(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-14
(45)【発行日】2023-11-22
(54)【発明の名称】呼吸補助装置
(51)【国際特許分類】
A61M 16/16 20060101AFI20231115BHJP
A61M 16/00 20060101ALI20231115BHJP
【FI】
A61M16/16 A
A61M16/00 305A
A61M16/00 370Z
【外国語出願】
(21)【出願番号】P 2021017191
(22)【出願日】2021-02-05
(62)【分割の表示】P 2018042545の分割
【原出願日】2013-04-05
【審査請求日】2021-03-05
【審判番号】
【審判請求日】2022-08-04
(32)【優先日】2012-04-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】513259285
【氏名又は名称】フィッシャー アンド ペイケル ヘルスケア リミテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100171675
【氏名又は名称】丹澤 一成
(72)【発明者】
【氏名】バーカー ディーン アントニー
(72)【発明者】
【氏名】スチュワート ミカエル ダグラス
(72)【発明者】
【氏名】ホーキンズ ピーター ジェフリー
(72)【発明者】
【氏名】オドネル ケヴィン ピーター
(72)【発明者】
【氏名】バージェス ラッセル ウィリアム
【合議体】
【審判長】佐々木 一浩
【審判官】井上 哲男
【審判官】村上 哲
(56)【参考文献】
【文献】特表2005-537083(JP,A)
【文献】特表2010-537779(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 16/00
(57)【特許請求の範囲】
【請求項1】
補足ガスと混合された大気空気の2成分ガス混合物を含む加温加湿されたガス流を提供するように構成される呼吸補助装置であって、
主筐体を有し、該主筐体は、
ガス流入口組立体を備え、
該ガス流入口組立体は、
大気空気を受け取るように構成される
1つ又は複数のガス流入口と、
前記2成分ガス混合物を含むガス流を形成するように、前記大気空気と混合するために補足ガス供給源から前記補足ガスの供給を受け取るように構成された補足ガス接続流入口と、を備え、
前記主筐体は、
前記ガス流を加圧するように構成されるブロワユニット
であって、前記ガス流入口組立体は該ブロワユニットの上流にあり、前記大気空気と補足ガスが前記2成分ガス混合物へと混合されて該ブロワユニットに入る、ブロワユニットと、
前記ガス流を加温加湿するように構成される加湿ユニット
であって、前記ブロワユニットと前記加湿ユニットは前記主筐体に一体化されている、加湿ユニットと、
前記ブロワユニットと前記加湿ユニットに続く、前記ガス流のガス流出口と、
前記主筐体の流路内の、前記加湿ユニットの前に設けられたセンサ組立体であって、前記センサ組立体は、モジュール構成要素であって
脱着可能な保持システムを介して前記流路内に脱着可能に搭載されたセンサ筐体を備え、前記センサ筐体は、
前記2成分ガス混合物を含む前記ガス流の1つ又は複数のガス濃度を検知する超音波ガス組成センサシステムを備える、センサ組立体と、
を備える、呼吸補助装置。
【請求項2】
前記流路は、前記ガス流入口から前記ブロワユニット及び前記加湿ユニットを通して前記ガス流出口へと、前記主筐体を通る前記ガス流の流路である、請求項1に記載の呼吸補助装置。
【請求項3】
前記流路は、前記装置の
主流路内にある、請求項1又は2に記載の呼吸補助装置。
【請求項4】
前記センサ組立体は、前記装置の前記
主流路内の前記ガス流の1つ又は複数のガス濃度の検知を提供するように構成される請求項3に記載の呼吸補助装置。
【請求項5】
前記脱着可能な保持システムは、クリップシステム、ラッチシステム、スナップ嵌めシステム、のいずれか1つである、
請求項1に記載の呼吸補助装置。
【請求項6】
