IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ミネベア株式会社の特許一覧

<>
  • 特許-ひずみゲージ 図1
  • 特許-ひずみゲージ 図2
  • 特許-ひずみゲージ 図3
  • 特許-ひずみゲージ 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-10
(45)【発行日】2023-11-20
(54)【発明の名称】ひずみゲージ
(51)【国際特許分類】
   G01B 7/16 20060101AFI20231113BHJP
【FI】
G01B7/16 R
【請求項の数】 8
(21)【出願番号】P 2020038892
(22)【出願日】2020-03-06
(65)【公開番号】P2021139804
(43)【公開日】2021-09-16
【審査請求日】2022-10-05
(73)【特許権者】
【識別番号】000114215
【氏名又は名称】ミネベアミツミ株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】石原 育
(72)【発明者】
【氏名】小野 彩
(72)【発明者】
【氏名】小笠 洋介
(72)【発明者】
【氏名】相澤 祐汰
【審査官】仲野 一秀
(56)【参考文献】
【文献】実開昭48-92954(JP,U)
【文献】特開2012-185131(JP,A)
【文献】特開昭61-51532(JP,A)
【文献】特開2007-178195(JP,A)
【文献】特開2019-90723(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 7/00-7/34
G01L 1/00-1/26
25/00
(57)【特許請求の範囲】
【請求項1】
ひずみにより生じる抵抗体の抵抗値の変化を検出するひずみゲージであって、
基材と、
前記基材上に形成された前記抵抗体と、
前記基材上に形成された絶縁樹脂層と、を有し、
前記絶縁樹脂層の前記基材側には空洞が設けられ、前記抵抗体は前記絶縁樹脂層と接しないように前記空洞内に配置され
前記空洞内には、気体又はフッ素系不活性液体が充填されているひずみゲージ。
【請求項2】
前記気体は不活性ガスである請求項に記載のひずみゲージ。
【請求項3】
前記不活性ガスは窒素である請求項に記載のひずみゲージ。
【請求項4】
前記空洞はドーム状である請求項1乃至の何れか一項に記載のひずみゲージ。
【請求項5】
前記抵抗体は、Cr、CrN、及びCrNを含む膜から形成されている請求項1乃至の何れか一項に記載のひずみゲージ。
【請求項6】
ゲージ率が10以上である請求項に記載のひずみゲージ。
【請求項7】
前記抵抗体に含まれるCrN及びCrNは、20重量%以下である請求項又はに記載のひずみゲージ。
【請求項8】
前記CrN及び前記CrN中の前記CrNの割合は、80重量%以上90重量%未満である請求項に記載のひずみゲージ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ひずみゲージに関する。
【背景技術】
【0002】
測定対象物に貼り付けて、測定対象物のひずみを検出するひずみゲージが知られている。ひずみゲージは、ひずみを検出する抵抗体を備えており、抵抗体は、例えば、絶縁性樹脂上に形成されている。又、絶縁性樹脂上に、抵抗体を被覆する保護フィルムを備えている。(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-74934号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、抵抗体を保護フィルムで被覆すると、温度変化等による保護フィルムの伸縮の影響により抵抗体の抵抗値が変化するため、ひずみゲージのひずみ検出精度が低下する場合があった。
【0005】
本発明は、上記の点に鑑みてなされたもので、ひずみ検出精度の低下を抑制可能なひずみゲージを提供することを目的とする。
