(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-13
(45)【発行日】2023-11-21
(54)【発明の名称】光源装置
(51)【国際特許分類】
F21S 2/00 20160101AFI20231114BHJP
F21V 7/28 20180101ALI20231114BHJP
F21V 7/26 20180101ALI20231114BHJP
F21V 8/00 20060101ALI20231114BHJP
F21Y 115/30 20160101ALN20231114BHJP
F21Y 115/10 20160101ALN20231114BHJP
【FI】
F21S2/00 311
F21V7/28 240
F21V7/26
F21V8/00 200
F21Y115:30
F21Y115:10
(21)【出願番号】P 2020010188
(22)【出願日】2020-01-24
【審査請求日】2022-09-15
(73)【特許権者】
【識別番号】000102212
【氏名又は名称】ウシオ電機株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】弁理士法人ユニアス国際特許事務所
(72)【発明者】
【氏名】三浦 雄一
【審査官】山崎 晶
(56)【参考文献】
【文献】特開2013-029831(JP,A)
【文献】特開2019-186505(JP,A)
【文献】特開2015-179766(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F21S 2/00
F21V 7/28
F21V 7/26
F21V 8/00
F21Y 115/30
F21Y 115/10
(57)【特許請求の範囲】
【請求項1】
主たる発光波長が第一波長帯に属する第一光を発する半導体レーザと、
前記第一光が入射されると、主たる発光波長が前記第一波長帯とは異なる第二波長帯に属する第二光に変換して出射する蛍光体と、
前記第一光及び前記第二光が入射され、前記第一光と前記第二光のうちの一方を実質的に透過させて他方を実質的に反射させる第一ダイクロイックミラーと、
主たる発光波長が前記第一波長帯に属する第三光を発するLEDと、
前記第一ダイクロイックミラーを透過又は反射した前記第二光と前記第三光とが入射され、前記第二
光を実質的に透過させて
前記第三光を実質的に反射させる第二ダイクロイックミラーと
、
前記第二ダイクロイックミラーで反射された前記第一光が入射される光遮蔽部とを備えたことを特徴とする、光源装置。
【請求項2】
前記第一ダイクロイックミラーと前記第二ダイクロイックミラーとの間に配置され、前記第一光及び前記第二光のうち、前記第二光を選択的に透過させる光学部材を備え、
前記第二ダイクロイックミラーは、前記第一ダイクロイックミラーを透過又は反射した後、前記光学部材を透過した前記第二光が入射されることを特徴とする、請求項1に記載の光源装置。
【請求項3】
前記光学部材は、前記第二光を実質的に透過させ、前記第一光を実質的に反射させる第三ダイクロイックミラーであることを特徴とする、請求項2に記載の光源装置。
【請求項4】
前記第三ダイクロイックミラーで反射された前記第一光が入射される光遮蔽部を備えたことを特徴とする、請求項3に記載の光源装置。
【請求項5】
前記第一波長帯が430nm以上、480nm以下であることを特徴とする、請求項1~
4のいずれか1項に記載の光源装置。
【請求項6】
前記第二波長帯が500nm以上、550nm以下であることを特徴とする、請求項
5に記載の光源装置。
【請求項7】
前記第二光及び前記第三光が重畳された光を集光する集光光学系と、
前記集光光学系によって集光された光が入射される光ファイバとを備えたことを特徴とする、請求項1~
6のいずれか1項に記載の光源装置。
【請求項8】
主たる発光波長が第一波長帯に属する第一光を発する半導体レーザと、
前記第一光が入射されると、主たる発光波長が前記第一波長帯とは異なる第二波長帯に属する第二光に変換して出射する蛍光体と、
前記第一光及び前記第二光が入射され、前記第一光と前記第二光のうちの一方を実質的に透過させて他方を実質的に反射させる第一ダイクロイックミラーと、
主たる発光波長が前記第一波長帯に属する第三光を発するLEDと、
前記第一ダイクロイックミラーを透過又は反射した前記第二光と前記第三光とが入射され、前記第二
光を実質的に
反射させて
前記第三光を実質的に
透過させる第二ダイクロイックミラーと、
前記第二ダイクロイックミラーで
透過された前記第一光が入射される光遮蔽部とを備えたことを特徴とする、光源装置。
【請求項9】
主たる発光波長が第一波長帯に属する第一光を発する半導体レーザと、
前記第一光が入射されると、主たる発光波長が前記第一波長帯とは異なる第二波長帯に属する第二光に変換して出射する蛍光体と、
前記第一光及び前記第二光が入射され、前記第一光と前記第二光のうちの一方を実質的に透過させて他方を実質的に反射させる第一ダイクロイックミラーと、
主たる発光波長が前記第一波長帯に属する第三光を発するLEDと、
前記第一ダイクロイックミラーを透過又は反射した前記第二光と前記第三光とが入射され、前記第二光と前記第三光のうちの一方を実質的に透過させて他方を実質的に反射させる第二ダイクロイックミラーと、
