IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝メディカルシステムズ株式会社の特許一覧

特許7383403磁気共鳴イメージング装置、方法及びプログラム
<>
  • 特許-磁気共鳴イメージング装置、方法及びプログラム 図1
  • 特許-磁気共鳴イメージング装置、方法及びプログラム 図2A
  • 特許-磁気共鳴イメージング装置、方法及びプログラム 図2B
  • 特許-磁気共鳴イメージング装置、方法及びプログラム 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-10
(45)【発行日】2023-11-20
(54)【発明の名称】磁気共鳴イメージング装置、方法及びプログラム
(51)【国際特許分類】
   A61B 5/055 20060101AFI20231113BHJP
【FI】
A61B5/055 382
A61B5/055 377
A61B5/055 376
【請求項の数】 27
(21)【出願番号】P 2019103455
(22)【出願日】2019-06-03
(65)【公開番号】P2020137992
(43)【公開日】2020-09-03
【審査請求日】2022-04-22
(31)【優先権主張番号】16/290,473
(32)【優先日】2019-03-01
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】594164542
【氏名又は名称】キヤノンメディカルシステムズ株式会社
(74)【代理人】
【識別番号】110001771
【氏名又は名称】弁理士法人虎ノ門知的財産事務所
(72)【発明者】
【氏名】アンドリュー・ジェイ・ウィートン
(72)【発明者】
【氏名】アントニアス マタコス
【審査官】永田 浩司
(56)【参考文献】
【文献】特開2015-154919(JP,A)
【文献】米国特許出願公開第2012/0243756(US,A1)
【文献】特開2013-154015(JP,A)
【文献】町田好男,MRI 高速撮像の進展 ~画像化の原理から圧縮センシングまで~,医用画像情報学会雑誌,2013年,Vol.30 No.1,pp.7-11
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
(57)【特許請求の範囲】
【請求項1】
被検体の磁気共鳴イメージングデータを収集する収集部と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成部と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択部と
を備える、磁気共鳴イメージング装置。
【請求項2】
前記選択部は、所定の画像比較基準値を用いて前記複数の画像を比較することによって、モーチョンアーチファクトが最小となる外れ値画像を識別し、当該外れ値画像を前記第1の画像として選択する、
請求項1に記載の磁気共鳴イメージング装置。
【請求項3】
前記再構成部は、さらに、前記第1のサブセットから前記第1の圧縮センシング方法を用いて最終画像を再構成する、
請求項1又は2に記載の磁気共鳴イメージング装置。
【請求項4】
被検体の磁気共鳴イメージングデータを収集する収集部と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成部と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択部と
を備え、
前記再構成部は、さらに、前記第1のサブセットから第2の圧縮センシング方法を用いて最終画像を再構成し、
前記第1の圧縮センシング方法は、前記第2の圧縮センシング方法と比べて高速な圧縮センシング方法であり、
前記第2の圧縮センシング方法は、前記第1の圧縮センシング方法と比べて高精度又は高分解能な画像を再構成する圧縮センシング方法である、
気共鳴イメージング装置。
【請求項5】
被検体の磁気共鳴イメージングデータを収集する収集部と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成部と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択部と
を備え、
前記再構成部は、前記第1のサブセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したデータのサブセットを、除外するエンコードを変えて複数生成し、各サブセットから前記第1の圧縮センシング方法を用いて画像を生成することによって、前記複数の画像とは異なる他の複数の画像をさらに再構成し、
前記選択部は、前記他の複数の画像から画質が最適な第2の画像を選択し、当該第2の画像の生成に用いられた第2のサブセットを選択し、
前記再構成部が前記他の複数の画像を再構成すること、及び、前記選択部が前記第2のサブセットを選択することを、所定の停止基準が満たされるまで繰り返す、
気共鳴イメージング装置。
【請求項6】
前記再構成部は、前記第1のサブセットを生成する際に除外したエンコードが収集された時間の近傍の時間で収集されたエンコードを前記第1のサブセットから除外することで、前記他の複数の画像の生成に用いられる複数のサブセットを生成する、
請求項5に記載の磁気共鳴イメージング装置。
【請求項7】
前記所定の画像比較基準値は、構造的類似性指標、普遍的品質指標、ピークSN比、平均二乗誤差、pノルムベース計測(pは負でない数)、相互相関ベース計測、及び、知覚的相違モデルのうちの1つである、
請求項2に記載の磁気共鳴イメージング装置。
【請求項8】
前記選択部は、前記複数の画像のうちの少なくとも2つの画像をディスプレイに表示し、表示された画像の中から1つの画像を選択する操作を操作者から受け付け、当該操作により選択された画像を前記第1の画像として選択する、
請求項1~7のいずれか1つに記載の磁気共鳴イメージング装置。
【請求項9】
前記選択部は、前記第1の画像を選択した後に、当該第1の画像が所定の画質を実現するものであるか否かを判定し、
前記再構成部は、
前記第1の画像が前記所定の画質を実現するものであると判定された場合に、前記第1のサブセットから最終画像を再構成し、
前記第1の画像が前記所定の画質を実現するものでないと判定された場合に、前記第1のサブセットから前記他の複数の画像を再構成する、
請求項5に記載の磁気共鳴イメージング装置。
【請求項10】
被検体の磁気共鳴イメージングデータを収集する収集部と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成部と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択部と
を備え、
前記収集部は、複数のショットを含むパルスシーケンスであって、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いて前記磁気共鳴イメージングデータを収集し、
前記再構成部は、前記少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれるエンコードを除外したサブセットを生成することによって、前記複数の画像を再構成する、
気共鳴イメージング装置。
【請求項11】
被検体の磁気共鳴イメージングデータを収集する収集部と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成部と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択部と
を備え、
前記収集部は、複数のショットを含み、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いて前記磁気共鳴イメージングデータを収集し、
前記再構成部は、前記少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれる自動校正信号領域外のエンコードを除外したサブセットを生成することによって、前記複数の画像を再構成する、
気共鳴イメージング装置。
【請求項12】
前記選択部は、前記被検体の動きを直接計測することなく、前記磁気共鳴イメージングデータ及び当該磁気共鳴イメージングデータから得られる結果に基づいて、前記第1のサブセットを選択する、
請求項1~11のいずれか一つに記載の磁気共鳴イメージング装置。
【請求項13】
被検体の磁気共鳴イメージングデータを収集する収集部と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成部と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択部と
を備え、
前記選択部は、空間ドメイン、又は、空間周波数ドメインではない変換ドメインで所定の画像比較基準値を用いて前記複数の画像を比較することによって、モーチョンアーチファクトが最小となる外れ値画像を識別し、当該外れ値画像を前記第1の画像として選択する、
気共鳴イメージング装置。
【請求項14】
前記変換ドメインは、ウェーブレット変換、エッジ検出変換、フィルタ変換及び直交関数分解の少なくとも1つによって変換されたドメインである、
請求項13に記載の磁気共鳴イメージング装置。
【請求項15】
前記第1の圧縮センシング方法は、目的関数の値が第1の閾値未満になるまで繰り返し実行される反復処理を含んだ反復圧縮センシング方法であり、
前記第2の圧縮センシング方法は、前記目的関数の値が前記第1の閾値より小さい第2の閾値未満になるまで繰り返し実行される反復処理を含んだ反復圧縮センシング方法であり、
前記第1の圧縮センシング方法によって再構成される前記複数の画像は、前記第2の圧縮センシング方法によって再構成される前記最終画像と比べて空間分解能が低い、
請求項4に記載の磁気共鳴イメージング装置。
【請求項16】
被検体の磁気共鳴イメージングデータを収集する収集ステップと
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成ステップと
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択ステップと
含む、方法。
【請求項17】
被検体の磁気共鳴イメージングデータを収集する収集ステップと、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成ステップと、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択ステップと
を含み、
