプロファイルを検査し、シム及び/又は犠牲材料層の必要性を判定するためのものであり、先ず最初に502において、例えば超音波などの非破壊検査によって部品を検査する。検査の結果、作製後厚みマップが生成される。次いで、504において、作製後厚みマップを当該部品のデジタルモデルに重畳する。506において、このマップをモデルと比較して、モデルからの逸脱をすべて検出する。設計許容値(342、図1)より大きな逸脱量が無ければ、508において、部品が最終組み立て可能な状態にある否かを判定する。設計許容値より大きな逸脱量があれば、シム又は犠牲材料を付加するか必要がある否かを判定する。510において、この逸脱量をさらに評価して、逸脱量がシム設計許容値より大きいか否かを判定する。逸脱量がシム設計許容値より大きければ、512において、この逸脱量のアウトライン及びプロファイルを特定し、514において、特定したアウトライン及びプロファイルでシムを作製するための機器又はプロセスにデータを送信する。
【0063】
逸脱量が設計許容値より大きく且つシム設計許容値より小さければ、516において、厚みの逸脱量の範囲と領域とを特定する。このデータは、518において、製造のばらつきをトラッキングして、本プロセスや他のプロセスを改善する傾向分析ツールにもエクスポートされる。520において、部品モデルは、当該部品が結合される下部構造のモデルに仮想的に重畳される。結合領域が特定されれば、522において、結合領域における逸脱領域に付加する犠牲プライの数及び厚みを特定する。犠牲プライについてのデータは、524においてプライカッターにエクスポートされる。プライカッターには、傾向分析ツールからのデータも通知可能である。526において、犠牲プライを切断し、部品に配置し、硬化させる。犠牲材料は、528において、例えばCNCフライスツール(CNC milling tool)によって機械加工される。この際に、傾向分析ツールからのデータも利用可能であり、例えば、530において、犠牲材料の機械加工を行うフライスツールの経路を最適化することができる。この段階では、シム及び/又は機械加工後の犠牲材料の寸法がすべて分かっているので、部品を仮想的に重畳する際に、外板と下部構造のモデルにこれらの寸法を加算することができる。加えて、図13図15及び図20図21について上述したように、少なくとも外板20の作製後厚みと、下部構造28のデジタルモデルと、外板における結合領域160と、下部構造における結合領域138と、シムの寸法データと、犠牲材料層のデータと、を利用することで、仮想外板フィットチェックを実行することができる。
【0064】
シム及び/又は機械加工した犠牲材料が付加されたことにより、部品は、532において、外板フィットチェックを実行可能な状態になるので、508において、当該部品が最終組み立て可能な状態であるかを判定することができる。部品が最終組み立て可能な状態であれば、534において、最終的な組付けを行って下部構造に結合する。
【0065】
本開示の1つ以上の実施形態における、結合部のシム調整及び/又は犠牲材料の付加を予測的に行うためのシステム及び方法は、コンピュータの方法、コンピュータシステム、又は、コンピュータプログラム製品の態様で実施することができる。したがって、本開示の1つ以上の実施形態における結合部のシム調整を予測的に行うためのシステム及び方法は、全体がハードウェアの実施形態、全体がソフトウェアの実施形態(ファームウェア、常駐ソフトウェア、マイクロコード等を含む)、又は、ソフトウェアとハードウェアを組み合わせた実施形態の態様を取ることができ、これらのすべてを、本明細書では概括的に「回路」、「モジュール」、又は「システム」と呼ぶ。さらに、本開示の1つ以上の実施形態における結合部のシム調整を予測的に行うためのシステム及び方法は、コンピュータ可読プログラム/命令を格納したコンピュータ可読媒体として実現されるコンピュータプログラム製品の態様を取ることができる。
【0066】
