(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-13
(45)【発行日】2023-11-21
(54)【発明の名称】機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の調整方法、およびプログラム
(51)【国際特許分類】
B23K 9/04 20060101AFI20231114BHJP
B23K 9/032 20060101ALI20231114BHJP
B33Y 50/00 20150101ALI20231114BHJP
B33Y 30/00 20150101ALI20231114BHJP
【FI】
B23K9/04 G
B23K9/04 Z
B23K9/032 Z
B33Y50/00
B33Y30/00
(21)【出願番号】P 2020121581
(22)【出願日】2020-07-15
【審査請求日】2022-11-01
(73)【特許権者】
【識別番号】000001199
【氏名又は名称】株式会社神戸製鋼所
(74)【代理人】
【識別番号】110002000
【氏名又は名称】弁理士法人栄光事務所
(72)【発明者】
【氏名】黄 碩
【審査官】柏原 郁昭
(56)【参考文献】
【文献】特開2020-069662(JP,A)
【文献】特開2020-006378(JP,A)
【文献】特開2018-149570(JP,A)
【文献】特開2020-001059(JP,A)
【文献】国際公開第2019/198212(WO,A1)
【文献】特開2018-027558(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 9/04
B23K 9/032
B33Y 50/00
B33Y 30/00
(57)【特許請求の範囲】
【請求項1】
溶加材を溶着して溶接ビードを積層することで積層造形物を造形する際の溶接条件の機械学習を行う機械学習装置であって、
形成された溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データと
して学習処理を行うことで学習済みモデルを生成す
る学習処理手段
を有
し、
前記学習済みモデルは、前記積層造形物の設計データに基づく溶接ビードの第1の形状データと、前記積層造形物の設計データに基づく前記第1の形状データを形成する際の溶接条件を用いて形成された溶接ビードの第2の形状データとの差分が入力されることにより、前記第1の形状データを形成する際の溶接条件を調整するための差分を導出する際に用いられる、ことを特徴とする機械学習装置。
【請求項2】
前記形状データは、前記溶接ビードの高さ、幅、根元部の角度、および表面の凹凸の少なくともいずれかを含むことを特徴とする請求項1に記載の機械学習装置。
【請求項3】
前記溶接条件は、前記溶加材の送給速度、前記積層造形物が造形されるベース上での狙い位置、造形時の入熱量、およびウィービングの制御条件の少なくともいずれかを含むことを特徴とする請求項1または2に記載の機械学習装置。
【請求項4】
前記溶接条件は、積層パス数、または母材温度をさらに含むことを特徴とする請求項3に記載の機械学習装置。
【請求項5】
前記学習処理手段は、前記積層造形物を造形する際に用いられる電源の制御モードごとに学習済みモデルを生成することを特徴とする請求項1~4のいずれか一項に記載の機械学習装置。
【請求項6】
前記電源の制御モードごとに、前記溶接条件に対応して供給される電圧値、電流値、または電流のパルスの少なくともいずれかが異なることを特徴とする請求項5に記載の機械学習装置。
【請求項7】
前記学習処理手段は、ニューラルネットワークを用いた教師あり学習の手法を用いて前記学習処理を行うことを特徴とする請求項1~6のいずれか一項に記載の機械学習装置。
【請求項8】
溶加材を溶着して溶接ビードを積層することで積層造形物を造形する積層造形システムであって、
前記積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成手段と、
前記第1の形状データを形成する際の溶接条件を決定する決定手段と、
前記決定手段にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得手段と、
形成された溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出手段と、
前記導出手段にて導出された差分を用いて、前記決定手段にて決定された溶接条件を調整する調整手段と
を有することを特徴とする積層造形システム。
【請求項9】
前記導出手段は、前記第1の形状データと前記第2の形状データの差分が、所定の閾値以上である場合に、前記決定手段にて決定された溶接条件を調整するための差分を導出することを特徴とする請求項8に記載の積層造形システム。
【請求項10】
前記決定手段は、溶接ビードの形状と溶接条件とが予め対応付けられたデータベースを用いて、前記第1の形状データを形成する際の溶接条件を決定することを特徴とする請求項8または9に記載の積層造形システム。
【請求項11】
前記取得手段は、センサにより前記溶接ビードを測定することにより当該溶接ビードの形状データを取得することを特徴とする請求項8~10のいずれか一項に記載の積層造形システム。
【請求項12】
溶加材を溶着して溶接ビードを積層することで積層造形物を造形する際の溶接条件の機械学習方法であって、
形成された溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データと
して学習処理を行うことで学習済みモデルを生成す
る学習処理工程
を有
し、
前記学習済みモデルは、前記積層造形物の設計データに基づく溶接ビードの第1の形状データと、前記積層造形物の設計データに基づく前記第1の形状データを形成する際の溶接条件を用いて形成された溶接ビードの第2の形状データとの差分が入力されることにより、前記第1の形状データを形成する際の溶接条件を調整するための差分を導出する際に用いられる、ことを特徴とする機械学習方法。
【請求項13】
溶加材を溶着して溶接ビードを積層することで積層造形物を造形する積層造形システムにおける溶接条件の調整方法であって、
