IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

特許7383489ロボット的装置ガイドと音響プローブの統合
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-10
(45)【発行日】2023-11-20
(54)【発明の名称】ロボット的装置ガイドと音響プローブの統合
(51)【国際特許分類】
   A61B 34/30 20160101AFI20231113BHJP
   A61B 34/20 20160101ALI20231113BHJP
   A61B 8/14 20060101ALI20231113BHJP
【FI】
A61B34/30
A61B34/20
A61B8/14
【請求項の数】 14
(21)【出願番号】P 2019572000
(86)(22)【出願日】2018-07-05
(65)【公表番号】
(43)【公表日】2020-08-31
(86)【国際出願番号】 EP2018068315
(87)【国際公開番号】W WO2019008127
(87)【国際公開日】2019-01-10
【審査請求日】2021-06-30
(31)【優先権主張番号】62/529,634
(32)【優先日】2017-07-07
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】110001690
【氏名又は名称】弁理士法人M&Sパートナーズ
(72)【発明者】
【氏名】トポレク グジェゴジ アンドレイ
(72)【発明者】
【氏名】ポポヴィッチ アレクサンドラ
(72)【発明者】
【氏名】カイン ショーン ジョゼフ
【審査官】北村 龍平
(56)【参考文献】
【文献】特開平02-126841(JP,A)
【文献】実開昭60-063308(JP,U)
【文献】米国特許出願公開第2015/0065916(US,A1)
【文献】国際公開第2016/009301(WO,A2)
【文献】国際公開第2016/009339(WO,A1)
【文献】国際公開第2017/114956(WO,A1)
【文献】特開2012-035010(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 17/34
34/00 - 34/37
90/11 - 90/13
90/50 - 90/57
(57)【特許請求の範囲】
【請求項1】
デバイス挿入ポート入口及びデバイス挿入ポート出口を規定するデバイス挿入ポートを有するプラットフォームと、
前記プラットフォームによって支持され、前記デバイス挿入ポート出口が開口する側の面に配設される音響変換器アレイを含む、音響プローブと、
遠隔運動中心で交差する回転軸を有する2つ以上の回転関節を備えるロボット的装置ガイドとを、含み、前記ロボット的装置ガイドは、
前記プラットフォームの前記デバイス挿入ポート入口が開口する側の面に装着される基部と、
前記2つ以上の回転関節を介して前記基部に連結され、前記遠隔運動中心に対して複数の姿勢の間で遷移可能なエンドエフェクタとを含み、
前記エンドエフェクタが、前記デバイス挿入ポートを通って延在する介入デバイス軸を規定し、
前記遠隔運動中心が、前記デバイス挿入ポート内で前記介入デバイス軸上に配置される、介入デバイスと共に適用される、ロボット的音響プローブ。
【請求項2】
前記プラットフォームは、円盤形状を有し、前記デバイス挿入ポートが前記円盤形状の中心に配置される、請求項1に記載のロボット的音響プローブ。
【請求項3】
前記デバイス挿入ポートが前記デバイス挿入ポート入口から前記デバイス挿入ポート出口へと先細になっている、請求項1に記載のロボット的音響プローブ。
【請求項4】
前記基部が、前記遠隔運動中心を前記デバイス挿入ポート出口に隣接した限定空間内で並進させる、少なくとも1つの並進関節を含む、請求項1に記載のロボット的音響プローブ。
【請求項5】
前記ロボット的装置ガイドが、
支持アークと、
前記エンドエフェクタが統合されている装置アークと、を含み、
前記2つ以上の回転関節は、前記支持アークを前記基部に回転可能に連結する主要回転関節と、前記装置アークを前記支持アークに回転可能に連結する補助回転関節とを含む、請求項1に記載のロボット的音響プローブ。
【請求項6】
前記主要回転関節が主要電動アクチュエータを含み、
前記補助回転関節が補助電動アクチュエータを含む、請求項5に記載のロボット的音響プローブ。
【請求項7】
前記主要回転関節が主要機械的アクチュエータを含み、
前記補助回転関節が補助機械的アクチュエータを含む、請求項5に記載のロボット的音響プローブ。
【請求項8】
前記エンドエフェクタが介入デバイスのアダプタを含む、請求項1に記載のロボット的音響プローブ。
【請求項9】
前記エンドエフェクタが前記装置アークに対して並進可能である、請求項5に記載のロボット的音響プローブ。
【請求項10】
デバイス挿入ポート入口及びデバイス挿入ポート出口を規定するデバイス挿入ポートを有するプラットフォームと、
前記プラットフォームによって支持され、前記デバイス挿入ポート出口が開口する側の面に配設される音響変換器アレイを含む、音響プローブと、
遠隔運動中心で交差する回転軸を有する2つ以上の回転関節を備えるロボット的装置ガイドであって、
前記プラットフォームの前記デバイス挿入ポート入口が開口する側の面に装着される基部と、
前記2つ以上の回転関節を介して前記基部に連結され、前記遠隔運動中心に対して複数の姿勢の間で遷移可能なエンドエフェクタとを含み、
前記エンドエフェクタが、前記デバイス挿入ポートを通って延在する介入デバイス軸を規定し、
前記遠隔運動中心が、前記デバイス挿入ポート内で前記介入デバイス軸上に配置される、ロボット的装置ガイドと、
前記エンドエフェクタが前記遠隔運動中心に対して前記複数の姿勢の間で遷移するのを制御するロボット的装置ガイドコントローラとを含む、介入デバイスと共に適用されるロボット的音響システム。
【請求項11】
前記エンドエフェクタが前記遠隔運動中心に対して前記複数の姿勢の間で遷移するのを、前記ロボット的装置ガイドコントローラが制御することは、
前記遠隔運動中心を中心にして前記エンドエフェクタが回転するのを、前記ロボット的装置ガイドコントローラが制御することと、
前記介入デバイス軸に沿って前記エンドエフェクタが並進するのを、前記ロボット的装置ガイドコントローラが制御することとのうちの少なくとも1つを含む、請求項10に記載のロボット的音響システム。
【請求項12】
前記音響変換器アレイによる患者の解剖学的構造の超音波立体画像化を制御する音響プローブコントローラを更に備え、
前記エンドエフェクタがロボット座標内で前記遠隔運動中心に対して前記複数の姿勢の間で遷移するのを、前記ロボット的装置ガイドコントローラが制御することが、前記音響変換器アレイによる前記患者の解剖学的構造の前記超音波立体画像化に基づいて行われる、請求項10に記載のロボット的音響システム。