前記超音波ガス組成センサシステムは、送信器トランスデューサと受信器トランスデューサとの対を備え、前記送信器から前記受信器に、前記ガス流を通してクロスフロー音響パルスを送信して、前記センサ組立体の近傍での前記ガス流内での音速を検知するように動作可能である、
請求項1~5の何れか一項に記載の呼吸補助装置。
【請求項7】
前記超音波ガス組成センサシステムは、送信器トランスデューサと受信器トランスデューサとの対を備え、前記送信器から前記受信器に、前記ガス流を通して流れに沿った音響パルスを送信して、前記センサ組立体の近傍での前記ガス流内での音速を検知するように動作可能である、
請求項1~5の何れか一項に記載の呼吸補助装置。
【請求項8】
前記超音波ガス組成センサシステムの前記送信器トランスデューサと受信器トランスデューサとの対に動作可能に接続され、前記ガス流を通る音速を示す音速信号を生成するように前記トランスデューサ対を動作させ、少なくとも前記ガス流を通る前記音速を示す前記信号に基づいて、前記ガス流内の前記ガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される、センサ制御システムを、更に備える
請求項6又は7に記載の呼吸補助装置。
【請求項9】
前記センサ組立体は温度センサを更に備え、前記温度センサは、前記センサ組立体の近傍での前記ガス流の温度を測定し、代表的な温度信号を生成するように構成され、前記センサ制御システムは、前記音速信号及び前記温度信号に基づいて、前記ガス流内の前記ガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される、
請求項8に記載の呼吸補助装置。
【請求項10】
前記センサ組立体は湿度センサを更に備え、前記湿度センサは、前記センサ組立体の近傍での前記ガス流内の湿度を測定し、代表的な湿度信号を生成するように構成され、前記センサ制御システムは、前記音速信号及び前記湿度信号に基づいて、前記ガス流内の前記ガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される、
請求項8又は9に記載の呼吸補助装置。
【請求項11】
前記センサ制御システムは、前記ガス流内の前記検知された酸素濃度を表すガス濃度信号を生成するように構成される、
請求項8~10の何れか一項に記載の呼吸補助装置。
【請求項12】
前記ガス流内の前記検知された酸素濃度を表示するように構成された出力ディスプレイを更に備える
請求項11に記載の呼吸補助装置。
【請求項13】
前記装置の主コントローラは、前記ガス濃度信号で表される検知ガス濃度レベルを、最大閾値及び/又は最小閾値によって定義されるそれぞれのユーザ定義範囲と比較するように構成され、更に、前記検知されたレベルが最小閾値未満であるか、若しくは最大閾値を超える場合、又は他の様式でそれぞれのユーザ定義範囲外である場合、前記装置のアラームをトリガー又はアクティブ化するように構成される、
請求項8~12の何れか一項に記載の呼吸補助装置。
【請求項14】
前記センサ組立体は、前記センサ組立体の近傍での前記ガス流の流量を検知し、代表的な流量信号を生成するように構成された、流量センサを更に備える、
請求項1~13の何れか一項に記載の呼吸補助装置。
【請求項15】
前記流量センサは、熱線風速計フロー検出器を備える、
請求項14に記載の呼吸補助装置。
【請求項16】
前記加湿ユニットは、ヒータプレートを更に備える、
請求項1~15の何れか一項に記載の呼吸補助装置。
【請求項17】
前記加湿ユニットは、加湿水チャンバを更に備える、
請求項1~16の何れか一項に記載の呼吸補助装置。
【請求項18】
前記加湿ユニットは、ヒータプレートを有し加湿水チャンバを受け取る加湿ユニット区画を備え、前記装置の前記主筐体は、前記ブロワユニットを囲み、前記加湿水チャンバを受け取る前記加湿ユニット区画を提供する、
請求項1~17の何れか一項に記載の呼吸補助装置。
【請求項19】
前記
ブロワユニットによって加圧されたガス流は、1L/分~100L/分の範囲の流量を有する、
請求項1~18の何れか一項に記載の呼吸補助装置。
【請求項20】
前記
