IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士通株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-08
(45)【発行日】2023-11-16
(54)【発明の名称】光分岐挿入装置および光通信システム
(51)【国際特許分類】
   H04B 10/077 20130101AFI20231109BHJP
   H04B 10/27 20130101ALI20231109BHJP
   H04J 14/02 20060101ALI20231109BHJP
【FI】
H04B10/077
H04B10/27
H04J14/02
【請求項の数】 5
(21)【出願番号】P 2020013860
(22)【出願日】2020-01-30
(65)【公開番号】P2021121057
(43)【公開日】2021-08-19
【審査請求日】2022-10-06
(73)【特許権者】
【識別番号】000005223
【氏名又は名称】富士通株式会社
(74)【代理人】
【識別番号】100094525
【弁理士】
【氏名又は名称】土井 健二
(74)【代理人】
【識別番号】100094514
【弁理士】
【氏名又は名称】林 恒徳
(72)【発明者】
【氏名】幸 雅洋
【審査官】前田 典之
(56)【参考文献】
【文献】特開2017-135596(JP,A)
【文献】特開2013-070198(JP,A)
【文献】特開2009-017451(JP,A)
【文献】米国特許出願公開第2009/0016727(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/077
H04B 10/27
H04J 14/02
(57)【特許請求の範囲】
【請求項1】
信号波長を挿入する際の多重化部の光回路種別は複数の種類に対応し、波長多重信号光を分岐挿入する光分岐挿入装置であって、
第一の伝送装置及び第二の伝送装置のそれぞれに接続する前記光分岐挿入装置を収容する伝送装置で信号波長を挿入する際は、その際に通過する前記多重化部の光回路種別情報を取得するとともに、信号波長に対する光回路種別情報を、前記第一の伝送装置へ転送し、
前記第二の伝送装置より信号波長に対する光回路種別情報を取得するとともに、その情報を前記第一の伝送装置へ転送し、
予め格納してある光回路種別情報と分岐部の出力レベル目標値との対応表と、信号波長ごとの光回路種別情報に基づき、信号波長ごとの分岐部の出力レベル目標値を決定し、
予め格納してある光回路種別情報と、挿入部の出力レベル目標値との対応表と、信号波長ごとの光回路種別情報に基づき、信号波長ごとの挿入部の出力レベル目標値を決定することを特徴とする光分岐挿入装置。
【請求項2】
請求項1において、
予め格納してある光回路種別情報と前置光増幅器の出力レベル目標値との対応表と、
信号波長ごとの光回路種別情報に基づき、前置光増幅器の平均出力レベル目標値を決定し、
予め格納してある光回路種別情報と後置光増幅器の出力レベル目標値との対応表と、信号波長ごとの光回路種別情報に基づき、後置光増幅器の平均出力レベル目標値を決定することを特徴とする光分岐挿入装置。
【請求項3】
請求項2において、
前記分岐部と、前記挿入部と、前記前置光増幅器と、前記後置光増幅器の出力レベル目標値は、光信号波長を挿入する際の多重化部の光回路の強度変化率に比例した値に設定することを特徴とする光分岐挿入装置。
【請求項4】
請求項3において、
前記前置光増幅器と前記後置光増幅器の利得目標値は、入力パワー測定値と波長数情報と平均出力レベル目標値から決定することを特徴とする、光分岐挿入装置。
【請求項5】
波長多重信号光を分岐挿入する光分岐挿入システムおいて、
信号波長を挿入する際の多重化部の光回路種別は複数の種類に対応し、波長多重信号光を分岐挿入する装置であって、
第一の伝送装置及び第二の伝送装置のそれぞれに接続する光分岐挿入装置を収容する伝送装置で信号波長を挿入する際は、その際に通過する前記多重化部の光回路種別情報を取得するとともに、信号波長に対する光回路種別情報を、前記第一の伝送装置へ転送し、
前記第二の伝送装置より信号波長に対する光回路種別情報を取得するとともに、その情報を前記第一の伝送装置へ転送し、
予め格納してある光回路種別情報と分岐部の出力レベル目標値との対応表と、信号波長ごとの光回路種別情報に基づき、信号波長ごとの分岐部の出力レベル目標値を決定し、
予め格納してある光回路種別情報と、挿入部の出力レベル目標値との対応表と、信号波長ごとの光回路種別情報に基づき、信号波長ごとの挿入部の出力レベル目標値を決定する前記光分岐挿入装置を有することを特徴とする光分岐挿入システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光分岐挿入装置および光通信システムに関する。
【背景技術】
【0002】
光ファイバ当たりの伝送容量を拡大するため、複数の波長それぞれに別の信号を載せて、それらを合波し、WDM(Wavelength Division Multiplexing)信号光として光ファイバを伝送するWDM伝送の技術が汎用化されている。
【0003】
また、リングネットワーク、メッシュネットワークにおいて、各信号波長 の経路を自由に切り替えすることを可能とするROADM(reconfigurable optical add/drop multiplexer)装置技術も汎用化されている。
【0004】
この光分岐挿入装置(Optical Add-Drop Multiplexer)は、他の光ノードで波長多重化された光信号から特定の波長の光信号を分離し、残りの部分と新たな光信号を合波して次の光ノードに送信する。すなわち光分岐挿入装置は、光ノードから他の光ノードに転々送信される光信号の一部を分岐して取り出し更に、残りの光信号の流れに新たな光信号を挿入して次の光ノードに送信する(例えば、特許文献1参照)。
【0005】
光分岐挿入装置により分離された光信号は、分波器により互いに波長が異なる光信号に分波された後、受信器で電気信号に変換される。光分岐挿入装置により次の光ノードに送信される新たな光信号は、送信器により生成され合波器により合波された後に残りの光信号の流れに挿入される。
【0006】
なお光ノードに関し、目標値に従って波長多重信号のパワーレベルを変更する技術が報告されている(例えば、特許文献2)。更に光伝送装置に関し、検出手段により検出されたパワーを波長数で除算することで、一波長当たりのパワーを算出する技術が報告されている(例えば、特許文献3)。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2014-14017号公報
【文献】特開2012-178686号公報
【文献】特開2011-151584号公報
【文献】特開2009-033543号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
初期の光分岐挿入装置では、合波器および分波器にはAWG(Arrayed Waveguide Grating)が用いられた。しかし、高度化された最近の光分岐挿入装置では、分波器および合波器にはMCS(Multicast optical switch)やContention-lessWSS(Wavelength Selective Switch)等の種々の光回路(例えば、特許文献4参照)が用いられる。このため最近の光分岐挿入装置(すなわち、光ノード)には、種別が互いに異なる複数の合波器が含まれる。光ネットワーク内を転送される光信号の流れに挿入される新たな光信号は、合波器を通過する際に損失を受ける。このため、種別が互いに異なる複数の合波器を含む最近の光分岐挿入装置では、光信号の流れに挿入される新たな光信号の強度が不揃いになる。
【0009】
そこで、光信号の流れ内で光信号の強度が不揃いになることを防ぐため、別々の合波器から出力される各光信号は一定の強度に減衰された後に、光信号の流れに挿入される。この減衰により、損失の大きな合波器から出力される光信号の強度と、損失の小さい合波器から出力される光信号の強度とが揃えられる。
【0010】
しかし、このような光分岐挿入装置には、損失が小さい合波器を通過した光信号の光信号対雑音比(Optical Signal-To-Noise Ratio:OSNR)が、損失が大きい合波器を通過した光信号の光信号対雑音比と同程度に低いという問題がある。これは、光信号の強度を揃えるため、損失が小さい合波器を通過した光信号を過大に減衰されるためである。過大な減衰により、光増幅器による光信号対雑音比の劣化が促進される。
【0011】
そこで、本発明は、このような問題を解決することを課題とする。
【課題を解決するための手段】
【0012】
一つの実施の形態では、信号波長を挿入する際の多重化部の光回路種別は複数の種類に対応し、波長多重信号光を分岐挿入する光分岐挿入装置であって、第一の伝送装置及び第二の伝送装置のそれぞれに接続する前記光分岐挿入装置を収容する伝送装置で信号波長を挿入する際は、その際に通過する前記多重化部の光回路種別情報を取得するとともに、信号波長に対する光回路種別情報を、前記第一の伝送装置へ転送し、前記第二の伝送装置より信号波長に対する光回路種別情報を取得するとともに、その情報を前記第一の伝送装置へ転送し、予め格納してある光回路種別情報と分岐部の出力レベル目標値との対応表と、信号波長ごとの光回路種別情報に基づき、信号波長ごとの分岐部の出力レベル目標値を決定し、予め格納してある光回路種別情報と、挿入部の出力レベル目標値との対応表と、信号波長ごとの光回路種別情報に基づき、信号波長ごとの挿入部の出力レベル目標値を決定する。
【発明の効果】
【0013】
一つの側面では、本発明によれば、種別が互いに異なる複数の多重化部を含む光分岐挿入装置から出力される光信号の光信号対雑音比を向上させることができる。
【図面の簡単な説明】
【0014】
図1図1は、実施の形態1の光分岐挿入装置2を有する光通信システム5の一例を示す機能ブロック図である。
図2図2は、光分岐挿入装置2の動作を説明する図である。
図3図3は、ケース1の各光分岐挿入装置が有する多重化部および分波部を示す表である。
図4図4は、ケース1における第1光分岐挿入装置102aの機能ブロック図を示す図である。
図5図5は、ケース1における第3光分岐挿入装置102の機能ブロック図を示す図である。
図6図6は、各光分岐挿入装置における光信号Aおよび光信号Bの種別を示す表である。
図7図7は、各光分岐挿入装置における多重化部Aおよび多重化部Bの種別を示す図である。
図8図8は、多重化部Aおよび多重化部Bの強度変化率の一例を示す表である。
図9図9は、分波部Cおよび分波部Dの強度変化率の一例を示す図である。
図10図10は、光信号Aの強度および光信号Bの強度の推移の一例を示す表である。
図11図11は、光信号Aおよび光信号Bの強度の推移を示すグラフである。
図12図12は、光信号が通過する多重化部の強度変化率に拘わらず、第1出力レベル目標値が均一に設定される場合の光信号の強度の推移の一例を示す表である。
図13図13は、図12に示す光信号Aおよび光信号Bの強度の推移を示すグラフである。
図14図14は、実施の形態2の光分岐挿入装置202のハードウエア構成の一例を示す図である。
図15図15は、前置WSS504の構造の一例を示す図である。
図16図16は、後置光増幅器510の構造の一例を示す図である。
図17図17は、送受信モジュール522の構造の一例を示す図である。
図18図18は、実施の形態2の光分岐挿入装置202の機能ブロック図の一例である。
図19図19は、第1~3多重化部として用いられる光回路の一例を示す図である。
図20】20は、第1~3多重化部として用いられる光回路の一例を示す図である。
図21図21は、光回路種別情報管理部552が管理する情報の一例を示すテーブル570である。
図22図22は、光回路種別と出力レベルの対応表記憶部550に記録される情報の一例を示す図である。
図23図23は、光回路種別と出力レベルの対応表記憶部550に記録される情報の一例を示す図である。
図24図24は、光回路情報の管理に用いられるOSC転送信号587およびNMS577を説明する図である。
図25図25は、実施の形態2のOSC転送信号587が伝える情報の一例を示す図である。
図26図26は、制御部416が実行する処理の一例を示すフローチャートである。
図27図27は、ステップS8の結果が記録されるテーブル590の一例を示す図である。
図28図28は、ステップS8の結果が記録される別のテーブル591の一例を示す図である。
図29図29は、光分岐挿入装置202により処理される光信号のスペクトルの一例を示す図である。
図30図30は、Add部およびDrop部に用いられる光回路のグループ名の一例を示す図である。
図31図31は、実施の形態2の変形例2の第1出力レベル目標値の一例を示すテーブル910である。
図32図32は、実施の形態2の変形例3の第2出力レベル目標値の一例を示すテーブル916である。
図33図33は、光増幅器の利得制御の方法を示す図である。
