(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-10
(45)【発行日】2023-11-20
(54)【発明の名称】情報処理システム、情報処理装置、情報処理方法、及びプログラム
(51)【国際特許分類】
G01N 21/17 20060101AFI20231113BHJP
G01W 1/00 20060101ALI20231113BHJP
G01N 21/49 20060101ALI20231113BHJP
【FI】
G01N21/17 F
G01W1/00 J
G01N21/49 A
(21)【出願番号】P 2019215757
(22)【出願日】2019-11-28
【審査請求日】2022-10-21
(73)【特許権者】
【識別番号】503361400
【氏名又は名称】国立研究開発法人宇宙航空研究開発機構
(73)【特許権者】
【識別番号】504300088
【氏名又は名称】国立大学法人北海道国立大学機構
(74)【代理人】
【識別番号】100106909
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100161702
【氏名又は名称】橋本 宏之
(74)【代理人】
【識別番号】100188592
【氏名又は名称】山口 洋
(74)【代理人】
【識別番号】100181124
【氏名又は名称】沖田 壮男
(74)【代理人】
【識別番号】100163496
【氏名又は名称】荒 則彦
(72)【発明者】
【氏名】星野 聖太
(72)【発明者】
【氏名】神田 淳
(72)【発明者】
【氏名】田中 康弘
(72)【発明者】
【氏名】舘山 一孝
(72)【発明者】
【氏名】原田 康浩
【審査官】伊藤 裕美
(56)【参考文献】
【文献】特開2000-180357(JP,A)
【文献】特開2019-078720(JP,A)
【文献】特開2014-228300(JP,A)
【文献】特開2015-088106(JP,A)
【文献】柴田 啓司 ほか,テクスチャ特徴量を用いた夜間道路映像の湿潤状態判別,電気学会論文誌C,2012年,Vol.132/No.9,1488-1493
【文献】竹内 和也 ほか,道路管理用カメラを用いた冬季の路面状態判別,電気学会論文誌C,2015年,Vol.135/No.7,第901-907頁
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-G01N 21/61
G01W 1/00-G01W 1/18
G01B 11/00-G01B 11/30
G01B 15/00-G01B 15/08
G01S 17/00-G01S 17/95
G06N 20/00-G06N 20/20
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
堆積物に対して電磁波を照射する照射部と、
前記照射部によって前記堆積物に照射された前記電磁波の散乱波又は透過波を検出する検出部と、
前記検出部によって検出された前記散乱波又は前記透過波に基づく画像から、前記堆積物の種類を判定する判定部と、
前記画像から前記散乱波又は前記透過波の特徴量を算出する算出部と、を備え、
前記算出部は、
予め種類が判定済みである第1堆積物に合わせて決定された第1パラメータと、前記特徴量とに基づいて、第1マハラノビス距離を算出し、
予め種類が判定済みであり、前記第1堆積物と種類が異なる第2堆積物に合わせて決定された第2パラメータと、前記特徴量とに基づいて、第2マハラノビス距離を算出し、
前記判定部は、
前記第1マハラノビス距離と前記第2マハラノビス距離との比較結果に基づいて、前記堆積物の種類を判定する、
情報処理システム。
【請求項2】
前記判定部は、
前記第1マハラノビス距離が前記第2マハラノビス距離よりも短い場合、前記堆積物が前記第1堆積物と判定し、
前記第1マハラノビス距離が前記第2マハラノビス距離よりも長い場合、前記堆積物が前記第2堆積物と判定する、
請求項1に記載の情報処理システム。
【請求項3】
前記算出部は、算出した前記特徴量のヒストグラムから、互いに種類の異なる複数の統計量を算出し、
前記判定部は、前記算出部によって算出された前記複数の統計量に基づいて、前記堆積物の種類を判定する、
請求項
1又は2に記載の情報処理システム。
【請求項4】
前記判定部は、
説明変数が第1統計量であり、目的変数が前記第1統計量と種類が異なる第2統計量である判別関数に対して、前記複数の統計量に含まれる前記第1統計量を入力し、
前記第1統計量を入力した前記判別関数によって出力された前記第2統計量と、前記複数の統計量に含まれる前記第2統計量との比較結果に基づいて、前記堆積物の種類を判定する、
請求項
3に記載の情報処理システム。
【請求項5】
前記判定部は、
物体に照射された電磁波の散乱波又は透過波に基づく画像から得られる統計量が入力されると、前記物体の種類を分類するように学習された分類器に対して、前記算出部によって算出された前記統計量を入力し、前記統計量を入力した前記分類器の出力結果に基づいて、前記堆積物の種類を判定する、
請求項