ブロワユニットによって加圧されたガス流は、2L/分~60L/分の範囲の流量を有する、
請求項1~19の何れか一項に記載の呼吸補助装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、治療目的で加温加湿されたガス流をユーザに提供する呼吸補助装置に関する。排他的ではないが特に、本呼吸補助装置は、呼吸加湿治療、高流量酸素治療、CPAP治療、Bi-PAP治療、及びOPAP治療を含む気道陽圧(PAP)治療等の呼吸治療のため、通常は閉塞性睡眠時無呼吸(OSA)、いびき、慢性閉塞性肺疾患(COPD)等の疾患の処置のために、加温加湿されたガスの供給を必要とする患者又はユーザに呼吸補助を提供し得る。
【背景技術】
【0002】
治療目的で加湿加温されたガスの流れを患者に提供する呼吸補助装置又はシステムが、当分野において周知である。このタイプ(例えば、呼吸加湿)の治療を提供するシステムは通常、ブロワ(コンプレッサ、人工呼吸ユニット、ファンユニット、フロー生成器、又は圧力生成器としても知られている)等の、ガスをガス源から加湿器チャンバに送る構造体を有する。ガスは、加湿器チャンバ内で湯の上を通過するか、又は加温加湿された空気を通って通過する際、水蒸気で飽和する。加温加湿されたガスは次に、ガス導管及びユーザインタフェースを介して加湿器チャンバから下流のユーザ又は患者に送られる。
【0003】
一形態では、そのような呼吸補助システムは、別個(モジュール式)の物品である加湿器ユニットと、ブロワユニットとを備えるモジュール式システムであることができる。モジュールは、接続導管を介して直列接続されて、ガスをブロワユニットから加湿器ユニットに通す。例えば、
図1は、モジュール式呼吸補助システムから加温加湿された空気を受け取っているユーザ1の概略図を示す。加圧空気が、人工呼吸ユニット又はブロワユニット2aからコネクタ導管10を介して加湿器チャンバ4aに提供される。加湿され、加温され、加圧された空気流は、ユーザ導管3を介して加湿器チャンバ4aを出て、ユーザインタフェース5を介して患者又はユーザ1に提供される。
【0004】
代替の形態では、呼吸補助システムは、ブロワユニット及び加湿器ユニットが同じ筐体内に含まれる一体システムであることができる。典型的な一体システムは、加圧ガス流を提供するメインブロワユニット又は人工呼吸ユニットと、ブロワユニットに嵌合するか、又は他の様式でしっかりと接続される加湿器ユニットとからなる。例えば、加湿器ユニットは、スライド接続又は押し込み接続によってブロワユニットに嵌合され、それにより、加湿器ユニットがメインブロワユニットにしっかりと接続され、メインブロワユニット上の所定位置にしっかりと保持されることを保証する。
図2は、一体型呼吸補助システム6から加温加湿された空気を受け取っているユーザ1の概略図を示す。システムは、
図1に示されるモジュール式システムと同じように動作するが、加湿器チャンバ4bはブロワユニットと一体化されて、一体型システム6を形成している。
【0005】
図1及び
図2に示されるユーザインタフェース5は鼻マスクであり、ユーザ1の鼻を覆う。しかし、これらのタイプのシステムでは、口及び鼻を覆うマスク、フルフェイスマスク、鼻カニューラ、又は任意の他の適するユーザインタフェースを、示される鼻マスクの代替とし得ることに留意されたい。口のみのインタフェース又は口マスクを使用することも可能である。また、導管の患者又はユーザ側の端部は、気管切開接続具又は気管内挿管に接続することもできる。
【0006】
米国特許第7,111,624号明細書は、一体型システムの詳細な説明を含む。使用に際して、「スライドオン」水チャンバがブロワユニットに接続される。この設計の一変形形態が、使用に際してチャンバが一体型ユニットの一部分の内部に囲まれるスライドオン又はクリップオン設計である。このタイプの設計の一例が、国際公開第2004/112873号パンフレットに示されており、これは、ブロワ又はフロー生成器50と、関連付けられた加湿器150とを記載している。
【0007】