図34図34は、前置光増幅部および後置光増幅部夫々の出力レベルの目標値を示す図である。
図35図35は、光分岐挿入装置202を用いた光分岐挿入システム980の一例を示す図である。
【発明を実施するための形態】
【0015】
以下、図面にしたがって本発明の実施の形態について説明する。但し、本発明の技術的範囲はこれらの実施の形態に限定されず、特許請求の範囲に記載された事項とその均等物まで及ぶものである。図面が異なっても同じ構造を有する部分等には同一の符号を付し、その説明を省略する。
【0016】
(実施の形態1)
(1)構成
図1は、実施の形態1の光分岐挿入装置2を有する光通信システム5(すなわち、光ネットワーク)の一例を示す機能ブロック図である。
【0017】
実施の形態1の光通信システム(換言するならば、光分岐挿入システム)5は、第1光分岐挿入装置2a、第2光分岐挿入装置2b、および光分岐挿入装置2(以下、第3光分岐挿入装置とも呼ぶ)を含むシステムである。図1では、第1光分岐挿入装置2aに含まれる機能ブロックの一部(例えば、分波部や制御部)が省略されている。第2光分岐挿入装置2bについても同様である。第1光分岐挿入装置2a、第2光分岐挿入装置2b、および光分岐挿入装置2は例えば、ROADM(Reconfigurable Optical Add-Drop Multiplexer)である。
【0018】
図1に示されているように光分岐挿入装置2は、前置光増幅部8、分岐部6、挿入部4、後置光増幅部10、分波部12、複数の第3多重化部14、および制御部16を有する。第1光分岐挿入装置2aは、分岐部6a、挿入部4a、前置光増幅部(図示せず)、後置光増幅部(図示せず)、分波部(図示せず)、第1多重化部14a、および制御部(図示せず)を有する。第2光分岐挿入装置2bは、分岐部6b、挿入部4b、前置光増幅部(図示せず)、後置光増幅部(図示せず)、分波部(図示せず)、第2多重化部14b、および制御部(図示せず)を有する。
【0019】
挿入部4,4a、4bは、複数の光信号が入力され、入力された複数の光信号に含まれる各光信号の強度を制御しながら、入力された複数の光信号を合波する。分岐部6,6a,6bは、入力された複数の光信号に含まれる各光信号の強度を制御しながら、各光信号を複数のポートの一つから出力する。
【0020】
前置光増幅部8および後置光増幅部10は、入力された光信号を増幅する。同様に、第1光分岐挿入装置2aの前置光増幅部(図示せず)および後置光増幅部(図示せず)も光信号を増幅する。同様に、第2光分岐挿入装置2bの前置光増幅部(図示せず)および後置光増幅部(図示せず)も光信号を増幅する。
【0021】
分波部12は、入力された複数の光信号を複数のポートから出力する。第1光分岐挿入装置2aおよび第2光分岐挿入装置2bの分波部も同様である。複数の第3多重化部14、第1多重化部14a、および第2多重化部14bは、入力された光信号を合波して出力する。
【0022】
制御部16は、分岐部6および挿入部4を制御する。同様に、第1光分岐挿入装置2aの制御部(図示せず)は、第1光分岐挿入装置2aの分岐部6aおよび挿入部4aを制御する。同様に、第2光分岐挿入装置2bの制御部(図示せず)は、第2光分岐挿入装置2bの分岐部6bおよび挿入部4bを制御する。
【0023】
第1光分岐挿入装置2aおよび第2光分岐挿入装置2bは例えば、光分岐挿入装置2と実質的に同じ構造を有する装置である。光分岐挿入装置2等のハードウエア構成の詳細は、実施の形態2で説明する。
【0024】
図1に示す例では、第1光分岐挿入装置2aと第2光分岐挿入装置2bは、光線路124により直接接続されている。しかし、第1光分岐挿入装置2aと第2光分岐挿入装置2bは他の光分岐挿入装置を介して接続されてもよい。第2光分岐挿入装置2bと光分岐挿入装置2についても同様である。更に、第1光分岐挿入装置2aと第2光分岐挿入装置2bとが配置される順番は、入れ替えられてもよい。或いは、第1光分岐挿入装置2aと第2光分岐挿入装置2bは、同一の装置であってもよい。
【0025】
(2)動作
図2は、光分岐挿入装置2の動作を説明する図である。
【0026】
―第1~第3多重化部の動作―
第1光分岐挿入装置2aの第1多重化部14aおよび第2光分岐挿入装置2bの第2多重化部14bは、例えば複数の送信器により生成された波長が互いに異なる複数の光信号を多重化(すなわち、合波)する。同様に、光分岐挿入装置2の複数の第3多重化部14は、例えば複数の送信器により生成された波長が互いに異なる複数の光信号を多重化(すなわち、合波)する。
【0027】
―分岐信号18、通過信号20、挿入信号22―
まず、第1多重化部14aを通過する光信号(以下、分岐信号18と呼ばれる)と、第2多重化部14bを通過する光信号(以下、通過信号20と呼ばれる)と、第3多重化部14を通過する光信号(以下、挿入信号22と呼ばれる)とを説明する。
【0028】
図1に示す例では、第1光分岐挿入装置2aが分岐信号18を出力し、第2光分岐挿入装置2bが通過信号20を出力する。第2光分岐挿入装置2bは更に、光線路124から入射した光の全部または一部(ここでは、分岐信号18)を通過させる。光分岐挿入装置2には、分岐信号18と通過信号20とが光線路24から入力される。
【0029】
分岐信号18、通過信号20および挿入信号22は、別々の送信器で生成される互いに波長が異なる光信号である。すなわち通過信号20は、分岐信号18とは異なる信号である。挿入信号22は、分岐信号18および通過信号20とは異なる信号である。
【0030】
図1に示された例では、分岐信号18は、第1多重化部14aを通過する際に他の光信号と多重化され、挿入部4aを介して光線路124(例えば、光ファイバ)に送出される。分岐信号18は更に、第2光分岐挿入装置2bを介して光線路24(例えば、光ファイバ)に送出される。通過信号20は、第2多重化部14bを通過する際に他の光信号と多重化され、挿入部4bを介して光線路24に送出される。
【0031】
複数の挿入信号22はそれぞれ、複数の第3多重化部14の一つを通過する際に他の挿入信号と多重化される。光分岐挿入装置2は、複数の挿入信号22および通過信号20を、光線路24とは異なる別の光線路224に入力(すなわち、送出)する。
【0032】
複数の第3多重化部14の全部または一部は、種別が互いに異なる多重化部である。多重化部の種別については、実施の形態2で説明する。
【0033】
―挿入部4の動作―
挿入部4には、通過信号20および複数の挿入信号22を含む複数の第1光信号26aが入力される。挿入部4は、複数の第1光信号26aに含まれる各第1光信号の強度が目標値(以下、第1出力レベル目標値と呼ばれる)になるように各第1光信号を制御しながら、入力された複数の第1光信号26aを合波する。各第1光信号は挿入部4に一緒に入力されてもよいし、別々の時刻に入力されてもよい。
【0034】
ここでは通過信号20は、複数の第1光信号26aの一つである。挿入信号22は、複数の第1光信号26aの別の一つである。第1出力レベル目標値は、光信号ごとに設定される値である。複数の第1光信号26aは、互いに波長が異なる光信号である。後述する複数の第2光信号26bについても同様である。
【0035】
―挿入部4に対する制御―
制御部16による制御には、光回路(例えば、AWGやMCS)を通過する前の光の強度Iinに対する上記光回路を通過した後の上記光の強度Ioutの割合である強度変化率(=Iout/Iin)が用いられる。1未満の強度変化率は、損失と呼ばれる。
【0036】
制御部16は、第2多重化部14bを通過する前後の通過信号20の強度の上記割合である第2強度変化率に応じて、通過信号20の挿入部4bの第1出力レベル目標値を設定する。制御部16は更に、複数の挿入信号22の各光信号の第1出力レベル目標値を、複数の第3多重化部14の一つを通過する前後の上記各光信号の強度の上記割合である第3強度変化率に応じた値に設定する。
【0037】
―分岐部6の動作―
分岐部6には、分岐信号18と通過信号20を含む複数の第2光信号26bが光線路24から入力される。分岐部6は、入力された分岐信号18の出力レベルが第2出力レベル目標値になるように、さらに、入力された通過信号20の出力レベルが第3出力レベル目標値になるように分岐信号18および通過信号20を制御する。複数の第2光信号に含まれる各光信号は光分岐挿入装置2に一緒に入力されてもよいし、別々の時刻に入力されてもよい。
【0038】
分岐部6は更に、分岐信号18および通過信号20の出力レベルの制御を実行しながら、分波部12に接続された第1ポート28aから分岐信号18を出力し、第1ポート28aとは異なる第2ポート28bから通過信号20を出力する。分波部12は、多重化され光信号を分波するユニットである。
【0039】
挿入部4に入力される複数の第1光信号26aは、複数の挿入信号22と第2ポート28bから出力される通過信号20とを含む。
【0040】
分岐信号18および通過信号20はそれぞれ、複数の第2光信号26bの一つである。第2出力レベル目標値は、光信号ごとに設定される値である。
【0041】
―分岐部6に対する制御―
制御部16は、上記強度変化率であって分波部12を通過する前後の分岐信号18の強度の上記割合である第4強度変化率に応じた値に分岐信号18の第2出力レベル目標値(すなわち、第1ポート28aから出力される光信号の目標値)を設定する。制御部16は更に、上記第2強度変化率に応じた値に通過信号20の第3出力レベル目標値(すなわち、第2ポート28bから出力される光信号の目標値)を設定する。
【0042】
―前置光増幅部8の動作―
前置光増幅部8は、複数の第2光信号26bを増幅して、増幅された複数の第2光信号26bを分岐部6に入力する。
【0043】
―前置光増幅部8に対する制御―
制御部16は、前置光増幅部8の利得を制御する。前置光増幅部8の利得は、前置光増幅部8の出力における第2光信号26bの強度が、所定の目標値になるように制御される。
【0044】
―後置光増幅部10の動作―
後置光増幅部10は、挿入部4により合波された複数の第1光信号26aを増幅して、別の光線路224に入力する。
【0045】
―後置光増幅部10に対する制御―
制御部16は、後置光増幅部10により増幅された複数の第1光信号26aの出力レベルが、各第1光信号の第1出力レベル目標値の総和に基づいて算出される値になるように、後置光増幅部10の利得を制御する。「各第1光信号」は、複数の第1光信号26aに含まれる光信号である。
【0046】
(3)光信号の強度の推移
図3図11は、第1光分岐挿入装置2aから第3光分岐挿入装置(すなわち、光分岐挿入装置2)に向かって送信される光信号の強度の推移の一例を説明する図である。
【0047】
ここでは、第1光分岐挿入装置2aが2つの多重化部を有し、第3光分岐挿入装置(すなわち、光分岐挿入装置2)が2つの分波部を有する場合(以下、ケース1と呼ばれる)を考える。これらの点を除き、ケース1における各光分岐挿入装置の構造および機能は、図1~2を参照して説明した光分岐挿入装置2の構造および機能と実質的に同じである。
【0048】
図3は、ケース1の各光分岐挿入装置が有する多重化部および分波部を示す表である。図3の第1列目には、光分岐挿入装置の名称が示されている。第2列目には、多重化部の名称が示されている。第3列目には、分波部の名称が示されている。図3の第2番目の行は、ケース1における第1光分岐挿入装置2aは、多重化部A、多重化部B、および分波部aを有することを示している。図3の第3~4番目の行についても、同様である。
【0049】
図4は、ケース1における第1光分岐挿入装置102aの機能ブロック図を示す図である。図5は、ケース1における第3光分岐挿入装置102の機能ブロック図を示す図である。
【0050】
図3および4に示されているように、ケース1の第1光分岐挿入装置102a(すなわち、上流側の光分岐挿入装置)は、多重化部A、多重化部Bおよび分波部aを有する。図3および5に示されているように、ケース1Sの第3光分岐挿入装置102(すなわち、下流側の光分岐挿入装置)は、多重化部e、多重化部f、分波部Cおよび分波部Dを有する。
【0051】
ここからは、多重化部Aを通過する光信号(以下、光信号Aと呼ばれる)の強度の推移と、多重化部Bを通過する光信号(以下、光信号Bと呼ばれる)の強度の推移の一例を示す。
【0052】
図6は、各光分岐挿入装置における光信号Aおよび光信号Bの種別を示す表である。図6の第1列目には、光分岐挿入装置の名称が示されている。第2列目には、各光分岐挿入装置における光信号Aの種別が示されている。第3列目には、各光分岐挿入装置における光信号Bの種別が示されている。図6の第2番目の行は、第1光分岐挿入装置102aにおける光信号Aおよび光信号Bの種別は、挿入信号であることを示している。図6の第3~4番目の行についても、同様である。
【0053】
図7は、各光分岐挿入装置における多重化部Aおよび多重化部Bの種別を示す図である。図7の第1列目には、光分岐挿入装置の名称が示されている。第2列目には、各光分岐挿入装置における多重化部Aの種別が示されている。第3列目には、各光分岐挿入装置における多重化部Bの種別が示されている。