【課題を解決するための手段】
【0006】
本ひずみゲージは、ひずみにより生じる抵抗体の抵抗値の変化を検出するひずみゲージであって、基材と、前記基材上に形成された前記抵抗体と、前記基材上に形成された絶縁樹脂層と、を有し、前記絶縁樹脂層の前記基材側には空洞が設けられ、前記抵抗体は前記絶縁樹脂層と接しないように前記空洞内に配置され、前記空洞内には、気体又はフッ素系不活性液体が充填されている
【発明の効果】
【0007】
開示の技術によれば、ひずみ検出精度の低下を抑制可能なひずみゲージを提供できる。
【図面の簡単な説明】
【0008】
図1】第1実施形態に係るひずみゲージを例示する平面図である。
図2】第1実施形態に係るひずみゲージを例示する断面図(その1)である。
図3】第1実施形態に係るひずみゲージを例示する断面図(その2)である。
図4】第1実施形態に係るひずみゲージを例示する断面図(その3)である。
【発明を実施するための形態】
【0009】
以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
【0010】
〈第1実施形態〉
図1は、第1実施形態に係るひずみゲージを例示する平面図である。図2は、第1実施形態に係るひずみゲージを例示する断面図であり、図1のA-A線に沿う断面を示している。図3は、第1実施形態に係るひずみゲージを例示する断面図であり、図1のB-B線に沿う断面を示している。図1図3を参照すると、ひずみゲージ1は、基材10と、抵抗体30と、配線41と、端子部51と、カバー層60とを有している。
【0011】
なお、本実施形態では、便宜上、ひずみゲージ1において、基材10の抵抗体30が設けられている側を上側又は一方の側、抵抗体30が設けられていない側を下側又は他方の側とする。又、各部位の抵抗体30が設けられている側の面を一方の面又は上面、抵抗体30が設けられていない側の面を他方の面又は下面とする。但し、ひずみゲージ1は天地逆の状態で用いることができ、又は任意の角度で配置できる。又、平面視とは対象物を基材10の上面10aの法線方向から視ることを指し、平面形状とは対象物を基材10の上面10aの法線方向から視た形状を指すものとする。
【0012】
基材10は、抵抗体30等を形成するためのベース層となる部材であり、可撓性を有する。基材10の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、5μm~500μm程度とすることができる。特に、基材10の厚さが5μm~200μmであると、接着層等を介して基材10の下面に接合される起歪体表面からの歪の伝達性、環境に対する寸法安定性の点で好ましく、10μm以上であると絶縁性の点で更に好ましい。
【0013】
基材10は、例えば、PI(ポリイミド)樹脂、エポキシ樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、PEN(ポリエチレンナフタレート)樹脂、PET(ポリエチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂、ポリオレフィン樹脂等の絶縁樹脂フィルムから形成できる。なお、フィルムとは、厚さが500μm以下程度であり、可撓性を有する部材を指す。
【0014】
ここで、『絶縁樹脂フィルムから形成する』とは、基材10が絶縁樹脂フィルム中にフィラーや不純物等を含有することを妨げるものではない。基材10は、例えば、シリカやアルミナ等のフィラーを含有する絶縁樹脂フィルムから形成しても構わない。
【0015】
基材10の樹脂以外の材料としては、例えば、SiO、ZrO(YSZも含む)、Si、Si、Al(サファイヤも含む)、ZnO、ペロブスカイト系セラミックス(CaTiO、BaTiO)等の結晶性材料が挙げられ、更に、それ以外に非晶質のガラス等が挙げられる。又、基材10の材料として、アルミニウム、アルミニウム合金(ジュラルミン)、チタン等の金属を用いてもよい。この場合、金属製の基材10上に、例えば、絶縁膜が形成される。