前記再構成ステップは、さらに、前記第1のサブセットから第2の圧縮センシング方法を用いて最終画像を再構成し、
前記第1の圧縮センシング方法は、前記第2の圧縮センシング方法と比べて高速な圧縮センシング方法であり、
前記第2の圧縮センシング方法は、前記第1の圧縮センシング方法と比べて高精度又は高分解能な画像を再構成する圧縮センシング方法である、
方法。
【請求項18】
被検体の磁気共鳴イメージングデータを収集する収集ステップと、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成ステップと、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択ステップと
を含み、
前記再構成ステップは、前記第1のサブセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したデータのサブセットを、除外するエンコードを変えて複数生成し、各サブセットから前記第1の圧縮センシング方法を用いて画像を生成することによって、前記複数の画像とは異なる他の複数の画像をさらに再構成し、
前記選択ステップは、前記他の複数の画像から画質が最適な第2の画像を選択し、当該第2の画像の生成に用いられた第2のサブセットを選択し、
前記再構成ステップが前記他の複数の画像を再構成すること、及び、前記選択ステップが前記第2のサブセットを選択することを、所定の停止基準が満たされるまで繰り返す、
方法。
【請求項19】
被検体の磁気共鳴イメージングデータを収集する収集ステップと、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成ステップと、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択ステップと
を含み、
前記収集ステップは、複数のショットを含むパルスシーケンスであって、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いて前記磁気共鳴イメージングデータを収集し、
前記再構成ステップは、前記少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれるエンコードを除外したサブセットを生成することによって、前記複数の画像を再構成する、
方法。
【請求項20】
被検体の磁気共鳴イメージングデータを収集する収集ステップと、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成ステップと、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択ステップと
を含み、
前記収集ステップは、複数のショットを含み、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いて前記磁気共鳴イメージングデータを収集し、
前記再構成ステップは、前記少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれる自動校正信号領域外のエンコードを除外したサブセットを生成することによって、前記複数の画像を再構成する、
方法。
【請求項21】
被検体の磁気共鳴イメージングデータを収集する収集ステップと、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成ステップと、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択ステップと
を含み、
前記選択ステップは、空間ドメイン、又は、空間周波数ドメインではない変換ドメインで所定の画像比較基準値を用いて前記複数の画像を比較することによって、モーチョンアーチファクトが最小となる外れ値画像を識別し、当該外れ値画像を前記第1の画像として選択する、
方法。
【請求項22】
コンピュータに、
被検体の磁気共鳴イメージングデータを収集する収集手順と
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成手順と
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択手順と
実行させる、プログラム。
【請求項23】
コンピュータに、
被検体の磁気共鳴イメージングデータを収集する収集手順と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成手順と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択手順と
を実行させ、
前記再構成手順は、さらに、前記第1のサブセットから第2の圧縮センシング方法を用いて最終画像を再構成し、
前記第1の圧縮センシング方法は、前記第2の圧縮センシング方法と比べて高速な圧縮センシング方法であり、
前記第2の圧縮センシング方法は、前記第1の圧縮センシング方法と比べて高精度又は高分解能な画像を再構成する圧縮センシング方法である、
プログラム。
【請求項24】
コンピュータに、
被検体の磁気共鳴イメージングデータを収集する収集手順と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成手順と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択手順と
を実行させ、
前記再構成手順は、前記第1のサブセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したデータのサブセットを、除外するエンコードを変えて複数生成し、各サブセットから前記第1の圧縮センシング方法を用いて画像を生成することによって、前記複数の画像とは異なる他の複数の画像をさらに再構成し、
前記選択手順は、前記他の複数の画像から画質が最適な第2の画像を選択し、当該第2の画像の生成に用いられた第2のサブセットを選択し、
前記再構成手順が前記他の複数の画像を再構成すること、及び、前記選択手順が前記第2のサブセットを選択することを、所定の停止基準が満たされるまで繰り返す、
プログラム。
【請求項25】
コンピュータに、
被検体の磁気共鳴イメージングデータを収集する収集手順と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成手順と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択手順と
を実行させ、
前記収集手順は、複数のショットを含むパルスシーケンスであって、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いて前記磁気共鳴イメージングデータを収集し、
前記再構成手順は、前記少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれるエンコードを除外したサブセットを生成することによって、前記複数の画像を再構成する、
プログラム。
【請求項26】
コンピュータに、
被検体の磁気共鳴イメージングデータを収集する収集手順と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成手順と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択手順と
を実行させ、
前記収集手順は、複数のショットを含み、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いて前記磁気共鳴イメージングデータを収集し、
前記再構成手順は、前記少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれる自動校正信号領域外のエンコードを除外したサブセットを生成することによって、前記複数の画像を再構成する、
プログラム。
【請求項27】
コンピュータに、
被検体の磁気共鳴イメージングデータを収集する収集手順と、
前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外した同数のエンコードを含むサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する再構成手順と、
前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する選択手順と
を実行させ、
前記選択手順は、空間ドメイン、又は、空間周波数ドメインではない変換ドメインで所定の画像比較基準値を用いて前記複数の画像を比較することによって、モーチョンアーチファクトが最小となる外れ値画像を識別し、当該外れ値画像を前記第1の画像として選択する、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、磁気共鳴イメージング装置、方法及びプログラムに関する。
【0002】
本願は、磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)におけるモーションアーチファクトの補正に関し、より具体的には、圧縮センシングを用いて、MRIデータ(例えば、被検体の動きに対応するMRIデータ)における動きの混入したエンコード/測定結果を識別し、当該動きの混入したエンコード/測定結果を含まない画像を生成することに関する。
【背景技術】
【0003】
ここで説明する背景技術は、本願の背景の概要を説明するためのものである。本願の発明者の研究は、明細書に記載されている先行技術にはなり得ない態様だけでなく、この背景技術で説明される範囲でも、本願に対して、明示的又は暗示的に先行技術として認定されるものではない。
【0004】
MRIにおいて得られる画質は被検体(患者等)の動きによって悪影響を受けるため、モーションアーチファクトが生じる。一般的に、MRIのシーケンスでは画像の生成に必要なデータを収集するために長い時間を要することから、この問題は頻繁に発生する。通常、イメージングの時間は、被検体の不随意的な動きや心臓及び呼吸の動き、消化蠕動、血管の脈動、血流及び脳脊髄液(Cerebrospinal Fluid:CSF)の流れ等を含む、大抵の種類の生理的な動きの時間より長い。例えば、このような被検体の動きによるモーションアーチファクトには、画像のぶれやゴーストがある。
【0005】