【0054】
図8は、多重化部Aおよび多重化部Bの強度変化率の一例を示す表である。図9は、分波部Cおよび分波部Dの強度変化率の一例を示す図である。多重化部Aおよび分波部Cは例えば、Contention-less M×N WSSである。多重化部Bおよび分波部Dは例えば、M×N MCS(Multicast Switch)である。
【0055】
図10は、光信号Aの強度および光信号Bの強度の推移の一例を示す表である。図10の第1列目には、光分岐挿入装置の名称が示されている。第2列目には、光信号Aおよび光信号Bが第3列目に示されている各ユニットを通過する順番(以下、通過順番と呼ばれる)が示されている。第3列目には、光信号Aおよび光信号Bが通過するユニット(例えば、送信器)の種別が示されている。第4列目には、光信号Aのユニットの出力レベルの推移が示されている。第5列目には、光信号Bのユニットの出力レベルの推移が示されている。図10の第2番目の行は、送信器から出力される光信号Aの強度は0dBmであり、別の送信器から出力される光信号Bの強度は0dBmであることを示している。図10の第3~14番目の行についても、同様である。なおケース1では、光信号Aおよび光信号Bは、別々の送信器から出力され、別々の多重化部と別々の分波部を通過する。
【0056】
図11は、光信号Aおよび光信号Bの強度の推移を示すグラフである。縦軸は、光信号の強度である。横軸は、通過順番である。実線30は、光信号Aの強度の推移を示している。破線32は、光信号Bの強度の推移を示している。
【0057】
―光送信器(通過順番1)の出力強度―
光送信器から出力され多重化部に入力される前の光信号Aおよび光信号Bの強度は0dBmである(図10~11の通過順番1参照)。
【0058】
―多重化部(通過順番2)の出力強度―
多重化部Aの強度変化率は-4dBであり、多重化部Bの強度変化率は-10dBである(図8参照)。従って、多重化部Aから出力され挿入部104a(図4参照)に入力される前の光信号Aの強度は-4dBmであり、多重化部Bから出力され挿入部104aに入力される前の光信号Bの強度は-10Bmである。
【0059】
―挿入部104a(通過順番3)の出力強度―
上述したように、光信号Aおよび光信号Bの第1光分岐挿入装置102aにおける種別は、挿入信号である(図6参照)。多重化部Aおよび多重化部Bの第1光分岐挿入装置102aにおける種別は、第3多重化部(すなわち、挿入信号を多重化する多重化部)である(図7参照)。
【0060】
通過順番3の挿入部104a(図4参照)には、多重化部Aから出力された光信号Aおよび多重化部Bから出力された光信号Bが入力される。すると通過順番3の挿入部104aは、光信号Aの強度が第1出力レベル目標値(ここでは、-17dBm)になるように光信号Aを制御する。通過順番3の挿入部104aは更に、光信号Bの強度が第1出力レベル目標値(ここでは、-20dBm)になるように光信号Bを制御する。通過順番3の挿入部104aは更に、光信号Aおよび光信号Bを制御しながら、光信号Aと光信号Bとを合波する。
【0061】
制御部116a(図4参照)は挿入部104aに予め、光信号が通過する多重化部の強度変化率に応じた値に第1出力レベル目標値を設定する。ケース1では、光信号Aが通過する多重化部Aの強度変化率(-4dB)は、光信号Bが通過する多重化部Bの強度変化率(-10dB)より大きい(図8参照)。従って、制御部116aにより挿入部104aに予め設定される光信号Aの第1出力レベル目標値(ここでは、-17dBm)は、制御部116aにより挿入部104aに予め設定される光信号Bの第1出力レベル目標値(ここでは、-20dBm)より大きい。光信号が通過する多重化部の強度変化率(ここでは、第3強度変化率)が増加に応じて、第1出力レベル目標値を増加させる。
【0062】
通過順番3の挿入部104aから出力され後置光増幅部110aに入力される前の光信号Aの強度は、光信号Aの第1出力レベル目標値と同じ値(-17dBm)になる。通過順番3の挿入部104から出力され後置光増幅部110aに入力される前の光信号Bの強度は、光信号Bの第1出力レベル目標値と同じ値(-20dBm)になる。
【0063】
―後置光増幅部110a(通過順番4)の出力強度―
通過順番4の後置光増幅部110a(図4参照)は、挿入部104aにより合波された光信号Aと光信号Bとを増幅して通過順番5の光線路に入力する。
【0064】
ケース1では、光信号Aおよび光信号B以外の光信号は、通過順番3の挿入部104a(図4参照)に入力されない場合を考える。
【0065】
図18(実施の形態2参照)の回路種別と出力レベルの対応表記憶部においては、図34に示すテーブルも記憶している。
【0066】
図34は、前置光増幅部と後置光増幅部のADD部の光回路種別情報に対する出力レベル目標値を記憶するものである。出力レベル目標値は、ADD部の光回路の強度変化率の大小に応じた値で、強度変化率が小さい光回路の場合に出力レベル目標値をその分高く設定する。
【0067】
図18のアンプ平均出力レベル目標値設定部は、光回路種別と出力レベルの対応表記憶部から、図34の情報を取得する。また、図18の光回路種別情報管理部から光回路種別情報を取得する。図18のアンプ平均出力レベル目標値設定部は、信号波長ごとの光回路種別情報を基に、その信号波長の出力レベルを決定する。さらに、使用している全信号波長の平均の出力レベル[dBm/ch]を算出する。その値になるように、光増幅器の利得を制御する。
【0068】
図33は光増幅器の利得制御の方法を示している。アンプの入力のPDにより、入力パワーを検出する。また、装置より、波長数情報を取得する。入力パワーと波長数情報により、平均入力レベルdBm/chを算出する。また、装置より、アンプ平均出力レベル目標値を取得し、入力レベルと出力レベルから利得目標値を演算する。AGC制御部は目標利得になるように、増幅部を制御する。
【0069】
―光線路(通過順番5)の出力強度―
光信号Aおよび光信号Bは、通過順番5の光線路を伝搬する間に減衰する。ケース1では、通過順番5の光線路による損失は-22dBである。従って、通過順番5の光線路から出力される光信号Aの強度は-15dBmであり、通過順番5の光線路から出力される光信号Bの強度は-18dBmである。
【0070】
光信号Aおよび光信号Bは通過順番5の光線路から出力され、第1光分岐挿入装置102aと第3光分岐挿入装置102とに挟まれた第2光分岐挿入装置(図示せず)に入力される。
【0071】
―前置光増幅部(通過順番6)の出力強度―
通過順番6の前置光増幅部(図示せず)は、光信号Aおよび光信号Bを含み通過順番5の光線路から入力される複数の第2光信号を増幅して、増幅された複数の第2光信号を通過順番7の分岐部(図示せず)に入力する。ケース1の複数の第2光信号は、光信号Aと光信号Bだけを含む。
【0072】
図18(実施の形態2参照)の回路種別と出力レベルの対応表記憶部においては、図34に示すテーブルも記憶している。
【0073】
図34は、前置光増幅部と後置光増幅部のADD部の光回路種別情報に対する出力レベル目標値を記憶するものである。出力レベル目標値は、ADD部の光回路の強度変化率の大小に応じた値で、強度変化率が小さい光回路の場合に出力レベル目標値をその分高く設定する。
【0074】
図18のアンプ平均出力レベル目標値設定部は、光回路種別と出力レベルの対応表記憶部から、図34の情報を取得する。また、図18の光回路種別情報管理部から光回路種別情報を取得する。図18のアンプ平均出力レベル目標値設定部は、信号波長ごとの光回路種別情報を基に、その信号波長の出力レベルを決定する。さらに、使用している全信号波長の平均の出力レベル[dBm/ch]を算出する。その値になるように、光増幅器の利得を制御する。
【0075】
図33は光増幅器の利得制御の方法を示している。アンプの入力のPDにより、入力パワーを検出する。また、装置より、波長数情報を取得する。入力パワーと波長数情報により、平均入力レベルdBm/chを算出する。また、装置より、アンプ平均出力レベル目標値を取得し、入力レベルと出力レベルから利得目標値を演算する。AGC制御部は目標利得になるように、増幅部を制御する。
【0076】
―分岐部(通過順番7)の出力強度―
上述したように、光信号Aおよび光信号Bの第2光分岐挿入装置における種別は、通過信号である(図6参照)。第1光分岐挿入装置102aに配置された、多重化部Aおよび多重化部Bの第2光分岐挿入装置における種別は、第2多重化部(すなわち、通過信号を多重化する多重化部)である(図7参照)。
【0077】
通過順番7の分岐部(図示せず)には、通過順番6の前置光増幅部から出力された光信号Aおよび光信号Bが入力される。すると通過順番7の分岐部は、光信号Aの強度が第3出力レベル目標値(ここでは、-3dBm)になるように光信号Aを制御する。通過順番7の分岐部は更に、光信号Bの強度が第3出力レベル目標値(ここでは、-5dBm)になるように光信号Bを制御する。通過順番7の分岐部は、光信号Aの制御と光信号Bの制御を行いながら、強度が制御された光信号Aおよび光信号Bを出力する。
【0078】
第2光分岐挿入装置(図示せず)の制御部は、光信号が通過する多重化部の強度変化率に応じた値に第3出力レベル目標値を予め設定する。ケース1では、光信号Aが通過する多重化部Aの強度変化率(-4dB)は、光信号Bが通過する多重化部Bの強度変化率(-10dB)より大きい。従って、第2光分岐挿入装置の制御部により通過順番7の分岐部に予め設定される光信号Aの第3出力レベル目標値(ここでは、-3dBm)は、制御部116aにより挿入部104aに予め設定される光信号Bの第3出力レベル目標値(ここでは、-5dBm)より大きい。光信号が通過する多重化部の強度変化率(ここでは、第2強度変化率)が増加に応じて、第3出力レベル目標値は増加させる。
【0079】
通過順番7の分岐部から出力され通過順番8の挿入部に入力される際の光信号Aの強度は、光信号Aの第3出力レベル目標値と同じ値(-3dBm)になる。通過順番7の分岐部から出力され通過順番8の挿入部に入力される際の光信号Bの強度は、光信号Bの第3出力レベル目標値と同じ値(-5dBm)になる。
【0080】
―挿入部(通過順番8)の出力強度―
通過順番8の挿入部(図示せず)は、通過順番7の分岐部から出力された、光信号Aおよび光信号Bが入力される。通過順番8の挿入部は更に、強度が第1出力レベル目標値(ここでは、-17dBm)になるように光信号Aを制御する。通過順番8の挿入部は更に、強度が第1出力レベル目標値(ここでは、-20dBm)になるように光信号Bを制御する。通過順番8の挿入部は更に、光信号Aの制御と光信号Bの制御を行いながら、強度が制御された光信号Aと強度が制御された光信号Bとを合波する。
【0081】
通過順番8の挿入部に設定される光信号Aの第1出力レベル目標値の値は、多重化部Aを通過する光信号Aの強度変化率(ここでは、-4dB)に応じた値に設定される。通過順番8の挿入部に設定される光信号Bの第1出力レベル目標値の値は、多重化部Bを通過する光信号Aの強度変化率(ここでは、-10dB)に応じた値に設定される。
【0082】
通過順番8の挿入部に設定される光信号Aの第1出力レベル目標値は、通過順番3の挿入部に設定される光信号Aの第1出力レベル目標値と同じ値である。通過順番8の挿入部104aに設定される光信号Bの第1出力レベル目標値は、通過順番3の挿入部104aに設定される光信号Bの第1出力レベル目標値の値と同じ値である。
【0083】
―後置光増幅部(通過順番9)の出力強度―
通過順番9の後置光増幅部は、通過順番8の挿入部により合波された光信号Aと光信号Bとを増幅して光線路24に入力する。通過順番9の後置光増幅部は、通過順番4の後置光増幅部と同様の手順により増幅率を決定する。
【0084】
―光線路(通過順番10)の出力強度―
光信号Aおよび光信号Bは、通過順番10の光線路を伝搬する間に減衰する。ケース1では、通過順番10の光線路による損失は‐20dBである。従って、通過順番10の光線路から出力される光信号Aの強度は-15dBmであり、通過順番9の光線路から出力される光信号Bの強度は-18dBmである。
【0085】
光信号Aおよび光信号Bは通過順番10の光線路から出力され、第3光分岐挿入装置102(図5参照)に入力される。
【0086】
―前置光増幅部(通過順番11)の出力強度―
通過順番11の前置光増幅部108は、光信号Aおよび光信号Bを含み通過順番10の光線路から入力される複数の第2光信号を増幅して、増幅された複数の第2光信号を通過順番12の分岐部106に入力する。通過順番11の前置光増幅部は、通過順番6の後置光増幅部と同様の手順により増幅率を決定する。
【0087】
―分岐部(通過順番12)の出力強度―
上述したように、光信号Aおよび光信号Bの第3光分岐挿入装置102における種別は、分岐信号である(図6参照)。第1光分岐挿入装置102aに配置された、多重化部Aおよび多重化部Bの第3光分岐挿入装置102における種別は、第1多重化部(すなわち、分岐信号を多重化する多重化部)である(図7参照)。
【0088】