3に記載の情報処理システム。
【請求項6】
前記判定部は、更に、前記算出部によって算出された前記複数の統計量に基づいて、前記堆積物の厚さを判定する、
請求項
3から5のうちいずれか一項に記載の情報処理システム。
【請求項7】
前記判定部は、前記算出部によって算出された前記複数の統計量のうち、第1統計量が大きく、且つ前記第1統計量と種類が異なる第2統計量が小さくなるほど、前記堆積物の厚さが小さいと判定し、前記第1統計量が小さく、且つ前記第2統計量が大きくなるほど、前記堆積物の厚さが大きいと判定する、
請求項
6に記載の情報処理システム。
【請求項8】
堆積物に対して照射された電磁波の散乱波又は透過波に基づく画像を取得する取得部と、
前記取得部により取得された前記画像から、前記堆積物の種類を判定する判定部と、
前記画像から前記散乱波又は前記透過波の特徴量を算出する算出部と、を備え、
前記算出部は、
予め種類が判定済みである第1堆積物に合わせて決定された第1パラメータと、前記特徴量とに基づいて、第1マハラノビス距離を算出し、
予め種類が判定済みであり、前記第1堆積物と種類が異なる第2堆積物に合わせて決定された第2パラメータと、前記特徴量とに基づいて、第2マハラノビス距離を算出し、
前記判定部は、
前記第1マハラノビス距離と前記第2マハラノビス距離との比較結果に基づいて、前記堆積物の種類を判定する、
情報処理装置。
【請求項9】
コンピュータが、
堆積物に対して照射された電磁波の散乱波又は透過波に基づく画像を取得し、
取得した前記画像から、前記堆積物の種類を判定
し、
前記画像から前記散乱波又は前記透過波の特徴量を算出し、
予め種類が判定済みである第1堆積物に合わせて決定された第1パラメータと、前記特徴量とに基づいて、第1マハラノビス距離を算出し、
予め種類が判定済みであり、前記第1堆積物と種類が異なる第2堆積物に合わせて決定された第2パラメータと、前記特徴量とに基づいて、第2マハラノビス距離を算出し、
前記第1マハラノビス距離と前記第2マハラノビス距離との比較結果に基づいて、前記堆積物の種類を判定する、
情報処理方法。
【請求項10】
コンピュータに、
堆積物に対して照射された電磁波の散乱波又は透過波に基づく画像を取得すること、
取得した前記画像から、前記堆積物の種類を判定すること、
前記画像から前記散乱波又は前記透過波の特徴量を算出すること、
予め種類が判定済みである第1堆積物に合わせて決定された第1パラメータと、前記特徴量とに基づいて、第1マハラノビス距離を算出すること、
予め種類が判定済みであり、前記第1堆積物と種類が異なる第2堆積物に合わせて決定された第2パラメータと、前記特徴量とに基づいて、第2マハラノビス距離を算出すること、
前記第1マハラノビス距離と前記第2マハラノビス距離との比較結果に基づいて、前記堆積物の種類を判定すること、
を実行させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理システム、情報処理装置、情報処理方法、及びプログラムに関する。
【背景技術】
【0002】
道路面や滑走路面には、例えば、雪や氷、水、泥といった物体が堆積又は付着する。これら堆積物の状態量をモニタリングすることは、安全管理上重要である。これに関連して、道路や滑走路の管理を目的として、路面上の状態を計測する技術が知られている(例えば、特許文献1-5参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2004-191276号公報
【文献】特開2017-110983号公報
【文献】特開2006-046936号公報
【文献】特開2016-170069号公報
【文献】特開2019-029056号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の技術では、雪、氷、水といったような堆積物の種類を精度よく判定することができていなかった。
【0005】
本発明は、このような事情を考慮してなされたものであり、堆積物の種類を精度よく判定することができる情報処理システム、情報処理装置、情報処理方法、及びプログラムを提供することを目的の一つとする。
【課題を解決するための手段】
【0006】
本発明の一態様は、堆積物に対して電磁波を照射する照射部と、前記照射部によって前記堆積物に照射された電磁波の散乱波又は透過波を検出する検出部と、前記検出部によって検出された前記散乱波又は前記透過波に基づく画像から、前記堆積物の種類を判定する判定部と、を備える情報処理システムである。
【発明の効果】
【0007】
本発明の一態様によれば、堆積物の種類を精度よく判定することができる。
【図面の簡単な説明】
【0008】
【
図1】第1実施形態に係る情報処理システムの構成の一例を示す図である。
【
図2】第1実施形態に係るセンサの一例を示す図である。
【
図3】第1実施形態に係るセンサの他の例を示す図である。
【
図4】第1実施形態に係るセンサの他の例を示す図である。
【
図5】第1実施形態に係る情報処理装置の構成の一例を示す図である。
【
図6】第1実施形態に係る情報処理装置の一連の処理の流れの一例を示すフローチャート(その1)である。