前記積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成工程と、
前記第1の形状データを形成する際の溶接条件を決定する決定工程と、
前記決定工程にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得工程と、
形成された溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出工程と、
前記導出工程にて導出された差分を用いて、前記決定工程にて決定された溶接条件を調整する調整工程と
を有することを特徴とする溶接条件の調整方法。
【請求項14】
コンピュータに、
積層造形物を造形する際の
形成された溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データと
して学習処理を行うことで学習済みモデルを生成す
る学習処理工程
を実行させ
、
前記学習済みモデルは、前記積層造形物の設計データに基づく溶接ビードの第1の形状データと、前記積層造形物の設計データに基づく前記第1の形状データを形成する際の溶接条件を用いて形成された溶接ビードの第2の形状データとの差分が入力されることにより、前記第1の形状データを形成する際の溶接条件を調整するための差分を導出する際に用いられる、プログラム。
【請求項15】
コンピュータに、
溶加材を溶着して溶接ビードを積層することで造形される積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成工程と、
前記第1の形状データを形成する際の溶接条件を決定する決定工程と、
前記決定工程にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得工程と、
形成された溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出工程と、
前記導出工程にて導出された差分を用いて、前記決定工程にて決定された溶接条件を調整する調整工程と
を実行させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の調整方法、およびプログラムに関する。より詳しくは、溶接ビードを積層することで積層造形物を造形する際の溶接条件の調整技術に関する。
【背景技術】
【0002】
従来、溶接ビードを積層することで積層造形物を造形することが行われている。積層造形を行う際には、その造形精度を向上させるために様々な溶接条件を考慮して制御する必要がある。このような溶接条件は多くの組み合わせが生じるため、適切な溶接条件の抽出は、人手で行う場合には非常に複雑かつ煩雑なものとなっていた。
【0003】
上記のような状況に関し、例えば、特許文献1では、溶接装置において、熟練した作業者の教示なしで最適な溶接条件を自動的に決定するための学習装置が開示されている。この場合に、学習に用いる情報としては、ビードの外観、ビードの高さや幅、溶け込み量などが示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述したように、積層造形の際の溶接条件の調整において、ビード形状(幅や高さなど)の変化傾向を把握するには、非常に多くの条件の組み合わせが考えられるため、適切な組み合わせを特定することは困難である。例えば、条件の組み合わせを規定したデータベースを作成することが考えられるが、その作成は負荷が高いものとなる。さらには、データベースを作成するにあたって、積層造形を行う電源やロボットの機差を無視することはできず、そうした装置固有の影響に基づいて溶接条件を調整する場合、溶接条件の抽出がさらに複雑かつ煩雑となる。上述した特許文献1では、このような電源やロボットの機差については考慮されておらず、この点からも改善の余地があった。
【0006】
上記課題を鑑み、本願発明は、積層造形物の造形時における溶接条件の調整の精度を向上させることを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために本願発明は以下の構成を有する。
(1) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する際の溶接条件の機械学習を行う機械学習装置であって、
溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データとする学習済みモデルを生成するための学習処理を行う学習処理手段
を有することを特徴とする機械学習装置。
【0008】
また、本願発明の別の一形態として、以下の構成を有する。
(2) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する積層造形システムであって、
前記積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成手段と、
前記第1の形状データを形成する際の溶接条件を決定する決定手段と、
前記決定手段にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得手段と、
溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出手段と、
前記導出手段にて導出された差分を用いて、前記決定手段にて決定された溶接条件を調整する調整手段と
を有することを特徴とする積層造形システム。
【0009】
また、本願発明の別の一形態として、以下の構成を有する。
(3) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する際の溶接条件の機械学習方法であって、
溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データとする学習済みモデルを生成するための学習処理を行う学習処理工程
を有することを特徴とする機械学習方法。
【0010】
また、本願発明の別の一形態として、以下の構成を有する。
(4) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する積層造形システムにおける溶接条件の調整方法であって、
前記積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成工程と、