通過順番12の分岐部106には、通過順番11の前置光増幅部108から出力された光信号Aおよび光信号Bが入力される。すると通過順番12の分岐部106は、強度が第2出力レベル目標値(ここでは、-3dBm)になるように光信号Aを制御し更に、強度が第2出力レベル目標値(ここでは、-5dBm)になるように光信号Bを制御する。通過順番12の分岐部106は、光信号Aの制御と光信号Bの制御を行いながら、第2出力レベル目標値(ここでは、-3dBm)になるように強度が制御された光信号Aを分波部Cが接続された第1ポート28a1から出力する。通過順番12の分岐部106は更に、第2出力レベル目標値(ここでは、-5dBm)になるように強度が制御された光信号Bを、分波部Dに接続された別の第2ポート28a2から出力する。
【0089】
従って、通過順番12の分岐部106から出力され分波部Cに入力される際の光信号Aの強度は-3dBmであり、通過順番12の分岐部106から出力され分波部Dに入力される際の光信号Bの強度は-5dBmである。
【0090】
第3光分岐挿入装置102の制御部116は、光信号が通過する分波部の強度変化率(ここでは、第4強度変化率)に応じた値に第2出力レベル目標値を予め設定する。ケース1では、光信号Aが通過する分波部Cの強度変化率(-4dB)は、光信号Bが通過する分波部Dの強度変化率(-10dB)より大きい(図9参照)。従って、制御部116により通過順番12の分岐部106に予め設定される光信号Aの第2出力レベル目標値(ここでは、-3dBm)は、制御部116により通過順番12の分岐部106に予め設定される光信号Bの第2出力レベル目標値(ここでは、-5dBm)より大きい。第4強度変化率が増加すると、第2出力レベル目標値は増加する。
【0091】
通過順番12の分岐部106から出力され分波部Cに入力される際の光信号Aの強度は、光信号Aの第2出力レベル目標値と同じ値(-3dBm)になる。通過順番12の分岐部106から出力され分波部Dに入力される際の光信号Bの強度は、光信号Bの第2出力レベル目標値と同じ値(-5dBm)になる。
【0092】
―分波部(通過順番13)の出力強度―
分波部Cの強度変化率は-4dBであり、分波部Dの強度変化率は、-10dBである(図9参照)。従って、分波部Cから出力される光信号Aの強度は-7dBmになり、分波部Dから出力される光信号Bの強度は-15Bmになる。
【0093】
(4)目標値が均一に設定される場合
図10~11に示すように、実施の形態1では、光送信器から出力される光信号は、最初に光増幅器で増幅される時の強度が、光信号が通過した多重化部の強度変化率(すなわち、第3強度変化率)に応じた目標値(すなわち、第1出力レベル目標値)になるように制御される。
【0094】
図12は、光信号が通過する多重化部の強度変化率に拘わらず、第1出力レベル目標値が均一に設定される場合の光信号の強度の推移の一例を示す表である。図12の各列が示す項目は、図10の各列が示す項目と同じである。図13は、図12に示す光信号Aおよび光信号Bの強度の推移を示すグラフである。図13の縦軸および横軸は、図11の縦軸および横軸と同じである。実線34は、光信号Aの強度の推移を示している。破線36は、光信号Bの強度の推移を示している。
【0095】
図12~13に示す例では、通過順番1の送信器から出力された光信号は通過順番3の挿入部104a(図4参照)により一定の強度に減衰された後に、通過順番4の後置光増幅部110aに入力される。すなわち、最も強い光信号Aは、最も弱い光信号Bと同じ強度(-20dBm)まで通過順番3の挿入部104aにより減衰された後に、通過順番4の後置光増幅部110aに入力される。
【0096】
その結果、通過順番4の後置光増幅部110aから出力される際の光信号Aの光信号対雑音比は、通過順番4の後置光増幅部110aから出力される際の光信号Bの光信号対雑音比と略同じ低い値になる。
【0097】
一方、図10~11に示す例では、最も強い光信号Aは、通過順番3の挿入部104aにより、多重化部Aの小さな損失に応じ比較的強い強度(-17dBm)に減衰された後に、通過順番4の後置光増幅部110aに入力される。従って図10~11に示す例では、通過順番4の後置光増幅部110から出力される際の光信号Aの光信号対雑音比は、図12~13に示す例による光信号対雑音比より高い値になる。
【0098】
図10~11に示す例では、光信号Aは通過順番4の後置光増幅部110aから出力された後も通過順番12の分岐部106に入力されるまで、光信号Bより強く保たれる(図11参照)。従って、光信号Aの光信号対雑音比は高く保たれたまま通過順番13の分波部に入射する。これは、光信号Aが通過する挿入部および分岐部における制御の目標値が、光信号Aが通過する多重化部Aの小さい損失に応じた高い値に設定されるためである。
【0099】
以上のように、実施の形態1によれば、光信号が最初に通過する光回路(ここでは、多重化部)の損失に応じて光信号の強度が制御されるので、光信号への過剰な減衰が抑制され、損失が小さい光回路を通過する光信号の光信号対雑音比が改善される。
【0100】
図1等に示された例では、光分岐挿入装置(すなわち、光分岐挿入装置2等)は、多重化部(すなわち、第3多重化部14等)および分波部(すなわち、分波部12等)を含む。しかし光分岐挿入装置は、多重化部および分波部を含まなくてもよい。この場合、多重化部および分波部は光分岐挿入装置の外部に設けられる。例えば、多重化部はブレード化され、光分岐挿入装置に着脱可能に装着されてもよい。分波部についても、同様である。
【0101】
(実施の形態2)
実施の形態2の光分岐挿入装置は、実施の形態1の光分岐挿入装置2に類似している。従って、実施の形態1と同じ部分等については、説明を省略または簡単にする。
【0102】
(1)構成
(1-1)ハードウエア構成
図14は、実施の形態2の光分岐挿入装置202のハードウエア構成の一例を示す図である。光分岐挿入装置202は、入力側のWSS504(以下、前置WSSと呼ばれる)、出力側のWSS604(以下、後置WSSと呼ばれる)を有する。
【0103】
光分岐挿入装置202は更に、前置WSS504の各出力ポートに一つずつ接続された複数の分波器506と、複数の分波器506に接続されたOCM(Optical Channel Monitor)508を有する。
【0104】
分波器506は、一つの光信号を2つに分割する光デバイスである。分波器506は例えば、カプラである。後述される分波器606、706、806についても、同様である。
【0105】
分波器506により分割された光信号の一方はOCM508に入力され、他方は後置WSS604の複数の入力ポートの一つまたは後述する光回路に入力される。この光回路は、実施の形態1で説明した分波部12(図1参照)として用いられる。分割された光信号の他方は、他方路に送出されてもよい。OCM508は入力された各光信号の強度を計測し、その結果を前置WSS504に送信する。
【0106】
後置WSS604の入力ポートの一つには、分波器506を介して前置WSS504の出力ポートが接続され、分波器506により分割された光信号の上記他方が入力される。後置WSS604の他の入力ポートには、上記光回路とは異なる光回路が接続される。この光回路は、実施の形態1で説明した第3多重化部14(図1参照)として用いられる。後置WSS604の複数の入力ポートのうち前置WSS504および光回路のいずれにも接続されない入力ポートには、他方路が接続されてもよい。
【0107】
光分岐挿入装置202は更に、後置WSS604の出力ポートに接続された分波器606と、分波器606に接続されたOCM(Optical Channel Monitor)608を有する。
【0108】
分波器606により分割される光信号の一方は、OCM608に入力さる。OCM608は入力された各光信号の強度を計測し、その結果を後置WSS604に送信する。
【0109】
光分岐挿入装置202は更に、分波器606を介して後置WSS604の入力ポートに接続された光増幅器510(以下、後置光増幅器と呼ばれる)を有する。分波器606により分割される光信号の他方は、後置光増幅器510に入力される。
【0110】
光分岐挿入装置202は更に、後置光増幅器510の出力ポートに接続された分波器706と、分波器706に接続されたパワーモニタ511を有する。分波器706は、後置光増幅器510により増幅された各光信号を分割し、分割された各光信号の一方をパワーモニタ511に入力する。パワーモニタ511は入力された光信号全体の強度を計測し、その結果を後置光増幅器510に送信する。
【0111】
光分岐挿入装置202は更に、分波器706を介して後置光増幅器510に接続された光合波器512と、OSC(Optical Supervisory Channel)送信機515を有している。光合波器512は例えば、薄膜フィルタである。後述する光分波器612についても、同様である。光合波器512は、分波器706により分割された各光信号の他方とOSC送信機515から出力された光信号(すなわち、後述するOSC転送信号)とを合波して、出力ポート516から出力する。
【0112】
光分岐挿入装置202は更に、入力ポート518に接続された光分波器612と光増幅器610(以下、前置光増幅器と呼ばれる)を有する。光分波器612は、入力ポート518から入力された光信号のうち光通信システム5(図1参照)の管理に用いられる光信号(以下、OSC転送信号と呼ばれる)と他の光信号とを分離し、OSC転送信号をOSC受信機514に送信する。光分波器612は、入力ポート518から入力された光信号のうちOSC転送信号以外の光信号を、光増幅器610に送信する。
【0113】
光分岐挿入装置202は更に、前置光増幅器610の出力ポートに接続された分波器806と、分波器806に接続されたパワーモニタ611を有する。分波器806は、前置光増幅器610により増幅された各光信号を分割し、分割された各光信号の一方をパワーモニタ611に入力する。パワーモニタ611は入力された光信号全体の強度を計測し、その結果を前置光増幅器610に送信する。分波器806により分割された各光信号の他方は、前置WSS504に入力される。
【0114】
光分岐挿入装置202は更に、FPGA(Field-Programmable Gate Array)520および送受信モジュール522を有する。FPGA520は、フラッシュメモリ等のメモリを有している。光分岐挿入装置202はFPGA520の代わりに、CPUとメモリとを有してもよい。或いは、光分岐挿入装置202はFPGA520の代わりに、ASIC(Application Specific Integrated Circuit)等のデジタル回路を有してもよい。
【0115】
FPGA520は、OSC受信機514、OSC送信機515、前置WSS504,後置WSS604、および送受信モジュール522と接続されている。FPGA520は、これらの装置(すなわち、OSC受信機514等)と電気信号等を介して情報(すなわち、データやコマンド)を送受信する。
【0116】
送受信モジュール522は、光分岐挿入装置202の外部に配置されたシステムや装置(以下、外部システム等と呼ばれる)と情報を送受信する。外部システム等は例えば、NMSやユーザ端末である。
【0117】
―OCM―
OCM508は、互いに波長が異なる複数の光信号に分波し、分波された各光信号の強度を計測する検出器モジュールと、計測結果を波長と対応付けて出力する処理回路とを有する。OCM608についても同様である。
【0118】
―WSS―
図15は、前置WSS504の構造の一例を示す図である。
【0119】
前置WSS504は、光学モジュール523と制御モジュール524とを有する。光学モジュール523は例えば、回折格子とMEMS(Micro Electro Mechanical Systems)ミラーとを有する。光学モジュール523はMEMSミラーの代わりに、LCOS(Liquid Crystal On Silicon)を有してもよい。
【0120】
光学モジュール523は、第1ポート526aに入力される光信号を波長に応じて選択し、選択した光信号を減衰させる。光学モジュール523は更に、選択および減衰された光信号を複数の第2ポート526bのいずれかに出力する。第1ポート526aは、入力ポートして機能する。複数の第2ポート526bは、出力ポートして機能する。
【0121】
制御モジュール524は例えば、電気回路である。制御モジュール524は、OCM508から得られる情報に基づいて、光学モジュール523を制御する。
【0122】
具体的には制御モジュール524は、第1ポート526aから入力された光信号の接続先の第2ポート526bを光学モジュール523に設定する。制御モジュール524は更に、第2ポート526bから出力される光信号の強度が目標値になるように、OCM508からの情報に基づいて光学モジュール523を制御する。
【0123】