これらの一体型システムの場合、最も一般的な動作モードは以下である:空気が、ブロワにより流入口を通して、少なくともシステムのブロワ部分を包囲し囲むケース内に引き込まれる。ブロワは、フロー生成器流入口からの空気流を加圧し、これを加湿器チャンバに渡す。空気流は、加湿器チャンバ内で加温加湿され、流入口を介して加湿器チャンバを出る。可撓性ホース又は導管が加湿器流出口に直接又は間接的に接続され、加温加湿されたガスが、導管を介してユーザに渡される。これを
図2に概略的に示す。
【0008】
モジュール式システム及び一体型システムの両方において、ブロワユニットによって提供されるガスは一般に、周囲大気を源とする。しかし、これらのシステムの幾つかの形態は、特定の治療のために、補足ガスを大気空気と混合可能なように構成し得る。そのようなシステムでは、補足ガスを供給するガス導管が通常、加湿器チャンバ若しくはブロワユニットの高圧(流出口)側の他のどこかに直接接続されるか、又は代替的に、国際公開第2007/004898号パンフレットに記載のように、ブロワユニットの流入口側に接続される。このタイプの呼吸補助システムは一般に、患者又はユーザが酸素治療を必要とし、酸素が中央ガス源から供給される場合に使用される。ガス源からの酸素は大気空気と混合されて、酸素濃度を増大させてから、患者に送られる。そのようなシステムにより、COPD等の疾患の治療のために、酸素治療を高流量加湿治療と組み合わせることが可能である。そのような治療では、患者に送られている酸素濃度が知られており、制御されることが重要である。現在、患者に送られている酸素濃度は通常、中央ガス源から供給される様々な酸素流量及びブロワユニットによって生成される様々な流量に基づいて予め計算された様々な酸素濃度を提示するプリントされた参照表に基づいて手動で計算されるか、又は推定される。
【0009】
本明細書では、特許明細書、他の外部文献、又は他の情報源が参照された場合、これは一般に、本発明の特徴を考察するための背景を提供することを目的とする。特に別段のことが示される場合を除き、そのような外部文献への参照は、そのような文献又はそのような情報源が、いかなる法域においても、従来技術であること、又は当分野での一般知識の一部をなすことを認めるものとして解釈されるべきではない。
【発明の概要】
【発明が解決しようとする課題】
【0010】
改善されたガス組成検知能力を有する呼吸補助装置を提供すること、又は少なくとも公衆に有用な選択肢を提供することが、本発明の目的である。
【課題を解決するための手段】
【0011】
第1の態様では、本発明の本質は広義において、加温加湿されたガス流を提供するように構成される呼吸補助装置であって、ガス供給を受け取るように構成されるガス流入口と、ガス供給から加圧ガス流を生成するように構成されるブロワユニットと、加圧ガス流を加温加湿するように構成される加湿ユニットと、加温加湿されたガス流のガス流出口と、ガス流入口からブロワユニット及び加湿ユニットを通してガス流出口に呼吸装置を通るガス流の流路と、流路内において、加湿ユニットの前に設けられるセンサ組立体であって、ガス流内の1つ又は複数のガス濃度を検知する超音波ガス組成センサシステムを備える、センサ組立体とを備える、呼吸補助装置にある。
【0012】
好ましくは、超音波ガス組成センサシステムは送信器と受信器との送受信器対を備え得、送受信器対は、送信器から受信器に、ガス流を通してクロスフロー音響パルスを送信して、センサ組立体の近傍でのガス流内での音速を検知するように動作可能であり得る。
【0013】
一形態では、送信器と受信器との送受信器対は、音響パルスが、ガス流の流れる方向に略直交する方向であるクロスフローでガス流を移動するように配置し得る。
【0014】
別の形態では、送信器と受信器との送受信器対は、音響パルスが、ガス流の流れる方向に対して傾斜するが、直交はしないクロスフローでガス流を移動するように配置し得る。
【0015】
一形態では、送信器と受信器との送受信器対は、送信器として構成されるトランスデューサと、受信器として構成されるトランスデューサを備えて、単方向音響パルスを送信し得る。
【0016】
別の形態では、送信器と受信器との送受信器対は、双方向音響パルスを送信するように構成される一対の送信器-受信器トランスデューサを備え得る。
【0017】
