IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

<>
  • 特許-解剖学的構造介入用の多段ロボット 図1
  • 特許-解剖学的構造介入用の多段ロボット 図2
  • 特許-解剖学的構造介入用の多段ロボット 図3
  • 特許-解剖学的構造介入用の多段ロボット 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-10
(45)【発行日】2023-11-20
(54)【発明の名称】解剖学的構造介入用の多段ロボット
(51)【国際特許分類】
   A61B 34/30 20160101AFI20231113BHJP
   A61B 34/20 20160101ALI20231113BHJP
   A61B 8/12 20060101ALI20231113BHJP
   B25J 18/06 20060101ALI20231113BHJP
【FI】
A61B34/30
A61B34/20
A61B8/12
B25J18/06
【請求項の数】 11
(21)【出願番号】P 2020526083
(86)(22)【出願日】2018-11-06
(65)【公表番号】
(43)【公表日】2021-01-28
(86)【国際出願番号】 EP2018080297
(87)【国際公開番号】W WO2019091962
(87)【国際公開日】2019-05-16
【審査請求日】2021-11-04
(31)【優先権主張番号】62/585,254
(32)【優先日】2017-11-13
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】110001690
【氏名又は名称】弁理士法人M&Sパートナーズ
(72)【発明者】
【氏名】パトリシュー アレクサンドル
(72)【発明者】
【氏名】ポポヴィッチ アレクサンドラ
【審査官】北村 龍平
(56)【参考文献】
【文献】特表2008-502421(JP,A)
【文献】米国特許出願公開第2008/0065108(US,A1)
【文献】米国特許出願公開第2015/0119900(US,A1)
【文献】国際公開第2017/006377(WO,A1)
【文献】米国特許出願公開第2009/0062602(US,A1)
【文献】特表2007-510470(JP,A)
【文献】米国特許出願公開第2009/0123111(US,A1)
【文献】特表2013-519432(JP,A)
【文献】特表平07-505791(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 17/00 - 90/98
(57)【特許請求の範囲】
【請求項1】
解剖学的構造内でのインターベンションツールの送達のための多段ロボットであって、
前記多段ロボットは、可撓性ロボットアーム、ロボットプラットフォーム、スネークロボットアーム及びエンドエフェクタの連続的な直列配列を含み、
前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタは、前記解剖学的構造を囲む解剖学的領域の切開部又は解剖学的開口部を通して導入され、
前記スネークロボットアーム及び前記エンドエフェクタは更に、前記解剖学的構造の切開部又は解剖学的開口部を通して導入され、
前記ロボットプラットフォームは、前記解剖学的構造の前記切開部又は前記解剖学的開口部に取り付け可能であり、
前記スネークロボットアームは、前記解剖学的構造内で前記エンドエフェクタを目標位置決めするために、前記ロボットプラットフォームに対して作動可能であり、
前記ロボットプラットフォームの近位端が、前記可撓性ロボットアームの遠位端に直接接続され、
前記ロボットプラットフォームの遠位端が、前記スネークロボットアームの近位端に直接接続される、多段ロボット。
【請求項2】
解剖学的構造内でのインターベンションツールの送達のための多段ロボットであって、
前記多段ロボットは、可撓性ロボットアーム、ロボットプラットフォーム、スネークロボットアーム及びエンドエフェクタの連続的な直列配列を含み、
前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタは、前記解剖学的構造を囲む解剖学的領域の切開部又は解剖学的開口部を通して導入され、
前記スネークロボットアーム及び前記エンドエフェクタは更に、前記解剖学的構造の切開部又は解剖学的開口部を通して導入され、
前記ロボットプラットフォームは、前記解剖学的構造の前記切開部又は前記解剖学的開口部に取り付け可能であり、
前記スネークロボットアームは、前記解剖学的構造内で前記エンドエフェクタを目標位置決めするために、前記ロボットプラットフォームに対して作動可能であり、
前記可撓性ロボットアームの遠位端及び前記スネークロボットアームの近位端が、前記ロボットプラットフォーム内で終端する、多段ロボット。
【請求項3】
前記可撓性ロボットアーム、前記ロボットプラットフォーム及び前記スネークロボットアームはそれぞれチャネルを有し、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタの前記連続的な直列配列は、前記可撓性ロボットアーム、前記ロボットプラットフォーム及び前記スネークロボットアームのそれぞれのチャネルが直列に連なることで、前記可撓性ロボットアームから、前記ロボットプラットフォームを通り前記スネークロボットアームまで延在するチャネルを画定する、請求項1に記載の多段ロボット。
【請求項4】
前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタはそれぞれチャネルを有し、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタの前記連続的な直列配列は、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタのそれぞれのチャネルが直列に連なることで、前記可撓性ロボットアームから、前記ロボットプラットフォーム及び前記スネークロボットアームを通り前記エンドエフェクタまで延在するチャネルを画定する、請求項1に記載の多段ロボット。
【請求項5】
前記可撓性ロボットアームは、前記可撓性ロボットアームの形状を感知する少なくとも1つの形状センサを含む、請求項1に記載の多段ロボット。
【請求項6】
前記ロボットプラットフォームは、前記ロボットプラットフォームの動きを感知する少なくとも1つの動き追跡センサを含む、請求項1に記載の多段ロボット。
【請求項7】
前記エンドエフェクタは、前記解剖学的構造の内部を撮像する少なくとも1つの超音波撮像デバイスを含む、請求項1に記載の多段ロボット。
【請求項8】
前記連続的な直列配列は、ロボットベース、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタを含む、請求項1に記載の多段ロボット。
【請求項9】
解剖学的構造内でのインターベンションツールの送達のための多段ロボットであって、
前記多段ロボットは、可撓性ロボットアーム、ロボットプラットフォーム、スネークロボットアーム及びエンドエフェクタの連続的な直列配列を含み、
前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタは、前記解剖学的構造を囲む解剖学的領域の切開部又は解剖学的開口部を通して導入され、
前記スネークロボットアーム及び前記エンドエフェクタは更に、前記解剖学的構造の切開部又は解剖学的開口部を通して導入され、
前記ロボットプラットフォームは、前記解剖学的構造の前記切開部又は前記解剖学的開口部に取り付け可能であり、
前記スネークロボットアームは、前記解剖学的構造内で前記エンドエフェクタを目標位置決めするために、前記ロボットプラットフォームに対して作動可能であり、
前記連続的な直列配列は、ロボットベース、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタを含み、