【
図7】第1実施形態に係る情報処理装置の一連の処理の流れの一例を示すフローチャート(その2)である。
【
図8】堆積物の種類に応じた散乱光の面積の違いの一例を示す図である。
【
図9】堆積物の種類に応じた散乱光の面積の頻度分布を示す図である。
【
図10】可視域における二次元の散乱光の分布を示す図である。
【
図11】可視域における二次元の散乱光の分布を示す図である。
【
図12】可視域における二次元の散乱光の分布を示す図である。
【
図16】水及び氷の画像ヒストグラムにおける平均と尖度との関係とその関係から導出された線形判別関数を示す図である。
【
図17】堆積物の厚さを判定する方法を説明するための図である。
【
図18】第2実施形態に係る情報処理システムの構成の一例を示す図である。
【
図19】第2実施形態に係る情報処理装置の構成の一例を示す図である。
【
図21】第2実施形態に係る学習装置の構成の一例を示す図である。
【
図22】第2実施形態に係る学習装置の一連の処理の流れの一例を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、図面を参照し、本発明の情報処理システム、情報処理装置、情報処理方法、及びプログラムの実施形態について説明する。
【0010】
<第1実施形態>
[情報処理システムの構成]
図1は、第1実施形態に係る情報処理システム1の構成の一例を示す図である。図示のように、情報処理システム1は、センサ10と、情報処理装置100とを備える。これらの装置は、ネットワークNWに接続される。ネットワークNWは、例えば、WAN(Wide Area Network)やLAN(Local Area Network)などである。複数のセンサ10-1~10-nのうちいずれかを区別しない場合、これらセンサ10-1~10-nをまとめてセンサ10と称して説明する。
【0011】
センサ10は、例えば、滑走路や道路、鉄道の線路付近などに埋設される。センサは、埋設場所に堆積した物体、すなわち堆積物にレーザ光を照射し、その照射したレーザ光の散乱光や透過光を検出する。堆積物は、例えば、雪や氷、水、泥、土、火山灰、砂などである。
【0012】
図2は、第1実施形態に係るセンサ10の一例を示す図である。図示のように、センサ10は、照射部12と、検出部14とを備える。照射部12及び検出部14は、例えば、樹脂やガラスといった上記レーザ光に対し透過性を有する透過部材16に覆われている。
【0013】
照射部12は、透過部材16を介して外部にレーザ光を照射する。例えば、透過部材16上に雪が堆積している場合、照射部12から照射された複数のレーザ光は、雪によって反射される。この際、レーザ光の一部は、光散乱現象によって散乱する。
【0014】
検出部14は、例えば、透過部材16上に堆積した雪によって散乱したレーザ光、つまり散乱光を検出する。検出部14は、散乱光を検出すると、その検出した散乱光の検出信号を、ネットワークNWを介して情報処理装置100に送信する。
【0015】
また、センサ10は、必ずしも雪などが堆積し得る場所に埋設されなくてもよい。
図3は、第1実施形態に係るセンサ10の他の例を示す図である。図示のように、例えば、センサ10は堆積物の上方に設定されてよい。この場合、検出部14は、堆積物の上方から堆積物に向けてレーザ光を照射する。検出部14は、堆積物の上方へと散乱した散乱光を検出する。なお、ここで、検出部14には、照射部12から照射されたレーザ光の波長を含む電磁波を電気信号に変換する公知の固体撮像素子が用いられる。例えば、電荷結合素子(CCD)、相補型MOS(CMOS)を用いることができるが、CCD、CMOS等による二次元検出のみならず、フォトダイオードをライン状に配置したセンサアレイや、ラインセンサ等による一次元検出であってもよい。
【0016】
また、センサ10は堆積物に照射したレーザ光の散乱光を検出する代わりに、透過光を検出してもよい。
【0017】
図4は、第1実施形態に係るセンサ10の他の例を示す図である。図示のように、例えば、検出部14は、透過部材16を介して、照射部12と対向した位置に設けられてよい。照射部12が透過部材16の下側から透過部材16上に堆積した雪に向けてレーザ光を照射した場合、そのレーザ光の一部は雪を透過し得る。この場合、照射部12と対向した位置に設けられた検出部14は、照射部12から照射されたレーザ光の透過光を検出する。以下の説明では、一例としてセンサ10が主に散乱光を検出するものとして説明する。
【0018】
[制御装置の構成]
図5は、第1実施形態に係る情報処理装置100の構成の一例を示す図である。図示のように、情報処理装置100は、例えば、通信部102と、表示部104と、制御部110と、記憶部130とを備える。
【0019】
通信部102は、例えば、受信機や送信機を含む無線通信モジュールであり、ネットワークNWを介して外部装置と無線通信する。外部装置には、例えば、センサ10やその他の装置の装置が含まれてよい。また、外部装置には、センサ10が埋設された滑走路を利用する航空機や、センサ10が埋設された道路を利用する車両、センサ10が埋設された線路を利用する鉄道車両などが含まれてもよい。