前記第1の形状データを形成する際の溶接条件を決定する決定工程と、
前記決定工程にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得工程と、
溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出工程と、
前記導出工程にて導出された差分を用いて、前記決定工程にて決定された溶接条件を調整する調整工程と
を有することを特徴とする溶接条件の調整方法。
【0011】
また、本願発明の別の一形態として、以下の構成を有する。
(5) コンピュータに、
積層造形物を造形する際の溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データとする学習済みモデルを生成するための学習処理を行う学習処理工程
を実行させるためのプログラム。
【0012】
また、本願発明の別の一形態として、以下の構成を有する。
(6) コンピュータに、
溶加材を溶着して溶接ビードを積層することで造形される積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成工程と、
前記第1の形状データを形成する際の溶接条件を決定する決定工程と、
前記決定工程にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得工程と、
溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出工程と、
前記導出工程にて導出された差分を用いて、前記決定工程にて決定された溶接条件を調整する調整工程と
を実行させるためのプログラム。
【発明の効果】
【0013】
本願発明により、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。
【図面の簡単な説明】
【0014】
【
図1】本願発明の一実施形態に係る積層造形システムの構成例を示す概略構成図。
【
図2A】送給速度と電源の制御値の関係性を説明するための概念図。
【
図2B】積層造形システムにおけるビード形成時の狙い位置の入力と出力の関係性を説明するための概念図。
【
図3】ビードの形状データを説明するための概念図。
【
図4】本願発明の一実施形態に係る学習処理の概念を説明するための概略図。
【
図5】本願発明の第1の実施形態に係る造形処理のフローチャート。
【発明を実施するための形態】
【0015】
以下、本願発明を実施するための形態について図面などを参照して説明する。なお、以下に説明する実施形態は、本願発明を説明するための一実施形態であり、本願発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されている全ての構成が本願発明の課題を解決するために必須の構成であるとは限らない。また、各図面において、同じ構成要素については、同じ参照番号を付すことにより対応関係を示す。
【0016】
<第1の実施形態>
以下、本願発明の第1の実施形態について説明を行う。
【0017】
[システム構成]
以下、本願発明の一実施形態について、図面を参照して詳細に説明する。
図1は、本願発明を適用可能な積層造形システムの概略構成図である。
【0018】
本実施形態に係る積層造形システム1は、積層造形装置100、および、積層造形装置100を統括制御する情報処理装置200を含んで構成される。
【0019】
積層造形装置100は、溶接ロボット104、トーチ102に溶加材(溶接ワイヤ)Mを供給する溶加材供給部105、溶接ロボット104を制御するロボットコントローラ106、および電源107を含んで構成される。
【0020】
溶接ロボット104は、多関節ロボットであり、先端軸に設けたトーチ102には、溶加材Mが連続供給可能に支持される。トーチ102は、溶加材Mを先端から突出した状態に保持する。トーチ102の位置や姿勢は、溶接ロボット104を構成するロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。
【0021】
トーチ102は、シールドノズル(不図示)を有し、シールドノズルからシールドガスが供給される。シールドガスは、大気を遮断し、溶接中の溶融金属の酸化、窒化などを防いで溶接不良を抑制する。本実施形態で用いられるアーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、造形する積層造形物Wに応じて適宜選定される。
【0022】
トーチ102近傍には、トーチ102の動きに追従して移動可能な形状センサ101が備えられる。形状センサ101は、ベース103上に形成された積層造形物Wの形状を検知する。本実施形態では、形状センサ101により、積層造形物Wを構成する溶接ビード108(単に、「ビード」とも称する)の高さや位置、幅などを検出可能であるものとする。形状センサ101にて検出された情報は、情報処理装置200へ送信される。なお、形状センサ101の構成は、特に限定するものではなく、接触により形状を検出する構成(接触式センサ)であってもよいし、レーザなどにより形状を検出するような構成(非接触式センサ)であってもよい。なお、形成されたビードの形状を導出する手段としては、トーチ102近傍に設置された形状センサ101に限定するものではない。例えば、形成されたビードの形状を間接的に導出するような構成であってもよい。一例としては、溶接電流や溶加材Mの送給速度のプロファイルと、ビードの高さの傾向を示すDB(データベース)を予め規定しておき、造形時の溶接条件に基づいて、形成されたビードの高さを導出するような構成であってもよい。
【0023】
溶接ロボット104において、アーク溶接法が消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ102は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた繰り出し機構(不図示)により、溶加材供給部105からトーチ102に送給される。そして、トーチ102を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、溶加材Mの溶融凝固体である線状の溶接ビード108がベース103上に形成される。溶接ビード108が積層されることで、積層造形物Wが造形されることとなる。