前記ロボットベースは、前記解剖学的領域の前記切開部又は前記解剖学的開口部に取り付け可能である、多段ロボット。
【請求項10】
前記ロボットベース、前記可撓性ロボットアーム、前記ロボットプラットフォーム及び前記スネークロボットアームはそれぞれチャネルを有し、前記ロボットベース、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタの前記連続的な直列配列は、前記ロボットベース、前記可撓性ロボットアーム、前記ロボットプラットフォーム及び前記スネークロボットアームのそれぞれのチャネルが直列に連なることで、前記ロボットベースから、前記可撓性ロボットアーム及び前記ロボットプラットフォームを通り前記スネークロボットアームまで延在するチャネルを画定する、請求項に記載の多段ロボット。
【請求項11】
前記ロボットベース、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタはそれぞれチャネルを有し、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタの前記連続的な直列配列は、前記ロボットベース、前記可撓性ロボットアーム、前記ロボットプラットフォーム、前記スネークロボットアーム及び前記エンドエフェクタのそれぞれのチャネルが直列に連なることで、前記ロボットベースから、前記可撓性ロボットアーム、前記ロボットプラットフォーム及び前記スネークロボットアームを通り前記エンドエフェクタまで延在するチャネルを画定する、請求項に記載の多段ロボット。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、様々なインターベンショナル治療(例えば大動脈弁置換及び僧帽弁修復)を行うロボットに関する。本開示は、具体的には、解剖学的構造(例えば心臓、胃、腸及び膀胱)内のエンドエフェクタの目標位置決めを容易にするために解剖学的構造の壁に取り付け可能な多段ロボットに関する。
【背景技術】
【0002】
低侵襲の心構造疾患インターベンションでは、外科医は、X線や超音波誘導を使用して心臓病変を矯正する弁やその他のデバイスを配置する。配置場所へのアクセスは、カテーテル経由又は心尖部経由のいずれかであり、配置の正確さは治療の成功に非常に重要である。例えば大動脈弁の配置が「高すぎる」場合、大動脈弁が冠動脈を閉塞させる可能性がある。更なる例として、僧帽弁逆流を矯正するために使用される僧帽クリップが配置される場合、外科医は、それが効果的であるためには、クリップが僧帽弁尖を適切に捉えることを確実にしなければならない。これらの治療の課題は、解剖学的構造の完全な画像を取得すること、及び/又は、解剖学的構造の完全な3次元(「3D」)情報と生理学的な動き(解剖学的構造は心拍及び呼吸周期と共に動く)を取得することである。
【0003】
心構造疾患を治療するための現在の低侵襲アプローチは、蛍光透視法及び超音波フィードバックを使用した手動誘導に依存している。しかし、このような撮像モダリティにおける解剖学的構造の描写は、特定が困難であり、解剖学的構造の生理学的な動きの影響を受けやすい。更に、解剖学的構造に対する治療送達デバイスの位置を、外科医が利用可能な画像からリアルタイムで推測しなければならず、また、解剖学的構造又は撮像データセットへの治療デバイスの自動位置合わせはない。更に、従来のアプローチは、経カテーテルアプローチではカテーテルを、経心尖アプローチではストレートシースを使用するので、治療デバイスの位置決めは困難な場合がある。
【0004】
より具体的には、経心尖アプローチを使用する大動脈弁置換では、外科医は、弁送達にストレートシースを使用する。インターベンションの間、外科医は、胸部切開部を心尖及び大動脈弁に整列させる必要がある。これは困難な場合があり、再位置決めをする必要がある場合、心尖にストレスがかかる可能性がある。
【0005】
エンドエフェクタに感知機能を備えた小型の細いロボットの使用が、上記治療に必要な位置決め精度及びフィードバックを提供することが証明されている。エンドエフェクタのセンサにより、ロボットの術前又は術中画像からセグメント化された解剖学的構造に対するロボットの自動位置合わせが可能になる。更に、ロボットにより、関心の解剖学的構造に対するデバイス位置の自動調整が可能になる。これら2つの機能により、より正確な治療の送達及びより迅速な処置が可能になる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本開示は、解剖学的構造(例えば心臓、胃、腸及び膀胱)のインターベンショナル治療を行うロボットの改良として、非作動式位置決め段及び作動式位置決め段を含み、2つの段の接合部は、解剖学的構造内でのエンドエフェクタの目標位置決めを容易にするために、解剖学的構造の切開部に取り付け可能である多段ロボットについて説明する。
【課題を解決するための手段】
【0007】
本開示の発明の1つの実施形態は、解剖学的構造(例えば心臓)内でのインターベンションツールの目標位置決めのための多段ロボットである。多段ロボットは、可撓性ロボットアーム、ロボットプラットフォーム、スネークロボットアーム及びエンドエフェクタの連続的な直列配列を含む。動作時、可撓性ロボットアーム、ロボットプラットフォーム、スネークロボットアーム及びエンドエフェクタは、解剖学的構造を囲む解剖学的領域の切開部又は解剖学的開口部(例えば心臓を囲む胸部心膜腔の切開部)を通して導入され、スネークロボットアーム及びエンドエフェクタは更に、解剖学的構造の切開部(例えば心臓の切開部)を通して導入される。その後、ロボットプラットフォームが、解剖学的構造の切開部又は解剖学的開口部に取り付けられて、ロボットプラットフォームに対するスネークロボットアームの作動を容易にして、解剖学的構造内でエンドエフェクタを目標位置決めする。
【0008】
本開示の発明の第2の実施形態は、多段ロボットの近位端にあり、解剖学的領域の切開部又は解剖学的開口部に取り付け可能であるロボットベースを更に含む多段ロボットである。
【0009】
本開示の発明を説明及び主張するために、
(1)本開示の技術用語は、本開示の技術分野において知られているように且つ本開示において例示的に説明される及び/又は更に定義されるように解釈されるべきである。本開示の用語の例には、インターベンショナル治療、インターベンションツール、解剖学的領域、解剖学的構造、解剖学的開口部、切開部、マーカー、形状センサ、動きセンサ、距離センサ及びエンドエフェクタが含まれるが、これらに限定されない。
(2)「インターベンショナル治療」との用語は、本開示の技術分野において知られているように又は以下で意図されるように、患者の解剖学的構造の撮像、診断及び/又は治療のためのあらゆるインターベンショナル治療を広く包含する。
(3)「インターベンション空間」との用語は、本開示において例示的に説明するように、インターベンショナル治療を囲む座標空間を広く包含する。
(4)「インターベンションツール」との用語は、本開示の技術分野において理解され、以下で意図されるように、患者の解剖学的構造の撮像、診断及び/又は治療を行うためのツール、機器、デバイス等を広く包含する。インターベンションツールの例には、メス、焼灼器、アブレーションデバイス、バルーン、ステント、エンドグラフト、アテローム切除デバイス、クリップ、ニードル、鉗子及び内視鏡が含まれるが、これらに限定されない。
(5)「連続的な直列配列」との用語は、本明細書において例示的に説明するように、多段ロボットの近位端から多段ロボットの遠位端まで延在する一連の構成要素の連続的な配列を広く包含する。本開示の連続的な直列配列の例には、(近位端)可撓性ロボットアーム-ロボットプラットフォーム-スネークロボットアーム-エンドエフェクタ(遠位端)及び(近位端)ロボットベース-可撓性ロボットアーム-ロボットプラットフォーム-スネークロボットアーム-エンドエフェクタ(遠位端)が含まれる。