【請求項13】
画像化モダリティによる患者の解剖学的構造のモダリティ立体画像化を制御する介入画像化システムと、
前記音響変換器アレイによる前記患者の解剖学的構造の超音波立体画像化を制御する音響プローブコントローラとを更に備え、
前記ロボット的装置ガイドコントローラが、前記エンドエフェクタがロボット座標内で前記遠隔運動中心に対して前記複数の姿勢の間で遷移するのを制御することが、前記画像化モダリティによる患者の解剖学的構造の前記モダリティ立体画像化と、前記音響変換器アレイによる前記患者の解剖学的構造の前記超音波立体画像化との位置合わせから導き出される、請求項10に記載のロボット的音響システム。
【請求項14】
ロボット座標系内で前記遠隔運動中心に対する前記エンドエフェクタのロボット姿勢を追跡するのを制御する位置追跡システムと、
前記音響変換器アレイによる前記患者の解剖学的構造の超音波立体画像化を制御する音響プローブコントローラとを更に備え、
前記ロボット的装置ガイドコントローラが、前記エンドエフェクタがロボット座標内で前記遠隔運動中心に対して前記複数の姿勢の間で遷移するのを制御することが、前記ロボット座標系内における前記遠隔運動中心に対する前記エンドエフェクタの前記ロボット姿勢の前記位置追跡システムによる追跡から導き出される、請求項10に記載のロボット的音響システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の発明は、全体として、ロボット制御式の介入デバイスの音響ガイダンス(例えば、ロボット制御式の針、導入器、スコープなどの超音波ガイダンス)に関する。
【0002】
本開示の発明は、より詳細には、ロボット制御式の介入デバイスの音響ガイダンスを向上させる、ロボット的装置ガイドと音響プローブとの統合に関する。
【背景技術】
【0003】
超音波誘導経皮針生検では、難しい病変を標的にするのには時間がかかることがある。厳しい時間的制約は、主に、臓器の奥深く若しくは重要な解剖学的構造の近く、又はその両方に位置する病変を穿刺するのに重要である。かかる病変には、面外の斜め方向の針軌道が必要なことがあるので、施術者は、針を一定して視野内に保つのに求められる、良好な視覚と手の協調並びに画像化スキルを示すことが要求される。広視野の超音波立体画像は、面外の針軌道にとって、並びに術中の状況をより良好に理解するために、潜在的に役立つことがあり得る。更に、針のロボット制御を広視野の超音波と統合することは、皮膚進入点付近での針を中心にした旋回、及び/又は皮膚進入点内での針の並進に関して、潜在的に役立つことがあり得る。
【発明の概要】
【0004】
本開示の発明は、より直感的で安全な介入処置のための、患者の解剖学的構造の皮膚進入点に配置可能な遠隔運動中心(RCM)を有するロボット的音響プローブを提供する。
【0005】
本開示の発明の一実施形態は、音響プローブ及びロボット的装置ガイドを用いるロボット的音響プローブである。
【0006】
音響プローブは、デバイス挿入ポート入口及びデバイス挿入ポート出口を規定するデバイス挿入ポートを有する画像化プラットフォームを含み、更に、デバイス挿入ポート出口に対して配設された音響変換器アレイ(例えば、音響変換器アレイがデバイス挿入ポート出口を包囲する)を含む。
【0007】
ロボット的装置ガイドは、デバイス挿入ポート入口に対して画像化プラットフォームに装着された基部を含み、更に、基部に連結され、複数の装置姿勢間で遠隔運動中心に対して遷移可能なエンドエフェクタを含む。
【0008】
エンドエフェクタは、デバイス挿入ポートを通って延在する介入デバイス軸を規定し、遠隔運動中心は、デバイス挿入ポート出口に隣接して介入デバイス軸上に配置される。
【0009】
本開示の発明の第2の実施形態は、ロボット的音響プローブの上述の実施形態を用い、更に、エンドエフェクタが複数の装置姿勢間で遠隔運動中心に対して遷移するのを制御する、ロボット的装置ガイドコントローラを用いる、ロボット的音響システムである。
【0010】
複数の装置姿勢間での遠隔運動中心に対するエンドエフェクタの遷移は、エンドエフェクタが遠隔運動中心を中心にして旋回すること、及び/又はエンドエフェクタが介入デバイス軸に沿って並進することを含む。
【0011】
ロボット的装置ガイドコントローラは、複数の装置姿勢間での遠隔運動中心に対するエンドエフェクタの遷移の制御を、音響変換器アレイによる患者の解剖学的構造の超音波立体画像化、画像化モダリティによる患者の解剖学的構造のモダリティ立体画像化、及び/又は追跡座標系内でのロボット的装置ガイドの位置追跡から導き出す。
【0012】
本開示の発明の第3の実施形態は、ロボット的音響プローブの上述の実施形態を利用する介入方法である。
【0013】
介入方法は、ロボット的音響プローブを患者の解剖学的構造の皮膚進入点に対して位置決めすることを伴い、遠隔運動中心は皮膚進入ポートと一致する。
【0014】
それに続いて、介入方法は更に、音響変換器アレイによる患者の解剖学的構造の超音波立体画像化、及び/又は複数の装置姿勢間での遠隔運動中心に対するエンドエフェクタの遷移を伴う。
【0015】
本開示の発明について説明し請求する目的で、
(1)限定されるわけではないが、「音響変換器」、「ポート」、「姿勢」、「アーム」、「アーク」、「回転関節」、「エンドエフェクタ」、及び「立体画像化」を含む本開示の専門用語は、本開示の分野で知られているように理解されるべきであり、本開示において例示的に記載される。
(2)「音響プローブ」という用語は、本開示の分野で知られており、以下に想到され、介入デバイスを患者の解剖学的構造内に挿入するためのデバイス挿入ポートに対して、音響変換器アレイと共に構造的に配置されるような、全ての音響プローブを広く包含する。
(3)「画像化プラットフォーム」という用語は、音響変換器アレイによって目的物を超音波立体画像化するため、音響プローブの位置決めを支援する、任意のタイプの構造を広く包含するものであり、画像化プラットフォームの例としては、基板、CMUT、及びプローブハンドルが挙げられる。
(4)「音響変換器アレイ」という用語は、音響変換器の視野内で目的物を超音波立体画像化するための、複数の音響変換器の任意のタイプの装置構成を広く包含するものである。
(5)「ロボット的装置ガイド」という用語は、本開示の分野で知られており、以下に想到され、遠隔運動中心(RCM)で交差する回転軸を有する2つ以上の回転関節と共に構造的に配置されるような、全ての装置ガイドを広く包含する。
(6)遠隔運動中心及びデバイス挿入ポート出口に関連する場合の「隣接」という用語は、遠隔運動中心がデバイス挿入ポートに隣接してデバイス挿入ポートの内側にあること、遠隔運動中心がデバイス挿入ポート出口の面内にあること、及び遠隔運動中心がデバイス挿入ポートに隣接してデバイス挿入ポートの外側にあることを含めて、遠隔運動中心が患者の解剖学的構造の皮膚進入点と一致する、遠隔運動中心及びデバイス挿入ポート出口の空間的位置決めを広く包含する。