また、複数のコンピュータ可読媒体の組み合わせを利用することもできる。コンピュータ可読媒体は、コンピュータ信号媒体及び/又はコンピュータ可読記憶媒体であってもよい。コンピュータ可読記憶媒体は、電子、磁気、光学、電磁、赤外線、及び/又は、半導体のシステム、装置、もしくはデバイス、又はこれらの任意の適当な組み合わせであってもよい。コンピュータ可読記憶媒体のより具体的な例には、1つ以上の電線を含む電気的接続、可搬型のコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、消去可能プログラマブルリードオンリーメモリ(EPROM又はフラッシュメモリ)、光ファイバ、可搬型のコンパクトディスクリードオンリーメモリ(CD-ROM)、光学記憶装置、磁気記憶装置、及び/又は、これらの任意の適当な組み合わせなどが含まれる。本開示においては、コンピュータ可読記憶媒体は、命令実行システム、装置又はデバイスによって使用したり、あるいは、これらに関連させて使用したりするための、コンピュータ可読のプログラムコードを含有及び/又は格納することができる任意の有形の媒体であってもよい。
【0067】
コンピュータ可読信号媒体は、コンピュータ可読プログラムコードを、例えば、ベースバンドにおいて又は搬送波の一部として伝搬するデータ信号を含みうる。このような伝搬信号は、限定するものではないが、電磁的、光学的、及び/又は、これらの任意の適当な組み合わせを含む様々な形態のうちの任意の形態をとることができる。コンピュータ可読信号媒体は、コンピュータ可読記憶媒体以外でも、命令実行システム、装置、又は、デバイスによって使用する又はこれらに関連して使用するためのプログラムを通信、伝搬、又は転送できる、任意のコンピュータ可読媒体であってもよい。
【0068】
コンピュータ可読媒体に組み込まれたプログラムコードは、限定するものではないが、無線、有線、光ファイバケーブル、無線周波数(RF)など、及び/又は、これらの任意の適当な組み合わせを含む任意の適当な媒体を用いて送信することができる。
【0069】
本開示の1つ以上の実施形態の態様における、結合部のシム調整を予測的に実行するためのシステム及び方法の処理を実行するためのコンピュータプログラムコードは、1つ以上の任意のプログラム言語を組み合わせて記述したものでもよく、プログラム言語の例としては、Java、Smalltalk、C++などのオブジェクト指向プログラミング言語、及び、「C」プログラミング言語などの従来の手続き型プログラミング言語が含まれる。プログラムコードは、全体をユーザコンピュータ上で実行してもよいし、一部をスタンドアローンソフトウェアパッケージとしてユーザコンピュータ上で実行してもよいし、一部をユーザコンピュータ上で実行するとともに一部をリモートコンピュータ上で実行してもよいし、全体をリモートコンピュータやサーバ上で実行してもよい。後者の場合、リモートコンピュータは、ローカルエリアネットワーク(LAN)又はワイドエリアネットワーク(WAN)を含む任意の種類のネットワークを介してローカルのコンピュータに接続してもよい。また、(例えば、インターネットサービスプロバイダを用いたインターネットを介して)外部コンピュータに接続してもよい。
【0070】
上述のとおり、本開示の1つ以上の実施形態の態様として、結合部のシム調整及び/又は犠牲材料の付加を予測的に行うためのシステム及び方法の説明では、方法、装置、システム、及び/又は、コンピュータプログラム製品を示すフローチャート及び/又はブロック図を参照している。フローチャート及び/又はブロック図に含まれる各ブロック及び/又はブロックの組み合わせは、コンピュータプログラム命令により実現可能である。コンピュータプログラム命令は、汎用コンピュータ、専用コンピュータ、又は、その他のプログラム可能なデータ処理装置のプロセッサに提供されてマシーンを構成し、コンピュータ又はその他のプログラム可能なデータ処理装置のプロセッサで実行される命令により、フローチャート及び/又はブロック図のブロックに記載された機能/処理を実現するための手段を形成することができる。
【0071】
加えて、これらのコンピュータプログラム命令は、コンピュータ、その他のプログラム可能なデータ処理装置、及び/又は、その他のデバイスに特定の態様で機能するよう指示することができるコンピュータ可読媒体に格納することができ、これにより、コンピュータ可読媒体に格納された命令が、フローチャート及び/又はブロック図のブロックに記載された機能/処理を実現する命令を含む製品を形成する。
【0072】