(6)「ロボットベース」との用語は、本開示の技術分野において知られており、以下で意図されるように、多段ロボットの近位原点を確立するためのすべてのインターベンションアクセサリ又はインターベンションデバイスを広く包含する。ロボットベースの例には、汎用位置決めロボット、受動位置決めアーム及び固定具が含まれるが、これらに限定されない。
(7)「可撓性ロボットアーム」との用語は、本開示の技術分野において知られており、以下で意図されるように、インターベンショナル治療で利用されるあらゆる可撓性の円筒形医療機器を広く包含する。可撓性ロボットアームの例には、カテーテル及び受動的なスネーク状のロボットが含まれるが、これらに限定されない。
(8)「ロボットプラットフォーム」との用語は、本開示の技術分野において知られており、以下で意図されるように、解剖学的構造の切開部への取り付けのためのあらゆるインターベンションアクセサリ又はインターベンションデバイスを広く包含する。ロボットベースの例には、可撓性ロボットアームのカフ及び可撓性ロボットに取り付けられたクリップが含まれるが、これらに限定されない。
(9)「スネークロボットアーム」との用語は、本開示の技術分野において知られており、以下で意図されるように、ロボットプラットフォームに対するエンドエフェクタの平行移動、回転及び/又は旋回を作動するためのあらゆるロボットアームを広く包含する。スネークロボットアームの例には、da Vinci(商標)ロボットシステム、Medrobotics Flex(商標)ロボットシステム、Magellan(商標)ロボットシステム及びCorePath(商標)ロボットシステムで採用されているものと同様の連続多関節ロボットアーム構造が含まれるが、これらに限定されない。
(10)「エンドエフェクタ」との用語は、本開示の技術分野において知られており、以下で意図されるように、解剖学的構造内でのインターベンション治療を支援するために多段ロボットによるタスクの実行を容易にするためにスネークロボットアームに取り付けられるあらゆるアクセサリデバイスを広く包含する。
(11)「目標位置」との用語は、解剖学的構造内でのエンドエフェクタによるインターベンションツールの送達を容易にする解剖学的構造内でのエンドエフェクタの位置を広く包含する。
(12)「目標位置決め」との用語は、本開示の技術分野において知られており、以下で意図されるように、解剖学的構造内の目標位置にエンドエフェクタを配置するようにスネークロボットアームを作動させるためのあらゆる技術を広く包含する。このような技術の例には、スネークロボットアームの画像ベースの誘導、画像ベースのフィードバック位置制御及び画像ベースのリアルタイム目標追跡が含まれるが、これらに限定されない。
(13)「隣接する」との用語及びその任意の時制は、構成要素の取り外し可能又は永続的な結合、接続、固定、クランピング、取り付け等を広く包含する。
(14)「コントローラ」との用語は、本開示の技術分野において理解され、本開示において例示的に説明するように、本開示において後で説明する本開示の様々な発明原理の応用を制御するための特定用途向けメインボード又は特定用途向け集積回路のあらゆる構造構成を広く包含する。コントローラの構造構成には、プロセッサ、コンピュータ使用可能/コンピュータ可読記憶媒体、オペレーティングシステム、アプリケーションモジュール、周辺機器コントローラ、スロット及びポートが含まれるが、これらに限定されない。コントローラは、ワークステーション内に収容されていても、ワークステーションにリンクされていてもよい。「ワークステーション」の例には、スタンドアロンコンピューティングシステム、サーバシステムのクライアントコンピュータ、デスクトップコンピュータ又はタブレットコンピュータの形の、1つ以上のコンピューティングデバイス、ディスプレイ/モニタ及び1つ以上の入力デバイス(例えばキーボード、ジョイスティック又はマウス)のアセンブリを含むが、これらに限定されない。
(15)本明細書における「コントローラ」との用語の説明ラベルは、「コントローラ」との用語に対する追加の限定を指定又は示唆することなく、本明細書において説明及び主張されるように、コントローラ間の区別を容易にする。
(16)「アプリケーションモジュール」との用語は、特定のアプリケーションを実行するための電子回路及び/又は実行可能プログラム(例えば非一時的コンピュータ可読媒体に記憶される実行可能ソフトウェア及び/又はファームウェア)からなるコントローラに組み込まれるか又は当該コントローラによってアクセス可能なアプリケーションを広く包含する。
(17)「信号」、「データ」及び「コマンド」との用語は、本開示の技術分野において理解され、本開示において例示的に説明するように、本開示において後に説明する本開示の様々な発明原理の応用を支援するために、情報及び/又は命令を送信するための検出可能な物理量又はインパルス(例えば電圧、電流又は磁場強度)のあらゆる形態を広く包含する。本開示の同軸ロボットシステムの構成要素間の信号/データ/コマンド通信は、本開示の技術分野において知られているように、任意のタイプの有線又は無線データリンクを介する信号/データ/コマンドの送受信や、コンピュータ使用可能/コンピュータ可読記憶媒体にアップロードされた信号/データ/コマンドの読み出しを含むがこれに限定されない任意の通信方法を含む。
(18)本明細書における「信号」、「データ」及び「コマンド」との用語の説明ラベルは、「信号」、「データ」及び「コマンド」との用語の任意の追加の限定を指定又は暗示することなく、本明細書に説明及び主張されるように、信号/データ/コマンド間の区別を容易にする。
【0010】
本開示の発明の上記実施形態及び他の実施形態、並びに、本開示の様々な特徴及び利点は、添付図面と併せて読まれる本開示の発明の様々な実施形態の以下の詳細な説明から更に明らかになるであろう。詳細な説明及び図面は、本開示の発明の限定ではなく単なる例示であり、本開示の発明の範囲は、添付の特許請求の範囲及びその均等物によって規定される。
【図面の簡単な説明】
【0011】
図1図1は、本開示の発明原理による多段ロボット及び制御ネットワークの例示的な実施形態を示す。
図2図2は、本開示の発明原理による図1の多段ロボットの例示的な実施形態を示す。
図3図3は、本開示の発明原理による図2の多段ロボットを使用するインターベンションシステムの例示的な実施形態を示す。
図4図4は、本開示の発明原理による図1の制御ネットワークによって実行可能なインターベンション方法の例示的な実施形態を表すフローチャートを示す。
【発明を実施するための形態】
【0012】
本開示の発明の理解を容易にするために、図1及び図2の以下の説明は、本開示の多段ロボット及び制御ネットワークの例示的な実施形態の基本的な発明原理を教示する。この説明から、当業者は、本開示の発明原理を、本開示の多段ロボット及び制御ネットワークの多数の様々な実施形態の作成及び使用に適用する方法を理解するであろう。
【0013】
図1を参照すると、本開示の多段ロボット10は、ロボットベース20、可撓性ロボットアーム30、ロボットプラットフォーム40、スネークロボットアーム50、及び、解剖学的構造(例えば心臓、肺、胃、腸及び膀胱)内のエンドエフェクタ60の目標位置決めを介して解剖学的構造の撮像、診断及び/又は治療を伴うインターベンショナル手順を行うエンドエフェクタ60を使用する。
【0014】
ロボットベース20は、ロボットベース20が撮像モダリティに対するロボット10の位置追跡のための原点となることにより、撮像モダリティによって生成された解剖学的構造のインターベンショナル画像内のエンドエフェクタ60の視覚化を容易にする、及び/又は、解剖学的構造内のエンドエフェクタ60の目標位置決めのインターベンションコントローラ70による自律制御を容易にすることを含む、ロボット10のロボット位置追跡段を実現する。
【0015】
実際には、ロボットベース20は、インターベンショナル手順のインターベンション空間内に、固定位置又は可変位置を有する。
【0016】