(7)「介入デバイス」という用語は、本開示の前後に知られている介入デバイスを含めて、本開示の分野で知られているように広く解釈されるものであり、介入デバイスの例としては、血管介入ツール(例えば、ガイドワイヤ、カテーテル、ステントシース、バルーン、アテレクトミーカテーテル、IVUS画像化プローブ、展開システムなど)、腔内介入ツール(例えば、内視鏡、気管支鏡など)、及び整形外科介入ツール(例えば、kワイヤ、ねじ回し)が挙げられるが、それらに限定されない。
(8)「介入画像化システム」という用語は、本開示の分野で知られており、以下に想到されるような、介入処置中に患者の解剖学的構造を術前及び/又は術中に画像化する、全ての画像化システムを広く包含するものであり、介入画像化システムの例としては、独立型X線画像化システム、移動式X線画像化システム、超音波立体画像化システム(例えば、TEE、TTE、IVUS、ICE)、コンピュータ断層撮影(「CT」)画像化システム(例えば、コーンビームCT)、陽電子放出断層撮影(「PET」)画像化システム、及び磁気共鳴断層撮影(「MRI」)システムが挙げられるが、それらに限定されない。
(9)「位置追跡システム」という用語は、本開示の分野で知られており、以下に想到されるような、座標系内における目的物の位置(例えば、位置及び/又は向き)を追跡する、全ての追跡システムを広く包含するものであり、位置測定システムの例としては、電磁(「EM」)測定システム(例えば、Auora(登録商標)電磁測定システム)、光ファイバーによる測定システム(例えば、Fiber-Optic RealShape(商標)(「FORS」)測定システム)、超音波測定システム(例えば、InSitu又は画像ベースのUS測定システム)、光学測定システム(例えば、Polaris光学測定システム)、無線周波数識別測定システム、及び磁気測定システムが挙げられるが、それらに限定されない。
(10)「コントローラ」という用語は、本開示に例示的に記載するような本開示の様々な発明原理の適用を制御する、特定用途向けメインボード又は特定用途向け集積回路の全ての構造的構成を広く包含するものであり、コントローラの構造的構成としては、プロセッサ、コンピュータ使用可能/コンピュータ可読記憶媒体、オペレーティングシステム、アプリケーションモジュール、周辺機器コントローラ、インターフェース、バス、スロット、及びポートが挙げられるが、それらに限定されず、本開示の特定のコントローラに対して本明細書で使用するよう説明的表示は、「コントローラ」という用語に対する更なる限定を何も指定若しくは示唆することなく、本明細書に記載し請求するような特定のコントローラを特定するために他のコントローラと区別するものである。
(11)「アプリケーションモジュール」という用語は、特定のアプリケーションを実行する、電子回路及び/又は実行可能プログラム(例えば、非一時的コンピュータ可読媒体に格納された、実行可能ソフトウェア及び/若しくはファームウェア)から成るコントローラの構成要素を広く包含するものであり、本開示の特定のアプリケーションモジュールに対して本明細書で使用するような説明的表示は、「アプリケーションモジュール」という用語に対する更なる限定を何も指定若しくは示唆することなく、本明細書に記載し請求するような特定のアプリケーションモジュールを特定するために他のアプリケーションモジュールと区別するものである。
(12)「信号」、「データ」、及び「コマンド」という用語は、本開示で後述するような本開示の様々な発明原理の適用を支援する、情報及び/又は命令を送信するための、本開示の分野で理解されるような、また本開示に例示的に記載するような、検出可能な物理的量又はインパルス(例えば、電圧、電流、若しくは磁界の強度)の全ての形態を広く包含するものであり、本開示の様々な構成要素間での信号/データ/コマンドの通信には、任意のタイプの有線若しくは無線データリンクを通じた信号/データ/コマンドの送受信、並びにコンピュータ使用可能/コンピュータ可読記憶媒体にアップロードされた信号/データ/コマンドの読取りを含むが、それらに限定されない、本開示の分野で知られているような任意の通信方法が関与し、本開示の特定の信号/データ/コマンドに対して本明細書で使用するような説明的表示は、「信号」、「データ」、及び「コマンド」という用語に対する更なる限定を何も指定若しくは示唆することなく、本明細書に記載し請求するような特定の信号/データ/コマンドを特定するために他の信号/データ/コマンドと区別するものである。
【0016】
本開示の発明の上述の実施形態及び他の実施形態、並びに本開示の発明の様々な特徴及び利点は、本開示の発明の様々な実施形態の以下の詳細な説明を添付図面と併せ読むことによって、更に明白になるであろう。詳細な説明及び図面は、限定ではなく本開示の発明の単なる例示であり、本開示の発明の範囲は添付の特許請求の範囲及びその等価物によって定義される。
【図面の簡単な説明】
【0017】
図1】本開示の発明の原理による、ロボット的音響システムの例示的実施形態を示す図である。
図2A-2C】本開示の発明の原理による、音響プローブの第1の例示的実施形態を示す図である。
図3A-3C】本開示の発明の原理による、音響プローブの第1の例示的実施形態を示す図である。
図4】本開示の発明の原理による、ロボット的装置ガイドの例示的実施形態を示す図である。
図5A-5E】本開示の発明の原理による、図4のロボット的装置ガイドの様々な姿勢を示す上面図である。
図6】本開示の発明の原理による、図1のロボット的音響システムの超音波誘導の例示的実施形態を示す図である。
図7】本開示の発明の原理による、図1のロボット的音響システムの体積誘導の例示的実施形態を示す図である。
図8】本開示の発明の原理による、図1のロボット的音響システムの位置追跡の例示的実施形態を示す図である。
【発明を実施するための形態】
【0018】
本開示の様々な発明の理解を容易にするため、図1図6の以下の説明は、本開示の発明の原理による、ロボット的音響プローブ及びロボット的音響システムの実施形態を教示する。この説明から、当業者であれば、本開示の発明の原理によるロボット的音響プローブ及びロボット的音響システムの多種多様な実施形態をどのように実施するかを認識するであろう。
【0019】
また、この説明から、当業者であれば、本開示のロボット的音響システムが、本開示のロボット的音響ガイドを利用する多種多様なタイプのロボット制御式画像誘導介入に組み込まれることを認識するであろう。
【0020】
かかる画像誘導介入の例としては次のものが挙げられるが、これらに限定されない。
1.細長い介入器具が関与する画像誘導下の介入画像化(例えば、生検針、焼灼アンテナ、スパイナル針などが関与する、肝病変の不可逆電気穿孔法、ラジオ波/マイクロ波焼灼療法、椎間関節注射、神経ブロックのターゲティング、経皮的生検など)。