【0016】
抵抗体30は、基材10上に所定のパターンで形成された薄膜であり、ひずみを受けて抵抗変化を生じる受感部である。抵抗体30は、基材10の上面10aに直接形成されてもよいし、基材10の上面10aに他の層を介して形成されてもよい。なお、図1では、便宜上、抵抗体30を梨地模様で示している。
【0017】
抵抗体30は、例えば、Cr(クロム)を含む材料、Ni(ニッケル)を含む材料、又はCrとNiの両方を含む材料から形成できる。すなわち、抵抗体30は、CrとNiの少なくとも一方を含む材料から形成できる。Crを含む材料としては、例えば、Cr混相膜が挙げられる。Niを含む材料としては、例えば、Cu-Ni(銅ニッケル)が挙げられる。CrとNiの両方を含む材料としては、例えば、Ni-Cr(ニッケルクロム)が挙げられる。
【0018】
ここで、Cr混相膜とは、Cr、CrN、CrN等が混相した膜である。Cr混相膜は、酸化クロム等の不可避不純物を含んでもよい。
【0019】
抵抗体30の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、0.05μm~2μm程度とすることができる。特に、抵抗体30の厚さが0.1μm以上であると抵抗体30を構成する結晶の結晶性(例えば、α-Crの結晶性)が向上する点で好ましく、1μm以下であると抵抗体30を構成する膜の内部応力に起因する膜のクラックや基材10からの反りを低減できる点で更に好ましい。
【0020】
例えば、抵抗体30がCr混相膜である場合、安定な結晶相であるα-Cr(アルファクロム)を主成分とすることで、ゲージ特性の安定性を向上できる。又、抵抗体30がα-Crを主成分とすることで、ひずみゲージ1のゲージ率を10以上、かつゲージ率温度係数TCS及び抵抗温度係数TCRを-1000ppm/℃~+1000ppm/℃の範囲内とすることができる。ここで、主成分とは、対象物質が抵抗体を構成する全物質の50重量%以上を占めることを意味するが、ゲージ特性を向上する観点から、抵抗体30はα-Crを80重量%以上含むことが好ましく、90重量%以上含むことが更に好ましい。なお、α-Crは、bcc構造(体心立方格子構造)のCrである。
【0021】
又、抵抗体30がCr混相膜である場合、Cr混相膜に含まれるCrN及びCrNは20重量%以下であることが好ましい。Cr混相膜に含まれるCrN及びCrNが20重量%以下であることで、ゲージ率の低下を抑制できる。
【0022】
又、CrN及びCrN中のCrNの割合は80重量%以上90重量%未満であることが好ましく、90重量%以上95重量%未満であることが更に好ましい。CrN及びCrN中のCrNの割合が90重量%以上95重量%未満であることで、半導体的な性質を有するCrNにより、TCRの低下(負のTCR)が一層顕著となる。更に、セラミックス化を低減することで、脆性破壊の低減がなされる。
【0023】
一方で、膜中に微量のNもしくは原子状のNが混入、存在した場合、外的環境(例えば高温環境下)によりそれらが膜外へ抜け出ることで、膜応力の変化を生ずる。化学的に安定なCrNの創出により上記不安定なNを発生させることがなく、安定なひずみゲージを得ることができる。
【0024】
端子部51は、配線41を介して、抵抗体30の両端部と電気的に接続されており、平面視において、抵抗体30及び配線41よりも拡幅して略矩形状に形成されている。端子部51は、ひずみにより生じる抵抗体30の抵抗値の変化を外部に出力するための一対の電極であり、例えば、外部接続用のリード線等が接合される。抵抗体30は、例えば、端子部51の一方に接続される配線41の端部からジグザグに折り返しながら延在し、端子部51の他方に接続される配線41の端部に達する。端子部51の上面を、端子部51よりもはんだ付け性が良好な金属で被覆してもよい。なお、抵抗体30と配線41と端子部51とは便宜上別符号としているが、両者は同一工程において同一材料により一体に形成できる。
【0025】