一形態では、送信器及び受信器は、ガス流の流れる方向に関連して互いに位置合わせし得、流路を挟んで互いに面し得る。
【0018】
別の形態では、送信器及び受信器は、ガス流の流れる方向において互いから変位し得る。
【0019】
好ましくは、音響パルスは、送信器と受信器との間で直接的なビーム路を有し得る。代替的には、音響パルスは、送信器と受信器との間で間接的であり、1つ又は複数の反射を経るビーム路を有し得る。
【0020】
別の形態では、送信器トランスデューサと受信器トランスデューサとの対は、クロスフロー音響パルスを送信し、エコーリターンパルスを受信するように構成される単一の送信器-受信器の形態をとり得る。
【0021】
別の形態では、超音波ガス組成センサシステムは、送信器から受信器に、ガス流を通して流れに沿った音響パルスを送信して、センサ組立体の近傍でのガス流内での音速を検知するように動作可能な送信器トランスデューサと受信器トランスデューサとの対を備え得る。
【0022】
好ましくは、呼吸補助装置は、超音波ガス組成センサシステムの送信器トランスデューサと受信器トランスデューサとの対に動作可能に接続され、ガス流を通る音速を検知し、その音速を示す音速信号を生成するようにトランスデューサ対を動作させるように構成されるセンサ制御システムを更に備え得る。
【0023】
好ましくは、センサ制御システムは、少なくとも、ガス流を通る音速を示す信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される。
【0024】
一形態では、センサ組立体は温度センサを更に備え得、温度センサは、センサ組立体の近傍でのガス流の温度を測定し、代表的な温度信号を生成するように構成され、センサ制御システムは、音速信号及び温度信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される。
【0025】
別の形態では、センサ組立体は湿度センサを更に備え得、湿度センサは、センサ組立体の近傍でのガス流の湿度を測定し、代表的な湿度信号を生成するように構成され、センサ制御システムは、音速信号及び湿度信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される。例として、湿度センサは相対湿度センサ又は絶対湿度センサであり得る。
【0026】
別の形態では、センサ組立体は、センサ組立体の近傍でのガス流の温度及び湿度を測定し、代表的な温度信号及び湿度信号のそれぞれを生成する温度センサ及び湿度センサの両方を備え得、センサ制御システムは、音速信号、温度信号、及び湿度信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される。
【0027】
好ましくは、センサ制御システムは、温度補正を温度信号に適用して、温度センサに影響する、呼吸装置内の熱によって生じる任意の予測温度検知誤差を補償するように構成し得る。
【0028】
好ましくは、センサ組立体は、流量センサを更に備え得、流量センサは、センサ組立体の近傍でのガス流の流量を検知し、代表的な流量信号を生成するように構成され、システムは、ブロワユニットのモータ速度を検知し、代表的なモータ速度信号を生成するように構成される、設けられたモータ速度センサを更に備え得、温度補正は、少なくとも、流量信号及び/又はモータ速度信号に基づいてセンサ制御システムによって計算される。
【0029】
一形態では、センサ制御システムは、ガス流内の酸素濃度を表すガス濃度信号を生成するように構成し得る。
【0030】
別の形態では、センサ制御システムは、ガス流内の二酸化炭素濃度を表すガス濃度信号を生成するように構成し得る。
【0031】
好ましくは、センサ組立体は流路内に脱着可能に搭載し得る。
【0032】
好ましくは、流路は、流路の少なくとも1つのセクション又は部分でのガス流の安定した流れを促進するような形状又は構成を有し得る。
【0033】
好ましくは、流路は、センサ組立体を含む流路のセクション又は部分での安定した流れを促進するような形状又は構成を有し得る。
【0034】