2.経心尖導入器デバイス及び経心尖アクセスの閉止デバイスが関与する、構造的心臓疾患に対する介入(例えば、三尖弁インリング埋込み、経心尖大動脈弁置換、経心尖経カテーテル僧帽弁埋込みなど)。
3.特に直径約3.5mmの皮膚進入点に対する、ミニ腹腔鏡が関与する腹腔鏡下処置(例えば、ミニ腹腔鏡下胆嚢摘出術、ミニ腹腔鏡下虫垂切除術、様々なタイプのミニ腹腔鏡下小児科手術、ミニビデオ補助下胸部外科手術など)。
【0021】
図1を参照すると、本開示のロボット的音響システム10は、音響プローブ20と音響プローブ20上に装着されたロボット的装置ガイド40とを含む、ロボット的音響プローブを用いる。
【0022】
音響プローブ20は、デバイス挿入ポート22を通って延在する装置デバイス軸48に沿ってロボット的装置ガイド40によって保持される、介入デバイス60を挿入するためのデバイス挿入ポート入口22及びデバイス挿入ポート出口24を有するデバイス挿入ポート22を有する、画像化プラットフォーム21の構造的配置を有する。
【0023】
本開示において更に例示的に記載するように、動作の際、例えば、音響プローブ20の画像化プラットフォーム21に対する、ロボット的装置ガイド40の基部41のアタッチメント又は連結具などによって、ロボット的装置ガイド40が音響プローブ20上に装着される。ガイド40をプローブ20上に装着することによって、デバイス挿入ポート出口23に隣接して装置デバイス軸48に沿って、ロボット的装置ガイド40の遠隔運動中心49の位置が確立され、それによって遠隔運動中心49を患者の解剖学的構造への皮膚進入点と一致させて位置合わせすることが容易になる。
【0024】
実際には、画像化プラットフォーム21及びデバイス挿入ポート22は任意の幾何学形状を有し、画像化プラットフォーム21は、任意の介入処置又は特定の介入処置に適した任意の材料組成である。
【0025】
また実際には、画像化プラットフォーム21は、本開示で更に記載するように、ロボット的装置ガイド40の基部41を画像化プラットフォーム21上に装着するのに適した任意の構成を有する。
【0026】
音響プローブ20は、音響変換器アレイ25の視野25内で任意の目的物の超音波立体画像化を実行するため、画像化プラットフォーム21によって支持され、挿入ポート出口23に対して配設される、音響変換器アレイ25の構造的配置を更に有する。より詳細には、本開示の分野では知られているように、システム10の音響プローブコントローラ30は、変換器励起信号32を音響変換器アレイ25に通信することによって、音響変換器アレイ25を活性化して超音波を送受信させ、それによって音響プローブ20は、視野25内で任意の目的物の超音波立体画像31を生成するため、エコーデータ33を音響プローブコントローラ30に通信する。
【0027】
ガイド40をプローブ20上に装着するのを容易にすることに加えて、実際には、画像化プラットフォーム21は、音響変換器アレイ25によって患者の解剖学的構造を超音波立体画像化するため、音響プローブ20を手動で又はロボットによって位置決めするように、構造的に構成される。例えば、画像化プラットフォームは構造的に、患者の解剖学的構造上で位置決め可能な基板/CMUT、又は患者の解剖学的構造上で手動又はロボットによって保持されたプローブハンドルの形態である。
【0028】
実際には、音響変換器アレイ25は、音響送受信機、又は音響送信機のサブアレイ及び音響受信機のサブアレイを含む。
【0029】
図2A図2Cは、音響プローブ20(図1)の例示的実施形態20aを示している。図2A図2Cを参照すると、音響プローブ20aは、図2Aに示される上面と図2Cに示される下面とを有するディスクとして構築される基板の形態の、画像化プラットフォーム21aを含む。デバイス挿入ポート22aは、画像化プラットフォーム21aを貫通し、画像化プラットフォーム21aの上面に形成された円形デバイス挿入点入口23aから、画像化プラットフォーム21aの下面に形成された円形デバイス挿入点出口24aへと先細になっている。
【0030】
音響変換器のアレイ25aは、画像化プラットフォーム21aの下面で支持され、デバイス挿入ポート出口24aの周りに配設される。音響変換器アレイ25aは、音響プローブ20aの視野26a内で超音波を送受信するのに、本開示の分野で知られているように活性化される。
【0031】
一対のフック27は、音響プローブ20aを患者の周りにストラップで固定するのを容易にするため、画像化プラットフォーム21aの上面に設けられる。
【0032】
画像化プラットフォーム21aは、画像化プラットフォーム21aに埋め込まれた独自のクリップ又はロックを介して、ロボット的装置ガイド50(図1)を装着するのを支援する。
【0033】
図3A図3Cは、音響プローブ20(図1)の更なる例示的実施形態20bを示している。図3A図3Cを参照すると、デバイス挿入ポート22bが、画像化プラットフォーム21aを貫通し、画像化プラットフォーム21aの上面に形成された細長いデバイス挿入点入口23bから、画像化プラットフォーム21aの下面に形成された細長いデバイス挿入点出口24bへと先細になっていることを除いて、音響プローブ20bは音響プローブ2a(図2A図2C)と同一である。
【0034】
図1に戻って、ロボット的装置ガイド40は、本開示の分野で知られているように、回転関節44及びエンドエフェクタ45の回転軸の交差によって確立されるRCM49を規定する、基部41と、2つ以上のアーム/アーク43と、1つ又は複数の回転関節44と、エンドエフェクタ45との構造的配置を有する。
【0035】
実際には、基部41、アーム/アーク43、回転関節44、及びエンドエフェクタ45の構造的配置は、任意の介入処置又は特定の介入処置に適している。
【0036】
やはり実際には、基部41は、本開示に例示的に記載するように、音響プローブ20の画像化プラットフォーム21に取り付けるのに適した構造的構成を有する。一実施形態では、基部41は、装置デバイス軸48がデバイス挿入ポート22を通って延在し、RCM49がデバイス挿入ポート出口24に隣接して軸48上に位置する状態を維持したまま、エンドエフェクタ45を音響プローブ20のデバイス挿入ポート23に対して垂直方向及び/又は水平方向にそれぞれ並進させる、垂直並進関節42a及び/又は水平並進関節42bを含む。
【0037】
更に実際には、介入デバイス60は、エンドエフェクタ45によって保持されるのに適した任意のタイプの介入デバイスを含む。介入デバイス60の例としては、生検針、焼灼アンテナ、スパイナル針、導入器及び閉止デバイス、並びにミニ腹腔鏡が挙げられるが、それらに限定されない。一実施形態では、したがって、エンドエフェクタ45は、特定の介入処置を行うのに適した構造的構成を有する。別の実施形態では、ロボット的装置ガイド40は多数の交換可能な装置デバイスアダプタ46を含み、各アダプタ46は、エンドエフェクタ45がアダプタ46の任意の1つを含むように再構成可能なように、異なるタイプの介入デバイス60に適応するように構造的に構成される。