【0024】
なお、溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビームやレーザにより加熱する場合、加熱量を更に細かく制御でき、溶接ビード108の状態をより適正に維持して、積層造形物Wの更なる品質向上に寄与できる。
【0025】
ロボットコントローラ106は、情報処理装置200からの指示に基づき、所定の駆動プログラムにより溶接ロボット104を駆動させ、ベース103上に積層造形物Wを造形させる。つまり、溶接ロボット104は、ロボットコントローラ106からの指令により、溶加材Mをアークで溶融させながらトーチ102を移動させる。電源107は、ロボットコントローラ106に溶接に要する電力を供給する溶接電源である。電源107は、複数の制御モードで動作可能であり、制御モードに応じて、ロボットコントローラ106への電源供給の際の電力(電流や電圧など)を切り替えることが可能である。溶加材供給部105は、情報処理装置200からの指示に基づき、溶接ロボット104のトーチ102への溶加材Mの供給および送給速度を制御する。
【0026】
情報処理装置200は、例えば、PC(Personal Computer)などの情報処理装置などであってよい。
図1に示す各機能は、不図示の制御部が、不図示の記憶部に記憶された本実施形態に係る機能のプログラムを読み出して実行することで実現されてよい。記憶部としては、揮発性の記憶領域であるRAM(Random Access Memory)や、不揮発性の記憶領域であるROM(Read Only Memory)やHDD(Hard Disk Drive)などが含まれてよい。また、制御部としては、CPU(Central Processing Unit)、GPU(Graphical Processing Unit)、またはGPGPU(General-Purpose computing on Graphics Processing Units)などが用いられてよい。
【0027】
情報処理装置200は、造形制御部201、電源制御部202、送給制御部203、DB管理部204、形状データ取得部205、学習用データ管理部206、学習処理部207、および溶接条件導出部208を含んで構成される。造形制御部201は、造形しようとする積層造形物Wの設計データ(例えば、CAD/CAMデータなど)に基づき、造形の際のロボットコントローラ106に対する制御信号を生成する。ここでの制御信号は、溶接ロボット104によるトーチ102の移動軌跡や溶接ビード108の形成時の溶接条件、溶加材供給部105による溶加材Mの送給速度などを含む。トーチ102の移動軌跡は、ベース103上に溶接ビード108を形成している最中のトーチ102の軌跡に限定するものではなく、例えば、溶接ビード108を形成する開始位置へのトーチ102の移動軌跡なども含むものとする。
【0028】
電源制御部202は、電源107によるロボットコントローラ106への電源供給(制御モード)を制御する。制御モードに応じて、同じ形状のビードを形成する際の電流や電圧の値、電流の波形(パルス)なども異なり得る。また、電源制御部202は、電源107から、ロボットコントローラ106に対して提供している電流や電圧の情報を適時取得する。
【0029】
送給制御部203は、溶加材供給部105による溶加材Mの送給速度や送給タイミングを制御する。ここでの溶加材Mの送給制御は、繰り出し(正送給)のみならず、戻し(逆送給)も含むものとする。DB管理部204は、本実施形態に係るDB(データベース)を管理する。本実施形態に係るDBの詳細は後述する。形状データ取得部205は、形状センサ101にて検出された、ベース103上に形成された溶接ビード108の形状データを取得する。
【0030】
学習用データ管理部206は、学習処理部207にて行われる学習処理にて用いられる学習用データの生成および管理を行う。学習処理部207は、学習用データ管理部206にて管理されている学習用データを用いて、学習処理を行う。本実施形態に係る学習用データおよび学習処理の詳細は後述する。また、学習処理部207は、学習処理の結果として得られる学習済みモデルを管理する。上述したように、本実施形態に係る電源107は複数の制御モードにて動作可能である。これに伴い、本実施形態に係る学習処理部207は、電源107の複数の制御モードそれぞれに対応した学習を行い、学習済みモデルを生成する。
【0031】
溶接条件導出部208は、学習処理部207にて生成された学習済みモデルを用いて、造形制御部201の溶接条件に対する調整量を導出し、造形制御部201に通知する。本実施形態に係る調整量の導出方法については、後述する。
【0032】
本実施形態では、
図1に示すように、円柱状のベース103上にてトーチ102を移動させて溶接ビード108を形成して積層造形物Wを造形する構成を例に挙げて説明する。
図1において、本実施形態においてベース103は、円柱の平面上に積層造形物Wが造形されるような構成を示しているが、これに限定するものではない。例えば、ベース103が円柱状にて構成され、その側面外周に溶接ビード108が形成されるような構成であってもよい。また、本実施形態に係る設計データにおける座標系と、積層造形物Wが造形されるベース103上での座標系は対応付けられており、任意の位置を原点として、3次元における位置が規定されるように座標系の3軸(X軸、Y軸、Z軸)が設定されているものとする。
【0033】
上記構成の積層造形システム1は、設定された設計データから規定されるトーチ102の移動軌跡に従って、トーチ102を溶接ロボット104の駆動により移動させながら、溶加材Mを溶融させ、溶融した溶加材Mをベース103上に供給する。これにより、ベース103の上面に複数の線状の溶接ビード108が並べられて積層された積層造形物Wが造形される。
【0034】
[造形時の要因の関係性]
積層造形物Wを造形する際には、電源107の動作状態や、装置固有の特性、積層造形物Wの構成などに起因して、造形時の制御パラメータを調整する必要がある。より具体的には、溶接時の様々な制御パラメータに応じて、ビードの形状が変化し得る。以下に、ビードの形状に影響する制御パラメータの例について説明する。