後置WSS604の構造は、実質的には前置WSS504の構造と同じである。但し、第1ポート526aは、出力ポートとして機能する。複数の第2ポート526bは、入力ポートして機能する。光学モジュール523は、第2ポート526bに入力された光信号を波長に応じて選択し、選択した光信号を減衰させる。光学モジュール523は更に、選択および減衰された光信号を第1ポート526aから出力する。制御モジュール524は更に、第1ポート526aから出力される光信号の強度が目標値になるように、OCM608からの情報に基づいて光学モジュール523を制御する。
【0124】
―パワーモニタ―
パワーモニタ511は、入力された光信号全体の強度を計測する検出器モジュールと、計測結果を出力する処理回路とを有する。パワーモニタ611についても同様である。
【0125】
―光増幅器―
図16は、後置光増幅器510の構造の一例を示す図である。
【0126】
後置光増幅器510は、希土類ドープ光ファイバ526、希土類ドープ光ファイバ526を励起する励起光源528、および励起光源528に電力を供給する電源530を有する。希土類ドープ光ファイバ526は例えば、エリビウム添加光ファイバである。希土類ドープ光ファイバ526は、入力された光信号を増幅して出力する。
【0127】
電源530は、パワーモニタ511からの情報に基づいて、励起光源528を制御する。具体的には電源530は、希土類ドープ光ファイバ526の出力が目標値になるように、パワーモニタ511からの情報に基づいて励起光源528に供給する電力を調整する。
【0128】
前置光増幅器610の構造および動作は、後置光増幅器510の構造および動作と実質的に同じである。
【0129】
―送受信モジュール―
図17は、送受信モジュール522の構造の一例を示す図である。送受信モジュール522は、送受信器532を有する。送受信モジュール522は更に、CPU(Central Processing Unit)534、メモリ536、および不揮発性メモリ538を有する。メモリ536は例えば、RAM(Random Access Memory)である。不揮発性メモリ538は例えば、フラッシュメモリである。送受信モジュール522は更に、バス540、バス540に送受信器532を接続するインターフェース542、バス540にFPGA520を接続するインターフェース642を有する。
【0130】
CPU534はバス540を介してメモリ536に結合され、例えば不揮発性メモリ538に記録されたプログラムを実行するように構成されている。CPU534は、送受信器532を介して、外部システム等と情報を交換する。CPU534は更に、インターフェース642を介して、FPGA520と情報を交換する。
【0131】
(1-2)機能ブロック図
図18は、実施の形態2の光分岐挿入装置202の機能ブロック図の一例である。実施の形態2の光分岐挿入装置202は、分岐部406と挿入部404とを有する。分岐部406は、実施の形態1の分岐部6の一例である。挿入部404は、実施の形態1の挿入部4の一例である。分岐部406は、前置WSS504(図14参照)、複数の分波器506、OCM508、およびFPGA520により実現される。挿入部404は、後置WSS604、分波器606、OCM608、およびFPGA520により実現される。FPGA520は例えば、後述する装置情報579(図24参照)等に基づいて、前置WSS504(または、後置WSS604)の入力ポートと出力ポートを接続する経路を設定する。
【0132】
実施の形態2の光分岐挿入装置202は更に、多重化部(図示せず)と分波部(図示せず)とを有する。実施の形態2の多重化部は、実施の形態1の第3多重化部14の一例である。実施の形態2の分波部は、実施の形態1の分波部12の一例である。実施の形態2の多重化部および分波部は、AWGおよびMCS等により実現される。
【0133】
光分岐挿入装置202は更に、前置光増幅部408および後置光増幅部410を有する。前置光増幅部408は、実施の形態1の前置光増幅部8の一例である。後置光増幅部410は、実施の形態1の後置光増幅部10の一例である。前置光増幅部408は、前置光増幅器610(図14参照)、分波器806、およびパワーモニタ611により実現される。後置光増幅部410は、後置光増幅器510、分波器706、およびパワーモニタ511により実現される。
【0134】
光分岐挿入装置202は更に、制御部416を有する。制御部416は、光回路種別と出力レベルの対応表記憶部550、光回路種別情報管理部552、出力レベル目標値設定部554、およびアンプ平均出力レベル目標値設定部556を有する。制御部416は例えば、FPGA520(図14参照)により実現される。
【0135】
光分岐挿入装置202は更に、光合波器512および光分波器612を有する。光合波器512および光分波器612は、図14を参照して説明された装置である。
【0136】
光分岐挿入装置202は更に、OSC受信部544およびOSC送信部546を有する。OSC受信部544は、OSC受信機514(図14参照)により実現される。
OSC送信部546は、OSC送信機515図14参照)により実現される。光分岐挿入装置202は更に、情報送受信部548を有する。情報送受信部548は、送受信モジュール522(図14参照)により実現される。
【0137】
光合波器512、光分波器612、OSC受信部544、OSC送信部546、および送受信モジュール522は、光分岐挿入装置202の外部に設けられてもよい。
【0138】
(2)動作
(2-1)多重化部の種別
実施の形態1の光分岐挿入装置2と同様、実施の形態2の光分岐挿入装置202には分岐信号18(図2参照)および通過信号20が入力され、通過信号20および挿入信号22を出力する。分岐信号18、通過信号20および挿入信号22は例えば、送信器により生成され第1~3多重化部(図2参照)を通過した光信号である。
【0139】
第1~3多重化部は全て同じ種別に属する光回路であってもよいし、第1~3多重化部の一部または全部は別々の種別に属する光回路であってもよい。
【0140】
図19~20は、第1~3多重化部として用いられる光回路の一例を示す図である。
図19~20に示された線分は、光信号の経路を示している。図示された各光回路が多重化部(以下、Add部と呼ばれる)として使用される場合、光信号は下側の線分を通って光回路に入射し、上側の線分を通って光回路から出射する。図19~20の各光回路は、別々の種別に分類される。
【0141】
図19(a)の光回路は、AWG558を有する光回路である。図19(a)の光回路は、Non CDC(Colorless Directionless Contentionless)構成の光回路である。
【0142】
図19(b)の光回路は、カプラ560(すなわち、光スプリッタ)を有する光回路である。図19(b)の光回路は、Colorless構成の光回路である。
【0143】
図19(c)の光回路は、複数のカプラ562と、複数のカプラ562が接続されたContentionless WSS564とを有する光回路である。図19(c)の光回路は、CD(Colorless Directionless)構成の光回路である。
【0144】
図20(a)の光回路は、M×N MCS(Multicast Switch)566を有する光回路である。図20(a)の光回路は、CDC構成の光回路である。
【0145】
図20(b)の光回路は、Contentionless M×N WSS568を有する光回路である(例えば、特許文献4参照)。図20(b)の光回路は、CDC構成の光回路である。
【0146】
図19(c)の光回路の種別は以下、CD SPLと呼ばれる。図20(a)の光回路の種別は、CDC MCSと呼ばれる。図20(b)の光回路の種別は、CDC WSSと呼ばれる。
【0147】
(2-2)分波部の種別
実施の形態1と同様、実施の形態2の光分岐挿入装置202(図2参照)に入力された分岐信号18は分岐部406により、光通信システム5内を転送される光信号の流れから分岐される。更に分岐信号18は、分波部により例えば波長が互いに異なる光信号に分解される。
【0148】
分波部は例えば、図19~20に示された光回路により実現される。図19~20の光回路が分波部として使用される場合、光信号は各図の上側の線分を通って光回路に入射し、下側の線分を通って光回路から出射する。
【0149】
(2-3)光回路情報
図21は、光回路種別情報管理部552が管理する情報(以下、光回路情報または光回路種別情報と呼ばれる)の一例を示すテーブル570(以下、光回路種別情報テーブルと呼ばれる)である。光回路情報は例えば、光回路種別情報管理部552に記録される。
【0150】
光回路種別情報テーブル570の1列目には、チャンネル番号が示されている。チャンネル番号は光分岐挿入装置202に入力または出力される光信号の波長に対応している。各チャンネル番号に対応する波長は、他のチャンネル番号に対応する波長とは異なる波長である。
【0151】
光回路種別情報テーブル570の2列目には、Path設定が示されている。Path設定は、光信号の種別を示している。”Add”は、挿入信号であることを示している。”Thru”は、通過信号であることを示している。”Drop”は、分岐信号であることを示している。
【0152】
光回路種別情報テーブル570の3列目には、Add部(すなわち、多重化部)の光回路の種別が示されている。光回路種別情報テーブル570の4列目には、分波部の光回路の種別が示されている。
【0153】
光回路種別情報テーブル570の2番目の行は、波長がチャンネル番号”1”の波長λ1である挿入信号22が、CDC MCSに分類される光回路で多重化されその後、挿入部404を介して光線路224に出力されることを示している。
【0154】
光回路種別情報テーブル570の4番目の行は、波長がチャンネル番号”3”の波長λ3である通過信号20は、光分岐挿入装置202とは異なる装置でCD SPLに分類される光回路で多重化されることを示している。光回路種別情報テーブル570の4番目の行は更に、上記通過信号20は光分岐挿入装置202を通過して、光線路224に出力されることを示している。
【0155】
光回路種別情報テーブル570の5番目の行は、波長がチャンネル番号”4”の波長λ4である分岐信号18は、光分岐挿入装置202とは異なる装置でCDC WSSに分類される光回路で多重化されることを示している。光回路種別情報テーブル570の5番目の行は更に上記分岐信号18は、分岐部406により分岐された後、CDC WSSに分類される光回路を通過することを示している。光回路を通過した分岐信号18は、受信器に受信される。
【0156】
(2-4)出力レベル目標値
図22~23は、光回路種別と出力レベルの対応表記憶部550に記録される情報(以下、出力レベル目標値と呼ばれる)の一例を示す図である。出力レベル目標値は例えば、光分岐挿入装置202の運用開始前に予め光回路種別と出力レベルの対応表記憶部550に記録される。
【0157】
―挿入部404の目標値―
図22に示されたテーブル572(以下、第1出力レベル目標値テーブルと呼ばれる)は、挿入部404が光信号を減衰させる際の目標値(すなわち、第1出力レベル目標値)の一例を示すテーブルである。
【0158】
第1出力レベル目標値テーブル572の1列目には、通過信号20(図2参照)または挿入信号22が通過するAdd部(すなわち、多重化部)を実現する光回路の種別が示されている。
【0159】
第1出力レベル目標値テーブル572の2列目には、挿入信号22に対する目標値が示されている。すなわち、第1出力レベル目標値テーブル572の2列目には、挿入信号22(図2参照)が通過するAdd部(すなわち、第3多重化部14)の種別が1列目の種別である場合に、挿入部404が挿入信号22を減衰させる際の第1出力レベル目標値が記載されている。目標値の単位は例えば、dBmである。後述する他の目標値についても、同様である。
【0160】
第1出力レベル目標値テーブル572の2列目には更に、通過信号20に対する目標値が示されている。すなわち第1出力レベル目標値テーブル572の2列目には、通過信号20が通過するAdd部(すなわち、第2多重化部14b)の種別が1列目の種別である場合に、挿入部404が通過信号20を減衰させる際の目標値が記録されている。すなわち第1出力レベル目標値テーブル572の2列目には、後置WSS604(図14参照)におけるALC(Automatic Level Control)の目標値が示されている。
【0161】
例えば、第1出力レベル目標値テーブル572の最終行は、挿入信号22が通過するAdd部がCDC WSSである場合、挿入部404が挿入信号22を減衰させる際の目標値が-17dBmであることを示している。第1出力レベル目標値テーブル572の最終行は更に、通過信号20が通過するAdd部(すなわち、第2多重化部14b)の種別がCDC WSSである場合、挿入部404が通過信号20を減衰させる際の目標値が-17dBmであることを示している。
【0162】
第1出力レベル目標値テーブル572に記載された目標値は、図10~11を参照して説明したように、挿入信号22または通過信号20がAdd部(第3多重化部14または第2多重化部14b)を通過する際の強度変化率(すなわち、損失)に応じた値である。
【0163】
―分岐部406の目標値―