【0038】
また実際には、エンドエフェクタ45は軸並進関節47を含み、それによってエンドエフェクタ45が装置デバイス軸49に沿って並進されて、任意の介入デバイス60の深度が、音響プローブ20によって画像化するために準備された患者の解剖学的構造内でエンドエフェクタ45によって保持される。
【0039】
引き続き図1を参照すると、本開示の分野で知られているように、システム10のロボット的装置ガイドコントローラ50は、ロボット的装置ガイド40を包囲する作業空間51内でのエンドエフェクタ45の姿勢の情報を提供する回転関節データ52を受信し、それによってロボット的装置ガイドコントローラ50は、作業空間51内において複数の姿勢の間でエンドエフェクタ45を遷移させる。
【0040】
実際には、1つ又は全ての回転関節43は電動であってもよく、それによってロボット的装置ガイドコントローラ50が、ロボット作動コマンド53を電動回転関節44に通信して、電動回転関節44を作動させて作業空間51内における所望の姿勢までエンドエフェクタ45を遷移させる。
【0041】
また実際には、1つ又は全ての回転関節43は機械的であってもよく、それによってロボット的装置ガイドコントローラ50がロボット作動データ54を表示させることにより、操作者が手動で回転関節44を作動させて、作業空間51内における所望の姿勢までエンドエフェクタ45を並進させる。
【0042】
図4は、基部41aと、回転軸144aを中心にして回転可能な主要回転関節44aと、回転軸144bを中心にして回転可能な補助回転関節44bと、支持アーク43aと、装置デバイス軸48aに沿って介入デバイス(図示なし)を保持するアダプタ46aを有するエンドエフェクタ45aに統合された装置アーク43bとを用いる、例示的なロボット的装置ガイド40aを示している。支持アーク43aは回転関節44a及び回転関節44bに同心で接続され、装置アーク43bは回転関節44bに同心で接続される。より詳細には、
1.回転軸144a、144b、及び48はロボット的装置ガイド40aの遠隔運動中心49aで交差し、
2.支持アーク43aの基部アーク長さθは、回転軸144aと144bとの間で延在し、
3.装置アーク43bのアーク長さθE1は、回転軸144aと装置デバイス軸48aとの間で延在し、
4.主要回転関節44aのアクチュエータは、電動であれ機械的であれ、回転軸144aを中心にして所望のφ度分、アーク43a及び43bを共働回転させて、複数の姿勢(図5A図5Cにそれぞれ示される姿勢P1~P3)の間で作業空間内においてエンドエフェクタ45aの広範な移動を制御するように操作され、
5.補助回転関節44bのアクチュエータは、電動であれ機械的であれ、回転軸144bを中心にして所望のφ度分、装置アーク43bを回転させて、複数の姿勢(図5A図5D、及び図5Cにそれぞれ示される姿勢P1、P4、及びP5)の間で作業空間内においてエンドエフェクタ45aの標的の移動を制御するように操作される。
【0043】
図4に示されるように、基部41aは、垂直並進関節42a(図1)及び/又は水平並進関節42b(図1)を組み込んで、本明細書で上述したように、音響プローブのデバイス挿入ポート出口に対する所望の位置まで、遠隔運動中心49aを移動させる。それと同時に又はその代わりに、主要回転関節44aは、垂直並進関節及び/又は水平並進関節を組み込んで、音響プローブのデバイス挿入ポート出口に対する所望の位置まで、遠隔運動中心49aを移動させる。
【0044】
図1に戻って、システム10の超音波誘導介入処置の一実施形態では、音響プローブコントローラ30及びロボット的装置ガイドコントローラ50は協働して、音響プローブ20による三次元超音波立体画像化を考慮して、介入デバイス60のロボット制御を実施する。
【0045】
一般に、介入処置を実行する際、音響プローブコントローラ30は、ケーブルを介して音響プローブ20の音響変換器アレイから受信したエコーデータ33に基づいて、患者の解剖学的構造の三次元超音波立体画像化の情報を提供する超音波立体画像データ34を生成し、超音波立体画像データ34をロボット的装置ガイドコントローラ50に通信し、それによってコントローラ50は、必要に応じてロボット的装置ガイド40の回転関節に対してロボット作動コマンドを生成して、ロボット的装置ガイド40の電動遷移エンドエフェクタ45aを作動させて作業空間内の所望の姿勢に至らせるか、又は必要に応じて表示用の作動データを生成することによって、ロボット的装置ガイド40の機械的遷移エンドエフェクタ45を作動させて作業空間内の所望の姿勢に至らせることに関する情報を提供する。
【0046】
図6は、システム10の超音波誘導介入処置10aの例示的実施形態を示している。
【0047】
図6を参照すると、ワークステーション90は、本開示の分野で知られているように、モニタ91、キーボード92、及びコンピュータ93の構成を含む。
【0048】
音響プローブコントローラ30a及びロボット的装置ガイドコントローラ50aは、コンピュータ93にインストールされ、各コントローラは、1つ又は複数のシステムバスを介して相互接続された、プロセッサ、メモリ、ユーザインターフェース、ネットワークインターフェース、及び記憶装置を含む。
【0049】
プロセッサは、本開示の分野で知られているか又は以下に想到されるような、メモリ若しくは記憶装置に格納された命令を実行するか、又は別のやり方でデータを処理することができる、任意のハードウェアデバイスである。非限定例では、プロセッサは、マイクロプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、又は他の類似のデバイスを含む。
【0050】
メモリは、本開示の分野で知られているか又は以下に想到されるような、L1、L2、若しくはL3キャッシュ又はシステムメモリを含むがそれらに限定されない、様々なメモリを含む。非限定例では、メモリは、スタティックランダムアクセスメモリ(SRAM)、ダイナミックRAM(DRAM)、フラッシュメモリ、読出し専用メモリ(ROM)、又は他の類似のメモリデバイスを含む。
【0051】
ユーザインターフェースは、本開示の分野で知られているか又は以下に想到されるような、管理者などのユーザと通信できるようにする、1つ又は複数のデバイスを含む。非限定例では、ユーザインターフェース、ネットワークインターフェースを介して遠隔端末に対して提示される、コマンドラインインターフェース又はグラフィカルユーザインターフェースを含む。
【0052】
ネットワークインターフェースは、本開示の分野で知られているか又は以下に想到されるような、他のハードウェアデバイスと通信できるようにする、1つ又は複数のデバイスを含む。非限定例では、ネットワークインターフェースは、イーサネット(登録商標)プロトコルにしたがって通信するように構成された、ネットワークインターフェースカード(NIC)を含む。それに加えて、ネットワークインターフェースは、TCP/IPプロトコルにしたがって、通信用のTCP/IPスタックを実現する。ネットワークインターフェースに関する様々な代替若しくは追加のハードウェア又は構成が、明白となるであろう。