一実施形態では、ロボットベース20は、本開示において更に例示的に説明するように、インターベンション空間内で撮像モダリティに固定されるか又は撮像モダリティに対して固定的に配置される。
【0017】
第2の実施形態では、ロボットベース20は、本開示において更に例示的に説明するように、解剖学的構造を囲む解剖学的領域(即ち、胸部領域、頭蓋領域、腹部領域等)の切開部又は解剖学的開口部に取り付け可能である。例えばロボットベース20は、心臓を囲む胸部心膜腔の切開部、肺を囲む胸部胸膜腔の切開部、胃を囲む腹骨盤腹腔の切開部又は膀胱を囲む腹骨盤骨盤腔の切開部に取り付けることができる。
【0018】
更に実際には、ロボットベース20は、本開示において更に例示的に説明するように、エンドエフェクタ60にインターベンションツールを送達するためのチャネル21を有してよい。
【0019】
更に実際には、ロボットベース20は、インターベンション空間内でのロボットベース20の固定位置又は可変位置の特定を容易にする1つ以上のマーカー22を含んでよい。例えばロボットベース20は、本開示の技術分野において知られているように、光学トラッカーによってインターベンション空間内で特定可能な光学マーカーの形のマーカー22を含む。更なる例として、ロボットベース20は、本開示の技術分野において知られているように、透視撮像モダリティによってインターベンション空間内で特定可能な透視マーカーの形のマーカー22を含む。
【0020】
更に実際には、ロボットベース20はロボット10から省略されてもよい。したがって、インターベンション空間内の任意の基準点を、ロボット10の位置追跡のための原点とすることができる。
【0021】
引き続き図1を参照すると、ロボットプラットフォーム40は、ロボットプラットフォーム40が解剖学的構造内でのエンドエフェクタ60の目標位置決めのための原点となることにより、撮像モダリティによって生成された解剖学的構造のインターベンショナル画像内のエンドエフェクタ60の視覚化を更に容易にする、及び/又は、解剖学的構造内のエンドエフェクタ60の目標位置決めのインターベンションコントローラ70による自律制御を容易にすることを含む、ロボット10のエンドエフェクタ目標位置決め段を実現する。
【0022】
実際には、ロボットプラットフォーム40は、可撓性ロボットアーム30とスネークロボットアーム50との接合部を表し、解剖学的構造の切開部又は解剖学的開口部に取り付け可能であり、これにより、本開示において更に例示的に説明するように、可撓性ロボットアーム30は、解剖学的構造の外側の解剖学的領域内に配置され、スネークロボットアーム50は、解剖学的構造内に配置される。
【0023】
更に実際には、ロボットプラットフォーム40は、本開示において更に例示的に説明するように、エンドエフェクタ60にインターベンションツールを送達するためのチャネル41を有してよい。
【0024】
更に実際には、ロボットプラットフォーム40は、解剖学的構造の任意の生理学的な動きの検出を容易にする1つ以上の動きセンサ42を含んでよい。例えばロボットプラットフォーム40は、本開示の技術分野において知られているように、解剖学的構造の任意の生理学的な動きを検出する加速度計の形の動きセンサ42を含む。
【0025】
引き続き図1を参照すると、可撓性ロボットアーム30は、解剖学的領域内の可撓性ロボットアーム30の一部又は全体が、解剖学的領域の切開部又は解剖学的開口部から解剖学的構造の切開部まで延在することを含む、ロボット10の非作動式位置決め段を実現する。
【0026】
実際には、可撓性ロボットアーム30は、本開示において更に例示的に説明するように、解剖学的構造の切開部へのロボットプラットフォーム40の取り付けを容易にし、解剖学的構造の任意の生理学的な動きに従う材料組成を有する。
【0027】
更に実際には、本開示において更に例示的に説明するように、可撓性ロボットアーム30は、エンドエフェクタ60にインターベンションツールを送達するためのチャネル31を有してよい。
【0028】
更に実際には、可撓性ロボットアーム30は、特に解剖学的構造の生理学的な動きを考慮したロボットベース20とロボットプラットフォーム40との間の距離を表す可撓性ロボットアーム30の形状を追跡する1つ以上の形状センサ32を含む。例えば可撓性ロボットアーム30は、本開示の技術分野において知られているように、可撓性ロボットアーム30の形状を追跡する光学形状センサの形の1つ以上の形状センサ32を含む。
【0029】
一実施形態では、可撓性ロボットアーム30は、本開示において更に例示的に説明するように、光学形状感知カテーテルである。
【0030】
引き続き図1を参照すると、スネークロボットアーム50は、解剖学的構造内にインターベンションツールを送達するための解剖学的構造内のエンドエフェクタ60の目標位置決めのためのスネークロボットアーム50の作動を含む、ロボット10の作動式位置決め段を実現する。
【0031】
実際には、スネークロボットアーム50は、本開示の技術分野において知られているように、任意のタイプのスネークロボットアームであってよい。
【0032】
一実施形態では、スネークロボットアーム50は、近位リンク機構と、遠位リンク機構とを含み、また、任意選択的に、1つ以上の中間リンク機構を含む。スネークロボットアーム50は更に、リンク機構を直列に相互接続するアクチュエータジョイント52を含む。アクチュエータジョイントの例には、並進アクチュエータジョイント、ボールソケットアクチュエータジョイント、ヒンジアクチュエータジョイント、コンジロイドアクチュエータジョイント、サドルアクチュエータジョイント及びロータリーアクチュエータジョイントが含まれるが、これらに限定されない。
【0033】
更に実際には、スネークロボットアーム50は、本開示において更に例示的に説明するように、エンドエフェクタ60にインターベンションツールを送達するためのチャネル51を有してよい。
【0034】
更に実際には、スネークロボットアーム50のアクチュエータジョイント52は、本開示の技術分野において知られている任意の技術によって作動可能であってよい。
【0035】
一実施形態では、各アクチュエータジョイント52は、ロボットプラットフォーム40に対する各リンク機構の位置及び向きを制御するための作動信号を介して作動コントローラ54によって作動可能であり、また、各アクチュエータジョイント52は、ロボットプラットフォーム40に対する各リンク機構の位置及び向きを示すポーズ信号を生成する任意のタイプのポーズセンサ(例えばエンコーダ)を含む。
【0036】
第2の実施形態では、各アクチュエータジョイント52は、各リンク機構の作動を制御するためにロボット10のオペレータによって腱駆動され、各アクチュエータジョイント52は、この場合も、ロボットプラットフォーム40に対する各リンク機構の位置及び向きを示すポーズ信号を生成する任意のタイプのポーズセンサ(例えばエンコーダ)を含む。
【0037】
引き続き図1を参照すると、エンドエフェクタ60は、解剖学的構造内のエンドエフェクタの目標位置からインターベンションツールを送達して、本開示の技術分野において知られているように、インターベンショナル手順に従って解剖学的構造の撮像、診断及び/又は治療を行うことを含む、ロボット10のツール送達段を実現する。
【0038】
実際には、エンドエフェクタ60は、解剖学的構造内の目標位置への1つ以上の特定のインターベンションツールの送達に適した構造形態を有する。
【0039】
一実施形態では、エンドエフェクタ60は、本開示の技術分野において知られているように、解剖学的構造内でインターベンションツールを方向付けるためのチャネル61を有する。この実施形態では、エンドエフェクタ60は、本開示の技術分野において知られているように、スネークロボットアーム50の遠位端に対してチャネル61を平行移動、回転及び/又は旋回させるように作動可能である。
【0040】