コンピュータプログラム命令は、コンピュータ、その他のプログラム可能なデータ処理装置、及び/又は、その他のデバイスにロードして、当該デバイスで一連の処理ステップを実行させることができ、これにより、コンピュータ又はその他のプログラム可能な装置で実行される命令が、フローチャート及び/又はブロック図のブロックに記載された機能/処理を実現するためのプロセスを提供することができる。
【0073】
添付図面に含まれるフローチャート及び/又はブロック図は、本開示の1つ以上の実施形態による、結合部のシム調整を予測的に行うためのシステム、方法、及び、プログラム製品の可能な実施態様の構成、機能、及び動作を示している。これに関して、各ブロックは、特定の論理機能を実現するために実行可能な1つ以上の命令を含むモジュール、セグメント、又はコードの一部を表す場合がある。いくつかの実施態様では、ブロックに記載の機能は、図面の記載順とは異なる順で実行されてもよい。例えば、関連する機能によっては、連続するものとして示されている2つのブロックは、実際には実質的に同時に実行されてもよいし、場合によっては、これらのブロックは、逆の順序で実行されてもよい。各ブロック及び/又はブロックの組み合わせは、特定された機能や処理を実行する専用ハードウェアに基づくシステム(又は、専用ハードウェアとコンピュータ命令との組み合わせ)により実現することができる。
【0074】
さらに、本開示は下記の付記による実施形態を包含する。
【0075】
付記1.外板を下部構造に組み付けるために、当該外板に1つ以上の犠牲材料の層を付加する方法であって、前記外板は、内表面、前記内表面と反対側の外表面、及び、前記内表面と前記外表面との間の外板厚みを有し、前記下部構造は、前記外板に対する結合面を有し、前記外板に関連付けられたデジタルモデルは、前記外板厚みについての基準マップを含み、前記犠牲材料は、前記外板の前記内表面と前記下部構造との結合領域において、設計許容値よりも大きく、且つ、最小シム厚みよりも小さい空隙を埋めるために付加されるものであり、前記方法は、
a.前記内表面及び前記外表面の少なくとも一方における複数の位置で前記外板を非破壊で検査して、前記外板厚みに関するデータセットを収集するステップと、
b.前記データセットを用いて、前記複数の位置の少なくとも一部における前記外板の作製後厚みの値の組を算出するステップと、
c.前記下部構造の前記結合面に対する、前記外板の前記内表面における前記結合領域を特定するステップと、
d.前記外板の前記内表面における前記結合領域について、前記作製後厚みの値の組において前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出し、これによって犠牲材料層データの組を生成するステップと、を含む方法。
【0076】
付記2.前記犠牲材料層データの組と、前記作製後厚みの値の組において前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する前記逸脱量の組と、用いて、犠牲材料除去データの組を生成するステップをさらに含む、付記1に記載の方法。
【0077】
付記3.前記1つ以上の犠牲材料の層を前記外板に付加するステップと、前記犠牲材料除去データの組に基づいて、前記外板から前記犠牲材料の一部を除去するステップと、をさらに含む、付記2に記載の方法。
【0078】
付記4.前記犠牲材料層データの組を用いて、前記1つ以上の犠牲材料の層を準備するステップをさらに含む、付記1~3のいずれかに記載の方法。
【0079】
付記5.前記1つ以上の犠牲材料の層を前記外板に付加するステップをさらに含む、付記4に記載の方法。
【0080】
付記6.前記犠牲材料層データの組を生成する前記ステップは、前記外板の前記内表面における前記結合領域について、前記設計許容値を超える前記逸脱量を補償するのに十分な1つ以上の犠牲材料の領域を特定することを含む、付記1~5のいずれかに記載の方法。
【0081】
付記7.前記下部構造に対する前記外板の前記結合領域を特定するステップは、前記外板の前記作製後厚みの値の組を算出するステップに先行し、さらに、前記外板の前記作製後厚みの値は、前記外板の前記結合領域についてのみ算出される、付記1~6のいずれかに記載の方法。
【0082】
付記8.前記外板の非破壊検査を行って前記データセットを収集するステップは、超音波を用いて前記外板を検査することを含む、付記1~7のいずれかに記載の方法。