【0053】
記憶装置は、本開示の分野で知られているか又は以下に想到されるような、読出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光学記憶媒体、フラッシュメモリデバイス、又は類似の記憶媒体を含むがそれらに限定されない、1つ又は複数の機械可読記憶媒体を含む。様々な非限定的実施形態では、記憶装置は、プロセッサによって実行される命令、又はプロセッサが動作するのに用いるデータを格納する。例えば、記憶装置は、ハードウェアの様々な基本動作を制御する基本オペレーティングシステムを格納する。記憶装置は更に、実行可能なソフトウェア/ファームウェアの形態の、1つ又は複数のアプリケーションモジュールを格納する。
【0054】
或いは、音響プローブコントローラ30a及びロボット的装置ガイドコントローラ50aは、コンピュータ93にインストールされるものとして統合される。
【0055】
この実施形態の場合、本開示のロボット的音響プローブに関連する介入処置の第1のステップは、ロボット的装置ガイド40aを音響プローブ20aの上に装着する位置で、音響プローブ20aに取り付けることである。取付けは、音響プローブ20aの基板ケーシングに埋め込まれた独自のクリップ又はロックと自己接着テープとによって可能である。独自のクリップを使用することによって、ロボット的装置ガイド40aが音響プローブ20aに対して位置決めされ、したがって、超音波立体画像空間とロボット作業空間との間のマッピングが、ロボット的音響プローブの校正によって分かる。
【0056】
実際には、ロボット的音響プローブの校正は、本開示の分野で知られているように実施される。例えば、装着後、次の校正ステップが実施される。
【0057】
第一に、コントローラ50aは、ポインタツールを保持しているエンドエフェクタ45aをn位置まで移動させ、順運動学を使用して計算されたエンドエフェクタ位置T(向き及び並進)を取得する。
【0058】
第二に、音響プローブ20aを超音波ファントム(例えば、ゼラチン媒質)(図示なし)上に位置決めして、先に取得したエンドエフェクタ位置Tに対して特定の深度分、ツールを超音波ファントムに挿入する。ガイド40aが挿入深度を制御する自由度をもたらす場合、コントローラ50aは、順運動学を使用してエンドエフェクタの先端を得る。それ以外の方法では、ツールの先端に対する最終エンドエフェクタ位置(並進)からのオフセットを測定しなければならない。
【0059】
第三に、コントローラ30aは、超音波立体画像上でセグメント化されたツール先端の位置(p)を取得する。
【0060】
第四に、最初の3つのステップを、好ましくはより精度を上げるために4回以上繰り返す。
【0061】
第五に、コントローラ50aは、本開示の分野で知られているような点ベースの位置合わせ方法を使用して、位置合わせマトリックスを計算する。点ベースの位置合わせで利用される点としては、(1)測定されたオフセット及びツール配向軸によって投影される取得したエンドエフェクタ位置、並びに(2)US画像ツール先端位置においてセグメント化された標的点が挙げられる。挿入深度が作動させられる場合、エンドエフェクタ位置が点ベースの位置合わせにおいて直接利用される。
【0062】
引き続き図5を参照すると、校正の際、ロボット的装置ガイドが装着された音響プローブ20aは、患者の解剖学的構造100上に位置決めされ、施術者が音響プローブ20aを患者の皮膚にしっかり押し付けることによって音響カップリングが確認される。
【0063】
その後、コントローラ30aを動作させて、関心点(例えば、病変)を含む臓器又は他の内部構造の超音波立体画像化が制御される。画像から、標的位置が三次元超音波立体画像上において手動で規定されるか(例えば、病変位置)、又は標的位置は、本開示の分野で知られている方法を使用して、三次元超音波立体画像から自動的にセグメント化される(例えば、領域ベースのセグメント化、閾値設定セグメント化、モデルベースのセグメント化、又は機械学習ベースのセグメント化)。
【0064】
標的位置が規定されると、介入ツール60a(例えば、針)の進入点は、皮膚進入点と一致するRCM49aの設計によって制約され、それによってコントローラ50aは、ロボット運動学を使用して、患者の解剖学的構造100内への介入ツール60aの所望の軌道を達成する姿勢まで、エンドエフェクタ45aを自動的に移動させる。
【0065】
一実施形態では、コントローラ50aは、本開示の分野で知られているようなビジュアルサーボ技術を実現してもよい。例えば、標的位置は、三次元超音波立体画像内でユーザ選択されるか又は自動的に選択され、コントローラ50aは、内視鏡によって見える画像特徴に対するエンドエフェクタ45aの姿勢を制御するビジュアルサーボを使用することによって、患者の解剖学的構造100内への介入ツール60aの所望の軌道を達成する姿勢までの、エンドエフェクタ45aの遷移を制御する。超音波立体画像空間におけるエンドエフェクタ45aの位置は、上述した校正プロセスから、コントローラ50aには分かっている。この方策は、腹腔鏡が装置ガイドによって保持され、腹腔鏡画像上における標的の移動によって内視鏡の位置を更新する、内視鏡処置にも適用される。
【0066】
このビジュアルサーボの場合、標的位置は呼吸運動によって動くので、コントローラ50aは、画像特徴を追うことによってエンドエフェクタの姿勢を調節することができる。
【0067】
別の実施形態では、介入処置は複数のデバイス軌道を要する(例えば、ラジオ波焼灼療法又は不可逆電気穿孔法は、複数の針軌道を要する)。かかる処置は、例えば、本開示の分野で知られているように、いくつかの単一の超音波立体画像をつなぎ合わせることによって作られる、三次元超音波立体画像で排他的に遂行されてもよい(例えば、患者の解剖学的構造100の画像化シーン全体にわたって音響プローブ20aを電動で掃引する)。これは、外部追跡デバイスで音響プローブ20aを追跡することによって、又は本開示の分野で知られているような画像ベースの位置合わせ方法を使用することによって達成される。
【0068】
より詳細には、音響プローブ20aは関心領域全体にわたって掃引され、それによって関心領域のいくつかの三次元超音波立体画像が取得される。
【0069】
次に、コントローラ30aは、本開示の分野で知られているように、三次元超音波立体画像を画像ベースでつなぎ合わせることによって、複合画像を作成する。
【0070】
第三に、コントローラ30aは、本開示の分野で知られているように、モニタ94を介して複数の軌道を複合画像上にユーザが規定するのを制御する。ユーザはまた、軌道を介して、回避すべき目的物(例えば、肋骨及び血管)を規定する。