第2の実施形態では、エンドエフェクタ60は、エンドエフェクタ60によって取り外し可能に支持されるインターベンションツールを有する。この実施形態でも、エンドエフェクタ60は、本開示の技術分野において知られているように、スネークロボットアーム50の遠位端に対してチャネル61を平行移動、回転及び/又は旋回させるように作動可能である。
【0041】
更に実際には、エンドエフェクタ60は、解剖学的構造の1つ以上の壁からのエンドエフェクタ60の距離を測定して、解剖学的構造内でのエンドエフェクタ60の目標位置決めを更に容易にする1つ以上の距離センサ62を含んでよい。
【0042】
一実施形態では、エンドエフェクタ60は、本開示の技術分野において知られているように、解剖学的構造の内部の「前方視」超音波画像を生成するリング超音波アレイの形の距離センサ62を含む。リング超音波アレイによって生成される超音波画像は、解剖学的構造内でのエンドエフェクタ60の目標位置決めを容易にし、更に、本開示の技術分野において知られているように、術前及び/又は術中インターベンショナル画像からセグメント化された解剖学的構造の画像と融合することができる。
【0043】
第2の実施形態では、エンドエフェクタ60は、エンドエフェクタ60から発する画像ラインを生成する1次元の前方視超音波プローブのセットの形の距離デバイス62を含む。超音波プローブによって生成される画像ラインもまた、解剖学的構造内でのエンドエフェクタ60の目標位置決めを容易にし、更に、本開示の技術分野において知られているように、術前及び/又は術中インターベンショナル画像からセグメント化された解剖学的構造の画像と融合することができる。より具体的には、エンドエフェクタ60が解剖学的構造内で動かされるときに生成される複数の画像ラインから、解剖学的構造の内部の高密度超音波画像を形成することができる。
【0044】
引き続き図1を参照すると、多段ロボット10は、(1)ロボットベース20が可撓性ロボットアーム30の近位端に隣接し、(2)エンドエフェクタ60がスネークロボットアーム50の遠位端に隣接し、(3)ロボットプラットフォーム40が可撓性ロボットアーム30の遠位端及び/又はスネークロボットアーム50の近位端に隣接した状態で、構成要素20、30、40及び50の連続的な直列配列を有する。構成要素20、30、40及び50のこの直列配列では、妥当な場合、チャネル21、31、41及び51が軸方向に整列して、好適には同軸上に整列して、ロボット10の近位端11からロボット10の遠位端12に向かって延在するロボットチャネルを形成する。これにより、インターベンションツールを、ロボットチャネルを通してエンドエフェクタ60まで延在させることができる。
【0045】
実際には、ロボット10の構成要素20、30、40及び50は、ロボット10を解剖学的構造内に導入し、また、本開示で前述したようにロボット10の各段を実現するのに適した任意のやり方で隣接してよい。
【0046】
一実施形態では、ロボットベース20の遠位端27が、可撓性ロボットアーム30の近位端36に取り外し可能に結合されるか又は永久的に取り付けられる。
【0047】
第2の実施形態では、可撓性ロボットアーム30の近位端36が、可撓性ロボットアーム30にクランプされるか又は可撓性ロボットアーム30と一体化されるロボットベース20のチャネル21の中又はチャネル21を通って延在する。
【0048】
第3の実施形態では、ロボットプラットフォーム40の近位端が、可撓性ロボットアーム30の遠位端37に取り外し可能に接続されるか又は永久的に取り付けられ、ロボットプラットフォーム40の遠位端47が、スネークロボットアーム50の近位端56に取り外し可能に接続されるか又は永久的に取り付けられて、可撓性ロボットアーム30の近位端37をスネークロボットアーム50の遠位端56に結合する。
【0049】
第4の実施形態では、可撓性ロボットアーム30の遠位端37が、可撓性ロボットアーム30にクランプされる又は可撓性ロボットアーム30と一体化されるロボットプラットフォーム40のチャネル41の中又はチャネル41を通って延在し、可撓性ロボットアーム30の遠位端37は更に、スネークロボットアーム50の近位端56に取り外し可能に接続されるか又は永久的に取り付けられる。
【0050】
第5の実施形態では、スネークロボットアーム50の近位端56が、スネークロボットアーム50にクランプされるか又はスネークロボットアーム50と一体化されるロボットプラットフォーム40のチャネル41の中又はチャネル41を通って延在し、可撓性ロボットアーム30の遠位端37は更に、スネークロボットアーム50の近位端56に取り外し可能に接続されるか又は永久的に取り付けられる。
【0051】
第6の実施形態では、可撓性ロボットアーム30の遠位端37は更に、可撓性ロボットアーム30及びスネークロボットアーム50にクランプされるロボットプラットフォーム40のチャネル41内でスネークロボットアーム50の近位端56に取り外し可能に接続されるか又は永久的に取り付けられる。
【0052】
エンドエフェクタ60は、本開示の技術分野において知られているように、インターベンションツールの送達に適したやり方でスネークロボットアーム50に隣接する。
【0053】
引き続き図1を参照すると、ロボット10の制御ネットワークは、形状コントローラ34、作動コントローラ54及びインターベンションコントローラ70を含み、更に、位置合わせコントローラ24(ロボットベース20がマーカー22を利用する場合)、動きコントローラ44(ロボットプラットフォーム40が動きセンサ42を利用する場合)及び追跡コントローラ64(エンドエフェクタ60が距離センサ62を利用する場合)を含む。
【0054】
妥当な場合、マーカー22と位置合わせコントローラ24との相互作用23は、追跡マシン(例えば光学トラッカー又は電磁トラッカー)を介して確立され、これにより、位置合わせコントローラ24が、本開示の技術分野において知られているように、インターベンション空間内のマーカー22の特定や、撮像モダリティ(例えばX線マシン)に対するロボットベース20の位置決めを示す位置合わせデータ25の位置合わせコントローラ24による生成を含む1つ以上の位置合わせ技術を実行する追跡マシンの動作を制御する。
【0055】
例えば前述したように、光学マーカーをロボットベース20及び撮像モダリティに取り付け、これにより、位置合わせコントローラ24は、当該位置合わせコントローラ24がその中に組み込まれる又はリンクされている光学トラッカーの動作を制御して、インターベンション空間内の光学マーカーを特定し、位置合わせデータ25を生成する。
【0056】
形状センサ32と形状コントローラ34との相互作用33は、形状感知マシン(即ち、光学形状センサ用の光学インテグレータ)を介して確立される。形状コントローラ34は、形状コントローラ34の中に組み込まれるか又はリンクされている形状感知マシンの動作を制御して、本開示の技術分野において知られているように、可撓性ロボットアーム30の形状の決定を含む1つ以上の形状感知技術を実行する。
【0057】
例えば光学形状センサ(例えばファイバブラッグ格子又はレイリー散乱を含む光ファイバ)の形の形状センサ32を有する実施形態の場合、形状コントローラ34は、光学形状センサに光を供給する光学インテグレータを制御して、光学形状センサを透過するか又は光学形状センサから反射して戻る光を介して、可撓性ロボットアーム30の形状を決定する。この例では、光学形状センサは、当技術分野において知られているように、可撓性ロボットアーム30と一体にされ、ロボットベース20を通じて又はロボットベース20に沿って、インターベンションコントローラ70がその中に組み込まれているワークステーションに接続された光学インテグレータまで延在する。
【0058】
妥当な場合、有線接続43が動きセンサと動きコントローラ44との間に確立され、これにより、動きコントローラ44が、動きセンサ42から解剖学的構造の切開部の生理学的な動きを示す信号を受信する。この実施形態では、有線接続43は、ロボットプラットフォーム40から、可撓性ロボットアーム30及びロボットベース20を連続的に通って又はこれらに沿って、動きコントローラ44がその中に組み込まれているワークステーションまで延在する。