上述したモーションアーチファクトの問題は、ハードウェアベースのアプローチだけで解決することは難しいと考えられる。技術の改良によってモーションアーチファクトの深刻さが軽減することもあれば、悪化してしまうこともある。この一方で、ハードウェアの漸進的な性能向上(例えば、傾斜磁場の高性能化)によって、パラレルイメージングのような画期的な技術が可能になり、イメージングの高速化が実現されている。イメージングの高速化によって、より短い時間でスキャンを実行できるようになり、その結果、スキャン中に生じる被検体の不随意的な動きを減らすことができる。また、他方では、ハードウェアの進歩によって、実現可能な分解能及びSN比(Signal-to-Noise Ratio:SNR)が向上し、それに伴い、動きに対する感度が高くなってきている。また、一般的なMRIのスキャンでは、概して、主磁場の強度が高くなることや傾斜磁場が強くなることによって、より大きな音が生じるようになり、スキャン中に幼児を眠らせておくことが難しくなる。
【0006】
このようなことから、MRIデータの一部に被検体の動きが混入した場合でも、当該MRIデータから高品質な画像を再構成することができる、より良い方法が望まれている。
【先行技術文献】
【特許文献】
【0007】
【文献】米国特許出願公開第2015/0097563号明細書
【文献】米国特許出願公開第2013/0251225号明細書
【文献】国際公開第2018/015298号
【非特許文献】
【0008】
【文献】PHAM,et al.;Improved Image Recovery From Compressed Data Contaminated With Impulsive Noise;IEEE Transactions on Image Processing,Volume 21,Issue 1;January 2102;9 Pages
【文献】VIRTUE,et al.;The Empirical Effect of Gaussian Noise in Undersampled MRI Reconstruction;Tomography,Volume 3,Number 4;December 2017;11 Pages
【文献】ZAITSEV,PhD.,et al.;Motion Artifacts in MRI:A Complex Problem With Many Partial Solutions;Wiley Periodicals,Inc.;Journal of Magnetic Resonance Imaging;December 22,2014;15 Pages
【文献】WANG,et al.;Image Quality Assessment:From Error Visibility to Structural Similarity;IEEE Transaction on Image Processing,Volume 13,No.4;April 2004;14 Pages
【文献】MIAO,et al.;Quantitative image quality evaluation of MR images using perceptual difference models;Medical Physics,Volume 25,No.6;June 2008;13 Pages
【文献】HUANG,et al.;Data Convolution and Combination Operation(COCOA) for Motion Ghost Artifacts Reduction;Magnetic Resonance in Medicine 64;PP 157-166;2010;10 Pages
【文献】GDANIEC,et al.;Robust Abdominal Imaging with Incomplete Breath-Holds;Magnetic Resonance in Medicine 71;PP 1733-1742;2014;10 Pages
【文献】BYDDER,et al.;Detection and Elimination of Motion Artifacts by Regeneration of k-Space;Magnetic Resonance in Medicine 47;PP 677-686;2002;10 Pages
【文献】ATKINSON,et al.;Coil-Based Artifact Reduction;Magnetic Resonance in Medicine 52;PP 825-830;2004;6 Pages
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明が解決しようとする課題は、MRIデータの一部に被検体の動きが混入した場合でも、当該MRIデータから高品質な画像を再構成することである。
【課題を解決するための手段】
【0010】
実施形態に係るMRI装置は、収集部と、再構成部と、選択部とを備える。収集部は、被検体の磁気共鳴イメージングデータを収集する。再構成部は、前記磁気共鳴イメージングデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1の圧縮センシング方法を用いて画像を生成することによって、複数の画像を再構成する。選択部は、前記複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する。
【図面の簡単な説明】
【0011】
図1図1は、本願の例示的な一実施形態に係るMRIシステムの概略構成図を示す図である。
図2A図2Aは、本願の例示的な一実施形態に係るデータのサブセットの生成及び動きが混入したデータが除外された画像の識別の概要を示す図である。
図2B図2Bは、本願の例示的な一実施例に係る次のデータのサブセットの生成及び動きが混入したデータが除外された画像の識別の概要を示す図である。
図3図3は、本願の例示的な一実施例に係るMRIのスキャンによって得られる画像におけるモーションアーチファクトの検出及び補正方法を示すフローチャートである。
【発明を実施するための形態】
【0012】
図面を参照し、いくつかの例示的な実施形態について説明する。なお、以下で説明する実施形態及び図は例示的なものであり、限定的なものではない。すなわち、本願が開示する技術及び特許請求の範囲は、図面及び以下で示される例に限定されるものではない。
【0013】
本実施形態では、特定の実施例において実現される特定のプロセス及びシステムについて主に説明するが、当該プロセス及びシステムは、他の実施例でも有効に動作するものである。ここで、「一実施形態」、「1つの実施形態」及び「他の実施形態」等の文言は、同じ又は異なる実施形態を意味している。また、本実施形態では、所定のコンポーネントを有する方法及び構成について説明するが、当該方法及び構成は、以下で示すものより多い又は少ないコンポーネントを含んでもよく、当該コンポーネントの配置及び種類は、本願の内容の範囲内で変更することが可能である。
【0014】
また、本実施形態では、所定のステップを有する方法について説明するが、当該方法及び構成は、矛盾しないようにステップを追加したり、ステップの順序を変えたりしても有効に動作するものである。このように、本願の内容は、以下で説明する実施形態に限定されるものではなく、特許請求の範囲に示される範囲内で、かつ、以下で説明する原理及び特徴と矛盾しない範囲内で最大限に広く解釈され得るものである。
【0015】
また、値の範囲が示される場合には、当該範囲の上限値及び下限値の間にある各値、及び、当該範囲内に定められた他のいかなる値も、本願の内容に含まれる。また、当該範囲が上限値及び下限値を含む場合には、それらのいずれかの値を除いた範囲も含まれる。また、明示的に示されない限り、本願で用いられる用語は、当業者によって理解される率直で通常の意味を持つものとする。また、いかなる定義も、本願の内容を読者に理解させることを意図したものであり、特に示さない限り、このような用語の意味を変更又は限定するものではない。
【0016】
MRIのスキャン中に被検体の動きが生じると、再構成された画像にアーチファクト(ぶれ、ゴースト、信号損失等)が生じ、それにより、誤った診断が行われたり、動きによるエラーを軽減させるために多数のスキャンが必要になったりすることがある。たとえ被検体が動かないようにしたとしても、嚥下、呼吸、脈動流のような被検体の不随意的な動きが発生して画像の品質が低下することがあり得る。例えば、小児及び高齢の被検体は、装置内でじっとしていることができなかったり、長時間呼吸を止めることができなかったりして、動きが生じやすい。
【0017】
MRIでは、データ収集は画像空間で直接行われるのではなく、周波数空間又はフーリエ空間で行われる。モーションアーチファクトは、スキャンにおいて、画像の構造、動きの種類、パルスシーケンスの設定、k空間の収集方式等の多数の要因によって生じ得る。k空間の中心部は、大きくてコントラストの低い部分のように輝度が滑らかに変化する部分に対応する低い空間周波数の情報を有し、一方、k空間の周縁部は、端部や詳細部分のように輝度が急激に変化する部分に対応する高い空間周波数の情報を有する。生体サンプルの多くは、k=0を中心としたk空間において、非常に局所的な空間密度を示す。k空間のkx軸及びky軸は、2次元(2D)画像の水平(x)軸及び垂直(y)軸に対応するが、k軸は、位置ではなく、x方向及びy方向の空間周波数を表す。3次元(3D)画像ボリュームでは、画像ボリュームのスライス次元に対応するkz軸もサンプリングされる。k空間において、被検体は大域的な平面波で示されるため、k空間の各点は、最終画像の全ての画素に関する空間周波数情報及び位相情報を有する。逆に、最終画像の各画素は、k空間の全ての点に対応する。逆FFT(iFFT)を用いる単純な再構成は、k空間がサンプリングされている間に被検体が静止していることを前提としている。したがって、k空間における1点の変化は画像全体に作用することから、被検体の動きによるエラーは、最終的な再構成画像に明らかな影響を及ぼすことになる。画像の再構成に必要なデータを収集するためには数分程度のスキャン時間がかかることもあるため、イメージングの高速化とともに、画像における動きを検出して補正する試みが行われている。
【0018】
例えば、DATA COCOA(Convolution and Combination Operation)と呼ばれる方法を用いて、同時収集されたパラレルイメージング(Parallel Imaging:PI)データを利用することによって、k空間でコイルアレイのMRIデータを改善することが行われている。DATA COCOAは、チャネル別のk空間畳み込みを用いた動き補償の技術である。コイル感度プロファイルにより、サンプリングされた軌跡の近傍のデータ点を概算することによってk空間ドメインでアーチファクトを補正するための付加的な情報が提供される。また、部分的に収集されたデータを用いた再構成ではなく、畳み込みによって、全体的に収集されたk空間データから追加の合成k空間データセットが生成される。ここで、データ収集の間に動きが発生した場合、合成k空間データセットと収集されたデータセットとの間に差が生じることになり、その差を用いて、動きの混入したデータを見つけることができる。しかしながら、再構成の時間は指数関数的に増大し、それにより、リアルタイム及び高スループットでイメージングを行うことが難しくなり得る。また、位置が不明なk空間信号の中に動きの混入したものが含まれるため、自己校正された相対感度マップから、アーチファクトの影響を取り去ることができない。