【0035】
ビードの形状に影響する制御パラメータの例として、溶加材Mの送給速度、溶接速度、溶接量、狙い位置、ウィービングの振幅や振動数、入熱量などが挙げられる。溶加材Mの送給速度を例に挙げて説明する。
図2Aは、溶加材Mの送給速度と電源107により供給される電流(または、電圧)の関係を示す図であり、横軸は溶加材Mの送給速度を示し、縦軸は電源107により供給される電流(または、電圧)の制御値を示す。送給速度が上昇することに伴って、電源107から供給される電流(または、電圧)は上昇するが、その上昇は一定ではない。この変動の傾向は、電源107の制御モードによって異なり得る。そのため、この変動の傾向の差分によって、同じ制御パラメータであっても形成されるビードの形状が変動し得る。
【0036】
他の例として、ビード形成時の狙い位置について説明する。
図2Bは、設計データに基づいて特定されるベース103上のビードの狙い位置(入力)と、形成結果として得られるビードの狙い位置(出力)との関係を示す図であり、横軸が入力を示し、縦軸が出力を示す。
図2Bにおいて、破線は入力と出力の関係の理想を示し、入力値(すなわち、設計値)と出力値とが同じ値を示している。しかしながら、実際には、機器の性能や仕様など様々な要因に起因して、入力値と出力値は必ずしも一致しない。例えば、
図2Bの実線は、実際の入力値と出力値の関係の一例を示し、これに示されるように、設計値と出力結果には差異が生じ得る。そのため、同じ制御パラメータであっても、狙い位置の差異(ずれ)によるビードの形状が変動し得る。
【0037】
図3は、溶接ビードの形状データを説明するための概念図である。
図3は、ベース103上に溶接ビード108が形成された状態において、形成時のトーチ102の進行方向から見た断面を示している。
図3に示すように、溶接ビード108の形状データとしては、高さh、幅w、根元部の角度α、表面凹凸などの情報を用いることが可能である。
【0038】
[データベース]
本実施形態においては、溶接条件とその溶接条件にて形成されるビードの形状情報との関係性を示すデータベースを用いる。このデータベースは、DB管理部204にて管理されており、予め規定されているものとする。上述したように、本実施形態に係る電源107は複数の制御モードにて動作可能である。これに伴い、複数の制御モードそれぞれに対応した複数のデータベースが規定され、管理されているものとする。
【0039】
本実施形態に係るデータベースにおいては、溶接条件としての予め規定された制御パラメータと、その制御パラメータを用いて溶接を行った際に形成されるビードの形状の情報とが対応付けて保持されているものとする。溶接条件の項目としては、上述したような溶加材Mの溶接量、狙い位置、ウィーウィング条件、入熱量、積層パス数、母材温度、パス間時間などが含まれる。また、ビード形状の情報の項目としては、
図3に示したようなビードの高さ、幅、根元部の角度、表面の凹凸などが含まれる。なお、データベースにて規定される各種情報の項目は、上記に限定するものではなく、必要に応じて増減してよい。
【0040】
[学習処理]
本実施形態においては、学習手法として機械学習のうちのニューラルネットワークによるディープラーニング(深層学習)の手法を用い、教師あり学習を例に挙げて説明する。なお、ディープラーニングのより具体的な手法(アルゴリズム)は特に限定するものではなく、例えば、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)など公知の方法が用いられてよい。
【0041】
図4は、本実施形態に係る学習処理の概念を説明するための概略図である。まず、本実施形態では、元データとして、ビードの形状を示す形状データと当該ビードを形成した際に用いられた溶接条件の対のデータを複数用いる。なお、元データは、ビードの形成履歴として保持されているデータを用いてよい。複数の対のデータを用いて、形状データと溶接条件それぞれの差分を求める。例えば、ビード形状Aの形状データAとビード形状Bの形状データBの差分と、ビード形状Aに対応する溶接条件Aとビード形状Bに対応する溶接条件Bの差分を求める。そして、これらにおいて、ビード形状の差分を入力データとし、溶接条件の差分を教師データとした学習用データを複数用意する。
【0042】
本実施形態では、上記の学習用データを用いて学習処理を行う。学習モデルに対して、学習用データとして用意された入力データ(ここでは、ビード形状の差分)を入力すると、その入力データに対する出力データとして、溶接条件の差分が出力される。この出力データは、溶接条件の調整量に相当する。次に、この出力データと、学習用データとして用意された教師データ(ここでは、溶接条件の差分)とを用いて、損失関数により誤差を導出する。そして、その誤差が小さくなるように、学習モデルにおける各パラメータが調整される。パラメータの調整には、例えば、誤差逆伝搬法などを用いてよい。このようにして、複数の学習用データを用いて繰り返し学習が行われることで、学習済みモデルが生成される。学習済みモデルは、学習処理の実行に伴ってその都度更新されるため、用いるタイミングに応じて、学習済みモデルを構成するパラメータは変更され、入力データに対する出力結果も異なる。
【0043】
なお、学習処理は、必ずしも情報処理装置200が実行する必要はない。例えば、情報処理装置200は、学習用のデータの提供を、情報処理装置200の外部に設けられた学習用のサーバ(不図示)に対して行い、当該サーバ側で学習処理を行うような構成であってもよい。そして、必要に応じて、当該サーバが情報処理装置200に学習済みモデルを提供するような構成であってもよい。このような学習用のサーバは、例えばインターネットなどのネットワーク(不図示)上に位置してよく、学習用のサーバと情報処理装置200は、通信可能に接続されているものとする。つまり、情報処理装置200が機械学習装置として動作してもよいし、外部装置が機械学習装置として動作してもよい。いずれの場合においても、情報処理装置200は、学習処理にて得られた学習済みモデルを取得し、積層造形物Wの造形時に利用可能であるものとする。
【0044】
[処理フロー]
図5は、本実施形態に係る溶接条件の調整処理のフローチャートである。本処理は、情報処理装置200により実行、制御され、例えば、情報処理装置200が備えるCPUやGPUなどの処理部が