【0059】
有線接続53がアクチュエータジョイント52と作動コントローラ54との間に確立され、これにより、作動コントローラ54は、本開示の技術分野において知られているように、ロボットプラットフォーム40に対するスネークロボットアーム50の各リンク機構のポーズ(即ち、向き及び/又は位置)を示すポーズ信号を受信し、ポーズ信号からポーズデータ55を生成する。更に、作動コントローラ54は、有線接続53を介してアクチュエータジョイント52の動作を制御することができる。この実施形態では、有線接続53は、スネークロボットアーム50から、ロボットプラットフォーム40、可撓性ロボットアーム30及びロボットベース20を連続的に通って又はこれらに沿って、作動コントローラ54がその中に組み込まれているワークステーションまで延在する。
【0060】
妥当な場合、距離デバイス62と追跡コントローラ64との間のインターフェース63が、超音波マシンを介して確立され、これにより、追跡コントローラ64は、超音波マシンを介して距離センサ62の動作を制御して、解剖学的構造の内部のエンドエフェクタ60の位置を示す追跡データ65を生成する。例えば前述したように、距離センサ62は、リング超音波アレイ又は1D超音波プローブのセットの形をとることができ、これにより、追跡コントローラ64は、超音波マシンを介して超音波要素にエネルギーを与えて、超音波画像の形の追跡データ65を生成する。この実施形態では、有線接続63は、エンドエフェクタ60から、スネークロボットアーム50、ロボットプラットフォーム40、可撓性ロボットアーム30及びロボットベース20を連続的に通って又はこれらに沿って、追跡コントローラ64がその中に組み込まれているワークステーションまで延在する。
【0061】
インターベンションコントローラ70は、本開示の技術分野において知られているように、解剖学的構造内のエンドエフェクタ60の目標位置決めのための術前計画に従って、解剖学的構造の術前及び/又は術中インターベンショナル画像80(例えばX線、CT、MRI等)の表示を制御することによってインターベンショナル手順を実行する。表示には、解剖学的構造の内部の任意の生成された超音波画像の融合が含まれる。
【0062】
一実施形態では、インターベンションコントローラ70は、すべてのデータから示されるように、解剖学的構造のインターベンショナル画像80内のエンドエフェクタ60の位置を表示する。
【0063】
第2の実施形態では、インターベンションコントローラは、すべてのデータから示されるように、エンドエフェクタ60(及びスネークロボットアーム50の一部又は全体)のオーバーレイをインターベンショナル画像80上に生成する。
【0064】
インターベンションコントローラ70は更に、すべてのデータによって示されるように、解剖学的構造内のエンドエフェクタ60の目標位置決めの術前計画に従って、一致又は任意の偏差に由来する作動コマンド72を介して、本開示の技術分野において知られているように、スネークロボットアーム50の作動を制御することができる。
【0065】
実際には、図1のすべてのコントローラは、同じワークステーションに組み込まれていても、複数のワークステーション間で任意のやり方で分散されてもよい。
【0066】
更に実際には、図1のすべてのコントローラは、図示されるように分離されていても、2つ以上のコントローラがすべて又はその一部が統合されていてもよい。
【0067】
多段ロボット10を更に理解するために、図2は、心臓の左心室LVに導入されて、大動脈弁AVの大動脈弁置換を行うロボット10の一実施形態110を示す。
【0068】
図2を参照すると、ロボット110は、ロボットベース120、光学形状感知カテーテルの形の可撓性ロボットアーム130、ロボットプラットフォーム140、スネークロボットアーム150及びエンドエフェクタ160を含む。
【0069】
ロボットベース120は、可撓性ロボットアーム130の近位カフであり、縫合糸を介して胸部心膜腔TPCの胸壁CWの切開部に取り付けられる。或いは、ロボットベース120は、胸部心膜腔TPCの外部に取り付けられ、インターベンション空間の基準点までの光学形状検知カテーテル用のローンチデバイスである。これにより、可撓性ロボットアームは胸部心膜腔TPCの胸壁CWの入口内へと延在する。
【0070】
ロボットプラットフォーム140は、可撓性ロボットアーム130の遠位カフであり、縫合糸を介して心臓の左心室LVの切開部に取り付けられる。
【0071】
可撓性ロボットアーム130は、ロボットベース120とロボットプラットフォーム140との間で胸部心膜腔内に柔軟に延在する。
【0072】
スネークロボットアーム150は、ロボットプラットフォーム140に隣接し、心臓の左心室LVの中へと延在する。
【0073】
エンドエフェクタ160は、スネークロボットアーム150に隣接し、スネークロボットアーム150に対して平行移動及び/又は旋回するように作動可能である。
【0074】
心臓の左心室LV内のエンドエフェクタ160の位置は、(1)ロボットベース120の対応する撮像モダリティに対する位置合わせ、(2)可撓性ロボットアーム130の感知された形状、(3)左心室LVの感知された生理学的な動き(該当する場合)、(4)ロボットプラットフォーム140に対するスネークロボットアーム150の各リンク機構のポーズ、及び、(5)左心室LVの内部の超音波画像(該当する場合)から導出される。
【0075】
したがって、術前計画による大動脈弁AVに対するエンドエフェクタ160の目標位置決めのために必要に応じて、スネークロボットアーム150を手動で又はインターベンションコントローラ70(図1)を介して作動させて、本開示の技術分野において知られているように、バルーンを介して弁置換を行うことができる。
【0076】
実際には、ロボットベース120は省略されてもよい。この場合、可撓性ロボットアーム130は、胸部心膜腔の胸壁CWの切開部に縫合され、インターベンション空間内の基準点まで近位に延在する。
【0077】
本開示の発明の更なる理解を容易にするために、図3及び図4の以下の説明は、本開示の多段ロボット及び制御ネットワークを組み込んだインターベンションシステム及びインターベンション方法の例示的な実施形態の基本的な発明原理を教示する。この説明から、当業者であれば、本開示の発明原理を、本開示の多段ロボット及び制御ネットワークを組み込んだインターベンションシステム及びインターベンション方法の多数の様々な実施形態の作成及び使用にどのように適用するかを理解するであろう。
【0078】
図3を参照すると、手術台200に横たわる患者201の心臓202にインターベンショナル治療を行うインターベンションシステム15が提供される。このために、インターベンションシステム15は、図2の説明において前に提示した多段ロボット110を組み込む。インターベンションシステム15は更に、図1の説明で前に提示した位置合わせコントローラ24、形状コントローラ34、動きコントローラ44、作動コントローラ54、追跡コントローラ64及びインターベンションコントローラ74を含む制御ネットワーク310を組み込む。
【0079】
実際には、制御ネットワーク310は、インターベンションシステム15全体に分散されてもよい。
【0080】
一実施形態では、制御ネットワーク310は、本開示の技術分野において知られているように、モニタ301、キーボード302及びコンピュータ303を含むワークステーション300によって操作される。
【0081】
制御ネットワーク310は、1つ以上のシステムバスを介して相互接続されるプロセッサ、メモリ、ユーザインターフェース、ネットワークインターフェース及びストレージを、これらがコンピュータ303に組み込まれることにより含む。
【0082】