前記第一ダイクロイックミラーと前記第二ダイクロイックミラーとの間に配置され、前記第一光及び前記第二光のうち、前記第二光を選択的に透過させる光学部材を備え、
前記第二ダイクロイックミラーは、前記第一ダイクロイックミラーを透過又は反射した後、前記光学部材を透過した前記第二光が入射されることを特徴とする、光源装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は光源装置に関し、特に、波長変換部材を含む光源装置に関する。
【背景技術】
【0002】
蛍光顕微鏡は、観察対象となる試料に対して光を入射させて蛍光を生じさせ、この蛍光の光強度の大小によって試料を観察するための装置である。試料に応じて、光の吸収特性が異なることから、多くの種類の試料に対応できるために、広帯域の光が必要とされる。かかる観点から、従来、ショートアーク型の超高圧水銀ランプ、メタルハライドランプ、キセノンランプなどの放電ランプが用いられていた。
【0003】
これに対し、近年は、省エネルギー化、装置の小型化、光源の長寿命化などの観点から、蛍光顕微鏡用の光源として固体発光素子を利用することが検討されている。
【0004】
固体発光素子を用いて広帯域の光を生成するためには、原理的には、赤色光、緑色光、青色光を発するそれぞれのLEDを準備し、各固体発光素子から出射される光を合成する方法が考えられる。しかし、現時点において、波長500nm以上、560nm以下の帯域(緑色帯)の光を高輝度で出射することのできるLEDは存在していない。このため、発光波長の異なるLEDのみを用いて、蛍光顕微鏡用の光源を実現することは、現実的には困難である。
【0005】
このような事情から、緑色帯の光を発するLEDの替わりに、例えば青色帯の光を発する半導体レーザなどの励起光源と、励起光源から出射された励起光を受けて波長450nm以上、650nm以下の帯域を示す蛍光を発する蛍光体とを有する光源装置が提案されている(下記特許文献1参照)。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、本発明者の鋭意研究によれば、半導体レーザから出射された励起光としてのレーザ光の一部が観察試料に照射されることで、観察画像にスペックルノイズが発生し、画質が悪化してしまうことが確認された。これは、半導体レーザから出射されたレーザ光は、LED光と比べてコヒーレント性が極めて高いことに由来する。
【0008】
本発明は、上記の課題に鑑み、広帯域のスペクトルを示し、且つコヒーレント性の高い光の割合を低下させた光を生成可能な光源装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明に係る光源装置は、主たる発光波長が第一波長帯に属する第一光を発する半導体レーザと、
前記第一光が入射されると、主たる発光波長が前記第一波長帯とは異なる第二波長帯に属する第二光に変換して出射する蛍光体と、
前記第一光及び前記第二光が入射され、前記第一光と前記第二光のうちの一方を実質的に透過させて他方を実質的に反射させる第一ダイクロイックミラーと、
主たる発光波長が前記第一波長帯に属する第三光を発するLEDと、
前記第一ダイクロイックミラーを透過又は反射した前記第二光と前記第三光とが入射され、前記第二光と前記第三光のうちの一方を実質的に透過させて他方を実質的に反射させる第二ダイクロイックミラーとを備えたことを特徴とする。
【0010】
本明細書において、「主たる発光波長」とは、最大ピーク値に対する強度が1/2以上を示す波長域を指す。
【0011】
本明細書において、光学フィルタやダイクロイックミラーなどが「光を実質的に透過させる」とは、入射された光の強度に対して透過光の強度が90%以上であることを意味する。また、本明細書において、フィルタやダイクロイックミラーなどが「光を実質的に反射させる」とは、入射された光の強度に対して反射光の強度が90%以上であることを意味する。
【0012】
上記構成によれば、光源装置からは、主たる発光波長が第二波長帯に属する、蛍光体から出射された第二光と、主たる発光波長が第一波長帯に属する、LEDから出射された第三光とが、重畳して出射される。第二光は、蛍光体から出射される蛍光であるため、半導体レーザから出射される第一光と比べて、波長帯域は広帯域である。更に、この第二光と、第一波長帯に属するLEDからの第三光が重畳されることで、出射される光は極めて広帯域となる。
【0013】
半導体レーザからの第一光は、第一ダイクロイックミラーを介して蛍光体に導かれる。蛍光体で生成された、主たる発光波長が第二波長帯に属する第二光と、半導体レーザから出射された、主たる発光波長が第一波長帯に属する第一光とでは、第一ダイクロイックミラーに入射された後の、進行方向が変化する。すなわち、第一ダイクロイックミラーは、第一光を実質的に反射させて、第二光を実質的に透過させるか、又は、第一光を実質的に透過させて、第二光を実質的に反射させるように構成されている。
【0014】
ここで、第二光を生成するために入射される、半導体レーザからの第一光は、「発明が解決しようとする課題」の項で上述したように、コヒーレント性が高い光である。この第一光は、第一ダイクロイックミラーが介在することで、第三光が入射される領域である後段の光学系には実質的に導かれないように構成される。しかし、第一ダイクロイックミラーは、第一光を100%完全に後段に導かないようにすることは、現実的には難しい。言い換えれば、数%程度の第一光は、第一ダイクロイックミラーを通過した後も、第二光と同方向に進行してしまう。