【0019】
また、MRIの分野において、データ収集の処理を高速化するための比較的新しい有望な技術として、圧縮センシング(Compressed Sensing:CS)がある。CS(コンプレッシブセンシング、圧縮サンプリング、又は、低密度サンプリングとも呼ばれる)は、劣決定線形系に対する解を求めることで、効率的に信号を収集及び再構成する信号処理技術である。この技術は、信号のまばら性を利用することによって、最適化を介して、シャノン・ナイキストのサンプリング定理で必要となるサンプルよりもはるかに少ないサンプルから信号を回復できるという原理に基づいている。従来、ナイキストのサンプリング定理によって折り返し(エイリアシング)を生じさせずにMR画像を再構成するためには、全体的にサンプリングされたk空間データが必要となる。しかしながら、CSを用いれば、いくつかの変換(例えば、有限差分又はウェーブレット変換)ドメインにおいてMR画像が大抵はまばらであることを利用することで、ナイキストのサンプリング定理に反して、アンダーサンプリングされたk空間データからMR画像を再構成することができる。例えば、わずかな画質の低下で、最大5倍速までの加速係数が可能である。この加速は、臨床の実務において、費用の削減や、被検体の負担の軽減、スキャンの分解能の向上に役立つ可能性がある。
【0020】
CSでは、再構成される画像が、ウェーブレット変換(又は、他の変換)ドメインで強いまばら性を有することで、収集済みのアンダーサンプリングされたk空間データと一致することが重要である。これは、データ忠実度の項と、正則化パラメータによって重み付けされた正則化因子(regularizer)とを含む目的関数(評価関数)の最小値を求めることとして表すことができる。すなわち、この最適化の問題は、以下のように表すことができる。
【0021】
【数1】
【0022】
ここで、lノルムは、データ忠実度の項であり、Rは、所望の特性を促進又は制約を実施する正則化因子であり、λは、正則化因子による制約の強さを決めるパラメータである。この式は、データ忠実度の項(lノルム)と、まばら性促進の項(ウェーブレット変換のlノルム)とを組み合わせるものである。CSをPIと組み合わせることによって、スキャンが停止された時点までに収集された(所定のサンプリングパターンで)アンダーサンプリングされたデータから、画像を再構成できるようになる。ナビゲータを用いた検出技術で被検体の動きを検出することで、スキャンの停止タイミングを決定することができる。これにより、スキャンで収集されたデータは全て動きの無いものになり、被検体が動いた時のデータは除外されて、矛盾のないデータのみが再構成に用いられることになり、それによりモーションアーチファクトが抑制される。ここで、任意の時相の任意の時間的組み合わせで得られるサンプル分布は、ポアソンディスクのような特性を有することが望ましい。この方法は、息止めが不完全な場合でも1つの画像を収集できるようにするために、可変データ収集ウィンドウ内でCSとPIを組み合わせた再構成が可能なポアソンディスクサンプル分布を提供することを目的としている。このような設定では、予測できない動きが発生する前にデータ収集が行われ、k空間データがネストした領域でセグメント化されることになる。
【0023】
前述したように、画質、又は、アーチファクト及びSN比に大きな影響を与えずに、ランダムな位置からデータを削除することが可能である。CSの画質は、エンコードの数のみに弱く関連し、加速係数Rに依存する。例えば、Rの値を2.0や2.2としても、一般的に、画質には若干の違いが生じるだけである。同様に、Rの値を3.0や3.3としても、一般的に、画質には大した違いは生じない。
【0024】
また、データを完全にサンプリングする場合、1コイルからのデータでも画像を生成するには十分であるが、複数コイルからのデータを用いることによって、よりロバストに画像を再構成することができる。単純なフーリエ変換により、コイル感度によって重み付けされた画像を得ることができ、それをコイル感度によって分割することで、より均一な画像を生成することができる。他の一例として、空間的に異なる感度を有する複数の受信コイルを用いてデータ収集の空間分解能及び時間分解能を向上させることによって、画像のアーチファクトを補正するための、被検体に関する補完情報を得ることができる。これにより、異なる組み合わせのコイルからのデータを用いて複数の画像を再構成した後に、それらの画像を比較することによって、コイルの感度の違いから生じる輝度の変化に基づいて、アーチファクトを検出することができる。このプロセスをコイルごとに繰り返すことによって、n個の画像を得ることができる(nはコイルのチャンネル数を表す)。ここで、ノイズ及びアーチファクトがない場合には、これらのn+1個の画像(チャンネルごとに生成されたn個の画像+全チャンネルのデータから合成された1つの画像)は同じになるはずである。動きがある画像では、各画像で空間的に同じ位置にアーチファクトが現れるが、それぞれの輝度が異なる。各画像のアーチファクトは同じ空間位置に由来するが、各画像はコイルごとに異なる固有のコイル感度によって別々に再構成されるため、アーチファクトが生じた箇所の輝度は異なる。アーチファクトを含む画像を比較した場合、それらの差はアーチファクトが最小のときに最も小さくなると考えられる。一方、単一コイルからのデータを用いた場合は、再構成が不十分になって、画像が低品質になることがある。
【0025】
さて、図面に戻ると、各図において、同じ参照番号は同一又は対応する部分を示している。図1は、MRIシステム100の一例を示す。MRIシステム100は、MRI装置の一例である。図1に示すように、MRIシステム100は、ガントリ101(概略的な断面で示す)、ガントリ101と相互に接続された各種の関連するMRIシステムコンポーネント103を含む。一般的には、少なくともガントリ101はシールドルームに設置される。図1に示すMRIシステム100は、略同軸円柱状に配置された、静電場(B)磁石111、Gx、Gy、Gz傾斜磁場コイルセット113、及び、大型の全身RFコイル(Whole Body Coil:WBC)115を含む。これらの略同軸円柱状に配置された構成要素の水平軸に沿って、被検体テーブル120によって支持された被検体119の頭部を囲むように、撮像ボリューム117が形成されている。
【0026】
撮像ボリューム117において、1つ又は複数の小型のアレイコイル(Array Coil:AC)121が被検体の頭部(ここでは、例えば、「撮像部位」又は「部位」と呼ぶ)に装着される。当業者には既知のように、表面コイル等のような、WBCと比べて相対的に小型のコイルやアレイコイルが、特定の身体部分(例えば、腕、肩、肘、手首、膝、脚部、胸部、背骨等)用に作製されることが多い。このような、より小型のRFコイルをここではアレイコイル又はフェイズドアレイコイル(Phased-Array Coil:PAC)と呼ぶ。ここで、AC及びPACは、撮像ボリュームにRF信号を送信するように構成された少なくとも1つのコイルと、撮像ボリュームにおいて被検体の頭部等の被検体からRF信号を受信するように構成された複数の受信コイルを含んでいてもよい。
【0027】
また、MRIシステム100は、ディスプレイ124、キーボード126及びプリンタ128に接続された入/出力ポートを有するMRIシステムコントローラ130を含む。なお、既知のように、ディスプレイ124は、制御入力を行うことが可能タッチスクリーン型のものであってもよい。また、マウス等の入出力デバイスが設けられていてもよい。
【0028】
MRIシステムコントローラ130は、Gx、Gy、Gz傾斜磁場コイルドライバ132、RFトランスミッタ134、及び、送/受信スイッチ136(同じRFコイルが送信及び受信の両方に用いられている場合)を順番に制御するMRIシーケンスコントローラ140と相互に接続されている。MRIシーケンスコントローラ140は、PIを含むMRI(核磁気共鳴イメージング、NMRイメージングとも呼ばれる)の手法を実行するための好適なプログラムコード構造138を含んでいる。なお、MRIシーケンスコントローラ140は、PIを伴ってMRIを実行することも、PIを伴わずにMRIを実行することも可能である。
【0029】
また、MRIシーケンスコントローラ140は、1つ又は複数の予備スキャン(プレスキャン)シーケンス、及び、メインスキャンのMR画像(診断画像と呼ぶ)を得るためのスキャンシーケンスを実行させる。プレスキャンによって得られたMRIデータは、例えば、WBC115やAC121の感度マップ(コイル感度又は空間感度マップとも呼ぶ)を導出したり、PI用の展開マップを導出したりするために用いられる。
【0030】
MRIシステムコンポーネント103は、MRIデータプロセッサ142に信号を入力するRFレシーバ141を含み、それにより、MRIデータプロセッサ142は、ディスプレイ124へ送信する処理画像データを生成する。また、MRIデータプロセッサ142は、以前に生成されたMRIデータや画像、例えば、コイル感度マップやパラレル画像展開マップ、ひずみマップ等のマップ、システム構成パラメータ等が保存されたメモリ146や、MR画像の再構成等を行うためのプログラムコード構造144及び150にアクセスすることも可能である。
【0031】
一実施形態において、MRIデータプロセッサ142は、処理回路を含む。この処理回路は、特定用途向け集積回路(Application-Specific Integrated Circuit:ASIC)、構成可能ロジックデバイス(例えば、単純プログラマブルロジックデバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブルロジックデバイス(Complex Programmable Logic Device:CPLD)、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA)等のデバイスや、本願に記載している関数を実行するための他の回路を含む。
【0032】