図1に示した各部位を実現するためのプログラムを記憶部(不図示)から読み出して実行することにより実現されてよい。また、本処理フローが開始される前に、上述した学習処理が行われ、学習済みモデルが生成されているものとする。また、本処理フローによるパラメータの調整のための処理は、実際の積層造形物Wの造形が開始される直前に行われてもよい。または、積層造形物Wの造形を行っている最中において、電源の制御モードが切り替わった場合や、形成するビードの層が次の層に移行した場合に行われてもよい。ここでは、積層造形物Wが造形される直前に、ベース103上において積層造形物Wが造形される位置とは異なる位置を利用して調整が行われるものとして説明する。
【0045】
S501にて、情報処理装置200は、積層造形物Wの設計データを取得する。ここでの設計データは、積層造形物Wの形状等を指定したデータであり、ユーザの指示に基づいて作成される。設計データは、例えば、通信可能に接続された外部装置(不図示)から入力されてもよいし、情報処理装置200上にて所定のアプリケーション(不図示)を介して作成されてもよい。
【0046】
S502にて、情報処理装置200は、S501にて取得した設計データに基づいて積層造形装置100にて積層造形物Wを構成する各ビードに対応するパスデータを作成する。ここでのパスデータは、トーチ102の移動軌跡などの情報の他、ビードの形状を示す形状データを含むものとする。ここで作成された形状データは設計値に相当し、記憶部(不図示)にて保持・管理されてよい。
【0047】
S503にて、情報処理装置200は、電源107が動作可能な複数の制御モードのうち、パラメータ調整処理が未実施の1の制御モードに着目する。ここでの処理対象となる制御モードは、電源107が動作可能なすべての制御モードであってもよいし、S501にて取得した設計データを用いて積層造形物Wを造形する際に用いる1または複数の制御モードに限定してもよい。
【0048】
S504にて、情報処理装置200は、S503にて着目した制御モードに対応する学習済みモデルを取得する。上述したように、制御モードに応じて異なる学習済みモデルが生成されており、その中から対応する学習済みモデルが取得される。
【0049】
S505にて、情報処理装置200は、S503にて着目した制御モードに対応するDBを参照して、S502にて作成した形状データに対応する溶接条件を特定する。上述したように、DBにおいて溶接条件とビードの形状データとが対応付けられており、形状データを指定することで、溶接条件を特定することが可能である。
【0050】
S506にて、情報処理装置200は、S505にて特定した溶接条件に基づき、溶接ロボット104による造形動作を実行させる。ここでの造形動作は、積層造形物Wの一部を造形するために行われるのではなく、それとは別の位置にてパラメータ調整用のビードを形成するように行われる。
【0051】
S507にて、情報処理装置200は、S506にて実行されたビードの形成結果としての形状データを、形状センサ101を介して取得する。上述したように、本実施形態に係る形状センサ101は、トーチ102に追従して移動するように設置されている。ビードの形成と並行して形状データを取得するような構成であってもよいし、ビードの形成が完了した後に取得するような構成であってもよい。ここで取得される形状データとしては、
図3に示したように、形成されたビードの高さや幅、根元部の角度、表面の凹凸などが挙げられる。
【0052】
S508にて、情報処理装置200は、S507にて取得した形状データ(測定値)と、S502にて作成した形状データ(設計値)との差分を導出する。例えば、形状データとして、高さや幅など複数の項目を含む場合は、それぞれの差分を導出する。
【0053】
S509にて、情報処理装置200は、S508にて導出した差分と、予め規定された閾値とを比較し、差分が閾値以上か否かを判定する。閾値は、形状データの項目ごとに設定され、不図示の記憶部に保持されているものとする。ここで用いられる閾値は、制御モードに応じて異なっていてもよいし、固定値が用いられてもよい。差分が閾値以上である場合(S509にてYES)、情報処理装置200の処理はS510へ進む。一方、差分が閾値よりも小さい場合(S509にてNO)、情報処理装置200の処理はS513へ進む。また、形状データにおいて、複数の項目が判定に用いられる場合には、各項目と閾値の比較の結果、すべての項目が閾値以上である場合にYESと判定してよい。この場合、閾値は各項目に対して設定されているものとする。
【0054】
S510にて、情報処理装置200は、S503にて取得した学習済みモデルに、S508にて導出した差分を入力データとして入力することで、溶接条件の差分を出力データとして取得する。この差分が直前のビードの形成に用いた溶接条件に対する調整量に相当する。
【0055】
S511にて、情報処理装置200は、直前のビードの形成に用いた溶接条件に対して、S510にて取得した調整量を反映することで補正を行う。
【0056】
S512にて、情報処理装置200は、S511にて補正した溶接条件によりビードの形成を再度実行する。その後、S507へ戻り、以降の処理を繰り返す。つまり、S507~S512の処理は、設計データに基づく設計値と、実際の形成結果による測定結果との差分が閾値未満となるまで繰り返される。よって、S510にて取得される調整量が繰り返し累積して溶接条件に反映されることで、徐々に差分は小さくなる(収束する)こととなる。
【0057】
S513にて、情報処理装置200は、現在の調整量に基づく溶接条件を、着目している電源107の制御モードに対応付けて記憶部(不図示)に記憶する。ここで記憶された溶接条件(または、調整量)が、積層造形物Wの造形時に用いられることとなる。その後、S514へ進む。
【0058】
S514にて、情報処理装置200は、電源107が動作可能な制御モード全てに対し、パラメータ調整処理が完了したか否かを判定する。未処理の制御モードがある場合は(S514にてNO)、情報処理装置200の処理は、S503へ戻り、以降の処理を繰り返す。一方、すべての制御モードに対して処理が完了した場合(S514にてYES)本処理フローを終了する。