【0015】
しかし、上記構成によれば、この第二光の進行方向の後段に、第二ダイクロイックミラーが配置されている。この第二ダイクロイックミラーは、第一光と同じく主たる発光波長が第一波長帯に属する第三光を実質的に反射させて、第二光を実質的に透過させるか、又は、この第三光を実質的に透過させて、第二光を実質的に反射させるように構成されている。このため、第二光に重畳された、ごく一部の第一光が、第二光と同方向に進行して第二ダイクロイックミラーに入射されると、このごく一部の第一光のほとんどが第二光とは異なる方向に進行する。
【0016】
例えば、第一ダイクロイックミラー及び第二ダイクロイックミラーが、いずれも、主たる発光波長が第一波長帯に属する光を95%反射させる構成であるとすれば、両ダイクロイックミラーを通過する第一光は、高々0.03%程度となる。この結果、第二ダイクロイックミラーが存在しない場合と比べて、コヒーレント性の高い第一光が観察試料に照射される割合が大幅に低下される。なお、主たる発光波長が第一波長帯に属する第三光は、LEDから発せられる光であるため、この第三光が第二光に重畳された光についても、コヒーレント性は充分低い光であり、スペックルノイズを従来よりも低下させることが可能となる。
【0017】
前記光源装置は、前記第一ダイクロイックミラーと前記第二ダイクロイックミラーとの間に配置され、前記第一光及び前記第二光のうち、前記第二光を選択的に透過させる光学部材を更に備え、
前記第二ダイクロイックミラーは、前記第一ダイクロイックミラーを透過又は反射した後、前記光学部材を透過した前記第二光が入射されるものとしても構わない。
【0018】
かかる構成によれば、前記光学部材によって、第二ダイクロイックミラーに導かれる第一光の光量を更に低下させることができる。これにより、スペックルノイズを低下させる効果が更に高められる。
【0019】
前記光学部材は、前記第一光と前記第二光のうちの前記第二光を実質的に透過させることのできる光学フィルタで構成されていても構わない。
【0020】
また、前記光学部材は、前記第一光と前記第二光のうちの前記第二光を実質的に透過させ、前記第一光を実質的に反射させる第三ダイクロイックミラーであるものとしても構わない。
【0021】
この場合において、前記光源装置は、前記第三ダイクロイックミラーで反射された前記第一光が入射される光遮蔽部を備えるものとしても構わない。
【0022】
かかる構成によれば、第三ダイクロイックミラーで反射されたごくわずかな第一光が、光源装置の筐体等で反射されて、後段の光学系に導かれることが抑制される。光遮蔽部としては、例えば、筐体の壁面の一部を黒くした吸光体とすることができる。また、別の光遮蔽部の例としては、第三ダイクロイックミラーで反射された第一光が入射される面を拡散面にすると共に、拡散反射された光が筐体の内壁に入射されるよう、筐体に凹凸加工を施してなる構造を採用することができる。
【0023】
また、同様に、前記光源装置は、前記第二ダイクロイックミラーで反射された前記第一光が入射される光遮蔽部を備えるものとしても構わない。
【0024】
前記第一波長帯は430nm以上、480nm以下とすることができる。この場合において、前記第二波長帯は500nm以上、550nm以下とすることができる。
【0025】
前記光源装置は、前記第二光及び前記第三光が重畳された光を集光する集光光学系と、前記集光光学系によって集光された光が入射される光ファイバとを備えるものとしても構わない。
【0026】
かかる構成によれば、第二光及び第三光が重畳され、コヒーレント性の高い第一光由来の光を実質的にほとんど含まない状態の光が、集光光学系を通じて光ファイバに入射される。この光が光ファイバを通じて観察試料に照射されることで、スペックルノイズが大幅に低下された観察画像を得ることができる。
【発明の効果】
【0027】
本発明の光源装置によれば、広帯域のスペクトルを示し、且つコヒーレント性の高い光の割合を低下させた光が生成できる。
【図面の簡単な説明】
【0028】
【
図1】光源装置の一実施形態の構成を模式的に示す図面である。
【
図2】第一実施形態の光学系モジュールの構造を模式的に示す図面である。
【
図3】半導体レーザから出射された第一光と蛍光体で生成された第二光とが重畳された光のスペクトルの一例を示す図面である。
【
図4】第二光を含む光が第一ダイクロイックミラーを通過した後に得られる光のスペクトルを示す図面である。
【
図5】
図2に示す図面に、第一ダイクロイックミラーを通過した第一光の進行の状態を付加した図面である。
【
図6】同一条件で設計された、第一ダイクロイックミラー及び第二ダイクロイックミラーの分光透過率の一例を示すグラフである。
【
図7】
図2及び
図5に示す光学系モジュールにおいて、LEDを消灯した状態で第二ダイクロイックミラーを通過した光のスペクトルを示す図面である。
【
図8】
図2及び
図5に示す光学系モジュールにおいて、LEDを点灯した状態で第二ダイクロイックミラーを通過した光のスペクトルを示す図面である。
【
図9】第一実施形態の光学系モジュールの構造を模式的に示す別の図面である。
【
図10A】光遮蔽部の一例を模式的に示す斜視図である。
【
図10B】光遮蔽部の一例を模式的に示す斜視図である。
【
図11】第二実施形態の光学系モジュールの構造を模式的に示す図面である。
【