各プロセッサは、本開示の技術分野において知られているように又は以下で意図されるように、メモリ又はストレージに格納されている命令を実行するか又はデータを処理することができる任意のハードウェアデバイスであってよい。非限定的な例では、プロセッサは、マイクロプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、又は他の同様のデバイスを含む。
【0083】
メモリは、本開示の技術分野において知られているように又は以下で意図されるように、様々なメモリを含み、L1、L2若しくはL3キャッシュ又はシステムメモリを含んでよいがこれらに限定されない。非限定的な例では、メモリは、スタティックランダムアクセスメモリ(SRAM)、ダイナミックRAM(DRAM)、フラッシュメモリ、読み取り専用メモリ(ROM)又は他の同様のメモリデバイスを含む。
【0084】
ユーザインターフェースは、本開示の技術分野において知られているように又は以下で意図されるように、管理者といったユーザとの通信を可能にする1つ以上のデバイスを含む。非限定的な例では、ユーザインターフェースは、ネットワークインターフェースを介してリモート端末に提示されるコマンドラインインターフェース又はグラフィカルユーザインターフェースを含む。
【0085】
ネットワークインターフェースは、本開示の技術分野において知られているように又は以下で意図されるように、他のハードウェアデバイスとの通信を可能にする1つ以上のデバイスを含む。非限定的な例では、ネットワークインターフェースは、イーサネット(登録商標)プロトコルに従って通信するネットワークインターフェースカード(NIC)を含む。更に、ネットワークインターフェースは、TCP/IPプロトコルに従って通信するためにTCP/IPスタックを実装することができる。ネットワークインターフェースの様々な代替又は追加のハードウェア又は構成が明らかであろう。
【0086】
ストレージは、本開示の技術分野において知られているように又は以下で意図されるように、読み取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光学記憶媒体、フラッシュメモリデバイス又は同様の記憶媒体を含むがこれらに限定されない1つ以上の機械可読記憶媒体を含む。様々な非限定的な実施形態では、ストレージは、プロセッサによる実行のための命令又はプロセッサが処理するデータを記憶することができる。例えばストレージは、ハードウェアの様々な基本動作を制御するベースオペレーティングシステムを記憶することができる。ストレージは、図1の説明で前に提示した制御ネットワーク310の様々な機能を実施するための実行可能なソフトウェア/ファームウェアの形の1つ以上のアプリケーションモジュールを記憶する。
【0087】
実際には、制御ネットワーク310のコントローラは、コンピュータ303内に一部又は全部が統合されてよい。
【0088】
引き続き図3を参照すると、第2の実施形態では、制御ネットワーク310のコントローラを、インターベンションシステム15の異なるワークステーション/マシンに組み込むことができる。
【0089】
例えばインターベンションシステム15は、心臓202の術前及び/又は術中インターベンション画像を生成する撮像モダリティ400を含む。インターベンションコントローラ70は、撮像モダリティ400の動作を制御する撮像モダリティ400用のワークステーション内に部分的又は全体的に組み込まれる。撮像モダリティ400の例としては、スタンドアロンX線撮像システム、モバイルX線撮像システム、超音波撮像システム(例えばTEE、TTE、IVUS、ICE)、コンピュータ断層撮影(「CT」)撮像システム、陽電子放出断層撮影(「PET」)撮像システム及び磁気共鳴撮像(「MRI」)システムが挙げられるがこれらに限定されない。
【0090】
更なる例として、インターベンションシステム15は、ロボット110のロボットベース120及び撮像モダリティ400のマーカーを特定する位置トラッカー410を含む。位置合わせコントローラ24は、位置トラッカー410の動作を制御する位置トラッカー410用のワークステーション内に部分的又は全体的に組み込まれる。
【0091】
更なる例として、インターベンションシステム15は、ロボット110の可撓性ロボットアーム130の形状を感知する光学インテグレータ430を含む。形状コントローラ34は、光学インテグレータ430の動作を制御する光学インテグレータ430用のワークステーション内に部分的又は全体的に組み込まれる。
【0092】
更なる例として、インターベンションシステム15は、ロボット110のエンドエフェクタの任意の超音波センサにエネルギーを与える超音波装置440を含む。追跡コントローラ64は、超音波装置440の動作を制御する超音波装置440用のワークステーションに部分的又は全体的に組み込まれる。
【0093】
引き続き図3を参照すると、ロボット110のロボットベースへの接続を介して、ケーブルコネクタ320を利用して、ロボット110のセンサ、アクチュエータ及び/又はエンコーダをコンピュータ303、撮像モダリティ400、位置トラッカー410、光学インテグレータ430及び超音波装置440に必要に応じて接続することができる。
【0094】
図4は、インターベンショナル治療を実施するために制御ネットワーク310(図3)によって実行されるインターベンション方法を表すフローチャート500を示す。
【0095】
図3及び図4を参照すると、フローチャート500のステップS502は、インターベンショナル治療の実施に必要な制御ネットワーク310による準備動作に関する。
【0096】
S502の一実施形態では、インターベンションコントローラ70によって又は位置トラッカー410のオペレータを介して命令される位置合わせコントローラ24は、撮像モダリティ400と多段ロボット110のロボットベース120との位置合わせの実行を制御する。例えば位置合わせコントローラ24は、位置トラッカー410を操作して、撮像モダリティ400及びロボット110のロボットベース120に取り付けられたマーカーの位置を特定し、これにより、位置合わせコントローラ24又はインターベンションコントローラ70は、本開示の技術分野において知られているように、位置合わせ技術を実行する。
【0097】
更に、ロボット110のエンドエフェクタ160が超音波機能を含む場合、インターベンションコントローラ70によって又は超音波マシン440のオペレータを介して命令される追跡コントローラ74は、心臓202の左心室の超音波撮像の実行を制御する。例えば追跡コントローラ74は、超音波マシン440を操作して、ロボット110のエンドエフェクタ160の超音波トランスデューサにエネルギーを与え、これにより、追跡コントローラ74又はインターベンションコントローラ70は、本開示の技術分野において知られているように、心臓202の左心室の超音波画像の生成を実行し、また更に、撮像モダリティ400によって生成された心臓202の左心室のインターベンショナル画像と、エンドエフェクタ160の超音波トランスデューサによって生成された心臓202の左心室の超音波画像との画像ベースの位置合わせを実行する。
【0098】
引き続き図3及び図4を参照すると、フローチャート500のステップS504は、インターベンショナル治療の実施に必要な制御ネットワーク310による術中動作に関する。
【0099】
ステップS504の一実施形態では、インターベンションコントローラ70は、ロボット110のすべてのセンサ及びエンコーダから受信したデータを処理して、心臓202の左心室内のロボット110のエンドエフェクタ160の初期位置を決定する。より具体的には、心臓の左心室LV内のエンドエフェクタ160の位置は、(1)ロボットベース120の対応する撮像モダリティに対する位置合わせ、(2)可撓性ロボットアーム130の感知された形状、(3)左心室LVの感知された生理学的な動き(該当する場合)、(4)ロボットプラットフォーム140に対するスネークロボットアーム150の各リンク機構のポーズ、及び、(5)左心室LVの内部の超音波画像(該当する場合)から導出される。
【0100】