【0020】
また、外部装置には、センサ10が埋設された地点、すなわち堆積物が存在する地点の周辺環境を観測する観測装置や、気象モデルに基づく気象データを提供する提供装置が含まれてもよい。観測装置は、例えば、気温や湿度、風速といった種々の気象を観測してもよいし、センサ10が埋設された場所の温度(例えば滑走路や道路の路面温度)を観測してもよい。この場合、通信部102は、観測装置から各種観測情報を取得してよい。
【0021】
表示部104は、各種の情報を表示するユーザインターフェースである。例えば、表示部104は、制御部110によって生成された画像を表示する。また、表示部104は、空港局員や道路局員、鉄道局員といったセンサ10が埋設された管轄地に関連するユーザからの各種の入力操作を受け付けるためのGUI(Graphical User Interface)を表示してもよい。例えば、表示部104は、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)ディスプレイなどである。
【0022】
制御部110は、例えば、取得部112と、画像生成部114と、算出部116と、判定部118と、出力制御部120とを備える。
【0023】
制御部110の構成要素は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などのプロセッサが記憶部130に格納されたプログラムを実行することにより実現される。また、制御部110の構成要素の一部または全部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェアにより実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
【0024】
記憶部130は、例えば、HDD(Hard Disc Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)などにより実現される。記憶部130は、ファームウェアやアプリケーションプログラムなどの各種プログラムなどを格納する。
【0025】
[情報処理装置の処理フロー]
以下、フローチャートに即して情報処理装置100の一連の処理の流れを説明する。
図6及び
図7は、第1実施形態に係る情報処理装置100の一連の処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われてよい。
【0026】
まず、取得部112は、通信部102を介して、センサ10から散乱光の検出信号を取得する(ステップS100)。
【0027】
次に、画像生成部114は、取得部112によって取得された散乱光の検出信号に基づいて、散乱光の強度を、輝度や彩度、色相といった画素値に置き換えた一次元または二次元の画像(以下、光散乱画像と称する)を生成する(ステップS102)。つまり、画像生成部114は、散乱光の強度分布を画像として取得する。
【0028】
一般的に、雪における光の反射強度は、氷や水に比べて非常に高いということが知られている。これは、雪面に入射した光が雪粒子間や表面において反射したり、散乱したりするためである。一方、水や氷は雪に比べて密度が非常に高く、ほとんど散乱しない(透逸する)ため、反射強度は非常に低い。また、雪に入射した光の散乱は上方或いは下方だけでなく、雪面等に対して水平方向へも広がる。従って、本実施形態では、一次元または二次元的な散乱光の広がりを画像として捉えることで、雪、氷、水といった種類を判定する。
【0029】
次に、算出部116は、画像生成部114によって生成された光散乱画像から、散乱光の特徴量と、マハラノビス距離とを算出する(ステップS104)。特徴量は、例えば、散乱光画像上において散乱光が分布する面積や、散乱光が分布する画素値の総和などである。以下、一例として特徴量が面積であるものとして説明する。マハラノビス距離とは、統計学的な距離を表すものであり、統計や分類などの多変最解析などにおいて定量的に評価することができる尺度である。
【0030】
図8は、堆積物の種類に応じた散乱光の面積の違いの一例を示す図である。図示のように、堆積物が雪の場合、雪が厚くなるほど散乱光の面積(散乱光の分布の広がり)が大きくなるのに対して、堆積物が氷や水の場合、堆積物が雪の場合に比べて散乱光の面積が小さい。このように、各堆積物の状態(厚さ)に応じて散乱光の広がりは大きな違いを示すことがわかる。
【0031】
図9は、堆積物の種類に応じた散乱光の面積の頻度分布を示す図である。図示のように、雪の頻度分布と、氷又は水の頻度分布との間には、明確に境界(判別境界値)がある。つまり、散乱光の面積というデータ集合は、分散が大きく異なる傾向にある。分散が大きく異なるデータ集合に対しては、マハラノビス距離を用いてデータを判別することが有効である。
【0032】
マハラノビス距離は、数式(1)及び(2)によって表すことができる。
【0033】
【0034】
【0035】