図12】第三実施形態の光学系モジュールの構造を模式的に示す図面である。
【
図13】別実施形態の光学系モジュールの構造を模式的に示す図面である。
【
図14】別実施形態の光学系モジュールの構造を模式的に示す図面である。
【
図15】
図14に示す光学系モジュールが備えるダイクロイックミラーの分光透過率の一例を示すグラフである。
【
図16】
図15に示す光学系モジュールにおいて、LED(16,41)を点灯した状態でダイクロイックミラー41aを通過した光のスペクトルを示す図面である。
【
図17】別実施形態の光学系モジュールの構造を模式的に示す図面である。
【
図18】別実施形態の光学系モジュールの構造を模式的に示す図面である。
【
図19】別実施形態の光学系モジュールの構造を模式的に示す図面である。
【発明を実施するための形態】
【0029】
以下において、本発明の光源装置の各実施形態につき、図面を参照して説明される。なお、以下の各図面はいずれも模式的に図示されたものであり、図面上の寸法比は必ずしも実際の寸法比と一致していない。また、各図面間においても、寸法比は必ずしも一致していない。
【0030】
[第一実施形態]
図1は、本発明の一実施形態である蛍光顕微鏡用の光源装置の構成を模式的に示す図面である。光源装置1は、筐体2内に配置された光学系モジュール3と、光ファイバ4とを備えている。光学系モジュール3によって生成された広帯域の光L0が、集光光学系5を介して光ファイバ4に集光して入射される。この光L0は、光ファイバ4内を導光された後、図示しない後段の光学系に入射される。この光は、観察対象の試料に励起光として照射され、蛍光画像が作成される。
【0031】
後述されるように、光学系モジュール3によれば、広帯域で且つ低コヒーレントな光L0が生成される。
【0032】
図2は、光学系モジュール3の構造を模式的に示す図面である。光学系モジュール3は、半導体レーザ11と、蛍光体15と、LED16と、第一ダイクロイックミラー21と、第二ダイクロイックミラー22を備えている。
【0033】
本実施形態において、半導体レーザ11は、例えば主たる発光波長が430nm以上、480nm以下の範囲内(「第一波長帯」に対応する。)に属する青色光(以下、「第一光L1」と称する。)を発する素子である。このような半導体レーザ11としては、GaN、InGaNなどの窒化物系半導体よりなる活性層を有するものを用いることができる。
【0034】
本実施形態において、蛍光体15は、半導体レーザ11から出射された第一光L1が入射されると、励起されて、例えば主たる発光波長が450nm以上、650nm以下の範囲内(「第二波長帯」に対応する。)の蛍光(以下、「第二光L2」と称する。)を発する材料で構成されている。
【0035】
図3は、半導体レーザ11から蛍光体15に第一光L1が入射されて蛍光体15から発せられる第二光L2と、第一光L1とが重畳された光のスペクトルの一例を示す図面である。実際には、半導体レーザ11から出射された第一光L1の一部が、蛍光体15によって反射される。よって、蛍光体15からは、当該蛍光体15で生成された第二光L2と、反射光としての第一光L1とが重畳された光が出射される。
図3は、このように、第一光L1と第二光L2とが重畳された光のスペクトルの一例が図示されている。
【0036】
蛍光体15の構造は限定されない。例えば、蛍光体15は、蛍光体結晶よりなるものであっても構わないし、蛍光体結晶の粉末がバインダーによって結着されてなるものであっても構わない。蛍光体結晶としては、Ce:LuAG(Lu3Al5O12)等の希土類元素がドープされたLuAG、Ce:YAG(Y3Al5O12)等の希土類元素がドープされたYAGなどを用いることができる。これらの蛍光体結晶において、希土類元素のドープ量は、例えば0.5mol%程度である。
【0037】
蛍光体15として、蛍光体結晶粉末がバインダーによって結着されてなるものを用いる場合には、蛍光体結晶粉末の平均粒径は、例えば1μm以上、60μm以下である。また、蛍光体15における蛍光体結晶粉末の割合は、例えば30体積%以上、70体積%以下である。また、バインダーとしては、ガラスなどの無機バインダー、シリコーン樹脂などの有機バインダーを用いることができる。
【0038】
図2に示すように、半導体レーザ11から出射された第一光L1は、必要に応じて備えられたコリメートレンズ12を介して平行光化された後、第一ダイクロイックミラー21に入射される。本実施形態において、第一ダイクロイックミラー21は、第一光L1を実質的に反射し、第二光L2を実質的に透過するように設計されている。本実施形態の例では、第一ダイクロイックミラー21は、例えば45°入射の場合に波長440nm以上、470nm以下の光を95%以上反射し、波長500nm以上、550nm以下の光を95%以上透過する。このような第一ダイクロイックミラー21は、例えばガラス基板の上面に、高屈折率の誘電体膜と低屈折率の誘電体膜とが交互に積層されて形成される。
【0039】
上述したように、第一ダイクロイックミラー21は、第一光L1を実質的に反射するように設計されているため、半導体レーザ11から出射された第一光L1が第一ダイクロイックミラー21に入射されると、第一ダイクロイックミラー21で反射されて蛍光体15の配置箇所に向かって進行する。光学系モジュール3は、必要に応じて集光光学系13を備えている。集光光学系13は、第一ダイクロイックミラー21で反射された後の第一光L1を、蛍光体15に向かって集光して出射する。これにより、蛍光体15に対して輝度の高い第一光L1が入射される。