好ましくは、流路は、ガス流入口において、又はガス流入口に向かう1つ又は複数のフローディレクタを備え得る。より好ましくは、各フローディレクタは、弓形フィンの形態であり得る。
【0035】
一形態では、流路は、ガス流の安定した流れを促進する少なくとも1つの螺旋部分又はセクションを備え得る。好ましくは、流路は、ガス流入口とブロワユニットとの間に延びる流入セクションを備え得、流入セクションは少なくとも1つの螺旋部を備える。
【0036】
好ましくは、センサ組立体は流路の螺旋部分に配置し得る。より好ましくは、螺旋部は1つ又は複数の略直線のセクションを備え、センサ組立体は直線セクションのうちの1つに配置される。
【0037】
好ましくは、センサ組立体は、本体を備えるセンサ筐体を備え得、本体は、中空であり、第1の開放端部と第2の開放端部との間に延びる周壁によって画定され、それにより、本体内において壁の間に検知通路を画定し、検知通路を通って、ガス流は、本体の第1の端部と第2の端部との間に延びる流軸の方向に流れることができ、送信器トランスデューサと受信器トランスデューサとの対は、検知通路の対向する壁又は側に配置される。より好ましくは、センサ筐体は、2つの離間された側壁と、側壁の間に延びる上壁及び下壁とを備えて、本体に沿って、第1の端部と第2の端部との間に検知通路を画定する本体と、本体の対向する壁に配置される一対のトランスデューサ搭載組立体であって、それぞれが、本体の検知通路にわたり、トランスデューサ対の各トランスデューサが位置合わせされ、互いに面するようトランスデューサ対の各トランスデューサを受けて保持するように構成される、一対のトランスデューサ搭載組立体とを備え得る。
【0038】
好ましくは、ブロワユニットは、最高で100リットル/分の流量を有するガス流をガス流出口において生成するように動作可能であり得る。
【0039】
一形態では、ガス流入口は、大気空気と、酸素供給源からの純粋な酸素との混合物を含むガスの供給を受け取るように構成し得る。別の形態では、ガス流入口は、大気空気と、二酸化炭素供給源からの二酸化炭素との混合物を含むガスの供給を受け取るように構成し得る。
【0040】
好ましくは、流路は装置のバルク流路内にある。
【0041】
第2の態様では、本発明の本質は広義において、呼吸補助装置内のガス流のインライン流路検知を行うセンサ組立体にあり、センサ組立体は本体を備えるセンサ筐体を備え、本体は、中空であり、第1の開放端部と第2の開放端部との間に延びる周壁によって画定され、それにより、本体内において壁の間に検知通路を画定し、検知通路を通って、ガス流は、本体の第1の端部と第2の端部との間に延びる流軸の方向に流れることができ、センサ組立体は、検知通路を流れるガス流内の1つ又は複数のガス濃度を検知する、センサ筐体に搭載される超音波ガス組成センサシステムと、検知通路を流れるガス流の温度を検知する、センサ筐体に搭載される温度センサと、検知通路を流れるガス流の流量を検知する、センサ筐体に搭載される流量センサとを備える。
【0042】
好ましくは、センサ筐体は、呼吸補助装置の流路内の相補的な保持アパーチャに脱着可能に係合するように構成し得る。
【0043】
好ましくは、超音波ガス組成センサシステムは、送信器から受信器に、ガス流を通して、検知通路を通って流れるガス流の流軸に略直交する方向に音響パルスを送信するように動作可能な送信器トランスデューサと受信器トランスデューサとの対を備え得る。
【0044】
好ましくは、送信器トランスデューサと受信器トランスデューサとの対は、検知通路の対向する壁又は側に配置し得る。
【0045】
好ましくは、センサ筐体の本体は、2つの離間された側壁と、側壁の間に延びる上壁及び下壁とを備えて、本体に沿って、第1の端部と第2の端部との間に検知通路を画定し、本体は、本体の対向する壁に配置される一対のトランスデューサ搭載組立体を備え得、一対のトランスデューサ搭載組立体はそれぞれ、本体の検知通路にわたり、トランスデューサ対の各トランスデューサが位置合わせされ、互いに面するようトランスデューサ対の各トランスデューサを受けて保持するように構成される。
【0046】
好ましくは、一対のトランスデューサ搭載組立体は、本体の対向する側壁に配置し得、各トランスデューサ搭載組立体は、対の各トランスデューサを内部で受けて保持する保持キャビティを備える。