Xは、未知の散乱光画像における散乱光の面積である。「未知の散乱光画像」とは、堆積物の種類が判明していない状態で得られた散乱光画像である。つまり、Xは、数式(1)及び(2)における説明変数(入力)であることを表している。
【0036】
DSは、堆積物が雪である場合のマハラノビス距離(以下、第1マハラノビス距離と称する)である。第1マハラノビス距離DSは、数式(1)における目的変数(出力)である。μSは、堆積物が雪である場合(堆積物の種類が「雪」と判明している状態)に得られた散乱光画像から算出された散乱光の面積の平均である。σSは、堆積物が雪である場合(堆積物の種類が「雪」と判明している状態)に得られた散乱光画像から算出された散乱光の面積の標準偏差である。
【0037】
DOは、堆積物が雪以外である場合のマハラノビス距離(以下、第2マハラノビス距離と称する)である。第2マハラノビス距離DOは、数式(2)における目的変数(出力)である。μOは、堆積物が氷や水といった雪以外である場合(堆積物の種類が「氷」や「水」等と判明している状態)に得られた散乱光画像から算出された散乱光の面積の平均である。σOは、堆積物が雪以外である場合(堆積物の種類が「氷」や「水」等と判明している状態)に得られた散乱光画像から算出された散乱光の面積の標準偏差である。
【0038】
μS、σS、μO、σOといったパラメータは、実験やシミュレーションによって事前にその値が決められる。例えば、μS及びσSは、複数の雪の散乱光画像から求めた散乱光の面積を基に算出される。一方、μO及びσOは、氷や水といった雪以外の堆積物の複数の散乱光画像から求めた散乱光の面積を基に算出される。
【0039】
つまり、算出部116は、画像生成部114によって生成された散乱光画像から散乱光の面積Xを算出し、更にその算出した面積Xを数式(1)及び(2)に代入して、第1マハラノビス距離DSと第2マハラノビス距離DOを算出する。
【0040】
フローチャートの説明に戻る。次に、判定部118は、算出部116によって算出された第1マハラノビス距離DSと第2マハラノビス距離DOとを比較して、第1マハラノビス距離DSが第2マハラノビス距離DOよりも小さい(DS<DO)か否かを判定する(ステップS106)。
【0041】
判定部118は、第1マハラノビス距離DSが第2マハラノビス距離DOよりも小さい場合(DS<DO)、堆積物が雪であると判定する(ステップS108)。
【0042】
一方、判定部118は、第1マハラノビス距離DSが第2マハラノビス距離DOよりも大きい場合(DS>DO)、堆積物が雪以外の物体であると判定する(ステップS110)。
【0043】
なお、判定部118は、第1マハラノビス距離DSが第2マハラノビス距離DOと同じ場合(DS=DO)、上述した判別境界値と散乱光の面積が同じであるため、判定不可としてよい。
【0044】
判定部118によって堆積物が雪以外の物体であると判定された場合、算出部116は、更に堆積物の種類を判別するために、算出した散乱光の面積のヒストグラム(頻度分布)から、複数の統計量(統計値)を算出する(ステップS112)。例えば、統計量は、平均や尖度、歪度、分散といった互い種類の異なる指標値である。
【0045】
図10から
図12は、可視域における二次元の散乱光の分布を示す図である。
図13から
図15は、画像のヒストグラムを示す図である。
図10から
図12に示すように、分布画像において、円の外側から中心に向かい輝度が増加している。また、
図13から
図15に示すように、面積の増加とともにヒストグラムの頻度は高くなることが分かる。また、水と氷では比較的値の低い領域において違いが現れており、その領域では水よりも氷の頻度が高い値を示している。また、ヒストグラムの統計量として平均と尖度を算出したところ、平均は水で972、薄い氷膜で2196、厚い氷膜で4679であった。また、尖度は、水で243、薄い氷膜で181、厚い氷膜で123であった。このように、堆積物の種類に応じて、ヒストグラムの統計量に違いが表れる。
【0046】
従って、本実施形態では、画像のヒストグラムの統計量に着目し、未知の散乱光画像(二次元散乱強度分布)が水と氷のどちらのクラスに属するのかを線形判別分析により判別する。線形判別分析とは、2つのクラス(データ群)を最もよく判別できる線形判別関数を求める手法である。線形判別関数は、例えば、分類するデータ群間の平均の差が大きくなり、データ群内の分散の差が小さくなるように導出される。
【0047】
図16は、水及び氷の画像ヒストグラムにおける平均と尖度との関係とその関係から導出された線形判別関数を示す図である。図中Zは、線形判別関数を表している。図示のように、線形判別関数Zは、ヒストグラムから得られる複数の統計量のうち、ある一つの第1統計量を説明変数とし、第1統計量と種類が異なる第2統計量を目的的変数とした関数であり、例えば、Z=a
1x
1+a
2x
2+a
3x
3…といった多項式関数であってよい。
【0048】
フローチャートの説明に戻る。次に、判定部118は、算出部116によって算出された尖度を説明変数として線形判別関数Zに入力する(ステップS114)。
【0049】