抵抗体30を空洞60xを介して被覆し、端子部51を露出するように、基材10の上面10aにカバー層60(絶縁樹脂層)が設けられている。配線41は、カバー層60に全て被覆されてもよいし、カバー層60に被覆される部分とカバー層60から露出する部分の両方を有してもよい。
【0026】
空洞60xは、カバー層60の基材10側に形成されており、空洞60x内には抵抗体30がカバー層60と接しないように配置されている。空洞60x内において、抵抗体30とカバー層60との最も近い部分の距離は、数μm~十数μm程度である。空洞60xの形状は、例えば、ドーム状である。ここで、ドーム状とは、空洞60xを形成するカバー層60の内壁の高さが周囲から中心に向かって漸増する形状を指す。
【0027】
空洞60x内は空気が存在してもよいが、窒素やアルゴン等の不活性ガスを充填することが好ましい。空洞60x内に空気が存在すると、抵抗体30が酸化するおそれがあるが、空洞60x内に不活性ガスを充填することにより、抵抗体30が酸化するおそれを低減できる。
【0028】
特に、抵抗体30がCr混相膜である場合には、問題となる化学反応が生じる可能性が極めて低い窒素を空洞60x内に充填することが好ましい。又、窒素は、アルゴンよりも低価格である点でもメリットがある。
【0029】
又、空洞60x内の酸素及び水分含量が抵抗体30の腐食変化に影響するため、空気より水分含量が低く腐食が進行しにくい窒素を空洞60x内に充填することが好ましい。工業的に使用頻度の高い不活性ガスとして、窒素の他にアルゴン等の希ガス元素の使用が挙げられる。しかし、カバー層60のラミネート工程の温度環境、ひずみゲージ1の使用温度環境を踏まえると、より高温領域に対応できるアルゴンを使用するには及ばず、安価な窒素の充填で十分な腐食の抑制が期待できる。
【0030】
カバー層60は、例えば、PI樹脂、エポキシ樹脂、PEEK樹脂、PEN樹脂、PET樹脂、PPS樹脂、複合樹脂(例えば、シリコーン樹脂、ポリオレフィン樹脂)等の絶縁樹脂から形成できる。カバー層60は、フィラーや顔料を含有しても構わない。カバー層60の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、2μm~30μm程度とすることができる。
【0031】
カバー層60を設けることで、抵抗体30に機械的な損傷等が生じることを防止できる。又、カバー層60を設けることで、抵抗体30を湿気等から保護できる。カバー層60が配線41の一部又は全部を被覆する場合には、配線41に対しても抵抗体30に対する効果と同様の効果を奏する。
【0032】
仮に、抵抗体30がカバー層60と接している場合、温度変化等によりカバー層60が伸縮すると、カバー層60の伸縮に伴って抵抗体30も伸縮するため、抵抗体30の抵抗値が変化する。カバー層60の伸縮に伴う抵抗体30の抵抗値の変化は、本来検出するべきひずみによる抵抗体30の抵抗値の変化に対してはノイズ成分となるため、ひずみゲージ1のひずみ検出精度を低下させる。
【0033】
本実施形態では、カバー層60に空洞60xを形成し、抵抗体30がカバー層60と接しないように配置されているため、抵抗体30がカバー層60の伸縮の影響を受けることがない。すなわち、カバー層60に空洞60xを設けることで、抵抗体30とカバー層60との物理的接触を遮断し、カバー層60の膨張や収縮に起因する抵抗体30の抵抗値の変化を消失させることが可能となる。その結果、従来のような抵抗体がカバー層と接している場合と異なり、カバー層の伸縮に伴うノイズ成分がなくなるため、ひずみゲージ1のひずみ検出精度の低下を抑制できる。
【0034】
特に、抵抗体30としてCr混相膜を用いたゲージ率10以上の高感度なひずみゲージにおいて、カバー層に空洞を設けてノイズ成分を低減することは、ひずみ検出精度の向上に顕著な効果を発揮する。
【0035】
ひずみゲージ1を製造するためには、まず、基材10を準備し、基材10の上面10aに金属層(便宜上、金属層Aとする)を形成する。金属層Aは、最終的にパターニングされて抵抗体30、配線41、及び端子部51となる層である。従って、金属層Aの材料や厚さは、前述の抵抗体30、配線41、及び端子部51の材料や厚さと同様である。