MRIデータプロセッサ142は、プログラムコード構造144及び150に含まれる1つ以上の命令の1つ以上のシーケンスを実行する。または、この命令は、ハードディスク又はリムーバブルメディアドライブのような他のコンピュータ可読媒体から読み出されてもよい。また、マルチプロセッシングの構成に含まれる1つ又は複数のプロセッサを採用して、プログラムコード構造144及び150に含まれる命令のシーケンスを実行するようにしてもよい。また、他の実施形態では、ソフトウェアの命令の代わりに、又は、ソフトウェアの命令と組み合わせて、ハードワイヤード回路が用いられてもよい。このように、本願の実施形態は、ハードウェア及びソフトウェアの特定の組み合わせに限定されるものではない。
【0033】
なお、本願で用いられている「コンピュータ可読媒体」という文言は、MRIデータプロセッサ142に命令を実行させるために用いられる各種の非一時的な媒体を意味する。ここで、コンピュータ可読媒体は、非揮発性媒体又は揮発性媒体を含むが、これらに限定されるものではなく、様々な形態で実現され得る。例えば、非揮発性媒体には、光ディスク、磁気ディスク、光磁気ディスク、リムーバブルメディアドライブ等が含まれる。また、揮発性媒体には、ダイナミックメモリ等が含まれる。
【0034】
図1では、MRIシステム100の各種のデータ処理コンポーネントにアクセス可能な非一時的なコンピュータ可読媒体にプログラムコード構造150を記憶したプログラム記憶部(メモリ)を一般化して図示している。当業者には既知のように、プログラム記憶部を複数の部分に区分けし、(共通に記憶されたプログラムコードにMRIシステムコントローラ130がダイレクトに接続するのではなく、)MRIシステムコンポーネント103の各処理コンピュータが、通常動作を行う間に、記憶されているプログラムコード構造が必要になった時点で、区分けされた部分の少なくとも一部にダイレクトに接続するようにしてもよい。
【0035】
そして、図1に示すMRIシステム100は、以下で説明する例示的な実施形態を実施可能に構成されている。ここで、MRIシステムコンポーネント103は、異なる論理集合である「ボックス」に分割することができ、一般的に、多数のデジタル信号プロセッサ(Digital Signal Processor:DSP)、マイクロプロセッサ、及び、特別な目的の処理回路(例えば、高速A/D変換、高速フーリエ変換、アレイ処理を行う処理回路等)を備える。これらの各プロセッサは、一般的に、クロックサイクル(又は、所定の数のクロックサイクル)が発生するごとに物理的なデータ処理回路が1つの物理状態から他の物理状態に進む、クロック同期の「ステートマシン」である。
【0036】
また、処理回路(例えば、CPU、レジスタ、バッファ、演算装置等)の物理状態が、動作の過程でクロックサイクルごとに漸進的に変化するだけでなく、関連するデータ記憶媒体(例えば、磁気記憶媒体のビット記憶領域)も、システムの動作中に1つの状態から他の状態に変化する。例えば、画像再構成処理の終了時や、時には画像再構成マップ(例えば、コイル感度マップ、展開マップ、ゴーストマップ、ひずみマップ等)の生成プロセスの終了時には、物理記憶媒体において、コンピュータがアクセス及び読み出し可能なデータ値記憶領域のアレイが、先行状態(例えば、全てが均一に「ゼロ」の値又は「1」の値である状態)から新たな状態に変化する。ここで、アレイの物理領域における物理状態は、実世界における物理的な事象及び条件(例えば、撮像ボリュームの空間内における被検体の内部物理構造)を表すように、最小値と最大値との間で変化する。当業者には既知のように、このようにデータ値を記憶したアレイは、MRIシステム100の1つ又は複数のCPUによって命令レジスタに順次書き込まれて実行された際にMRIシステム100内で動作状態の特定のシーケンスを発生させて遷移させるコンピュータ制御プログラムコードの特定の構造を表すように、物理的な構造を表現及び構成する。
【0037】
そして、k空間の各点と対応するように空間的にエンコードされたNMR(Nuclear Magnetic Resonance)RF応答信号(例えば、エコーデータ)を収集することによって、MR画像が形成される。一般的に、RF応答信号の値は、設定されたパルスシーケンスに従って2次元又は3次元のk空間を「トラバース」することによって生成される。一般的に、周波数エンコードによって空間的にエンコードされた方向(例えばx軸に沿う方向)におけるデータの収集は速く、数ミリ秒ほどである。しかしながら、位相エンコード方向の軸(例えば、y軸)に沿っては、強度が異なる位相エンコード傾斜磁場を印加して、各点がサンプリングされる。このため、一般的に、MR画像の収集時間は、主に、位相エンコードのステップ数によって決定される。
【0038】
ここで、前述したように、CSは、劣決定線形系に対する解を求めることで、効率的に信号を収集及び再構成する信号処理技術である。これは、信号のまばら性を利用することによって、最適化を介して、シャノン・ナイキストのサンプリング定理で必要となるサンプルよりもはるかに少ないサンプルから信号を回復できるという原理に基づいている。しかし、被検体の動きによって、アーチファクトが生じる。動きの混入したエンコードが判明している場合には、CSを用いて、動きの混入したエンコードが除かれて削減されたMRIデータのデータセットに基づいて画像を再構成することができ、それにより、モーションアーチファクトを生じさせずに画像を再構成することができる。本願が開示する方法は、動きの混入したエンコード(すなわち、動きの影響を受けたエンコード)を識別すること、及び、動きの混入したエンコードを用いずに画像を再構成することができる。
【0039】
また、MRIデータは、一連のエンコード(例えば、傾斜磁場のオン/オフを切り替えながら励起パルス及びリフォーカスパルスを印加するパルスシーケンス)を用いて、空間周波数ドメイン(例えば、k空間ドメイン)内をサンプリングすることによって収集される。ここで、MRIのスキャンは、複数のショットを含むことができ、各ショットが1つ又は複数のエンコードを含むことができる。また、各エンコードは、k空間の1つ又は複数の点を取得/サンプリングするパルスシーケンスに対応する。
【0040】
図2Aは、本願の例示的な一実施例に係る、MR画像におけるモーションアーチファクトを検出及び除去するための技術を示す。一実施例では、MRIシステム100によって、被検体119のデータセット205が収集される。ここで、例えば、データセット205は、時間依存性の周波数信号、又は、k空間における周波数及び位相のデータを含む。そして、k空間に対してフーリエ変換、例えば、2Dフーリエ変換を施すことによって、グレースケール画像が生成される。ここで、データセット205を収集するために必要な時間の長さは、k空間で離散点をサンプリングするために操作者によって設定されたショットの所定数によって決定される。なお、ショットの所定数は、所望の分解能のレベルによって決定される。
【0041】
例えば、スキャンデータがCSデータである場合に、MRIシステム100は、当該スキャンデータに対して再構成プロセスを実行することで、画像を生成する。ここで、再構成プロセスは、例えば、GRAPPA、SENSE、ARC、SPIRiT、LORAKSである。スキャンデータがCSデータである場合には、再構成プロセスは、所定のドメイン(例えば、空間、時間、ウェーブレット)における画像表示のまばら性、及び、収集されたスキャンデータによる再構成の一貫性の両方を向上させる非線形プロセスとされる。
【0042】
そして、一実施例において、スキャン中に被検体119が動くこともあり得る。例えば、スキャンに含まれる全100ショットのうちの1つのショットの収集中に被検体119が動くこともあり得るが、100ショットのうちのどのショットで動きが発生するかは不明である。この場合、全100ショットを用いて再構成された画像には、動きによってモーションアーチファクトが生じたショットが含まれることになる。ここで、どのショットで動きが生じたかを見つけることができれば、そのショットをデータセットから除外することによって、動きのない削減されたデータセットを生成することができる。そして、CSを用いて、削減されたデータセットからアーチファクトのない画像を生成することができる。たとえ、動きを含むショットが不明であったとしても、データセット205の各サブセットに対応するMR画像を再構成する際に動きの混入したショットを識別することによって、モーションアーチファクトの影響がない画像を見つけることができる。すなわち、モーションアーチファクトを含む画像は、モーションアーチファクトによって全て類似したものになるのに対し、モーションアーチファクトのない画像は、外れ値になる。
【0043】
例えば、全体のデータセット205から異なるショットを除外することによって、サブセット205a、205b、205c、205d及び205eが生成される。例えば、全体のデータからショット1を除外することによって、サブセット205aが生成される。同様に、全体のデータからショット2、3、4及び5をそれぞれ除外することによって、サブセット205b、205c、205d及び205eが生成される(すなわち、サブセット205bは、データセット205のうちのショット2を除く全てのショットを含み、サブセット205cは、データセット205のうちのショット3を除く全てのショットを含み、以降、同様に、各サブセットにおいて各ショットが除外される)。そして、これらのサブセットから、CSを用いて、それぞれに対応するサブセット画像210a、210b、210c、210d及び210eが再構成される。図2Aでは、動きが最も少ないショットがショット3であり、その結果、サブセット画像210cが他のサブセット画像と比べて外れ値となっている場合の例を示している。ここで、画像間の類似は、各サブセット画像の他の全てのサブセット画像に対する類似の度合いを表すような基準値(例えば、性能指数)を用いて計算することができる。その後、モーションアーチファクトの量が最も小さいサブセット画像として、外れ値の画像(以下、外れ値画像)が選択される。ここで、画像を比較する際の基準値(以下、画像比較基準値)は、例えば、構造的類似性指標(Structural Similarity Index:SSI)、知覚的相違モデル(Perceptual Difference Model:PDM)、二乗平均平方根(Root-Mean-Squared:RMS)比較、サブセット画像間の差のペアワイズユークリッド距離等の画質評価基準値や、画像間の差のpノルムベースの他の尺度である。
【0044】
このように、本実施形態に係るMRIシステム100は、被検体のMRIデータを収集する収集部を備える。また、MRIシステム100は、収集部によって収集されたMRIデータのデータセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1のCS方法を用いて画像を生成することによって、複数の画像を再構成する再構成部を備える。また、MRIシステム100は、再構成部によって再構成された複数の画像から画質が最適な第1の画像を選択し、当該第1の画像の生成に用いられた第1のサブセットを選択する機能(選択部)を備える。例えば、収集部は、MRIシーケンスコントローラ140によって実現される。また、例えば、再構成部及び選択部は、MRIデータプロセッサ142によって実現される。