次に、判定部118は、尖度を入力した線形判別関数Zが目的変数として出力した平均と、算出部116によって尖度と共に算出された平均とを比較し、線形判別関数Zの出力結果である平均(以下、第1平均A1と称する)よりも算出部116の算出結果である平均(以下、第2平均A2と称する)の方が大きいか否かを判定する(ステップS116)。
【0050】
判定部118は、第1平均A1よりも第2平均A2の方が大きい場合(A1<A2)、堆積物が氷であると判定する(ステップS118)。言い換えれば、判定部118は、
図16のグラフ上において、線形判別関数Zよりも上側の領域である場合、堆積物が氷であると判定する。
【0051】
一方、判定部118は、第1平均A1よりも第2平均A2の方が小さい場合(A1>A2)、堆積物が水であると判定する(ステップS120)。言い換えれば、判定部118は、
図16のグラフ上において、線形判別関数Zよりも下側の領域である場合、堆積物が水であると判定する。
【0052】
出力制御部120は、判定部118によって堆積物の種類が判定されると、通信部102を介して判定結果を外部装置に送信したり、表示部104に判定結果を表示させたりしてよい。これによって、本フローチャートの処理が終了する。
【0053】
以上説明した第1実施形態によれば、情報処理システム1が、堆積物に対してレーザ光を照射する照射部12と、照射部12によって堆積物に照射されたレーザ光の散乱光又は透過光を検出する検出部14と、検出部14によって検出された散乱光又は透過光に基づいて画像を生成する画像生成部114と、画像生成部114によって生成された画像から散乱光又は透過光の面積を算出し、算出した面積からマハラノビス距離を算出する算出部116と、算出部によって算出されたマハラノビス距離に基づいて、堆積物が雪やそれ以外かを判定する判定部118とを備える。これによって、堆積物の種類を精度よく判定することができる。
【0054】
また、上述した第1実施形態によれば、判定部118によって堆積物が雪以外の物体であると判定された場合、算出部116が、散乱光又は透過光の面積のヒストグラムから、互いに種類の異なる複数の統計量を算出し、判定部118が、算出部116によって算出された複数の統計量に基づいて、雪以外の物体と判定された堆積物の種類を更に判定する。これによって、更に精度よく堆積物の種類を判定することができる。
【0055】
<第1実施形態の変形例>
上述した第1実施形態では、センサ10が堆積物に対してレーザ光を照射するものとして説明したがこれに限られない。例えば、センサ10は、レーザ光に加えて、或いは代えて、電波を照射してもよい。この場合、透過部材16は、照射部12によって照射された電磁波に対して透過性を有する部材とすればよい。
【0056】
また、上述した実施形態では、算出部116が画像のヒストグラムから尖度及び平均を統計量として算出するものとして説明したがこれに限られない。例えば、算出部116は、歪度や分散といった他の統計量を算出してもよい。この場合、判定部118は、例えば、歪度を説明変数として線形判別関数Zに入力し、歪度を入力した線形判別関数Zが目的変数として出力した分散と、算出部116によって算出された分散とを比較することで、雪以外の物体と判定された堆積物の種類を更に詳細に判定してもよい。
【0057】
また、上述した実施形態では、判定部118が堆積物の種類を判定するものとして説明したがこれに限られない。例えば、判定部118は、堆積物の種類に加えて、或いは代えて、堆積物の厚さなどを判定してもよい。
【0058】
図17は、堆積物の厚さを判定する方法を説明するための図である。図示のように、例えば、判定部118は、堆積物の種類を氷と判定した場合、算出部116によって算出された尖度及び平均を基に氷の厚さを判定してよい。具体的には、判定部118は、平均が大きく、且つ尖度が小さいほど、より厚い氷と判定し、平均が小さく、且つ尖度が大きいほど、より薄い氷と判定してよい。なお、判定部118は、氷の厚さに限られず、泥や土、火山灰といった他の種類の堆積物の厚さを判定してもよい。
【0059】
また、上述した実施形態では、堆積物の種類をマハラノビス距離に基づいて判定するとして説明したがこれに限らない。例えば、算出部116は、マハラノビス距離に代えて、或いは加えて、ユークリッド距離等の多変量解析における判別分析に用いられる他の指標を算出してもよい。この場合、判定部118は、算出部116によって算出されたユークリッド距離等に基づいて堆積物の種類をしてよい。
【0060】
<第2実施形態>
以下、第2実施形態について説明する。上述した第1実施形態では、線形判別関数Zを用いて、ヒストグラムから得られた複数の統計量を基に堆積物の種類を判定するものとして説明した。これに対して、第2実施形態では、予め学習された分類器MDLを用いて堆積物の種類を判定する点で第1実施形態と相違する。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する点については説明を省略する。なお、第2実施形態の説明において、第1実施形態と同じ部分については同一符号を付して説明する。
【0061】