【0059】
上記のフローチャートでは、積層造形物Wの設計データに基づいてパラメータ調整を行う例を示した。このとき、設計データが示すビードの積層数や、隣接するビード(隣接ビード)との位置関係に基づき、層や位置関係に対応したパラメータ調整を行うような構成であってもよい。より具体的には、層数や位置に関する情報を形状データとして更に用いてもよい。このような情報を含めることで、ビードの形成位置に応じたビードの垂れや隣接ビードとの融合などを考慮したパラメータ調整が可能となる。また、積層造形物Wの設計データを用いる代わりに、予め規定されたパラメータ調整用の形状データに基づいてパラメータ調整を行うような構成であってもよい。
【0060】
以上、本実施形態により、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。特に、溶接条件の変化傾向と、ビード形状の変化傾向との関係性を、学習済みモデルを用いて導出することで、システムに依存しない溶接条件の調整が可能となる。また、システムの機差を考慮したデータベースの作成も不要となり、汎用的なデータベースのみを用いて、様々な積層造形システムに適用可能である。
【0061】
<その他の実施形態>
また、学習処理に用いる学習用データの生成を積層造形システム1が行うような構成を有してもよい。例えば、積層造形物Wの造形時に、ビードを形成するごとにビードの形状を形状センサ101にて検出し、当該ビードを形成した際の溶接条件、形状データ、および電源の制御モードを対応付けて記憶する。さらに、記憶されたデータを用いて、
図4を用いて説明したように各差分を求めることで学習用データを生成してよい。このとき、学習用データを生成するためのデータは、積層造形システム1の利用者が指定可能であってもよいし、蓄積したデータの中から任意の条件にてフィルタリングしてデータを抽出してもよい。
【0062】
また、本願発明において、上述した1以上の実施形態の機能を実現するためのプログラムやアプリケーションを、ネットワーク又は記憶媒体等を用いてシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。
【0063】
また、1以上の機能を実現する回路(例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array))によって実現してもよい。
【0064】
以上の通り、本明細書には次の事項が開示されている。
(1) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する際の溶接条件の機械学習を行う機械学習装置であって、
溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データとする学習済みモデルを生成するための学習処理を行う学習処理手段
を有することを特徴とする機械学習装置。
この構成によれば、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。特に、溶接条件を調整する際に用いられる、形状データの変化傾向に対応した、溶接条件の調整量を導出するための学習済みモデルを生成することが可能となる。
【0065】
(2) 前記形状データは、前記溶接ビードの高さ、幅、根元部の角度、および表面の凹凸の少なくともいずれかを含むことを特徴とする(1)に記載の機械学習装置。
この構成によれば、形状データとして、ビードの高さ、幅、角度、表面形状を考慮して、溶接条件の調整が可能となる。
【0066】
(3) 前記溶接条件は、前記溶加材の送給速度、前記積層造形物が造形されるベース上での狙い位置、造形時の入熱量、およびウィービングの制御条件の少なくともいずれかを含むことを特徴とする(1)または(2)に記載の機械学習装置。
この構成によれば、溶接条件として、溶加材の送給速度、ベース上での狙い位置、造形時の入熱量、およびウィービングの制御条件を対象として調整が可能となる。
【0067】
(4) 前記溶接条件は、積層パス数、または母材温度をさらに含むことを特徴とする(3)に記載の機械学習装置。
この構成によれば、溶接条件として更に、積層パス数、母材温度を対象として調整が可能となる。例えば、積層パス数が増加すること伴う、電極の摩擦やノズルへのスパッタの付着などの負荷蓄積を考慮した学習処理が可能となる。また、ベースへの蓄熱を考慮した学習処理が可能となる。
【0068】
(5) 前記学習処理手段は、前記積層造形物を造形する際に用いられる電源の制御モードごとに学習済みモデルを生成することを特徴とする(1)~(4)のいずれかに記載の機械学習装置。
この構成によれば、電源の制御モードに応じた学習済みモデルを生成し、溶接条件の調整がより精度よく行うことが可能となる。
【0069】
(6) 前記電源の制御モードごとに、前記溶接条件に対応して供給される電圧値、電流値、または電流のパルスの少なくともいずれかが異なることを特徴とする(5)に記載の機械学習装置。
この構成によれば、電源の制御モードに異なる電圧値、電流値、パルスを考慮した学習済みモデルを生成することが可能となる。
【0070】
(7) 前記学習処理手段は、ニューラルネットワークを用いた教師あり学習の手法を用いて前記学習処理を行うことを特徴とする請求項(1)~(6)のいずれかに記載の機械学習装置。
この構成によれば、ニューラルネットワークを用いた教師あり学習に対応した機械学習が可能となる。
【0071】
(8) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する積層造形システムであって、
前記積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成手段と、
前記第1の形状データを形成する際の溶接条件を決定する決定手段と、
前記決定手段にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得手段と、
溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出手段と、
前記導出手段にて導出された差分を用いて、前記決定手段にて決定された溶接条件を調整する調整手段と
を有することを特徴とする積層造形システム。