【0040】
上述したように、蛍光体15は、第一光L1が入射されると励起して第二光L2を生成する。この第二光L2は、再び集光光学系13を通過した後、第一ダイクロイックミラー21に入射される。第一ダイクロイックミラー21は、第二光L2を実質的に透過するように設計されているため、蛍光体15から出射された第二光L2は、第一ダイクロイックミラー21をそのまま透過して、後段の第二ダイクロイックミラー22側に進行する。
【0041】
なお、蛍光体15に入射された第一光L1の一部は、蛍光体15で反射されて集光光学系13側に進行する。この反射光を、「第一光L1a」と称する。
図2では、図示の都合上、蛍光体15に向かって進行する第一光L1を示す線と、蛍光体15で反射された第一光L1aを示す線とが、相互にずらして表記されている。以下の各図においても同様である。
【0042】
第一光L1aは、第二光L2と重畳された状態で、集光光学系13を通過した後、第一ダイクロイックミラー21に入射される。ただし、上述したように、第一ダイクロイックミラー21は、第一光L1の波長域、すなわち第一光L1aの波長域を実質的に反射するように設計されている。このため、蛍光体15で反射された第一光L1aは、その大部分が第一ダイクロイックミラー21で反射され(第一光L1b)、後段の第二ダイクロイックミラー22側にはほとんど進行しない。
【0043】
ところが、本発明者の鋭意研究によれば、第一ダイクロイックミラー21の構造によっては、蛍光体15で反射された第一光L1aについても、第一ダイクロイックミラー21を通過する光がある程度存在することが確認された。
図4は、
図3のスペクトルに示されている第二光L2を含む光が、第一ダイクロイックミラー21を通過した後に得られる光のスペクトルを示す図面である。
図3と比較して、第一光L1の強度は大幅に低下していることは確認されるものの、依然として第一光L1由来の光強度が現れていることが分かる。つまり、蛍光体15で反射された後、第一ダイクロイックミラー21に向かう第一光L1aのうち、第一ダイクロイックミラー21で反射された第一光L1b以外に、第一ダイクロイックミラー21を通過して進行する一部の光(第一光L1c:
図5参照)が存在する。なお、
図5は、
図2に示す図面に、第一ダイクロイックミラー21を通過した第一光L1cの進行の状態を付加した図面である。図面上では、この第一光L1cは、第一光(L1,L1a,L1b)よりも細い線幅で図示されているが、これは、第一光L1cの光強度が他の光よりも極めて小さいことを示す意図である。
【0044】
本実施形態の光学系モジュール3は、第一ダイクロイックミラー21の後段に、第二ダイクロイックミラー22を備えている。本実施形態では、このダイクロイックミラー22には、LED16から出射される光(以下、「第三光L3」と称する。)が入射される。
【0045】
LED16は、例えば半導体レーザ11と同様に、主たる発光波長が430nm以上、480nm以下の範囲内(「第一波長帯」に対応する。)に属する青色光を発する素子である。このようなLED16としては、GaN、InGaNなどの窒化物系半導体よりなる活性層を有するものを用いることができる。また、本実施形態において、第二ダイクロイックミラー22は、第二光L2を実質的に透過し、第三光L3を実質的に反射するように設計されている。
【0046】
なお、半導体レーザ11から出射される第一光L1の主たる発光波長と、LED16から出射される第三光L3の主たる発光波長とが、共に第一波長帯に属する構成であればよい。このことは、第一光L1の主ピーク波長と第三光L3の主ピーク波長とが必ずしも同一ではないことを意味する。
【0047】
また、第二ダイクロイックミラー22は、第一ダイクロイックミラー21と同様に、第一波長帯に属する光を実質的に反射し、第二波長帯に属する光を実質的に透過する構成であればよい。すなわち、第二ダイクロイックミラー22は、第一ダイクロイックミラー21と同一の反射/透過条件で設計されたものでも構わないし、異なる反射/透過条件で設計されていても構わない。
【0048】
図6は、同一条件で設計された、第一ダイクロイックミラー21及び第二ダイクロイックミラー22の分光透過率の一例を示すグラフである。この
図6に示す特性を示すダイクロイックミラー(21,22)は、波長500nm以上、550nm以下の光を実質的に透過する一方、波長430nm以上、480nm以下の範囲内の光を実質的に反射する。なお、
図6では、波長430nm以上、480nm以下の範囲内の光に対しては、透過率が5%程度であることのみが示されているが、透過されなかった光がほぼ反射されていることから、上記波長域の光を実質的に反射する機能を有することが分かる。
【0049】
図2及び
図5に示すように、LED16から出射された第三光L3は、必要に応じて備えられたコリメートレンズ17を介して平行光化された後、第二ダイクロイックミラー22に入射される。その後、この第三光L3は、第二ダイクロイックミラー22において実質的に反射され、後段の集光光学系5及び光ファイバ4(
図1参照)の方向に向かって進行する。また、第一ダイクロイックミラー21を透過して進行した第二光L2は、第二ダイクロイックミラー22に入射されると実質的に透過するため、第三光L3と同様に進行する。
【0050】