【0036】
金属層Aは、例えば、金属層Aを形成可能な原料をターゲットとしたマグネトロンスパッタ法により成膜できる。金属層Aは、マグネトロンスパッタ法に代えて、反応性スパッタ法や蒸着法、アークイオンプレーティング法、パルスレーザー堆積法等を用いて成膜してもよい。
【0037】
ゲージ特性を安定化する観点から、金属層Aを成膜する前に、下地層として、基材10の上面10aに、例えば、コンベンショナルスパッタ法により所定の膜厚の機能層を真空成膜することが好ましい。
【0038】
本願において、機能層とは、少なくとも上層である金属層A(抵抗体30)の結晶成長を促進する機能を有する層を指す。機能層は、更に、基材10に含まれる酸素や水分による金属層Aの酸化を防止する機能や、基材10と金属層Aとの密着性を向上する機能を備えていることが好ましい。機能層は、更に、他の機能を備えていてもよい。
【0039】
基材10を構成する絶縁樹脂フィルムは酸素や水分を含むため、特に金属層AがCrを含む場合、Crは自己酸化膜を形成するため、機能層が金属層Aの酸化を防止する機能を備えることは有効である。
【0040】
機能層の材料は、少なくとも上層である金属層A(抵抗体30)の結晶成長を促進する機能を有する材料であれば、特に制限はなく、目的に応じて適宜選択できるが、例えば、Cr(クロム)、Ti(チタン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Ni(ニッケル)、Y(イットリウム)、Zr(ジルコニウム)、Hf(ハフニウム)、Si(シリコン)、C(炭素)、Zn(亜鉛)、Cu(銅)、Bi(ビスマス)、Fe(鉄)、Mo(モリブデン)、W(タングステン)、Ru(ルテニウム)、Rh(ロジウム)、Re(レニウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)、Co(コバルト)、Mn(マンガン)、Al(アルミニウム)からなる群から選択される1種又は複数種の金属、この群の何れかの金属の合金、又は、この群の何れかの金属の化合物が挙げられる。
【0041】
上記の合金としては、例えば、FeCr、TiAl、FeNi、NiCr、CrCu等が挙げられる。又、上記の化合物としては、例えば、TiN、TaN、Si、TiO、Ta、SiO等が挙げられる。
【0042】
機能層が金属又は合金のような導電材料から形成される場合には、機能層の膜厚は抵抗体の膜厚の1/20以下であることが好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、抵抗体に流れる電流の一部が機能層に流れて、ひずみの検出感度が低下することを防止できる。
【0043】
機能層が金属又は合金のような導電材料から形成される場合には、機能層の膜厚は抵抗体の膜厚の1/50以下であることがより好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、抵抗体に流れる電流の一部が機能層に流れて、ひずみの検出感度が低下することを更に防止できる。
【0044】
機能層が金属又は合金のような導電材料から形成される場合には、機能層の膜厚は抵抗体の膜厚の1/100以下であることが更に好ましい。このような範囲であると、抵抗体に流れる電流の一部が機能層に流れて、ひずみの検出感度が低下することを一層防止できる。
【0045】
機能層が酸化物や窒化物のような絶縁材料から形成される場合には、機能層の膜厚は、1nm~1μmとすることが好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、機能層にクラックが入ることなく容易に成膜できる。
【0046】
機能層が酸化物や窒化物のような絶縁材料から形成される場合には、機能層の膜厚は、1nm~0.8μmとすることがより好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、機能層にクラックが入ることなく更に容易に成膜できる。