図23に示されたテーブル574(以下、第2/3出力レベル目標値テーブルと呼ばれる)は、分岐部406(図18参照)が光信号を減衰させる際の目標値(すなわち、第2~3目標値)の一例を示すテーブルである。
【0164】
第2/3出力レベル目標値テーブル574の1列目には、分岐信号18(図2参照)または通過信号20が通過するAdd部(すなわち、第1多重化部14aまたは第2多重化部14b)を実現する光回路の種別が示されている。
【0165】
第2/3出力レベル目標値テーブル574の2列目には、通過信号20に対する目標値(すなわち、第3出力レベル目標値)が示されている。すなわち第2/3出力レベル目標値テーブル574の2列目には、通過信号20が通過するAdd部(すなわち、第2多重化部14b)の種別が1列目の種別である場合に、分岐部406が通過信号20を減衰させる際の目標値が記載されている。
【0166】
例えば第2/3出力レベル目標値テーブル574の下から3番目の行の1~2列目は、通過信号20(図2参照)が通過するAdd部がCDC MCSである場合、分岐部406が通過信号20を減衰させる際の目標値は-5dBmであることを示している。
【0167】
第2/3出力レベル目標値テーブル574の3列目以降には、分岐信号18に対する目標値(すなわち、第2出力レベル目標値)が示されている。すなわち第2/3出力レベル目標値テーブル574の3列目以降には、分岐信号18が通過するAdd部(すなわち、第1多重化部14a)の種別が1列目の種別である場合に、分岐部406が分岐信号18を減衰させる際の第2出力レベル目標値が記録されている。
【0168】
第2出力レベル目標値は、分岐信号18が入力されるDrop部(すなわち、分波部12)を実現する光回路の種別に応じた値である。例えば第2/3出力レベル目標値テーブル574の下から3番目の行の1列目および3列目は、分岐信号18が通過するAdd部がCDC MCSであり更に分岐信号18が通過するDrop部がCD SPLである場合、分岐部406が分岐信号18を減衰させる際の目標値が-3dBmであることを示している。
【0169】
すなわち第2/3出力レベル目標値テーブル574の2列目以降には、前置WSS504(図14参照)におけるALC(Automatic Level Control)の目標値が示されている。
【0170】
第2/3出力レベル目標値テーブル574の2列目に示された目標値(すなわち、第3出力レベル目標値)は、図10~11を参照して説明したように、通過信号20がAdd部(第2多重化部14b)を通過する際の強度変化率(すなわち、損失)に応じた値である。第2/3出力レベル目標値テーブル574の3列目~6列目に示された目標値(すなわち、第2出力レベル目標値)は、通過信号20が通過するDrop部(すなわち、分波部12)の種別に応じた値である。
【0171】
(2-5)光回路情報(すなわち、光回路種別情報)の管理
図24は、光回路情報(図21参照)の管理に用いられるOSC転送信号587およびNMS577を説明する図である。図24には、実施の形態2の光分岐挿入装置202を含む光通信システム405が示されている。光通信システム405は更に、光分岐挿入装置202とは異なる光分岐挿入装置(以下、他局575と呼ばれる)を有する。
【0172】
他局575は、図1~2を参照して説明した、第1光分岐挿入装置2aおよび第2光分岐挿入装置2bの一例である。光通信システム405は更に、各光分岐挿入装置に接続されたNMS(Network Management System)577を有する。
【0173】
光分岐挿入装置202および他局575はそれぞれ、コア部576、コア部576に一端が接続されたAdd部578、およびAdd部578の他端に接続された複数の送信器580を有する。更に、光分岐挿入装置202および他局575はそれぞれ、コア部576に一端が接続されたDrop部582、およびDrop部582の他端に接続された複数の受信器584を有する。
【0174】
光分岐挿入装置202のコア部576は例えば、図18を参照して説明した装置から分波部と第3多重化部とを除いた部分である。Add部578およびDrop部582は例えば、図19~20を参照して説明した光回路である。
【0175】
他局575のコア部576は例えば、光分岐挿入装置202のコア部576と実質的に同じ装置である。他局575のAdd部578およびDrop部582についても、同様である。
【0176】
図25は、実施の形態2のOSC転送信号587が伝える情報(以下、OSC転送情報と呼ばれる)の一例を示す図である。OSC転送信号587は、一つの光分岐挿入装置(すなわち、他局575または光分岐挿入装置202)から隣接する光分岐挿入装置に順繰りに転送される。
【0177】
図25には、OSC転送情報の一例を示すテーブル588が示されている。テーブル588の1列目には、チャンネル番号が示されている。テーブル588の2列目には、波長が1列目のチャンネル番号(例えば、"1")の波長λ1である光信号が通過するAdd部の光回路の種別(例えば、CDC MCS)が示されている。
【0178】
OSC転送信号587は周期的に、隣接する他局575から入力される。OSC転送情報は、光分波器612(図18参照)とOSC受信部544を介して、光回路種別情報管理部552に入力される。
【0179】
光回路種別情報管理部552は、入力されたOSC転送情報に基づいて、光回路種別情報テーブル570(図21参照)のうち他局575に関する部分を更新する。例えば、光回路種別情報テーブル570のチャンネル番号”3”の行(Path設定が”Thru”の行)の「Add部の光回路種別」を、図25のテーブル588のチャンネル番号”3”の行の”CD SPL”で更新する。
【0180】
光回路種別情報管理部552は更に、自局(すなわち、光分岐挿入装置202)の「Add部の光回路種別」をOSC転送情報に記録して、下流側の他局に送信する。OSC転送情報は、OSC送信部546(図18参照)と光合波器512とを介して送信される。
【0181】
例えば光回路種別情報管理部552は、光回路種別情報テーブル570(図21参照)のPath設定が「Add」となっている光信号(例えば、チャンネル番号”1”の光信号)の「Add部の回路種別」(例えば、CDC MCS)を図25のテーブル588に記録する。記録される行は、チャンネル番号が”1”の行(すなわち、2行目)である。
【0182】
光回路種別情報管理部552は更に、光回路種別情報テーブル570のうち自局に関する情報(以下、装置情報579と呼ばれる)を、情報送受信部548を介してNMS577(図24参照)から取得し、光回路種別情報テーブル570(図21参照)に加える。
【0183】
具体的には、光回路種別情報管理部552は、自局のAdd部を通過する光信号(すなわち、挿入信号22)のチャンネル番号、Path設定(ここでは、”Add”)およびAdd部の光回路種別をNMS577から取得し、図21の光回路種別情報テーブル570に記録する。光回路種別情報管理部552は更に、自局のDrop部を通過する光信号(すなわち、分岐信号18)のチャンネル番号、Path設定(ここでは、”Drop”)およびDrop部の光回路種別をNMS577から取得し、図21の光回路種別情報テーブル570に記録する。
【0184】
装置情報579(図24参照)には、分岐部406に入力される各光信号の出力先のポートを示す情報も含まれている。この情報に基づいて、分岐部406は各光信号の出力先のポートを設定する。例えば、送受信モジュール522(図15参照)を介して装置情報579を受信したFPGA520は、前置WSS504の制御モジュール524に各光信号の出力先のポートを指示する。前置WSS504の制御モジュール524はこの指示に従って、前置WSS504の光学モジュール523を制御する。
【0185】
装置情報579には、挿入部404に入力される複数の光信号のうちのいずれを光線路224に送出するかを示す情報も含まれている。この情報に基づいて、挿入部404は通過信号20および挿入信号22を光線路224に送出する。
【0186】
例えば、送受信モジュール522(図15参照)を介して装置情報579を受信したFPGA520は、後置WSS604の制御モジュール524に、通過信号20および挿入信号22の波長を通知する。後置WSS604の制御モジュール524はこの通知に従って、後置WSS604の光学モジュール523を制御する。
【0187】
自局に関する情報は、自局を通る新たな光パスが設定される場合にNMS577により入力される。自局に関する情報は、ユーザ端末から入力されてもよい。或いは、自局に関する情報は、OSC転送信号587により伝達されてもよい。
【0188】
(2-6)目標値および増幅目標値の設定
図26は、制御部416(図18参照)が実行する処理の一例を示すフローチャートである。制御部416は、例えば図26のフローチャートに基づいて、第1~3目標値(実施の形態1参照)を挿入部404および分岐部406に設定する(ステップS10)。制御部416は更に、前置光増幅部408および後置光増幅部410に出力強度の目標値(以下、増幅目標値と呼ばれる)を設定する(ステップS14)。
【0189】
先ず、制御部416の光回路種別情報管理部552(図18参照)は、最後に受信したOSC転送信号587(図24参照)に基づいて光回路種別情報テーブル570(図21参照)を更新する(ステップS2)。光回路種別情報テーブル570は、光回路情報を示すテーブルである。
【0190】
ステップS2の後、制御部416の出力レベル目標値設定部554(図18参照)は、更新された光回路種別情報テーブル570(図21参照)を光回路種別情報管理部552から取得する(ステップS4)。
【0191】
出力レベル目標値設定部554は更に、挿入部404(図18参照)の出力レベル目標値を示す第1出力レベル目標値テーブル572(図22参照)を、光回路種別と出力レベルの対応表記憶部550から取得する(ステップS6)。出力レベル目標値設定部554は更に、分岐部406(図18参照)の出力レベル目標値を示す第2/3出力レベル目標値テーブル574(図23参照)を、光回路種別と出力レベルの対応表記憶部550(図18参照)から取得する(ステップS6)。ステップS6は、ステップS4の前に実行されてもよい。
【0192】
ステップS6の後、出力レベル目標値設定部554は、ステップS4で取得した光回路種別情報テーブル570(図21参照)、およびステップS6で取得した第1出力レベル目標値テーブル572(図22参照)に基づいて、挿入部404の第1出力レベル目標値を決定する(ステップS8)。出力レベル目標値設定部554(図18参照)は更に、ステップS4で取得した光回路種別情報テーブル570(図21参照)、およびステップS6で取得した第2/3出力レベル目標値テーブル574(図23参照)に基づいて、分岐部406の第2~3目標値を決定する(ステップS8)。
【0193】
―挿入信号22のための第1出力レベル目標値の決定(ステップS8の一部)―
第1出力レベル目標値は、挿入部404が光信号を減衰させる際の目標値である。図27は、ステップS8の結果が記録されるテーブル590(以下、第1結果テーブルと呼ばれる)の一例を示す図である。第1結果テーブル590の1列目には、チャンネル番号が記録されている。第1結果テーブル590の2列目には、Path設定が記録される。第1結果テーブル590の3列目には第1出力レベル目標値(すなわち、後置WSSのALC目標値)が記録される。
【0194】
出力レベル目標値設定部554(図18参照)は、ステップS4で取得した光回路種別情報テーブル570(図21参照)から、2列目のセルが”Add”となっている行の「チャンネル番号」(例えば、”1”)を取得する。出力レベル目標値設定部554は更に、上記行に記録された「Add部の光回路種別」(例えば、「CDC MCS」592)を取得する。
【0195】
出力レベル目標値設定部554は、ステップS6で取得した第1出力レベル目標値テーブル572(図22参照)のうち、光回路種別情報テーブル570(図21参照)から取得した上記「Add部の光回路種別」(例えば、「CDC MCS」592)と1列目のセルの内容が一致する行(例えば、下から3番目の行)を特定する。出力レベル目標値設定部554は、特定された行(例えば、下から3番目の行)の2番目のセルに記録された目標値(例えば、「-20」59)を取得する。
【0196】
出力レベル目標値設定部554は、第1結果テーブル590(図27参照)の行であって、光回路種別情報テーブル570(図21参照)から取得した「チャンネル番号」(例えば、「1」)が1列目のセルに記録された行(例えば、2番目の行)を特定する。出力レベル目標値設定部554は、上記特定された行(例えば、2番目の行)の2列目のセルに”Add”と記録する。出力レベル目標値設定部554は更に、上記特定された行(例えば、2番目の行)の3列目のセルに第1出力レベル目標値テーブル572(図22参照)から取得した目標値(例えば、「-20」594)を記録する。
【0197】
出力レベル目標値設定部554(図18参照)は、光回路種別情報テーブル570(図21参照)の2列目のセルに”Add部”と記録されている別の行全てに対して、上記処理を実行する。