【0045】
また、一実施例では、選択部が、所定の画像比較基準値を用いて複数の画像を比較することによって、モーチョンアーチファクトが最小となる外れ値画像を識別し、当該外れ値画像を第1の画像として選択する。
【0046】
外れ値画像(例えば、サブセット画像210c)が決定されると、図2Bに示すように、それに対応するサブセット(例えば、サブセット205c)が、次の反復処理用の全体のデータセットとして用いられる。すなわち、前回の反復処理で選択されたサブセット205cから各ショットを除外することによって、サブセット207a、207b、207c、207d、207e等が生成される(例えば、サブセット205cからショット#1を除外することによってサブセット207aが生成され、サブセット205cからショット#2を除外することによってサブセット207bが生成される、等)、その後、各サブセットから、それぞれに対応するサブセット画像215a、215b、215c、215d、215e等が生成される。そして、前述したように、サブセット画像215a、215b、215c、215d及び215eを比較することによって、それらの中で最小のアーチファクトを示す画像(例えば、外れ値が最大である画像、又は、所定の画像比較基準値に従って最良の画質を有する画像)を決定することができる。図2Bでは、サブセット画像215dが最適な画像(すなわち、モーションアーチファクトが最小の画像)として決定され、その結果、サブセット207dが最良のサブセットとして選択される場合の例を示している。ここで、サブセット207dについて、動きの混入したショットが十分に除去されていると判定された場合には、サブセット207dを用いて最終MR画像が再構成される。または、データセット205から動きの混入したショットを除外するための処理を、動きの影響が十分に除去されたサブショットが得られるまで繰り返し行って、最終MR画像を再構成してもよい。
【0047】
このような処理を所定の回数繰り返し実行することによって、所定の数のショットを削除することができる。または、画像で所望の量の改善又は所定の画質が実現されるまで、ショットを除外する反復処理を繰り返し実行してもよい。また、別の実施例として、反復処理の回数を手動で(例えば、操作者による入力/フィードバックに基づいて)制御するようにしてもよいし、改善/変更の量が所定の閾値を下回るまで減少した場合に反復処理を停止し、画像が収束したことを知らせる信号を出力するようにしてもよい。
【0048】
すなわち、一実施例では、再構成部が、第1のサブセットに含まれる複数のエンコードから少なくとも1つのエンコードを除外したデータのサブセットを、除外するエンコードを変えて複数生成し、各サブセットから第1のCS方法を用いて画像を生成することによって、複数の画像とは異なる他の複数の画像をさらに再構成する。また、選択部が、他の複数の画像から画質が最適な第2の画像を選択し、当該第2の画像の生成に用いられた第2のサブセットを選択する。そして、MRIシステム100は、再構成部が他の複数の画像を再構成すること、及び、選択部が第2のサブセットを選択することを、所定の停止基準が満たされるまで繰り返す。
【0049】
また、一実施例では、選択部が、第1の画像を選択した後に、当該第1の画像が所定の画質を実現するものであるか否かを判定する。また、再構成部が、第1の画像が所定の画質を実現するものであると判定された場合に、第1のサブセットから最終画像を再構成し、第1の画像が所定の画質を実現するものでないと判定された場合に、第1のサブセットから他の複数の画像を再構成する。
【0050】
また、別の実施例として、最終MR画像を再構成する際に用いる画像再構成方法と、最初のサブセット画像210a~210e及び215a~215eを再構成する際に用いる画像再構成方法とが、異なっていていてもよい。例えば、サブセット画像210a~210e及び215a~215eは高画質でなくてもよいため、これらの画像を再構成する際は、高速近似再構成方法が有用である。つまり、サブセット画像210a~210e及び215a~215eの再構成では、モーションアーチファクトを示す画像とモーションアーチファクトを示さない画像とを区別できる画質及び分解能が得られれば十分である。それに対し、最終画像は1度しか再構成されないため、最終画像でより良い画質を実現するためには、より多くの計算量、及び、より長い計算時間を要する画像再構成方法が用いられる。例えば、最初のサブセット画像210a~210e及び215a~215eの再構成、並びに、最終画像の再構成の両方に反復CS方法を用いる場合には、最終画像の再構成では、最初の画像の再構成と比べて、反復処理の回数をより多くしたり、分解能をより高くしたりする。
【0051】
上述した例では、除外するショットを決定するためにグリーディアルゴリズムが用いられる場合について説明したが、これは一例であり、当業者には理解されるように、本願が開示する方法の主旨から逸脱することなく、他のアルゴリズムを用いて、除外するショットを決定してもよい。例えば、除外するショットを決定する方法として、各反復処理で複数のショットを除外するようにしてもよい。例えば、複数のショットの間に、被検体の運動が発生する場合がある。そのため、1回の反復処理で、1つのショットを除外するのではなく、連続する複数のショットを除外することが考えられる。また、別の実施例として、除外するショットを決定するためのアルゴリズムは、ダイクストラアルゴリズム、又は、A*探索アルゴリズムであってもよい。また、別の実施例として、所定の反復処理の間に除外されるショットは、複数であってもよいが、必ずしも時系列に連続していなくてもよい。また、別の実施例として、前述したサブセットにおいて除外されるデータは、ショット全体より小さくてもよい(例えば、1ショットにk個のエンコードが含まれている場合に、除外されるデータはn個(k>n)のエンコードであってもよい)。
【0052】
図2Aに戻って、一実施例に係る一例を説明する。例えば、データセット205から第1のショットを除外することで、99ショットを含む第1のサブセット205aが生成される。そして、第1のサブセット205aから、第1のCS方法を用いて、第1のサブセット画像210a(以下、第1の画像210aと呼ぶ)が再構成される。例えば、第1のサブセット205aはk空間における周波数及び位相のデータであり、第1のCS方法では、再構成の時間を削減するために、第1のサブセット205aがまばらにサンプリングされる。ここで、第1のショットが動きの発生した間のショットではない場合には、結果として得られる第1の画像210aは、モーションアーチファクトを含まないものになる。
【0053】
また、データセット205から第2のショットを除外することで、99ショット(第1のショットを含む)を含む第2のサブセット205bが生成される。そして、第2のサブセット205bから、第1のCS方法を用いて、第2のサブセット画像210b(以下、第2の画像210bと呼ぶ)が再構成される。ここで、第2のショットが動きの発生した間のショットではない場合には、結果として得られる第2の画像210bは、モーションアーチファクトを含まないものになる。
【0054】
また、データセット205から第3のショットを除外することで、99ショット(第1及び第2のショットを含む)を含む第3のサブセット205cが生成される。そして、第3のサブセット205cから、第1のCS方法を用いて、第3のサブセット画像210c(以下、第3の画像210cと呼ぶ)が再構成される。ここで、第3のショットが動きの発生した間のショットであった場合には、結果として得られる第3の画像210cは、モーションアーチファクトを含まないものになる。
【0055】
また、上述した各サブセットと同様に、データセット205から第4のショットを除外することで、99ショット(第1~第3のショットを含む)を含む第4のサブセット205dが生成され、データセット205から第5のショットを除外することで、99ショット(第1~第4のショットを含む)を含む第5のサブセット205dが生成され。そして、第4のサブセット205dから、第1のCS方法を用いて、第4のサブセット画像210d(以下、第4の画像210dと呼ぶ)が再構成される。また、第5のサブセット205eから、第1のCS方法を用いて、第5のサブセット画像210e(以下、第5の画像210eと呼ぶ)が再構成される。ここで、第4及び第5のショットが動きの発生した間のショットでない場合には、結果として得られる第4の画像210d及び第5の画像210eは、どちらもモーションアーチファクトを含むものになる。
【0056】
これにより、再構成された第1~第5の画像210a~210eのうちのどの画像が、モーションアーチファクトが最小の画像(例えば、モーションアーチファクトを含む他の全ての画像との差が最大となる画像)であるかを識別することで、動きの混入したショットを推定することができる。
【0057】
一実施例では、MRIシステム100(例えば、MRIデータプロセッサ142)が、第1の画像210aと第2の画像210bとを比較する第1の比較を行うことで、第1の画像210aが第2の画像210bと類似していると判定する。ここで、1ショットのみに動きが含まれている場合には、第1及び第2の確信度が、それぞれ、第1の画像210a及び第2の画像210bに割り当てられる。例えば、これらの確信度は、各画像が動きの混入したショットを含む可能性が高いことを示すように設定される。
【0058】
また、MRIシステム100は、第1の画像210aと第3の画像210cとを比較する第2の比較を行うことで、第1の画像210aが第3の画像210cと類似していると判定する。ここで、第3の画像210cには、第3の確信度が割り当てられ、また、第2の比較に基づいて、第1及び第2の確信度が更新される。例えば、第3の確信度は、第3の画像210cが動きの混入したショットを含んでいない可能性が高いことを示すように設定される。また、第1及び第2の確信度は、それぞれ、第1及び第2の画像210a及び210bが動きの混入したショットを含む可能性が(第2の比較が行われる前と比べて)より高いことを示すように更新される。
【0059】