【0047】
好ましくは、各トランスデューサ搭載組立体は、本体の各側壁から延びる円筒形ベース部と、ベース部から延びる少なくとも一対の対向するクリップとを備え得、ベース部及びクリップは集合的に、保持キャビティを画定する。
【0048】
好ましくは、本体の各側壁は、トランスデューサアパーチャを備え得、トランスデューサアパーチャは、関連付けられたトランスデューサ搭載組立体と位置合わせされ、トランスデューサアパーチャを通して、トランスデューサの動作前面が延びて、検知通路にアクセスし得る。
【0049】
好ましくは、トランスデューサ搭載組立体は、トランスデューサの動作面が、センサ筐体の本体の各壁の内面と略同一の平面にあるように各トランスデューサを配置するように構成し得る。
【0050】
本発明の第2の態様は、本発明の第1の態様のセンサ組立体に関して述べた特徴のうちの任意の1つ又は複数を有し得る。
【0051】
本明細書及び特許請求の範囲で使用される「安定した流れ」という語句は、文脈により別段のことが示唆される場合を除き、層流であれ、乱流であれ関係なく、属性又は特性が測定又は検知されている尺度で、所与の組の条件で、測定中又は検知中である流れの属性又は特性を略時間不変にすることを促進するか、又は略時間不変にさせるタイプのガス流フローを意味する。
【0052】
本明細書及び特許請求の範囲で使用される「クロスフロービーム」又は「クロスフロー」という語句は、文脈により別段のことが示唆される場合を除き、主ガス流路方向に沿うのとは対照的に、主ガス流路方向又は軸を横切るか、又は横断するビーム路で送信される超音波パルス又はビームを意味する。例えば、クロスフロービームは、主ガス流路方向又は軸に略直交する方向においてガス流路を横切って送信し得るが、この用語により網羅される、他のクロスフロー角度も意図される。
【0053】
本明細書及び特許請求の範囲で使用される「流れに沿ったビーム」又は「流れに沿った」という語句は、文脈により別段のことが示唆される場合を除き、平行であれ、一致であれ関係なく、主ガス流路方向又は軸と略位置合わせされたビーム路で送信される、ガス流方向であるか、それに逆らう方向であるかに関係なく送信し得る超音波パルス又はビームを意味する。
【0054】
本明細書及び特許請求の範囲で使用される「備える」という語句は、「~のうちの少なくとも一部からなる」を意味する。「備える」という用語を含む本明細書及び特許請求の範囲での各文章を解釈する場合、その用語が後置された1つ又は複数の特徴以外の特徴も存在し得る。「備えている」及び「備えた」等の関連する用語も同様に解釈されるべきである。
【0055】
数値範囲
本明細書において開示される数値範囲(例えば、1~10)への参照は、その範囲内の全ての関係数値への参照(例えば、1、1.1、2、3、3.9、4、5、6、6.5、7、8、9、及び10)を組み込むとともに、その範囲内の関連する数値の任意の範囲(例えば、2~8、1.5~5.5、及び3.1~4.7)を組み込むことも意図され、したがって、本明細書において明示的に開示される全ての範囲の全ての部分範囲もそれにより明示的に開示される。これらは、特に意図されるものの単なる例であり、列挙される最低値と最高値との間の数値の全ての可能な組み合わせが同様に、本明細書に明示的に記載されるものと見なされるべきである。
【0056】
本明細書で使用される場合、「及び/又は」という用語は「及び」又は「又は」又はこれら両方を意味する。
【0057】
本明細書で使用される場合、名詞に続く「(s)」は、その名詞の複数形及び/又は単数形を意味する。
【0058】
本発明の本質は上記にあるとともに、以下が単なる例を与えるものの構造も考えられる。
【0059】
本発明の好ましい実施形態について、単なる例として、図面を参照して説明する。
【図面の簡単な説明】
【0060】
【
図1】加湿器ユニットに接続されたモジュール式構成ブロワユニットを有する呼吸補助装置の既知の形態の概略図である。
【
図2】ブロワユニット及び加湿器ユニットが単一の主筐体に一体化された呼吸補助装置の別の既知の形態の概略図である。