【0198】
以上のように制御部416(図18)の出力レベル目標値設定部554は、挿入信号22(図2参照)が通過するAdd部(すなわち、第3多重化部)に含まれる光回路の種別を示す情報に基づいて、挿入信号22のための第1出力レベル目標値を決定する。上記情報は以下、第3光回路情報(例えば、「CDC MCS」592)と呼ばれる。上記光回路は、挿入信号22が通過するAdd部(すなわち、第3多重化部)を実現する光回路である。
【0199】
―通過信号20のための第1出力レベル目標値の決定(ステップS8の続き)―
出力レベル目標値設定部554(図18参照)は、ステップS4で取得した光回路種別情報テーブル570(図21参照)から、2列目のセルが”Thru”となっている行の「チャンネル番号」(例えば、「3」)および「Add部の光回路種別」(例えば、「CD SPL」596)を取得する。出力レベル目標値設定部554は、ステップS6で取得した第1出力レベル目標値テーブル572(図22参照)の行のうち1列目のセルが上記取得した「Add部の光回路種別」(例えば、「CD SPL」596)に一致する行(例えば、下から4番目の行)を特定する。出力レベル目標値設定部554は、特定された行(例えば、下から4番目の行)の2番目のセルに記録された目標値(例えば、「-19」598)を取得する。
【0200】
出力レベル目標値設定部554は、第1結果テーブル590(図27参照)の行のうち、光回路種別情報テーブル570(図21参照)から取得した「チャンネル番号」(例えば、「3」)が1列目のセルに記録された行(例えば、4番目の行)を特定する。出力レベル目標値設定部554は、上記特定された行(例えば、4番目の行)の2列目のセルに”Thru”と記録する。出力レベル目標値設定部554は更に、上記特定された行(例えば、4番目の行)の3列目のセルに第1出力レベル目標値テーブル572(図22参照)から取得した目標値(例えば、「-19」598)を記録する。
【0201】
出力レベル目標値設定部554(図18参照)は、光回路種別情報テーブル570(図21参照)の2列目のセルに”Thru”と記録されている別の行(例えば、7番目の行)全てに対して、上記処理を実行する。
【0202】
以上のように制御部416(図18)の出力レベル目標値設定部554は、通過信号20(図2参照)が通過するAdd部(すなわち、第2多重化部)に含まれる光回路の種別を示す情報(例えば、CD SPL)に基づいて通過信号のための第1出力レベル目標値を決定する。上記情報(例えば、「CD SPL」596)は以下、第2光回路情報と呼ばれる。上記光回路は、通過信号20が通過するAdd部(すなわち、第2多重化部)を実現する光回路である。
【0203】
―分岐信号のための第2出力レベル目標値の決定(ステップS8の続き)―
第2出力レベル目標値は、分岐部406(図18参照)が分岐信号18(図2参照)を減衰させる際の目標値である。
【0204】
図28は、ステップS8の結果が記録される別のテーブル591(以下、第2結果テーブルと呼ばれる)の一例を示す図である。第2結果テーブルの1列目には、チャンネル番号が記録されている。第2結果テーブルの2列目には、Path設定が記録される。第2結果テーブルの3列目には第2出力レベル目標値および第3出力レベル目標値(すなわち、前置WSSのALC目標値)が記録される。
【0205】
出力レベル目標値設定部554(図18参照)は、ステップS4で取得した光回路種別情報テーブル570(図21参照)から、2列目のセルが”Drop”となっている行の「チャンネル番号」(例えば、”4”)を取得する。出力レベル目標値設定部554は更に、上記行から「Add部の光回路種別」(例えば、「CDC WSS」900)および「Drop部の光回路種別」(例えば、「CDC WSS」902)を取得する。
【0206】
出力レベル目標値設定部554は、ステップS6で取得した第2/3出力レベル目標値テーブル574(図23参照)の行のうち、上記取得した「Add部の光回路種別」(例えば、「CDC WSS」900)と1列目のセルが一致する行(例えば、最終行)を特定する。出力レベル目標値設定部554は更に、上記第2/3出力レベル目標値テーブル574(図23参照)の下から5番目の行のセルのうち上記取得した「Drop部の光回路種別」(例えば、「CDC WSS」902)と一致する列(例えば、最終列)を特定する。
【0207】
出力レベル目標値設定部554は、第2/3出力レベル目標値テーブル574(図23参照)のセルうち上記行(例えば、最終行)および上記列(例えば、最終列)に属するセルに記録された目標値(例えば、「-3」904)を取得する。
【0208】
出力レベル目標値設定部554は、第2結果テーブル(図28参照)の行のうち1列目のセルに、光回路種別情報テーブル570(図21参照)から取得した「チャンネル番号」(例えば、”4”)が記録された行(例えば、5番目の行)を特定する。出力レベル目標値設定部554は、上記特定された行(例えば、4番目の行)の2列目のセルに”Drop”と記録する。出力レベル目標値設定部554は更に、上記特定された行(例えば、5番目の行)の3列目のセルに第2/3出力レベル目標値テーブル574(図23参照)から取得した目標値904(例えば、”-3”)を記録する。
【0209】
出力レベル目標値設定部554(図18参照)は、光回路種別情報テーブル570(図21参照)の2列目のセルに”Drop部”と記録されている別の行全てに対して、上記処理を実行する。
【0210】
以上のように制御部416(図18)の出力レベル目標値設定部554は、分岐信号18(図2参照)が通過するAdd部(すなわち、第1多重化部)に含まれる光回路の種別を示す情報(以下、第1光回路情報と呼ばれる)を特定する。上記光回路は、分岐信号18が通過するAdd部(すなわち、第1多重化部)を実現する光回路である。
【0211】
出力レベル目標値設定部554は更に、分岐信号18(図2参照)が通過するDrop部(すなわち、分波部)に含まれる光回路の種別を示す情報(以下、第4光回路情報と呼ばれる)を特定する。上記光回路は、分岐信号18が通過するDrop部(すなわち、分波部)を実現する光回路である。
【0212】
そして出力レベル目標値設定部554は、第1光回路情報(例えば、「CDC WSS」900)および第4光回路情報(例えば、「CDC WSS」902)に基づいて分岐信号のための第2出力レベル目標値を決定する。
【0213】
出力レベル目標値設定部554は、第4光回路情報(例えば、「CDC WSS」902)だけに基づいて分岐信号18のための第2出力レベル目標値を決定してもよい。
【0214】
―通過信号のための第3出力レベル目標値の決定(ステップS8の残り)―
第3出力レベル目標値は、分岐部406(図18参照)が通過信号20(図2参照)を減衰させる際の目標値である。
【0215】
出力レベル目標値設定部554(図18参照)は、ステップS4で取得した光回路種別情報テーブル570(図21参照)から、2列目のセルが”Thru”となっている行の「チャンネル番号」(例えば、”3”)および「Add部の光回路種別」(例えば、「CD SPL」596)を取得する。出力レベル目標値設定部554は、ステップS6で取得した第2/3出力レベル目標値テーブル574(図23参照)の行のうち1列目のセルが上記取得した「Add部の光回路種別」(例えば、「CD SPL」596)に一致する行(例えば、下から4番目の行)を特定する。出力レベル目標値設定部554は、特定された行(例えば、下から4番目の行)の2番目のセルに記録された目標値(例えば、「-4」906)を取得する。
【0216】
出力レベル目標値設定部554は、第2結果テーブル(図28参照)の行のうち光回路種別情報テーブル570(図21参照)から取得した「チャンネル番号」(例えば、”3”)が記録された行(例えば、4番目の行)を特定する。出力レベル目標値設定部554は、上記特定された行(例えば、4番目の行)の2列目のセルに”Thru”と記録する。出力レベル目標値設定部554は更に、上記特定された行(例えば、4番目の行)の3列目のセルに第2/3出力レベル目標値テーブル574(図23参照)から取得した目標値(例えば、「-4」906)を記録する。
【0217】
出力レベル目標値設定部554(図18参照)は、光回路種別情報テーブル570(図21参照)の2列目のセルに”Thru”と記録されている別の行(例えば、最終行)全てに対して、上記処理を実行する。
【0218】
以上のように制御部416(図18)の出力レベル目標値設定部554は、通過信号20(図2参照)が通過するAdd部(すなわち、第2多重化部)を実現する光回路の種別を示す情報(例えば、「CD SPL」596)に基づいて第3出力レベル目標値を決定する。上記情報(例えば、「CD SPL」596)は、上記第2光回路情報である。
【0219】
ステップS8の後、出力レベル目標値設定部554は挿入部404に、第1結果テーブル590(図27参照)の3列目の各目標値と1列目のチャンネル番号(または、波長)とを設定する(ステップS10)。同様に、出力レベル目標値設定部554は分岐部406に、第2結果テーブル(図28参照)の3列目の各目標値と1列目のチャンネル番号(または、波長)とを設定する(ステップS10)。ステップS10は、ステップS12~S14の後に実行されてもよい。
【0220】
アンプ平均出力レベル目標値設定部556(図18参照)は、後置光増幅部410(図18参照)のための増幅目標値および前置光増幅部408のための増幅目標値を決定する(ステップS12)。
【0221】
―後置光増幅部のための増幅目標値の決定(ステップS12の一部)―
図18の「光回路種別と出力レベルの対応表記憶部550」には、図34に示すテーブルも記憶している。
【0222】
図34に示すテーブルには、前置光増幅部408と後置光増幅部410のADD部(すなわち、多重化部)の光回路種別情報に対する出力レベル目標値が記録されている。出力レベル目標値は、ADD部の光回路の強度変化率の大小に応じた値で、強度変化率が小さい光回路の場合に出力レベル目標値をその分高く設定する。すなわち、図34のテーブルは、前置光増幅部および後置光増幅部夫々の出力レベルの目標値を示す対応表である。
【0223】
図18のアンプ平均出力レベル目標値設定部556は、「光回路種別と出力レベルの対応表記憶部550」から、図34の情報を取得する。またアンプ平均出力レベル目標値設定部556は、図18の光回路種別情報管理部552から光回路種別情報(図21参照)を取得する。図18のアンプ平均出力レベル目標値設定部556は、信号波長(すなわち、光信号の波長またはCH)ごとの光回路種別情報と図34の対応表に基づいて、その信号波長の後置光増幅部410の出力レベル目標値を決定する。さらにアンプ平均出力レベル目標値設定部556は決定した出力レベル目標値に基づいて、使用している全信号波長の平均の出力レベル目標値[dBm/ch](すなわち、アンプ平均出力レベル目標値)を算出する。その値になるように、後置増幅部410の光増幅器954の利得を制御する。
【0224】
図33は、後置増幅部410の光増幅器954の利得制御の方法および構造の一例を示す図である。アンプの入力のPD(光検出器)952と入力パワー検出部958により、入力パワーを検出する。PD952には、分岐カプラ948により分岐された光信号が入力される。また、波長数情報取得部960は、装置(例えば、制御部416)より、波長数情報(すなわち、光増幅器954に入力される信号波長の数)を取得する。入力レベル演算部962は、入力パワーと波長数情報により、平均入力レベル(dBm/ch)を算出する。またアンプ平均出力レベル目標値取得部950は、装置(例えば、アンプ平均出力レベル目標値設定部556)より、アンプ平均出力レベル目標値を取得する。利得目標値演算部964は、入力レベル(すなわち、平均入力レベル)と出力レベル(すなわち、アンプ平均出力レベル目標値)とから利得目標値を演算する。AGC(Automatic Gain Control)制御部956は利得目標値になるように、増幅部954を制御する。前置増幅部408の光増幅器の利得制御方法および構造についても同様である。
【0225】
―前置光増幅部のための増幅目標値の決定(ステップS12の残り)―
アンプ平均出力レベル目標値設定部556は、「光回路種別と出力レベルの対応表記憶部550」から、図34の情報を取得する。またアンプ平均出力レベル目標値設定部556は、図18の光回路種別情報管理部552から光回路種別情報(図21参照)を取得する。図18のアンプ平均出力レベル目標値設定部556は、信号波長(すなわち、光信号の波長またはCH)ごとの光回路種別情報と図34の対応表に基づいて、その信号波長の前置光増幅部408の出力レベル目標値を決定する。さらにアンプ平均出力レベル目標値設定部556は決定した出力レベル目標値に基づいて、使用している全信号波長の平均の出力レベル目標値[dBm/ch](すなわち、アンプ平均出力レベル目標値)を算出する。その値になるように、前置増幅部4408の光増幅器954の利得を制御する。