一方、上述したように、第一ダイクロイックミラー21を透過した、ごくわずかな光量の第一光L1cは、第二ダイクロイックミラー22に入射されると、この第二ダイクロイックミラー22によって実質的に反射される。この結果、第二光L2及び第三光L3とは異なる方向に進行するため、後段の集光光学系5及び光ファイバ4の方向には進行しない。
【0051】
第一ダイクロイックミラー21及び第二ダイクロイックミラー22が、それぞれ5%程度の第一光L1を透過するとした場合、第二ダイクロイックミラー22を透過する第一光L1の割合は約0.03%に留まり、ほとんどゼロに等しい。第二光L2及び第三光L3を含む全体の光L0(
図1参照)に含まれる第一光L1の割合がこの程度であれば、この全体の光L0が光ファイバ4を介して観察対象の試料に照射されたとしても、スペックルノイズの発現にはほとんど寄与しない。
【0052】
一方、LED16から出射される第三光L3は、半導体レーザ11から出射される第一光L1とは異なり、コヒーレント性が低い。従って、この第三光L3が観察対象の試料に照射されたとしても、スペックルノイズの発現には寄与しない。
【0053】
よって、上記の構成によれば、主たる発光波長が第二波長帯に属する第二光L2と、主たる発光波長が第一波長帯に属する第三光L3とが重畳されてなる広帯域の光L0を、コヒーレント性が高い成分をほとんど除去した状態で生成することができる。これにより、スペックルノイズを従来よりも抑制可能な蛍光顕微鏡用光源が実現される。
【0054】
図7は、
図2及び
図5に示す光学系モジュール3において、LED16を消灯した状態で第二ダイクロイックミラー22を通過した光のスペクトルを示す図面である。
図4と比較して、第一光L1由来の光強度が大きく低下されていることが確認される。また、
図8は、
図2及び
図5に示す光学系モジュール3において、LED16を点灯した状態で第二ダイクロイックミラー22を通過した光のスペクトルを示す図面である。コヒーレント性の低い第三光L3が第二光L2と重畳されることで、コヒーレント性の高い第一光L1由来の光が抑制された状態で、広帯域の光が得られていることが確認される。
【0055】
なお、
図9に示すように、第二ダイクロイックミラー22で反射されたごく僅かな第一光L1cが、光ファイバ4などが配置されている後段の光学系に向かって進行しないよう、光遮蔽部30を備えるものとしても構わない。この光遮蔽部30としては、例えば、筐体2の壁面の一部を黒くした吸光体とすることができる。また、別の光遮蔽部30の例としては、筐体2の壁面の一部の面を拡散面にすると共に、拡散反射された光が筐体2の内壁に入射されるよう、筐体2に凹凸加工を施してなる構造を採用することができる。
【0056】
図10A及び
図10Bは、光遮蔽部30の一例を模式的に示す斜視図である。
図10Aと
図10Bは、それぞれ見る方向が異なっている。
図10A及び
図10Bに示す例では、筐体2の壁面の一部が、第二ダイクロイックミラー22側に向けて彫り込まれている。これにより、第二ダイクロイックミラー22で反射された第一光L1cが、筐体2の壁面2aに入射された後、この壁面2aで散乱反射しても、光遮蔽部30を構成する凹部領域内の筐体2の壁面に入射されるため、後段の光学系に向かって進行することが抑制される。
【0057】
なお、
図10A及び
図10Bに示す例では、筐体2の一部が第二ダイクロイックミラー22側に向かって彫り込まれることで、第二ダイクロイックミラー22の端部位置と筐体2の壁面との間の距離が接近する。このため、光遮蔽部30として機能する筐体2の壁面の一部を、第二ダイクロイックミラー22の保持のために利用することもできる。
【0058】
[第二実施形態]
本発明の光源装置の第二実施形態について、第一実施形態と異なる箇所を中心に説明する。なお、以下の各実施形態では、第一実施形態と共通の要素については同一の符号を付し、その説明が適宜割愛される。
【0059】
図11は、本実施形態の光源装置1が備える光学系モジュール3の構造を模式的に示す図面である。本実施形態では、第一実施形態と比較して、更に第三ダイクロイックミラー23を備えている点が異なる。この第三ダイクロイックミラー23は、「光学部材」に対応する。
【0060】
第三ダイクロイックミラー23は、第一ダイクロイックミラー21と同様に、第一波長帯に属する光を実質的に反射し、第二波長帯に属する光を実質的に透過する構成である。すなわち、第三ダイクロイックミラー23は、第一ダイクロイックミラー21と同一の反射/透過条件で設計されたものでも構わないし、異なる反射/透過条件で設計されていても構わない。
【0061】
本実施形態の光学系モジュール3によれば、第一ダイクロイックミラー21を透過した、ごくわずかな光量の第一光L1cは、第三ダイクロイックミラー23に入射されると、この第三ダイクロイックミラー23によって実質的に反射される。この結果、第二光L2とは異なる方向に進行するため、後段の第二ダイクロイックミラー22の方向に進行しない。
【0062】
そして、本実施形態の構成によれば、仮に極めてわずかな光量の第一光L1cが第三ダイクロイックミラー23を通過したとしても、更に後段に配置された第二ダイクロイックミラー22によって実質的に反射され、第二光L2とは進行方向を変化させられる。この結果、本実施形態の光学系モジュール3によれば、第一実施形態の構成と比較して、更に、コヒーレント性が高い成分が除去された広帯域の光L0を生成することができる。