【0047】
機能層が酸化物や窒化物のような絶縁材料から形成される場合には、機能層の膜厚は、1nm~0.5μmとすることが更に好ましい。このような範囲であると、α-Crの結晶成長を促進できると共に、機能層にクラックが入ることなく一層容易に成膜できる。
【0048】
なお、機能層の平面形状は、例えば、図1に示す抵抗体の平面形状と略同一にパターニングされている。しかし、機能層の平面形状は、抵抗体の平面形状と略同一である場合には限定されない。機能層が絶縁材料から形成される場合には、抵抗体の平面形状と同一形状にパターニングしなくてもよい。この場合、機能層は少なくとも抵抗体が形成されている領域にベタ状に形成されてもよい。或いは、機能層は、基材10の上面全体にベタ状に形成されてもよい。
【0049】
又、機能層が絶縁材料から形成される場合に、機能層の厚さを50nm以上1μm以下となるように比較的厚く形成し、かつベタ状に形成することで、機能層の厚さと表面積が増加するため、抵抗体が発熱した際の熱を基材10側へ放熱できる。その結果、ひずみゲージ1において、抵抗体の自己発熱による測定精度の低下を抑制できる。
【0050】
機能層は、例えば、機能層を形成可能な原料をターゲットとし、チャンバ内にAr(アルゴン)ガスを導入したコンベンショナルスパッタ法により真空成膜できる。コンベンショナルスパッタ法を用いることにより、基材10の上面10aをArでエッチングしながら機能層が成膜されるため、機能層の成膜量を最小限にして密着性改善効果を得ることができる。
【0051】
但し、これは、機能層の成膜方法の一例であり、他の方法により機能層を成膜してもよい。例えば、機能層の成膜の前にAr等を用いたプラズマ処理等により基材10の上面10aを活性化することで密着性改善効果を獲得し、その後マグネトロンスパッタ法により機能層を真空成膜する方法を用いてもよい。
【0052】
機能層の材料と金属層Aの材料との組み合わせは、特に制限はなく、目的に応じて適宜選択できるが、例えば、機能層としてTiを用い、金属層Aとしてα-Cr(アルファクロム)を主成分とするCr混相膜を成膜可能である。
【0053】
この場合、例えば、Cr混相膜を形成可能な原料をターゲットとし、チャンバ内にArガスを導入したマグネトロンスパッタ法により、金属層Aを成膜できる。或いは、純Crをターゲットとし、チャンバ内にArガスと共に適量の窒素ガスを導入し、反応性スパッタ法により、金属層Aを成膜してもよい。この際、窒素ガスの導入量や圧力(窒素分圧)を変えることや加熱工程を設けて加熱温度を調整することで、Cr混相膜に含まれるCrN及びCrNの割合、並びにCrN及びCrN中のCrNの割合を調整できる。
【0054】
これらの方法では、Tiからなる機能層がきっかけでCr混相膜の成長面が規定され、安定な結晶構造であるα-Crを主成分とするCr混相膜を成膜できる。又、機能層を構成するTiがCr混相膜中に拡散することにより、ゲージ特性が向上する。例えば、ひずみゲージ1のゲージ率を10以上、かつゲージ率温度係数TCS及び抵抗温度係数TCRを-1000ppm/℃~+1000ppm/℃の範囲内とすることができる。なお、機能層がTiから形成されている場合、Cr混相膜にTiやTiN(窒化チタン)が含まれる場合がある。
【0055】
なお、金属層AがCr混相膜である場合、Tiからなる機能層は、金属層Aの結晶成長を促進する機能、基材10に含まれる酸素や水分による金属層Aの酸化を防止する機能、及び基材10と金属層Aとの密着性を向上する機能の全てを備えている。機能層として、Tiに代えてTa、Si、Al、Feを用いた場合も同様である。
【0056】
このように、金属層Aの下層に機能層を設けることにより、金属層Aの結晶成長を促進可能となり、安定な結晶相からなる金属層Aを作製できる。その結果、ひずみゲージ1において、ゲージ特性の安定性を向上できる。又、機能層を構成する材料が金属層Aに拡散することにより、ひずみゲージ1において、ゲージ特性を向上できる。