【0083】
付記9.前記下部構造について用いる、付記1~8のいずれかに記載の方法であって、前記下部構造は、所与の厚みを有しており、前記下部構造に関連付けられたデジタルモデルは、前記下部構造厚みについての基準マップを含み、前記方法は、
a.前記下部構造を非破壊で検査して、前記下部構造厚みに関するデータセットを収集するステップと、
b.前記下部構造データセットを用いて、前記下部構造の作製後厚みの値の組を算出するステップと、
c.前記外板の前記内表面における前記結合領域について、前記作製後厚みの値の組において前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出し、これによって、前記外板及び前記下部構造の少なくとも一方について用いる犠牲材料層データの組を生成するステップと、を含む方法。
【0084】
付記10.外板を下部構造に組み付けた結合アセンブリにおける空隙を小さくするための方法であって、前記外板は、内表面、前記内表面と反対側の外表面、及び、前記内表面と前記外表面との間の外板厚みを有し、前記下部構造は、前記外板に対する結合面を有し、前記外板に関連付けられたデジタルモデルは、前記外板厚みについての基準マップを含み、前記方法は、
a.前記内表面及び前記外表面の少なくとも一方における複数の位置で前記外板を非破壊で検査して、前記外板厚みに関するデータセットを収集するステップと、
b.前記データセットを用いて、前記複数の位置の少なくとも一部における前記外板の作製後厚みの値の組を算出するステップと、
c.前記下部構造の前記結合面に対する、前記外板の前記内表面における結合領域を特定するステップと、
d.前記外板の前記内表面における前記結合領域について、前記作製後厚みの値の組が前記外板厚みについての前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出するステップと、
e.設計許容値より大きく、且つ、最小シム厚み以上の逸脱量に関して、当該逸脱量の組に合致するアウトライン及びプロファイルを有するシムを作製するステップと、
f.前記設計許容値より大きく、且つ、最小シム厚みより小さい逸脱量に関して、前記外板の前記内表面と前記下部構造との前記結合領域に1つ以上の犠牲材料の層を準備するステップと、を含む方法。
【0085】
付記11.前記1つ以上の犠牲材料の層を前記外板に配置するステップをさらに含む、付記10に記載の方法。
【0086】
付記12.前記外板上の前記1つ以上の犠牲材料の層を硬化させるステップをさらに含む、付記11に記載の方法。
【0087】
付記13.前記1つ以上の犠牲材料の層を機械加工するステップをさらに含む、付記11又は12に記載の方法。
【0088】
付記14.第1結合面を有する第1部品であって、第2結合面を有する第2部品に組み付けるための前記第1部品に1つ以上の犠牲材料の層を付加するためのシステムであって、前記第1部品には、2つの水平寸法と1つの厚み寸法についての第1基準マップを含む第1デジタルモデルが関連付けられており、前記第2部品には、2つの水平寸法についての第2基準マップを含む第2デジタルモデルが関連付けられており、前記1つ以上の犠牲材料の層は、前記第1部品の前記結合面と前記第2部品の前記結合面の間に設計許容値を超える空隙が存在する領域を前記1つ以上の犠牲材料の層が覆うように設定されたアウトラインを有するように構成されるものであり、前記システムは、
a.前記第1部品を検査して、当該第1部品に関するデータセットを収集するよう構成された非破壊検査システムと、
b.前記非破壊検査システムに接続されているとともに、前記第1部品に関する前記データセットを受信して、前記第1部品の前記第1基準マップ、前記第2部品の前記第2基準マップ、及び、前記設計許容値を格納するよう構成されたコンピュータと、を含み、前記コンピュータは、プロセッサエレメントを含み、当該プロセッサエレメントは、前記第1部品に関する前記データセットから、前記第1部品の少なくとも一部分についての作製後厚みプロファイルを算出し、前記第1部品の前記第1基準マップを前記第2部品の前記第2基準マップに仮想的に重畳して、前記第1部品と前記第2部品の結合領域を特定し、前記結合領域において、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップから前記設計許容値を超えて逸脱する逸脱量の組を算出することによって、犠牲材料層データの組を生成するように構成されている、システム。