図18は、第2実施形態に係る情報処理システム2の構成の一例を示す図である。図示のように、情報処理システム2は、上述したセンサ10および情報処理装置100に加えて、更に学習装置200を備える。
【0062】
図19は、第2実施形態に係る情報処理装置100の構成の一例を示す図である。第2実施形態に係る情報処理装置100の記憶部130には、分類器データD1が格納される。分類器データD1は、堆積物の種類を分類するためのモデル(以下、分類器MDLと称する)を定義した情報(プログラムまたはデータ構造)である。この分類器データD1は、例えば、ネットワークNWを介して学習装置200から記憶部130にインストールされてもよいし、情報処理装置100のドライブ装置に接続された可搬型の記憶媒体から記憶部130にインストールされてもよい。
【0063】
図20は、分類器MDLを模式的に示す図である。図示のように、分類器MDLは、例えば、物体に照射されたレーザ光の散乱光または透過光に基づく画像から得られる統計量(例えば尖度や平均など)が入力されると、その物体の種類の尤もらしさを表す尤度や確率を出力するように学習されたモデルである。分類器MDLの出力は、例えば、堆積物が氷であることの尤もらしさを表す尤度や、堆積物が水であることの尤もらしさを表す尤度などを要素とする多次元のベクトル或いはテンソル(係数の集合)であってよい。このような分類器MDLは、例えば、ニューラルネットワークやサポートベクターマシン、混合ガウスモデル、単純ベイズ分類器といった様々なモデルによって実装されてよい。以下、一例として、分類器MDLがニューラルネットワークによって実装されるものとして説明する。
【0064】
分類器MDLがニューラルネットワークによって実装される場合、分類器データD1には、例えば、ニューラルネットワークを構成する複数の層のそれぞれに含まれるユニットが互いにどのように結合されるのかという結合情報や、結合されたユニット間で入出力されるデータに付与される結合係数などの各種情報が含まれる。
【0065】
結合情報とは、例えば、各層に含まれるユニット数や、各ユニットの結合先のユニットの種類を指定する情報、各ユニットを実現する活性化関数、隠れ層のユニット間に設けられたゲートなどの情報を含む。ユニットを実現する活性化関数は、例えば、正規化線形関数(ReLU関数)であってもよいし、シグモイド関数や、ステップ関数、その他の関数などであってもよい。ゲートは、例えば、活性化関数によって返される値(例えば1または0)に応じて、ユニット間で伝達されるデータを選択的に通過させたり、重み付けたりする。結合係数は、例えば、ニューラルネットワークの隠れ層において、ある層のユニットから、より深い層のユニットにデータが出力される際に、出力データに対して付与される重みを含む。また、結合係数は、各層の固有のバイアス成分などを含んでもよい。
【0066】
第2実施形態に係る判定部118は、堆積物が雪以外の物体であると判定した場合、線形判別関数Zの代わりに、分類器MDLを用いて、堆積物の種類を判定する。具体的には、判定部118は、算出部116によって算出された複数の統計量の中から、分類器MDLが学習される際に利用された統計量と同種の統計量を選択する。この統計量は、一つであってもよいし、複数であってもよい。つまり、分類器MDLの入力は、一次元のスカラであってもよいし、多次元のベクトル或いはテンソルであってもよい。そして、判定部118は、選択した統計量を分類器MDLに入力し、その分類器MDLが出力したベクトル又はテンソルに含まれる複数の要素のうち、最も値が大きい要素に対応した種類を、堆積物の種類として判定する。
【0067】
[学習装置の構成]
以下、分類器MDLを学習する学習装置200について説明する。学習装置200は、単一の装置であってもよいし、ネットワークNWを介して接続された複数の装置が互いに協働して動作するシステムであってもよい。すなわち、学習装置200は、分散コンピューティングやクラウドコンピューティングを利用したシステムに含まれる複数のコンピュータ(プロセッサ)によって実現されてもよい。
【0068】
図21は、第2実施形態に係る学習装置200の構成の一例を示す図である。図示のように、例えば、学習装置200は、通信部202と、制御部210と、記憶部230とを備える。
【0069】
通信部202は、例えば、受信機や送信機を含む無線通信モジュールであり、ネットワークNWを介して情報処理装置100等の外部装置と通信する。
【0070】
制御部210は、例えば、取得部212と、算出部214と、学習部216とを備える。制御部210の構成要素は、例えば、CPUやGPUなどのプロセッサが記憶部230に格納されたプログラムを実行することにより実現される。また、制御部210の構成要素の一部または全部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
【0071】
記憶部230は、例えば、HDD、フラッシュメモリ、EEPROM、ROM、RAMなどにより実現される。記憶部230は、ファームウェアやアプリケーションプログラムなどの各種プログラムの他に、上述した分類器データD1と、教師データD2とを格納する。