【0057】
次に、フォトリソグラフィによって金属層Aをパターニングし、図1に示す平面形状の抵抗体30、配線41、及び端子部51を形成する。
【0058】
その後、基材10の上面10aに、抵抗体30を被覆し端子部51を露出する、空洞60xを有するカバー層60を設けることで、ひずみゲージ1が完成する。
【0059】
空洞60xを有するカバー層60を形成するには、例えば、基材10の上面10aに、抵抗体30を被覆し端子部51を露出するように、半硬化状態の熱硬化性の絶縁樹脂フィルムをラミネートし、絶縁樹脂フィルムを加熱する。この時点では、抵抗体30と絶縁樹脂フィルムとは接している。
【0060】
絶縁樹脂フィルムは加熱後に室温まで戻る間に硬化するので、硬化するまでの間にシリンジ等を用いて絶縁樹脂フィルム内に空気や不活性ガスを流し込む。ここで、空気や不活性ガスは、抵抗体30と絶縁樹脂フィルムとが接しないようになるまで流し続ける。
【0061】
絶縁樹脂フィルム内に空気や不活性ガスを流し込む量を調整することで、空洞60xの大きさを可変できる。絶縁樹脂フィルムが硬化すると、空洞60xを有するカバー層60が形成される。このとき、空洞60xの存在により、抵抗体30とカバー層60とは非接触となる。
【0062】
なお、カバー層60は、基材10の上面10aに、抵抗体30を被覆し端子部51を露出するように、液状又はペースト状の熱硬化性の絶縁樹脂を塗布し、加熱して半硬化状態にした後、上記と同様な方法で空洞60xを形成してもよい。
【0063】
空洞60xを有するカバー層60を形成する他の方法として、液体窒素を用いる方法が挙げられる。具体的には、上記の方法において、シリンジ等を用いて絶縁樹脂フィルム内に空気や不活性ガスを流し込む代わりに、シリンジ等を用いて絶縁樹脂フィルム内に液体窒素を流し込む。その後、液体窒素が気化するが、液体窒素の気化時の体積膨張により、窒素が充填された空洞60xが形成される。絶縁樹脂フィルム内に液体窒素を流し込む量を調整することで、空洞60xの大きさを可変できる。
【0064】
又、絶縁樹脂フィルムのラミネートを液体窒素中で行い、その後室温に戻してもよい。この場合にも、液体窒素の気化時の体積膨張により、窒素が充填された空洞60xが形成される。
【0065】
なお、抵抗体30、配線41、及び端子部51の下地層として基材10の上面10aに機能層を設けた場合には、ひずみゲージ1は図4に示す断面形状となる。符号20で示す層が機能層である。機能層20を設けた場合のひずみゲージ1の平面形状は、例えば、図1と同様となる。但し、前述のように、機能層20は、基材10の上面の一部又は全部にベタ状に形成される場合もある。
【0066】
以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。
【0067】
例えば、空洞60x内に空気や不活性ガス等の気体を充填する代わりに、液体を充填してもよい。この場合に使用できる液体は、絶縁性であり、熱膨張係数が低く、抵抗体30を酸化させないことが必須である。このような液体としては、例えば、3M社の FluorinertやSOLVAY社のGALDEN等が挙げられる。
【0068】
Fluorinertは無臭及び無色透明な完全フッ素化液体で、不活性で熱的及び化学的に安定しており、電気絶縁性が優れることから、絶縁熱媒体や試験媒体として使用される。又、GALDENも、電気絶縁性流体で、フッ素系流体の中で最高の沸点(最大+270℃)を有し、良好な絶縁耐力及び体積抵抗率を有し、極めて化学的に不活性である。
【0069】
又、起歪体上に直接抵抗体と、空洞を有するカバー層とを形成してもよい。すなわち、抵抗体を形成する基材は起歪体であってもよい。
【符号の説明】
【0070】
1 ひずみゲージ、10 基材、10a 上面、20 機能層、30 抵抗体、41 配線、51 端子部、60 カバー層、60x 空洞
図1
図2
図3
図4