【0071】
第四に、音響プローブ20a及びそれに装着されたガイド40aを、同じ関心領域の上で移動させる。この術中三次元超音波立体画像は、次に、本開示の分野で知られているような位置合わせ技術(例えば、相互情報ベースの位置合わせ)を使用して、コントローラ50cによって複合画像に位置合わせされる。
【0072】
音響プローブ20aが規定された標的のうち1つの近傍に位置決めされると、コントローラ50cは、作動させられたガイド40aの移動を介して、デバイス60aの向きを自動的に調節する(オンライン調節)。
【0073】
図1に戻って、システム10の介入処置の第2の実施形態では、音響プローブコントローラ30、ロボット的装置ガイドコントローラ50、及び介入画像化システム70の画像化モダリティコントローラ72は協働して、音響プローブ20a及び画像化モダリティ71によって生成される立体画像に関して、介入デバイス60のロボット制御を実施する。
【0074】
実際には、画像化モダリティ71は、独立型X線画像化システム、移動式X線画像化システム、超音波立体画像化システム(例えば、TEE、TTE、IVUS、ICE)、コンピュータ断層撮影(「CT」)画像化システム(例えば、コーンビームCT)、陽電子放出断層撮影(「PET」)画像化システム、及び磁気共鳴断層撮影(「MRI」)システムの任意の画像化デバイスである。
【0075】
一般に、介入処置を実行する際、音響プローブコントローラ30は、ケーブルを介して音響プローブ20の音響変換器アレイから受信したエコー信号33に基づいて、患者の解剖学的構造の三次元超音波立体画像化の情報を提供する超音波立体画像データ34を生成し、超音波立体画像データ34をロボット的装置ガイドコントローラ50に通信する。同時に、画像化モダリティコントローラ82は、画像化モダリティ71(例えば、X線、CT、PECT、MRIなど)による患者の解剖学的構造のモダリティ立体画像化の情報を提供するモダリティ立体画像データ73を生成し、モダリティ立体画像データ73をロボット的装置ガイドコントローラ50に通信する。両方のデータ34及び73に応答して、コントローラ50aは、本開示の分野で知られているような画像ベースの位置合わせを実行することによって、超音波立体画像(例えば、つなぎ合わされた複合立体の単一立体)をモダリティ立体画像に位置合わせする。
【0076】
画像位置合わせから、コントローラ50は、ロボット的装置ガイド40の回転関節に対して必要に応じてロボット作動コマンド53を生成して、ロボット的装置ガイド40の電動遷移エンドエフェクタ45aを作動させて作業空間内の所望の姿勢に至らせるか、又は必要に応じて表示用のロボット作動データ54を生成することによって、ロボット的装置ガイド40の機械的遷移エンドエフェクタ45を作動させて作業空間51内の所望の姿勢に至らせることに関する情報を提供する。
【0077】
図7は、システム10の画像モダリティ誘導介入処置の例示的実施形態10bを示している。
【0078】
この実施形態10bの場合、画像化モダリティはX線システムであり、ロボット的装置ガイド40aの回転関節は電動ではなく機械的であるため、モータは係止メカニズム(例えば、クランプ)に置き換えられる。係止メカニズムが緩められると、ガイド40aのアークは所望に応じて自由に回転でき、したがってエンドエフェクタ45aの向きを調節することができる。係止メカニズムが締められると、ガイド40aのアークは不動化され、エンドエフェクタ45aが所望の向きで係止されることによってデバイス60aが保持される。施術者に対するフィードバックは、ロボット的装置ガイド40aとCT画像との位置合わせによって提供される。
【0079】
一実施形態では、位置合わせは、ガイド40aの移動不能の基部に埋め込まれた、3つ以上のX線不透過性マーカーを使用して実施され、次のステップを含む。
【0080】
第一に、ガイド40aは、個別に又は音響プローブ20a上に装着されて、自己接着テープ又は他の任意の取付けメカニズムを介して患者の解剖学的構造100上に取り付けられる。
【0081】
第二に、患者の解剖学的構造100に取り付けられるようなガイド40aの立体CBCT画像が、X線システムによって取得され、コントローラ72は、立体CBCT画像の情報を提供するモダリティ立体画像化データ71をコントローラ50cに通信する。
【0082】
第三に、コントローラ50cは、ガイド40aの移動不能の基部に埋め込まれたX線不透過性マーカーのうち少なくとも3つを、CBCT画像内で検出することによって、本開示の分野で知られているような位置合わせ技術(例えば、固定点ベースの位置合わせ)を使用して、患者の解剖学的構造100に対して6つの自由度でガイド40aの位置を特定する。
【0083】
第四に、コントローラ50cは、患者の解剖学的構造100内におけるデバイス60aの軌道(例えば、針軌道)を計画する。
【0084】
第五に、コントローラ50aは、所望のデバイス軌道に達するために、各関節上で求められる回転角の情報を提供する、インターフェースを介してモニタ90上に表示されるフィードバック94を制御する。係止メカニズムは、目盛りを組み込むことによって、ユーザがガイド40aのアークの適正な回転角を設定するのを支援する。
【0085】
最後に、同じX線不透過性マーカーの2つの2D蛍光画像がX線システムによって取得され、コントローラ50に通信され、そこで、本開示の分野で知られているように、マーカーを介したガイド40aの基部の基準位置に応じて、2D蛍光画像及び立体CBCT画像を合併するための射影行列を決定することにより、前記射影行列を使用して前記2D蛍光画像を前記術前3D画像と合併することによって、立体CBCT画像を2D蛍光画像に位置合わせする。
【0086】
図1に戻って、システム10の介入処置の第3の実施形態では、音響プローブコントローラ30、ロボット的装置ガイドコントローラ50、及び位置追跡システム80の位置追跡コントローラ80は協働して、位置追跡システム80の位置追跡要素81によるロボット的装置ガイド40の追跡に関して、介入デバイス60のロボット制御を実施する。
【0087】
実際には、位置追跡要素81は、ガイド40aの基部41上に配置される、3つ以上の再帰反射球、ドット、電磁センサ若しくは線、又は光ファイバーなどを含むが、それらに限定されず、それによって標的特徴の三次元位置が、当該分野で知られているような三角測量技術を使用して計算される。
【0088】
図8は、システム10の位置追跡誘導介入処置の例示的実施形態10cを示している。
【0089】
この実施形態10cの場合、位置追跡コントローラ82は、ガイド40aの基部の任意の追跡された位置の情報を提供する位置追跡データ83を通信する。介入処置を支援して、後に続く三次元超音波立体画像の追跡を容易にするため、三次元超音波立体画像の校正が実施されなければならない。
【0090】