【0072】
教師データD2は、分類器MDLを学習(訓練)するためのデータである。例えば、教師データD2は、種類が既知の物体に対して照射されたレーザ光の散乱光又は透過光を撮像した画像に対して、分類器MDLがその物体の種類として出力すべき尤度が教師ラベル(ターゲットともいう)として対応付けられたデータセットである。
【0073】
[学習装置の処理フロー]
以下、フローチャートに即して制御部210の一連の処理の流れを説明する。
図22は、第2実施形態に係る学習装置200の一連の処理の流れの一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われてよい。また、学習装置200が、分散コンピューティングやクラウドコンピューティングを利用したシステムに含まれる複数のコンピュータによって実現される場合、本フローチャートの処理の一部または全部は、複数のコンピュータによって並列処理されてよい。
【0074】
まず、取得部212は、記憶部230に格納された教師データD2から、堆積物が取り得る種類の尤度が教師ラベルとして対応付けられた複数の散乱光画像を取得する(ステップS200)。なお、センサ10が透過光を検出可能な場合、散乱光画像は透過光画像であってもよい。
【0075】
次に、算出部214は、取得部212によって教師データD2から取得された複数の散乱光画像の其々から散乱光の面積を算出する(ステップS202)。
【0076】
次に、算出部214は、算出した散乱光の面積のヒストグラムから、複数の統計量を算出する(ステップS204)。
【0077】
次に、学習部216は、算出部214によって算出された複数の統計量のうち、一つの統計量にあたるスカラ、または複数の統計量を要素とするベクトルを未学習の分類器MDLに入力する(ステップS206)。
【0078】
次に、学習部216は、分類器MDLによって出力された尤度と、散乱光又は透過光を撮像した画像に対して教師ラベルとして対応付けられていた尤度との差分(損失関数の勾配)を算出する(ステップS208)。
【0079】
次に、学習部216は、算出した差分が小さくなるように分類器MDLを学習する(ステップS210)。例えば、学習部216は、差分が小さくなるように、分類器MDLのパラメータである重み係数やバイアス成分などを確率的勾配降下法などを用いて決定(更新)してよい。
【0080】
学習部216は、学習した分類器MDLを記憶部230に分類器データD1として記憶させる。
【0081】
このように、学習部216は、S200からS210の処理を繰り返し行い(イタレーションを行い)、分類器データD1を学習する。そして、学習部216は、十分に学習した学習済みの分類器MDLを定義した分類器データD1を、例えば、通信部202を介して情報処理装置100に送信する。これによって本フローチャートの処理が終了する。
【0082】
以上説明した第2実施形態によれば、判定部118が、物体に照射された電磁波(レーザ光や電波)の散乱波又は透過波に基づく画像から得られる統計量が入力されると、電磁波が照射された物体の種類を分類するように学習された分類器MDLに対して、算出部116によって算出された統計量を入力し、その分類器MDLの出力結果に基づいて、堆積物の種類を判定する。これによって、第1実施形態と同様に、堆積物の種類を精度よく判定することができる。
【0083】
なお、上述した第2実施形態における判定部118は、取得部112が通信部102を介して、堆積物が存在する地点の気象観測情報や気象モデルの情報などを含む外部情報を取得した場合、算出部116が算出した統計量に加えて、更に、外部情報を分類器MDLに入力することで、堆積物の種類を判定してもよい。気象観測情報には、例えば、センサ10が埋設された地点の温度(例えば滑走路や道路の路面温度)や、気温や湿度、風速などが含まれてよい。気象モデルの情報には、気象モデルによって推定または予測された気温や湿度、風速などが含まれてよい。
【0084】
また、上述した第2実施形態では、教師あり学習によって分類器MDLを学習するものとして説明したがこれに限られない。例えば、分類器MDLは、教師なし学習によって学習されてもよい。また、分類器MDLは、教師あり学習または教師なし学習に代えて、転移学習によって学習されてもよい。転移学習とは、ある領域(ドメインともいう)で学習されたモデルを、他の領域に適合させるように学習する手法である。これによって、教師データの量が少ない場合であっても、精度の高い分類器MDLを生成することができる。
【0085】
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
【符号の説明】
【0086】
1…情報処理システム、10…センサ、12…照射部、14…検出部、100…情報処理装置、102…通信部、104…表示部、110…制御部、112…取得部、114…画像生成部、116…算出部、118…判定部、120…出力制御部、130…記憶部、200…学習装置、202…通信部、210…制御部、212…取得部、214…算出部、216…学習部、230…記憶部