【0226】
アンプ平均出力レベル目標値設定部556(図18参照)は、ステップS12で決定した後置光増幅部410のための増幅目標値を後置光増幅部410に設定する(ステップS14)。アンプ平均出力レベル目標値設定部556(図18参照)は更に、ステップS12で決定した前置光増幅部408のための増幅目標値を前置光増幅部408に設定する(ステップS14)。
【0227】
ステップS10により、後置WSS604の制御モジュール524に第1出力レベル目標値が設定され、設定された第1出力レベル目標値に従って制御モジュール524が後置WSS604の光学モジュール523を制御する。ステップS10により更に、前置WSS404の制御モジュール524に第2~3目標値が設定され、設定された第2~3目標値に従って制御モジュール524が前置WSS504の光学モジュール523を制御する。
【0228】
ステップS14により、後置光増幅器510の電源530に後置光増幅器510のための増幅目標値が設定され、設定された増幅目標値に従って電源530が励起光源528を制御する。ステップS14により更に、前置光増幅器610の電源530に前置光増幅器610のための増幅目標値が設定され、設定された増幅目標値に従って電源530が励起光源528を制御する。
【0229】
分岐部406と、挿入部404と、前置光増幅器408と、後置光増幅器410の出力レベル目標値は、光信号波長(すなわち、光信号)を挿入する際の多重化部の光回路の強度変化率に比例した値に設定されることが好ましい。
【0230】
図35は、光分岐挿入装置202を用いた光分岐挿入システム980の一例を示す図である。光分岐挿入装置202は、伝送装置982に収容され、第一の伝送装置984及び第二の伝送装置986のそれぞれに接続される。第一の伝送装置984は、光信号の流れに対して下流側の伝送装置である。第二伝送装置986は、光信号の流れに対して上流側の伝送装置である。
【0231】
図29は、光分岐挿入装置202により処理される光信号のスペクトルの一例を示す図である。図29の上部には、光分岐挿入装置202の概略図が示されている。図29の中央部には、光回路の強度変化率に拘わらず第1~3目標値が一定に設定されるケースαおける光信号のスペクトルの一例が示されている。
【0232】
図29の下部には、光回路の強度変化率に応じて第1~3目標値が設定されるケースβにおける光信号のスペクトルの一例が示されている。各スペクトルの横軸は、波長である。縦棒bの長さは、光強度(すなわち、パワー)を表している。ケースβは、実施の形態2の一例である。
【0233】
図29の左側から数えて1番目の列のスペクトルは、前置光増幅部408に入力される光信号OS1のスペクトルを示している。図29の左側から数えて2番目の列のスペクトルは、前置光増幅部408から出力され分岐部406に入力される前の光信号OS2のスペクトルを示している。図29の左側から数えて3番目の列のスペクトルは、分岐部406から出力され挿入部404に入力される前の光信号OS3のスペクトルを示している。
【0234】
図29の左側から数えて4番目の列のスペクトルは、多重化部から出力され挿入部404に入力される前の光信号OS4のスペクトルを示している。図29の左側から数えて5番目の列のスペクトルは、挿入部404から出力され後置光増幅部410に入力される前の光信号OS5のスペクトルを示している。図29の左側から数えて6番目の列の光信号OS6は、後置光増幅部410から出力された光信号OS6のスペクトルを示している。
【0235】
ケースαでは、多重化部を通過した光信号OS4は挿入部404により一定の強度に減衰された後に、後置光増幅部410に入力される(ケースαの光信号OS5参照)。ケースαでは最も弱い光信号Bを出力する多重化部(すなわち、最も損失が大きい光回路)に合わせて第1~3目標値が設定されるので、最も強い光信号Aは、最も弱い光信号Bと同じ強度(例えば、-20dBm)まで減衰される。従って、後置光増幅部410から出力される際の光信号Aの光信号対雑音比は、後置光増幅部410から出力される際の光信号Bの光信号対雑音比と同程度の低い値になる。
【0236】
一方ケースβでは、多重化部を通過した時点で最も強い光信号Aは、光信号Aが通過した多重化部の損失に応じた比較的強い強度(例えば、-17dBm)に減衰された後に、後置光増幅部410に入力される。従ってケースβでは、後置光増幅部410から出力される際の光信号Aの光信号対雑音比は、ケースαにおける光信号対雑音比(すなわち、ケーアαおける後置光増幅部410から出力される際の光信号Aの光信号対雑音比)より高くなる。
【0237】
ケースβの光信号OS6、OS1~OS3のスペクトルが示すように、光信号Aは後置光増幅部410から出力された後も光信号Bより強いままである。
【0238】
従って、光信号が通過する多重化部の強度変化率(すなわち、損失)に応じて第1~3目標値が設定されるケースβ(すなわち、実施の形態2の一例)によれば、損失が小さい多重化部を通過する光信号Aの光信号対雑音比が向上する。
【0239】
なお、最も強い光信号Aを出力する多重化部(すなわち、最も損失が小さい多重化部)の強度変化率に合わせて第1~3目標値を設定することも考えられる。しかしこの場合、挿入部404から出力される際の光信号Bの強度は、目標値には到達できない。すると、後置光増幅部410から出力される際の光信号Aの強度は過剰に強くなる。その結果、光線路における光信号Aによる非線形効果が顕在化し、伝送性能が劣化する。
【0240】
(3)変形例
(3-1)変形例1
以上の例では、Add部およびDrop部それぞれの光回路を識別するためには、光回路の種別(例えば、”CD SPL”等)が用いられる。しかし、Add部およびDrop部の光回路を識別するために、光回路の種別以外の情報が用いられてもよい。例えば、Add部およびDrop部の光回路を識別するためには、光回路の強度変化率(すなわち、損失)が用いられてもよい。
【0241】
或いは、Add部およびDrop部の光回路を識別するためには、光回路の種別を分類することで得られるグループが用いられてもよい。
【0242】
図30は、Add部およびDrop部の識別に用いられる、光回路のグループの一例を示す図である。図30のテーブル908の1列目には、Add部およびDrop部に用いられる光回路の種別が示されている。テーブル908の2列目には、各光回路(例えば、”CD SPL")が属するAdd/Dropタイプ(すなわち、グループ名)が示されている。
【0243】
変形例1によれば、光回路情報(図21参照)および出力レベル目標値(図22~23)等を簡素化できる。
【0244】
(3-2)変形例2
以上の例では、第1出力レベル目標値(すなわち、挿入部404を通過する光信号のための目標値)は光信号が最初に通過する光回路(すなわち、多重化部の光回路)の強度変化率(すなわち、損失)に応じた値に設定される。しかし、第1出力レベル目標値は、光信号を生成する装置(例えば、送受信器)から出力される光信号の強度および光信号が最初に通過する光回路(すなわち、多重化部)の強度変化率の両方に応じた値に設定されてもよい。
【0245】
図31は、光信号を生成する装置(例えば、送受信器)から出力される挿入信号22の強度および挿入信号22が最初に通過する光回路(すなわち、多重化部)の強度変化率に応じた値に設定された第1出力レベル目標値の一例を示すテーブル910である。テーブル910の1列目には、Add部(すなわち、多重化部)に用いられる光回路の種別が示されている。
【0246】
テーブル910の2列目には、1列目のAdd部(すなわち、多重化部)を通過する光信号を生成する送受信器の種別が示されている。「高出力タイプTRPN」は、他の種別の送受信器(例えば、ノーマルタイプTRPNおよび低出力タイプTRPN)が生成する光信号より強い光信号を生成する。「低出力タイプTRPN」は、他の種別(例えば、ノーマルタイプTRPNおよび高出力タイプTRPN)が生成する光信号より弱い光信号を生成する。
【0247】
テーブル910の3列目には、挿入部404(すなわち、後置WSS)を通過する挿入信号22(すなわち、AddCH)ための第1出力レベル目標値が示されている。
【0248】
Add部の光回路が同じでも、3列目に記録された第1出力レベル目標値は、挿入信号22を生成する送受信器の出力が強いほど大きくなっている。例えば、Add部の光回路種別(例えば、CD SPL)が同一であっても、高出力タイプTRPN912により生成される挿入信号22の第1出力レベル目標値(例えば、-17dBm)は、低出力タイプTRPN914により生成される挿入信号22のための第1出力レベル目標値(例えば、-21dBm)より大きい。
【0249】
変形例2によれば、Add部に光信号を入力する装置(例えば、送受信器)の出力強度に応じて第1出力レベル目標値を設定できるので、出力強度が高い装置から出力される光信号の光信号対雑音比を高くできる。
【0250】
(3-3)変形例3
以上の例では、第2出力レベル目標値(すなわち、分岐信号18のための目標値)は光信号が最後に通過する光回路(すなわち、分波部の光回路)の強度変化率(すなわち、損失)に応じた値に設定される。しかし、第2出力レベル目標値は、光信号を光電変換する装置(例えば、送受信器)の感度および光信号(ここでは、分岐信号)が最後に通過する光回路(すなわち、分波部)の強度変化率に応じた値に設定されてもよい。
【0251】
図32は、分岐信号18を光電変換する装置(例えば、送受信器)の感度および分岐信号18が最後に通過する光回路(すなわち、分波部)の強度変化率(すなわち、損失)に応じた値に設定された第2出力レベル目標値の一例を示すテーブル916である。テーブル916の1列目には、Drop部(すなわち、分波部)に用いられる光回路の種別が示されている。
【0252】
テーブル916の2列目には、1列目のDrop部(すなわち、分波部)を通過する分岐信号18を光電変換する送受信器の種別が示されている。「高感度タイプTRPN」の感度(すなわち、検出可能な最も低い信号強度)は、他の種別の送受信器(例えば、ノーマルタイプTRPNおよび低感度タイプTRPN)の感度より高い。「低感度タイプTRPN」の感度は、他の種別(例えば、ノーマルタイプTRPNおよび高感度タイプTRPN)の感度より低い。
【0253】
テーブル916の3列目には、分岐部406(すなわち、前置WSS)を通過する分岐信号18(すなわち、Drop CH)ための第2出力レベル目標値が示されている。
【0254】
Drop部の光回路の種別が同じでも、テーブル916の3列目に記録された第2出力レベル目標値は、分岐信号18を受信する送受信器の感度が高いほど低い。
【0255】
例えば、Drop部の光回路種別(例えば、CD SPL)が同一であっても、高感度タイプTRPN918により受信される分岐信号18の第2出力レベル目標値(例えば、-5dBm)は、低感度タイプTRPN920により受信される分岐信号18の第2出力レベル目標値(例えば、0dBm)より低い。
【0256】
変形例3によれば、Drop部を通過した光信号(すなわち、分岐信号18)を受信する送受信器の感度に応じて第2出力レベル目標値を設定できるので、送受信器の感度調整を省略できる。
【0257】
実施の形態2によれば、実施の形態1と同様、光信号が通過する光回路(すなわち、多重化部)の損失に応じて光信号の強度が制御されるので、光信号への過剰な減衰が抑制され、損失が小さい光回路を通過する光信号の光信号対雑音比を改善できる。
【0258】
実施の形態2によれば更に、光回路の種別を示す第1~4光回路情報(例えば、「CDC MCS」)に基づいて分岐部406および挿入部404が制御されるので、分岐部406および挿入部404の制御が容易になる。
【0259】
以上、本発明の実施の形態について説明したが、実施の形態1~2は、例示であって制限的なものではない。例えば、実施の形態1~2では、第1~3多重化部の強度変化率は0dBより小さい。しかし、第1~3多重化部の一部または全部の強度変化率は、0dBより大きくてもよい。すなわち、第1~3多重化部の一部または全部は、入力された光信号(すなわち、挿入光、通過光、分岐光)を増幅する光増幅器を有してもよい。
【0260】
実施の形態1~2では、第1~2光回路情報は、OSC転送信号により光分岐挿入装置2,202に伝えられる。しかし、第1~2光回路情報は、OSC転送信号以外の信号により伝えられてもよい。例えば第1~2光回路情報は、NMSからの信号により光分岐挿入装置2,202に伝えられてもよい。
【符号の説明】
【0261】
2 :光分岐挿入装置
4 :挿入部
5 :光通信システム
6 :分岐部
8 :前置光増幅部
10 :後置光増幅部
12 :分波部
14 :第3多重化部
14a :第1多重化部
14b :第2多重化部
16 :制御部
18 :分岐信号
20 :通過信号
22 :挿入信号
24 :光線路
26a :第1光信号
26b :第2光信号
28a :第1ポート
28b :第2ポート
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35