ロボット110のエンドエフェクタ160の初期位置が決定されると、インターベンションコントローラ70は、心臓202の左心室のインターベンション画像304の表示を制御する。実際には、インターベンション画像304は、術前画像でも、術中画像でもよい。この場合、インターベンションコントローラ70によって決定された心臓202の左心室内のロボット110のエンドエフェクタ160の位置に基づいて、ロボット110のオーバーレイが画像304上に提供される。或いは、インターベンション画像304は、術中画像である。この場合、インターベンションコントローラ70は、インターベンションコントローラ70によって決定された心臓202の左心室内のロボット110のエンドエフェクタ160の位置の指示を提供する。同時に、エンドエフェクタ160の任意の超音波トランスデューサによって生成された超音波画像が、心臓202の左心室のインターベンション画像304と融合される。
【0101】
この時点で、スネークロボットアームの作動には2つの一般的なモードがある。
【0102】
第1のモードは、本開示の技術分野において知られているように、インターベンションコントローラ70が、ロボット110のスネークロボットアーム150の作動を制御して、術前計画に従って、心臓202の左心室内のインターベンションツール用の目標位置に又は目標位置に対してエンドエフェクタ160を配置することを含む。
【0103】
第2のモードは、本開示の技術分野において知られているように、ワークステーション300のオペレータが、ロボット110のスネークロボットアーム150を手動で作動させて、術前計画に従って、心臓202の左心室内のインターベンションツール用の目標位置に又は目標位置に対してエンドエフェクタ160を配置することを含む。
【0104】
いずれのモードでも、インターベンションコントローラ70は、心臓202の左心室内のインターベンションツール用の元の目標位置若しくは新しい目標位置における又は目標位置に対するエンドエフェクタ160について、必要に応じて、インターベンションコントローラ70又はオペレータを介して術前計画を調整することを容易にする。
【0105】
エンドエフェクタ160が目標位置に到達すると、本開示の技術分野において知られているように、大動脈弁の治療のために大動脈弁置換が行われる。
【0106】
図3及び図4は、ロボット110(図2)による大動脈弁置換に関して説明したが、当業者であれば、本開示の発明原理を、大動脈弁置換又は解剖学的構造の任意の他のタイプのインターベンショナル治療を実施するロボット110及び本開示の多段ロボットの実施形態に適用する方法を理解するであろう。
【0107】
図1から図4を参照すると、本開示の当業者であれば、解剖学的構造内のエンドエフェクタの正確な位置合わせを容易にして、解剖学的構造へのインターベンションツールの撮像、診断及び/又は治療の送達の効率を向上させる多段ロボットを含むがこれに限定されない、本開示の発明の多数の利点を理解するであろう。
【0108】
更に、当業者が本明細書において提供される教示を考慮して理解するように、本開示/明細書において説明される及び/又は図に示される特徴、要素、構成要素等は、電子構成要素/回路、ハードウェア、実行可能なソフトウェア及び実行可能なファームウェアの様々な組み合わせで実施されてよく、単一の要素又は複数の要素に組み合わされる機能を提供する。例えば図面に示す様々な特徴、要素、構成要素等の機能は、専用ハードウェアだけでなく、適切なソフトウェアに関連付けられてソフトウェアを実行可能であるハードウェアを使用することによって提供可能である。当該機能は、プロセッサによって提供される場合、単一の専用プロセッサによって、単一の共有プロセッサによって、又は、複数の個別のプロセッサによって提供可能であり、個別のプロセッサのうちの幾つかは共有及び/又は多重化される。更に、「プロセッサ」との用語の明示的な使用は、ソフトウェアを実行可能なハードウェアを排他的に指すと解釈されるべきではなく、デジタル信号プロセッサ(「DSP」)ハードウェア、ソフトウェアを記憶する読み出し専用メモリ(「ROM」)、ランダムアクセスメモリ(「RAM」)、不揮発性記憶装置等、並びに、処理を行う及び/又は制御することが可能である(及び/又は設定可能である)実質的に任意の手段及び/又は機械(ハードウェア、ソフトウェア、ファームウェア、回路、これらの組み合わせ等を含む)を暗に含むが、これらに限定されない。
【0109】
更に、本発明の原理、態様及び実施形態だけでなく、これらの具体例を列挙する本明細書におけるすべての記述は、これらの構造上の等価物及び機能上の等価物の両方を包含することを意図している。更に、このような等価物は、現在知られている等価物だけでなく、将来開発される等価物(例えば構造に関係なく、同じ又は実質的に同様の機能を行うように開発される任意の要素)の両方も含むことを意図している。したがって、例えば本明細書において提供される教示を考慮して、当業者には、本明細書において提示される任意のブロック図が、本発明の原理を具現化する例示的なシステム構成要素及び/又は回路の概念図を表すことができることが理解されよう。同様に、当業者は、本明細書において提供される教示を考慮して、任意のフローチャート、フロー図等が、コンピュータ可読記憶媒体で実質的に表すことができ、したがってコンピュータ、プロセッサ又は処理機能を有する他のデバイスによって、当該コンピュータ又はプロセッサが明示的に示されているかどうかにかかわらず実行される様々なプロセスを表すことを理解すべきである。
【0110】
更に、本発明の例示的な実施形態は、例えばコンピュータ若しくは任意の命令実行システムによる又は当該コンピュータ若しくはシステムに関連して使用されるプログラムコード及び/又は命令を提供するコンピュータ使用可能及び/又はコンピュータ可読記憶媒体からアクセス可能であるコンピュータプログラムプロダクト又はアプリケーションモジュールの形を取ることができる。本開示に従って、コンピュータ使用可能又はコンピュータ可読記憶媒体は、命令実行システム、装置若しくはデバイスによる又は当該システム、装置若しくはデバイスに関連して使用されるプログラムを、例えば含む、記憶する、通信する、伝搬する又は運搬することができる任意の装置であってよい。このような例示的な媒体は、例えば電子、磁気、光学、電磁、赤外線若しくは半導体システム(若しくは装置若しくはデバイス)又は伝搬媒体であってよい。コンピュータ可読媒体の例には、例えば半導体若しくは固体メモリ、磁気テープ、取り外し可能なコンピュータディスケット、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、フラッシュ(ドライブ)、剛性磁気ディスク及び光学ディスクが含まれる。光学ディスクの現在の例には、コンパクトディスク-読み出し専用メモリ(CD-ROM)、コンパクトディスク-読み出し/書き込み(CD-R/W)及びDVDが含まれる。更に、今後開発される任意の新しいコンピュータ可読媒体もまた、本開示の例示的な実施形態に従って使用又は参照されうるコンピュータ可読媒体と見なされるべきであることが理解されるべきである。
【0111】
新規且つ発明性のある多段ロボットの好適な且つ例示的な実施形態(これらの実施形態は例示的であり限定的ではないことを意図する)を説明したが、図面を含む本明細書において提供される教示に照らして、当業者によって修正及び変形を行うことができることに留意されたい。したがって、本開示の好適な且つ例示的な実施形態に/への変更を行うことができ、これらは、本明細書に開示される実施形態の範囲内であることを理解されたい。
【0112】
更に、本開示に従ってデバイスにおいて使用/実装されるようなデバイスを組み込む及び/又は実装する対応する及び/又は関連するシステムもまた想定され、本開示の範囲内であると見なされる。更に、本開示によるデバイス及び/又はシステムを製造及び/又は使用する対応する及び/又は関連する方法も想定され、本開示の範囲内であると見なされる。
図1
図2
図3
図4