【0063】
なお、
図11に示す光学系モジュール3は、第三ダイクロイックミラー23で反射されたごく僅かな第一光L1cが、第二ダイクロイックミラー22に向かって進行しないよう、光遮蔽部30を備えている。ただし、光学系モジュール3が光遮蔽部30を備えるか否かは任意である。また、第一実施形態と同様に、第二ダイクロイックミラー22で反射されたごく僅かな第一光L1cが、集光光学系5や光ファイバ4などが配置されている後段の光学系に向かって進行しないよう、光遮蔽部30を備えるものとしても構わない。以下の各実施形態においても同様である。
【0064】
[第三実施形態]
本発明の光源装置の第三実施形態について、第一実施形態と異なる箇所を中心に説明する。
【0065】
図12は、本実施形態の光源装置1が備える光学系モジュール3の構造を模式的に示す図面である。本実施形態では、第一実施形態と比較して、更に光学フィルタ25を備えている点が異なる。この光学フィルタ25は、「光学部材」に対応する。
【0066】
光学フィルタ25は、第二波長帯に属する光を実質的に透過する一方、第一波長帯に属する光を実質的に透過しないように設計されている。光学フィルタ25は、第一波長帯に属する光を実質的に吸収するものとしても構わないし、反射するものとしても構わない。
【0067】
本実施形態の光学系モジュール3によれば、第一ダイクロイックミラー21を透過した、ごくわずかな光量の第一光L1cは、光学フィルタ25に入射されると、この光学フィルタ25を実質的に透過できないため、後段の第二ダイクロイックミラー22の方向に進行しない。一方、第二光L2は、光学フィルタ25を実質的に透過して第二ダイクロイックミラー22に向かって進行する。
【0068】
そして、本実施形態の構成においても、第二実施形態と同様に、仮に極めてわずかな光量の第一光L1cが光学フィルタ25を通過したとしても、更に後段に配置された第二ダイクロイックミラー22によって実質的に反射され、第二光L2とは進行方向を変化させられる。この結果、本実施形態の光学系モジュール3によれば、第一実施形態の構成と比較して、更に、コヒーレント性が高い成分が除去された広帯域の光L0を生成することができる。
【0069】
なお、第二実施形態の光源装置1が、第三ダイクロイックミラー23に加えて光学フィルタ25を備えるものとしても構わない。
【0070】
[別実施形態]
本発明の光源装置の別実施形態につき、以下説明する。なお、以下の各図面では、図示の都合上、蛍光体15で反射された第一光L1a、及びこの第一光L1a由来の光(L1b、L1c等)の図示を省略することがある。また、以下の別実施形態は、上述した各実施形態の構成と適宜組み合わせることが可能である。
【0071】
〈1〉
図13に示すように、半導体レーザ11とLED16とが同一の側(図面上の+Z側)に配置されるものとしても構わない。この場合、第一ダイクロイックミラー21の反射面と第二ダイクロイックミラー22の反射面とは相互に非平行となる。かかる構成によれば、熱源となる半導体レーザ11とLED16とが同一側に配置されるため、同一の冷却面で冷却することができる。
【0072】
〈2〉
図14に示すように、光学系モジュール3は、LED16とは異なる波長域の光L4を発するLED41を更に備えるものとしても構わない。
図14に示す光学系モジュール3は、第一実施形態と比較して、LED41及びダイクロイックミラー41aを更に備えている。
【0073】
ダイクロイックミラー41aは、LED41から出射される光L4を実質的に反射する一方、第二光L2及び第三光L3を実質的に透過するように設計されている。現実的には、LED41から出射される光L4は、第三光L3よりも短波長帯の光である。すなわち、ダイクロイックミラー41aは、第一ダイクロイックミラー21及び第二ダイクロイックミラー22と比較して、より短波長の光を透過するように設計されている。
図15は、
図6にならって図示された、ダイクロイックミラー41aの分光透過率の一例を示すグラフである。なお、
図15は、
図6で図示された第一ダイクロイックミラー21及び第二ダイクロイックミラー22の分光透過率の一例を示すグラフに重ね合わせられて図示されている。
【0074】
かかる構成によれば、上記各実施形態の光源装置1に比べて、より短波長の光L4が重畳された光が生成されるため、より広帯域の光が生成される。
図16は、LED16及びLED41を点灯した状態でダイクロイックミラー41aを透過した光のスペクトルを示す図面である。この光に、コヒーレント性の高い第一光L1由来の光が含まれないことは、上述した通りである。
【0075】
なお、光学系モジュール3は、更に別の波長帯のLEDを備えるものとしても構わない。
【0076】
〈3〉上記各実施形態では、第一ダイクロイックミラー21が、第一光L1を実質的に反射する一方、第二光L2を実質的に透過するものとした。しかし、逆に、第一ダイクロイックミラー21が、第一光L1を実質的に透過する一方、第二光L2を実質的に反射する構成であっても構わない。
図17は、この別実施形態の光源装置1が備える光学系モジュール3の構造を、
図5にならって模式的に示す図面である。
【0077】