【0089】
付記15.前記犠牲材料層データを受信すべく前記コンピュータに接続されているとともに、前記1つ以上の犠牲材料の層を切断するよう構成されたプライ切断装置をさらに含む、付記14に記載のシステム。
【0090】
付記16.前記非破壊検査システムは、超音波システムを含む、付記14又は15に記載のシステム。
【0091】
付記17.前記コンピュータは、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップから逸脱する前記逸脱量の組を、後に別の第1部品を作製する際に利用するためにデータベースに記録する、付記14~16のいずれかに記載のシステム。
【0092】
付記18.寸法データの組により規定されるシムを作製する際に用いる、付記14~17のいずれかに記載のシステムであって、前記非破壊検査システムに接続された前記コンピュータの前記プロセッサエレメントは、さらに、前記結合領域において、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップからシム設計許容値を超えて逸脱する逸脱量の組を算出することにより、前記シム寸法データの組を生成するよう構成されており、前記システムは、前記シム寸法データを受信すべく前記コンピュータに接続されているとともに、前記シムを作製するよう構成された付加製造装置をさらに含む、システム。
【0093】
付記19.寸法データの組により規定されるシムを作製する際に用いる、付記14~17のいずれかに記載のシステムであって、前記非破壊検査システムに接続された前記コンピュータの前記プロセッサエレメントは、さらに、前記結合領域において、前記第1部品の前記作製後厚みプロファイルが前記第1部品の前記基準マップからシム設計許容値を超えて逸脱する逸脱量の組を算出することにより、前記シム寸法データの組を生成するよう構成されており、前記システムは、前記犠牲材料層データを受信すべく前記コンピュータに接続されているとともに、前記1つ以上の犠牲材料の層を切断するよう構成されたプライ切断装置と、さらに、前記シム寸法データを受信すべく前記コンピュータに接続されているとともに、前記シムを作製するよう構成された付加製造装置と、をさらに含む、システム。
【0094】
付記20.前記コンピュータは、前記第1部品の前記作製後厚み、前記第2部品の前記第2デジタルモデル、前記シム寸法データ、及び、前記犠牲材料層データを用いて仮想外板フィットチェックを実行するよう構成されている、付記19に記載のシステム。
【0095】
上述の開示は、独自の有用性を有する複数の発明を包含しうる。これらの発明の各々を好ましい形態で開示しているが、本明細書に開示及び図示した特定の実施形態には多くの変形例が可能であり、したがって、これらの実施形態を限定的な意味で考慮すべきではない。本開示においてセクションごとの見出しが用いられている場合、そのような見出しは、単に体系化のみを目的としたものであり、特許を受けようとする発明の特徴部分を構成するものではない。本開示の要旨は、本明細書に開示された様々な要素、特徴、機能、及び/又は特性の、すべての新規且つ非自明の組み合わせ及びサブコンビネーションを含む。以下の特許請求の範囲では、新規且つ非自明とみなされる、いくつかの組み合わせ及びサブコンビネーションを特に示している。本願又は関連出願に基づく優先権を主張する出願の特許請求の範囲において、要素、特徴、機能、要素、及び/又は特性の、その他の組み合わせ及びサブコンビネーションにおいて実施される発明が記載されうる。そのような特許請求の範囲は、異なる発明を対象としたもの、同じ発明を対象としたもの、元の特許請求の範囲よりも広いもの、狭いもの、均等のもの、又は異なるもの、のいずれであろうとも、本開示の発明の要旨に含まれるものとみなされる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図18a
図19
図19a
図20
図21
図22
図23
図24
図25