一実施形態では、特にガイド40aの基部に取り付けられたガイドトラッカーとしての光学、電磁、又はファイバー追跡に関して、校正は、製造プロセスによって分かっている各装置ガイドトラッカーの位置(guidetracker)に基づいて、術中に実施される。校正行列は、guideimageguidetracker・(imagetracker-1にしたがって計算され、ここで、imagetrackerは、本開示の分野で知られているように、三次元超音波立体画像に示される特徴から計算される。
【0091】
図5図7を参照すると、デバイス60a上における挿入深度が分かっていることが有益である。一実施形態では、ロボット的装置ガイド40aは、軸並進関節48内で上述したようにエンドエフェクタに位置する第3の自由度を有する。この追加のDOFは、針の挿入深度を制御し、エンドエフェクタに埋め込まれた光学エンコーダを使用して測定される。かかる光学エンコーダは、サブミリメートルの分解能で挿入深度を報告することができる。
【0092】
それに加えて、挿入深度の制御によって、リアルタイム画像ベースのフィードバックを使用した自動装置挿入が実施される。例えば、超音波立体画像及び/又はX線蛍光画像は、上述したような患者の解剖学的構造100の呼吸運動による標的の位置の変化を監視するのに使用され、それによってデバイス60a(例えば、針)を、所望の呼吸サイクルと同期して患者の解剖学的構造に「打つ」ことができる。
【0093】
図1図7を参照すると、当業者であれば、より直感的で安全な介入処置のため、患者の解剖学的構造の皮膚進入点に配置可能な遠隔運動中心(RCM)を有するロボット的音響プローブを含むがそれらに限定されない、本開示の多数の利益を認識するであろう。
【0094】
更に、本明細書で提供される教示を鑑みて当業者であれば認識するように、本開示/明細書に記載される、並びに/或いは図面に描写される特徴、要素、構成要素などは、電子構成要素/回路類、ハードウェア、実行可能なソフトウェア、及び実行可能なファームウェアの様々な組み合わせで実現されてもよく、単一の要素又は複数の要素において組み合わされてもよい機能を提供してもよい。例えば、図面に図示/例示/描写される様々な特徴、要素、構成要素などの機能は、専用ハードウェア、並びに適切なソフトウェアと関連してソフトウェアを実行することができるハードウェアの使用によって提供することができる。プロセッサによって提供される場合、機能は、単一の専用プロセッサによって、単一の共用プロセッサによって、又は一部を共有及び/若しくは多重化することができる複数の個別のプロセッサによって提供することができる。更に、「プロセッサ」という用語の明示的な使用は、ソフトウェアを実行することができるハードウェアを排他的に指すものと解釈すべきではなく、非限定的に、デジタル信号プロセッサ(「DSP」)ハードウェア、メモリ(例えば、ソフトウェアを格納する読出し専用メモリ(「ROM」)、ランダムアクセスメモリ(「RAM」)、不揮発性記憶装置など)、並びにプロセスを実行及び/又は制御することができる(及び/又はそのように構成可能な)事実上任意の手段及び/又は機械(ハードウェア、ソフトウェア、ファームウェア、回路類、それらの組み合わせなどを含む)を暗示的に含むことができる。
【0095】
更に、本発明の原理、態様、及び実施形態、並びにそれらの特定の実施例を列挙する、本明細書における全ての記述は、それらの構造上及び機能上両方の等価物を包含するものとする。それに加えて、かかる等価物は、現在知られている等価物、並びに将来的に開発される等価物(例えば、構造に関わらず、同じ又は実質的に同等の機能を行うことができる、開発される任意の要素)の両方を含むものとする。したがって、例えば、当業者であれば、本明細書に提供される教示に鑑みて、本明細書において提示されるあらゆるブロック図は、本発明の原理を具体化する例示的なシステム構成要素及び/又は回路類の概念図を表すことができることを認識するであろう。同様に、当業者であれば、本明細書に提供される教示に鑑みて、あらゆるフローチャート、フロー図などは、コンピュータ可読記憶媒体において実質的に表し、コンピュータ、プロセッサ、又は処理能力を備えた他のデバイスによって、かかるコンピュータ若しくはプロセッサが明示的に示されるか否かに関わらず実行することができる、様々なプロセスを表すことができることを認識するであろう。
【0096】
更に、本開示の例示的実施形態は、例えば、コンピュータ若しくは任意の命令実行システムによって使用されるか又はそれと関連するプログラムコード及び/又は命令を提供する、コンピュータ使用可能及び/又はコンピュータ可読記憶媒体からアクセス可能な、コンピュータプログラム製品又はアプリケーションモジュールの形態をとることができる。本開示によれば、コンピュータ使用可能又はコンピュータ可読記憶媒体は、例えば、命令実行システム、装置、又はデバイスによって使用されるか若しくはそれと関連するプログラムを包含、格納、通信、伝播、若しくは搬送することができる、任意の装置であることができる。かかる例示的媒体は、例えば、電子、磁気、光学、電磁、赤外、又は半導体システム(又は装置若しくはデバイス)、或いは電波媒体であることができる。コンピュータ可読媒体の例は、例えば、半導体若しくは固体メモリ、磁気テープ、取外し可能なコンピュータディスケット、ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、フラッシュ(ドライブ)、剛性磁気ディスク、及び光学ディスクを含む。光学ディスクの現在の例としては、コンパクトディスク(読出し専用メモリ(CD-ROM)、コンパクトディスク)、読出し書込み(CD-R/W)、及びDVDが挙げられる。更に、今後開発される可能性があるあらゆる新しいコンピュータ可読媒体も、本開示の例示的実施形態にしたがって使用又は言及されるような、コンピュータ可読媒体として考慮すべきであることが理解されるべきである。
【0097】
新規性及び進歩性があるロボット的音響プローブ及びシステムの好ましい例示的実施形態について記載してきたが(それらの実施形態は、限定ではなく例示であるものとする)、図面を含めて本明細書に提供される教示に照らして、当業者によって修正及び変形が可能であることに留意されたい。したがって、本開示の好ましい例示的な実施形態において/対して、本明細書に開示される実施形態の範囲内で、変更を行うことができることを理解されたい。
【0098】
更に、本開示によるデバイスで使用/実現されてもよいような、デバイスなどを組み込む並びに/或いは実現する、対応及び/又は関連するシステムも想到され、本開示の範囲内にあるものと見なされることが想到される。更に、本開示によるデバイス及び/又はシステムを製造及び/又は使用する、対応及び/又は関連する方法も想到され、本開示の範囲内にあるものと見なされる。
図1
図2A
図2B
図2C
図3A
図3B
図3C
図4
図5A
図5B
図5C
図5D
図5E
図6
図7
図8