この構成によれば、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。また、溶接条件の変化傾向と、ビード形状の変化傾向との関係性を、学習済みモデルを用いて導出することで、システムに依存しない溶接条件の調整が可能となる。また、システムの機差を考慮した個別のデータベースの作成も不要となり、汎用的なデータベースのみの利用により様々な積層造形システムへの適用が可能となる。
【0072】
(9) 前記導出手段は、前記第1の形状データと前記第2の形状データの差分が、所定の閾値以上である場合に、前記決定手段にて決定された溶接条件を調整するための差分を導出することを特徴とする(8)に記載の積層造形システム。
この構成によれば、溶接条件の調整を繰り返し実行することで、所定の精度が得られるように制御することが可能となる。
【0073】
(10) 前記決定手段は、溶接ビードの形状と溶接条件とが予め対応付けられたデータベースを用いて、前記第1の形状データを形成する際の溶接条件を決定することを特徴とする請求項(8)または(9)に記載の積層造形システム。
この構成によれば、汎用的なデータベースを用いて、基準となる溶接条件を決定し、この基準からの調整を行うことができる。そのため、装置個別の溶接条件のデータベースを作成する手間を削減することができる。
【0074】
(11) 前記取得手段は、センサにより前記溶接ビードを測定することにより当該溶接ビードの形状データを取得することを特徴とする(8)~(10)のいずれかに記載の積層造形システム。
この構成によれば、センサにより、実際のビード形状の測定値を取得して、設計値との比較に用いることが可能となる。
【0075】
(12) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する際の溶接条件の機械学習方法であって、
溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データとする学習済みモデルを生成するための学習処理を行う学習処理工程
を有することを特徴とする機械学習方法。
この構成によれば、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。特に、溶接条件を調整する際に用いられる、形状データの変化傾向に対応した、溶接条件の調整量を導出するための学習済みモデルを生成することが可能となる。
【0076】
(13) 溶加材を溶着して溶接ビードを積層することで積層造形物を造形する積層造形システムにおける溶接条件の調整方法であって、
前記積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成工程と、
前記第1の形状データを形成する際の溶接条件を決定する決定工程と、
前記決定工程にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得工程と、
溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出工程と、
前記導出工程にて導出された差分を用いて、前記決定工程にて決定された溶接条件を調整する調整工程と
を有することを特徴とする溶接条件の調整方法。
この構成によれば、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。また、溶接条件の変化傾向と、ビード形状の変化傾向との関係性を、学習済みモデルを用いて導出することで、システムに依存しない溶接条件の調整が可能となる。また、システムの機差を考慮した個別のデータベースの作成も不要となり、汎用的なデータベースのみの利用により様々な積層造形システムへの適用が可能となる。
【0077】
(14) コンピュータに、
積層造形物を造形する際の溶接ビードの形状データ間の差分を入力データとし、前記形状データ間の差分に対応する溶接条件間の差分を出力データとする学習済みモデルを生成するための学習処理を行う学習処理工程
を実行させるためのプログラム。
この構成によれば、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。特に、溶接条件を調整する際に用いられる、形状データの変化傾向に対応した、溶接条件の調整量を導出するための学習済みモデルを生成することが可能となる。
【0078】
(15) コンピュータに、
溶加材を溶着して溶接ビードを積層することで造形される積層造形物の設計データに基づいて、溶接ビードの形状データを第1の形状データとして作成する作成工程と、
前記第1の形状データを形成する際の溶接条件を決定する決定工程と、
前記決定工程にて決定された溶接条件を用いて形成された溶接ビードの形状データを第2の形状データとして取得する取得工程と、
溶接ビードの形状データ間の差分を入力データとし、当該形状データ間の差分に対応する溶接条件間の差分を出力データとして学習処理が行われることで生成された学習済みモデルに、前記第1の形状データと前記第2の形状データの差分を入力することで、前記第1の形状データに対応する溶接条件と前記第2の形状データに対応する溶接条件との差分を導出する導出工程と、
前記導出工程にて導出された差分を用いて、前記決定工程にて決定された溶接条件を調整する調整工程と
を実行させるためのプログラム。
この構成によれば、積層造形物の造形時における溶接条件の調整の精度を向上させることが可能となる。また、溶接条件の変化傾向と、ビード形状の変化傾向との関係性を、学習済みモデルを用いて導出することで、システムに依存しない溶接条件の調整が可能となる。また、システムの機差を考慮した個別のデータベースの作成も不要となり、汎用的なデータベースのみの利用により様々な積層造形システムへの適用が可能となる。
【符号の説明】
【0079】
1…積層造形システム
100…積層造形装置
101…形状センサ
102…トーチ
103…ベース
104…溶接ロボット
106…ロボットコントローラ
107…電源
108…溶接ビード
200…情報処理装置
201…造形制御部
202…電源制御部
203…送給制御部
204…DB(データベース)管理部
205…形状データ取得部
206…学習用データ管理部
207…学習処理部
208…溶接条件導出部
W…積層造形物
M…溶加材