また、MRIシステム100は、第1の画像210aと第4の画像210dとを比較する第3の比較を行うことで、第1の画像210aが第4の画像210dと類似していると判定する。ここで、第4の画像210dには、第4の確信度が割り当てられ、また、記第3の比較に基づいて、第1、第2及び第3の確信度が更新される。例えば、第4の確信度は、第4の画像210dが動きの混入したショットを含む可能性が高いことを示すように設定される。また、第3の確信度は、第3の画像210cが動きの混入したショットを含む可能性が(第3の比較が行われる前と比べて)より低いことを表すように更新される。また、第1及び第2の確信度は、それぞれ、第1及び第2の画像210a及び210bが動きの混入したショットを含む可能性が(第2及び第3の比較を行う前と比べて)より高いことを示すように更新される。
【0060】
上述した比較方法は、データセット205から異なる1つのショットを除いたサブセットそれぞれから再構成された全ての画像を対象として実行される。例えば、データセット205が100ショットを含む場合には、100個のサブセットを生成することができ、それらのサブセットから再構成された100個の画像を用いて、99回の比較が行われる。より一般的には、データセット205がN個のショットを含む場合には、N個のサブセットが生成され、それにより、N-1回の比較が行われる。そして、比較が完了した後、動きの混入したショットを含む可能性が最も低いことを示している確信度の画像が、外れ値画像として選択される。そして、この外れ値画像を再構成するために用いられたサブセットが、第2のCS方法によってモーションアーチファクトがより少ない新たな画像を再構成するために用いられるサブセットとして選択される。例えば、第3の画像210cが、動きの混入したショットが除外された外れ値画像として選択され、第3のサブセット205cが、第2のCS方法を用いて新たな(高分解能)画像を再構成するためのサブセットとして用いられる。なお、一実施例では、第1のCS方法は、第2のCS方法と同じ方法であるが、より高速に再構成を行えるように調整される。または、一実施例では、第1のCS方法は、第2のCS方法と異なる方法であり、第2のCS方法より高速な方法とされる。
【0061】
すなわち、一実施例では、再構成部が、さらに、第1のサブセットから第1のCS方法を用いて最終画像を再構成する。
【0062】
また、一実施例では、再構成部が、さらに、第1のサブセットから第2のCS方法を用いて最終画像を再構成する。ここで、第1のCS方法は、第2のCS方法と比べて高速なCS方法であり、第2のCS方法は、第1のCS方法と比べて高精度又は高分解能な画像を再構成するCS方法である。
【0063】
また、一実施例では、MRIシステム100は、全ての画像を第1の画像210aと比較した後に、さらに、全ての画像を他の画像、例えば、第2の画像210bと比較する。この場合に、第2の画像210bと第1の画像210aとの比較は、必ずしも行わなくてもよいが、冗長度チェックとして実行してもよい。具体的には、MRIシステム100は、第2の画像210bと第3の画像210cとの間でi番目の比較を行うことで、第2の画像210bと第3の画像210cとが類似していないと判定し、画像210b及び画像210cそれぞれの第2及び第3の確信度を前述したように更新する(すなわち、動きの混入したショットを含む可能性がより高いことを示すように第2の確信度が更新され、動きの混入したショットを含む可能性がより低いことを示すように第3の確信度が更新される)。そして、この比較方法は、前述したN個のサブセットから再構成されたN個の画像を対象として連続して実行される。
【0064】
また、一実施形態として、画像のセットを他の画像のセットと比較するようにしてもよい。ここでいう画像のセットには、少なくとも1つの画像が含まれる。例えば、第1のセットの画像を、第1の画像210a及び第2の画像210bを含むものとし、第2のセットの画像を、第4の画像210d及び第5の画像210eを含むものとする。または、例えば、第1のセットの画像を、第1の画像210aを含むものとし、第2のセットの画像を、第2の画像210b、第4の画像210d、及び、第5の画像210eを含むものとする。この場合、任意の数の画像を含む各セットの間で、1回又は複数回だけ、任意の回数の比較を行うことができる。例えば、サブセットの数をNとし、各セットの画像の数をkとすると、1回で行われる比較の数は、以下の組み合わせ関数によって決定することができる。
【0065】
【数2】
【0066】
図2Bに戻って、一実施例に係る一例を説明する。図2Bは、本願の例示的な一実施例に係る、MR画像におけるモーションアーチファクトを連続して検出及び除去するための技術を示す。一実施例では、動きの混入したショットが除外された外れ値画像として第3のサブセット205cが選択された後に、新たな(高分解能)画像を再構成する前に、当該第3のサブセット205cから1つ又は複数の追加のショットを除外することで、より精緻な第1、第2、第3、第4及び第5のサブセット207a~207eが生成される。また、より精緻な第1、第2、第3、第4及び第5のサブセット画像215a~215eに対して前述した比較及び外れ値選択の方法を実行することによって、動きの混入したショットがさらに除外され、後続の精緻化処理のために、例えば、より精緻な第4のサブセット207d、及び、より精緻な第4のサブセット画像215dが選択される。そして、この処理は、所定の回数だけ、又は、動きが十分に除去されたことを示す閾値に達するまでの間、又は、操作者が所定レベルの品質の画像が得られたと判定するまでの間、継続して実行される。
【0067】
図3は、MRIのスキャンによって得られる再構成された画像におけるモーションアーチファクトの検出及び補正方法300の一例を示すフローチャートである。
【0068】
まず、ステップS301において、MRIシステム100は、MRIデータのデータセット205を収集する。
【0069】
次に、ステップS303において、MRIシステム100は、データセット205から少なくとも1つのショットを除外することによって生成された、データセット205のサブセット205a~205eから、画像210a~210eのセットを再構成する。ここで、最初の反復処理では、その回のデータセットとして完全なデータセット205が用いられ、それ以降の反復処理では、直前の反復処理においてモーションアーチファクトに最も関与すると判定されたショットが除外された結果、削減されたデータセットがその回のデータセットとして用いられる。例えば、図2Aの例では、データセット205cが、2回目の反復処理で用いられるデータセットとなり、図2Bの例では、データセット207dが、3回目の反復処理で用いられるデータセットとなる。
【0070】
次に、ステップS305において、MRIシステム100は、画像210a~210eのセットを互いに比較することで、どの画像が、モーションアーチファクトが最小の外れ値画像であるかを判定する。例えば、この比較は、SSIやPDM等の画像評価基準値等の画像比較基準値を用いて行われる。
【0071】
次に、ステップS307において、MRIシステム100は、外れ値画像に対応するサブセットを次の反復用のデータセットとして選択する。なお、ここで、所定の停止基準を満たしている場合には、MRIシステム100は、ステップS311において、選択されたサブセットから最終画像を再構成する。
【0072】
次に、ステップS309において、MRIシステム100は、所定の停止基準を満たしているか否かを判定する。そして、MRIシステム100は、所定の停止基準を満たしている場合には、ステップS311に進み、満たしていない場合に、さらに反復処理を行うためにステップS303に戻る。ここで、所定の停止基準は、反復処理の最大回数、又は、1つ又は複数の以上の収束基準である。
【0073】
次に、ステップS311において、MRIシステム100は、選択されたサブセット(外れ値画像を再構成するために用いられたサブセット)から最終(高分解能)画像を再構成する。
【0074】
なお、画像のセット間の比較は、画像を比較するための当技術分野で知られた種々の技術(例えば、画像間の類似性又は相違性を判定することによって画像を比較する技術)を用いて行うことができる。例えば、類似性は、構造的類似性指標、普遍的品質指標、ピークSN比、平均二乗誤差、pノルムベース計測(pは負でない数)、相互相関ベース計測、知覚的相違モデル、ピアソン相関、タニモト計測、確率(論)的正負変換、決定(論)的正負変換、最小比率、スピアマンのρ、ケンドールのτ、最大偏差、通常計測、相関比、同時(発生)確率密度のエネルギー、マテリアル類似性、シャノン相互情報量、レーニ相互情報量、Tsallis相互情報量、Iα情報量等により計測することができる。また、例えば、相違性は、Lノルム、絶対差のメジアン、二乗Lノルム、二乗差のメジアン、正規化二乗Lノルム、増分符号付き距離、輝度比分散値、輝度マッピング比分散値、ランク距離、結合エントロピー、排他的F情報により計測することができる。
【0075】
すなわち、一実施例では、所定の画像比較基準値は、構造的類似性指標、普遍的品質指標、ピークSN比、平均二乗誤差、pノルムベース計測(pは負でない数)、相互相関ベース計測、知覚的相違モデル等である。
【0076】
一実施例では、画像のセット間の比較は、画像210a~210eの間のユークリッド距離の差を計測して類似性を判定することによって行われる。ここで、ユークリッド距離によって、画像が各画素のグレーの度合いに応じてベクトルに変換され、その後、画素ごとに輝度の差が比較される。ここで、M×Nの大きさ固定された画像は、各画素のグレーの度合いに応じて、ベクトルx={x,x,・・・xMN}と書くことができる。また、画像x1と画像x2との間のユークリッド距離d(x1,x2)は、以下の式のように定義される。
【0077】
【数3】
【0078】
また、一実施例では、画像のセット間の比較は、SSIを計測して類似性を判定することによって行われる。ここで、互いに位置合わせされた2つの負でない画像信号(例えば、各画像から抽出された空間パッチ)をx及びyとすると、これらの信号のうちの1つの品質がより高い場合には、類似性を計測することで、もう1つの信号の品質を定量的に計測することができる。システムは、類似性の計測のタスクを、輝度の比較、コントラストの比較、及び、構造の比較の3つの比較に分割する。N×Nの通常のサイズを有する2つのウィンドウx及びyの間の計測は、以下のように表される。
【0079】
【数4】
【0080】
ここで、μはxの平均であり、μはyの平均であり、σ はxの分散値であり、σ はyの分散値であり、σxyはx及びyの共分散値であり、c=(kL)及びc=(kL)は、小さい分母で除算を調整するための変数であり、Lは画素値のダイナミックレンジである。
【0081】