この実施形態の光学系モジュール3では、半導体レーザ11から出射された第一光L1は、第一ダイクロイックミラー21を透過して蛍光体15に入射される。蛍光体15で生成された第二光L2は、第一ダイクロイックミラー21で反射されて第二ダイクロイックミラー22に導かれる。また、蛍光体15で反射された第一光L1aは、そのほとんどが第一ダイクロイックミラー21を透過して半導体レーザ11側に進行する(第一光L1b)。ただし、数%程度の第一光L1aは、第一ダイクロイックミラー21では反射され(第一光L1c)、第二ダイクロイックミラー22に導かれる。
【0078】
図17に示す光学系モジュール3の構成であっても、第二ダイクロイックミラー22によって、第一光L1cが第二光L2とは進行方向を変更させられるため、第一実施形態と同様に、コヒーレント性が高い成分をほとんど除去した状態の広帯域の光を後段の光学系に導くことができる。
【0079】
〈4〉上記第二実施形態(
図11参照)では、第三ダイクロイックミラー23が、第一光L1を実質的に反射する一方、第二光L2を実質的に透過するものとした。しかし、逆に、第三ダイクロイックミラー23が、第一光L1を実質的に透過する一方、第二光L2を実質的に反射する構成であっても構わない。
図18は、この別実施形態の光源装置1が備える光学系モジュール3の構造を、
図11にならって模式的に示す図面である。
【0080】
この実施形態の光学系モジュール3では、蛍光体15で生成された第二光L2は、第三ダイクロイックミラー23で反射されて第二ダイクロイックミラー22に導かれる。また、また、蛍光体15で反射された第一光L1aは、そのほとんどが第一ダイクロイックミラー21で反射されて半導体レーザ11側に進行するが(第一光L1b)、数%程度の第一光L1aは、第一ダイクロイックミラー21を透過して(第一光L1c)、第三ダイクロイックミラー23に導かれる。
【0081】
そして、このごく僅かな光量の第一光L1cは、第三ダイクロイックミラー23によって実質的に透過されるため、第三ダイクロイックミラー23によって第二光L2とは進行方向が変更させられる。この結果、第三ダイクロイックミラー23から第二ダイクロイックミラー22に向かう光は、実質的に第二光L2由来の光となる。そして、第二ダイクロイックミラー22によって、LED16から出射された第三光L3と重ね合わせられることで、コヒーレント性が高い成分をほとんど除去した状態の広帯域の光が後段の光学系に導かれる。
【0082】
なお、
図18に示す光学系モジュール3において、仮に第三ダイクロイックミラー23でごくわずかな第一光L1cが反射して、第二光L2と同方向に進行したとしても、この第一光L1cは、更に後段に配置されている第二ダイクロイックミラー22で反射される。この結果、ごく僅かな光量からなる第一光L1cは、第二光L2や第三光L3とは異なる進行方向に向かって進行するため、後段の光学系に導かれることはない。これにより、第一実施形態の構成と比較して、更に、コヒーレント性が高い成分が除去された広帯域の光L0を生成することができる。
【0083】
〈5〉上記各実施形態では、第二ダイクロイックミラー22が、第二光L2を実質的に透過する一方、第三光L3を実質的に反射するものとした。しかし、逆に、第二ダイクロイックミラー22が、第三光L3を実質的に透過する一方、第二光L2を実質的に反射する構成であっても構わない。
図19は、この別実施形態の光源装置1が備える光学系モジュール3の構造を、
図2にならって模式的に示す図面である。
【0084】
この場合、LED16から出射された第三光L3は、第二ダイクロイックミラー22を透過して進行する。また、蛍光体15から出射され第一ダイクロイックミラー21を経て第二ダイクロイックミラー22に入射された第二光L2は、第二ダイクロイックミラー22で反射され、第三光L3と重畳される。
【0085】
一方、第一ダイクロイックミラー21を通過した、ごく僅かの第一光L1cは、第二ダイクロイックミラー22に入射されると、実質的に透過して進行する。この結果、上記各実施形態と同様に、第一光L1cが第二光L2とは進行方向を変更させられるため、コヒーレント性が高い成分をほとんど除去した状態の広帯域の光を後段の光学系に導くことができる。
【0086】
〈6〉光学系モジュール3は、複数個の半導体レーザ11を備えるものとしても構わない。同様に、光学系モジュール3は、複数個のLED16を備えるものとしても構わない。
【0087】
〈7〉半導体レーザ11から出射される第一光L1は、青色光には限定されない。第一光L1は、蛍光体15を励起して、第一光L1とは異なる波長域の第二光L2を生成することが可能な光であればよい。
【0088】
〈8〉光学系モジュール3を含む光源装置1は、蛍光顕微鏡用の光源には限定されない。本発明の光源装置1は、広帯域で低コヒーレントな光を利用することが想定されている、種々のアプリケーションに利用することができる。なお、光源装置1が光ファイバ4及び集光光学系5を備えるか否かは任意である。
【符号の説明】
【0089】
1 :光源装置
2 :筐体
2a :壁面
3 :光学系モジュール
4 :光ファイバ
5 :集光光学系
11 :半導体レーザ
12 :コリメートレンズ
13 :集光光学系
15 :蛍光体
16 :LED
17 :コリメートレンズ
21 :第一ダイクロイックミラー
22 :第二ダイクロイックミラー
23 :第三ダイクロイックミラー
25 :光学フィルタ
30 :光遮蔽部
41 :LED
41a :ダイクロイックミラー
L0 :光
L1(L1a,L1b,L1c) :第一光
L2 :第二光
L3 :第三光
L4 :光