また、一実施例では、画像のセット間の比較は、PDMを計測して類似性を判定することによって行われる。ここで、PDMは、視覚伝導路の機能解剖を模倣して、網膜の視覚及び感度、空間コントラスト感度関数、並びに、視覚野にある空間周波数のチャネルをモデル化するコンポーネントを含む。そして、PDMは、知覚可能な相違の確からしさの空間マップ、及び、当該空間マップにわたって平均されたスカラー画質の基準値を提供する。
【0082】
また、一実施例では、第1の画像210aと第2の画像210bとの比較は、操作者による目視検査を用いて実行することができる。この場合、再構成された画像210a~210eが操作者に提示され、操作者が、動きの混入したショットを除外するために決定した少なくとも1つの画像を選択することができる。操作者は、この選択をMRIシステム100に入力し、それにより、第2のCS方法を用いた新な画像の再構成が実行される。
【0083】
すなわち、一実施例では、選択部が、複数の画像のうちの少なくとも2つの画像をディスプレイに表示し、表示された画像の中から1つの画像を選択する操作を操作者から受け付け、当該操作により選択された画像を第1の画像として選択する。
【0084】
また、一実施例では、時間順に最後に収集されたショットから開始して順々にショットが除外される。これは、被検体の動きはスキャンの終わり頃、例えば、息止めの終わりで発生しやすいことから、スキャンの終わり頃に収集されたショットを最初に除外して画像の比較を行うようにするためである。
【0085】
また、一実施例では、動きを含むと決定された最初のショットの近傍から、ショットが除外される。例えば、第3のショットがモーションアーチファクトに最も関与していると決定された場合、それに隣り合う2つのショット(つまり、第2及び第4のショット)もモーションアーチファクトに関与している可能性が高いと推測できる。なぜならば、被検体の動きは時間的に集中する可能性が高いからである。例えば、図2Aの例において、サブセット205cが、第1の動きの混入したショット(以下、動き混入ショットと呼ぶ)を除外したものであった場合に、第1の動き混入ショットに隣り合って収集された1つ以上のショットも、動きを含んでいると判定できる。したがって、これらの動きの混入したショットを、新たな第1、第2、第3、第4及び第5のサブセット207a~207eを生成する前に除外する。
【0086】
すなわち、一実施例では、再構成部が、第1のサブセットを生成する際に除外したエンコードが収集された時間の近傍の時間で収集されたエンコードを第1のサブセットから除外することで、他の複数の画像の生成に用いられる複数のサブセットを生成する。
【0087】
例えば、第1の動き混入ショットの直前に収集された第2の動き混入ショットと、第1の動き混入ショットの直後に収集された第3の動き混入ショットとが除外される。そして、ショットの除外と、より精緻な第1、第2、第3、第4及び第5のサブセット画像215a~215eの再構成との組み合わせが、所定のレベルの精緻化が得られるまで実行される。例えば、最初の画像(つまり、画像210a~210e及び215a~215e)の再構成に用いられる第1のCS方法が反復的に実行され、目的関数の値が所定の第1の閾値に満たない値に収束した時点で停止される。さらに、最終画像再構成に用いられる第2のCS方法が、反復的に実行され、目的関数の値が所定の第2の閾値に満たない他の値に収束した時点で停止される。ここで、第2の閾値は、第1の閾値より小さいものとする。さらに、複数の画像210a~210e及び215a~215eの空間分解能は、最終画像の空間分解能より低いものとする。
【0088】
すなわち、一実施例では、第1のCS方法が、目的関数の値が第1の閾値未満になるまで繰り返し実行される反復処理を含んだ反復CS方法であり、第2のCS方法は、目的関数の値が第1の閾値より小さい第2の閾値未満になるまで繰り返し実行される反復処理を含んだ反復CS方法である。そして、第1のCS方法によって再構成される複数の画像は、第2のCS方法によって再構成される最終画像と比べて空間分解能が低い。
【0089】
また、一実施例では、1つのショットの全体を除外する代わりに、1つのショットに含まれる少なくとも1つのエンコードが除外される。これにより、所定のレベルの精緻化を得る際の粒度を高めることができる。例えば、第2の動き混入ショットの全体を削除することによって新たな画像の精度が低下する場合があるが、第2の動き混入ショットから少なくとも1つのエンコードを反復的に削除し、その結果として再構成された画像を互いに比較することによって、精度の低下が検出されるまでの除外可能なエンコード数を決定することができる。
【0090】
すなわち、一実施例では、収集部が、複数のショットを含むパルスシーケンスであって、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いてMRIデータを収集する。また、再構成部が、少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれるエンコードを除外したサブセットを生成することによって、複数の画像を再構成する。
【0091】
また、一実施例では、自動校正信号(Auto-Calibrated Signal:ACS)を用いて、サンプリングが行われる。この場合には、ACSライン内のエンコードは、自動校正及び画像再構成プロセスにおいて重要な役割を果たす。また、ACSライン内のエンコードはACSライン外のエンコードの空間周波数より低い空間周波数に対応する(つまり、k空間における、より原点に近い点をサンプリングする)ため、ACS領域内のエンコードは、動きによって受ける影響が少ない。このことから、他の実施例として、ACS領域内のエンコード及びACS領域外のエンコードの両方を含む動き混入ショットについては、当該動き混入ショットから全てのエンコードを除外するのではなく、ACS領域外のエンコードのみを除外して、ACS領域内のエンコードを保留するようにしてもよい。これにより、ACSは、固有ベクトルベースのESPIRiT(Eigenvector based iterative Self-consistent Parallel Imaging Reconstruction)等の自動校正方法用に用いられる。または、ACS領域内のエンコード又はショットよりも、ACS領域外のエンコード又はショットが除外されるように、k空間における原点に近い点をサンプリングしたエンコード及びショットを重み付けすることによって、当該エンコード又はショットが、動きの混入しているものとして除外される可能性が低くなるようにしてもよい。この実施例は、k空間の中央でサンプリングされた情報は大きい特徴部及び低い空間周波数を含み、かつ、MRI信号は一般的に原点の近くで最も大きく、原点から遠ざかるにつれて連続的に小さくなるように展開するものであることから、当該情報は最も価値があるという見識に基づいている。このように、再構成において除外するエンコード又はショットをACS領域外から優先的に選択することによって、画質の低下を抑えることができる。
【0092】
すなわち、一実施例では、収集部が、複数のショットを含み、各ショットが少なくとも2つのエンコードを含むパルスシーケンスを用いてMRIデータを収集する。また、再構成部が、少なくとも1つのエンコードを除外したサブセットとして、少なくとも1つのショットに含まれるACS域外のエンコードを除外したサブセットを生成することによって、複数の画像を再構成する。
【0093】
有利な点として、本願が開示するモーションアーチファクトの検出及び補正方法は、動きについて何らの仮定を行わず、また、モデルを用いない。この方法は、被検体が動く時を決定するための外部のトリガや、付加的なナビゲータ、カメラを含まない。したがって、本願が開示する方法は、装置やハードウェアの追加を必要とせずに、すなわち、従来のMRIスキャナを用いて、MRIデータの全てを収集することができ、収集方法は変更されない。そのため、この方法は、ハードウェアの追加に伴う付加的な費用及び複雑化を必要としない。
【0094】
すなわち、一実施例では、選択部が、被検体の動きを直接計測することなく、MRIデータ及び当該MRIデータから得られる結果に基づいて、第1のサブセットを選択する。
【0095】
また、注目すべきは、再構成された画像210a~210e及び215a~215eの解析/比較は、k空間において実行されない点である。例えば、画像は、画像ドメインで比較される。または、画像比較基準値を用いて画像の比較が行われる前に、当該画像に変換又は画像処理フィルタが適用される(例えば、ハイ/ローフィルタ又はエッジ検出フィルタが、最初に再構成された画像に適用される)。また、再構成された画像は、k空間ドメインでは比較されず、画像比較基準値も適用されない。つまり、再構成された画像210a~210e及び215a~215eは、画像ドメイン又は代替画像ドメインのいずれかで、例えば、空間ドメイン、又は、空間周波数ドメインではない変換ドメインで比較される。これにより、再構成された画像において、モーションアーチファクトをより容易に検出することができる。
【0096】
すなわち、一実施例では、選択部が、空間ドメイン、又は、空間周波数ドメインではない変換ドメインで所定の画像比較基準値を用いて複数の画像を比較することによって、第1の画像を選択する。
【0097】
なお、一実施例では、変換ドメインは、ウェーブレット変換、エッジ検出変換、フィルタ変換、直交関数分解等によって変換されたドメインである。
【0098】
また、上述したように、動きの混入を検出するための画像に用いられる再構成方法は、最終(高分解能)画像に用いられる再構成方法と同じである必要はない。第1の再構成方法については、(正則化、反復の数等を選択することによって)速度が最適化され、一方、第2の再構成方法については、精度が最適化される。ここで、第1の再構成方法を最適化することにより、モーションアーチファクトに対する感度を高めることができる。また、除外する最適なデータが選択された後に、臨床的な画質を保持するため、標準的な再構成方法を用いて、新たな(高分解能)画像が再構成される。
【0099】
上述した特徴によれば、本願に記載の方法は、MRIデータのデータセットにおける動きの混入した部分を検出して除外することができるため、他の動き補正の方法では無駄なものになるようなデータを回復及び浄化することができる。
【0100】
以上説明した少なくとも1つの実施形態によれば、MRIデータの一部に被検体の動きが混入した場合でも、当該MRIデータから高品質な画像を再構成することができる。
【0101】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0102】
100 MRIシステム
140 MRIシーケンスコントローラ
142 MRIデータプロセッサ
図1
図2A
図2B
図3