【
図3】本発明の一実施形態による呼吸補助装置の主筐体の斜視図を示す。
【
図5】
図4の方向Aからの呼吸補助装置の前面立面図を示す。
【
図6】
図4の方向Bからの呼吸補助装置の後面立面図を示す。
【
図9】主筐体の上部が取り外され、電子制御回路及びブロワユニット区画が露出されている、
図3の呼吸補助装置の斜視図を示す。
【
図10】電子制御回路、外部ブロワユニットケース、及び他の構成要素が取り外されて、モータ及びインペラの内部ブロワケースの上側を露出している、
図9の呼吸補助装置の斜視図を示す。
【
図10A】主筐体の下部及びベース区画が取り外され、主外部ブロワユニットケース及び内部ブロワケースの下側を露出している、
図3の呼吸補助装置の斜視図を示す。
【
図11】内部ブロワケース及び加湿チャンバ流入口コネクタが取り外されて、主筐体ベース区画の上側が露出されている、
図10の呼吸補助装置の斜視図を示す。
【
図12】主筐体の下部が取り外されて、ベース区画及び加湿器ユニット区画が露出されている、
図11の呼吸補助装置の斜視図を示す。
【
図14】方向Cからの
図12の呼吸補助装置の後方端面図を示す。
【
図15】センサ組立体と、螺旋形流路を有するガス流流路の流入セクションの第1の実施形態とを示す、
図12の呼吸補助装置の下面図を示す。
【
図17】
図12の呼吸補助装置の下側、特に、ガス流流路の流入セクション及びセンサ組立体の一部分の拡大斜視図を示す。
【
図18A】センサ組立体と、直接流路を有するガス流流路の流入セクションの第2の実施形態とを示す、
図12の呼吸装置の下面図を示す。
【
図19】本発明の一実施形態によるセンサ組立体の筐体の斜視図を示す。
【
図20】筐体に搭載されたセンサ構成を有する、
図19のセンサ組立体筐体の斜視図を示す。
【
図25】本発明の一実施形態による呼吸補助装置のセンサ制御システムのブロック図を示す。
【
図26A-26E】クロスフロービームを使用するセンサ組立体の様々な超音波トランスデューサ構成の概略図を示す。
【
図27A-27C】流れに沿ったビームを使用するセンサ組立体の様々な超音波トランスデューサ構成の概略図を示す。
【発明を実施するための形態】
【0061】
概説
本発明は、主に呼吸補助装置を流れるガス流の様々な特性を検知するセンサ組立体及び関連付けられたセンサ制御回路に関する。例として、センサ組立体及びセンサ制御システムの一実施形態は、ブロワユニットが加湿ユニットと単一の筐体内で一体化される一体型システムタイプの呼吸補助装置を参照して説明する。しかし、センサ組立体及び関連付けられたセンサ制御システムを、加湿ユニットがブロワユニットとは別であるモジュールタイプ呼吸補助装置システムで実施してもよいことが理解されるだろう。
【0062】
さらに、説明する実施形態は、特に、エンドユーザに送られるガス流の酸素濃度が大気空気と比較して増大した酸素濃度を有するように、補足酸素(O2)と混合された大気空気の2成分ガス混合物としてガス流を見なすことができる高流量加湿及び酸素治療に使用される呼吸補助装置を参照する。当分野では、大気ガスに別のガスを補足又は混合することは、「オーグメンテーション(augmentation:増強)」として知られており、通常、大気空気での濃度と比較して、酸素又は窒素等の特定のガスの濃度を変更するために使用される。
【0063】
センサ組立体及び検知回路を代替的に、大気圧のみの加圧ガス流を送るか、それとも酸素又は窒素等の別の特定のガスで補強された大気空気の加圧ガス流を送るかに関係なく、PAP治療等の他の呼吸治療用に特に構成するか、又は他の治療用に特に制御される他の呼吸補助装置で実施してもよいことが理解されるだろう。センサ組立体及びセンサ制御システムが主に、酸素で増強された大気ガスを含む2成分ガス混合物の酸素濃度を検知するように構成されるが、窒素供給源からの窒素(N2)で増強された大気空気、二酸化炭素供給源からの二酸化炭素(CO2)若しくは任意の他の適する補足ガスで増強された大気空気、酸素で増強されたヘリウム、又は任意の他の適する2成分ガス混合物等の他の増強された空気混合物又は2成分ガス混合物を含むガス流の特性を検知するように構成又は適合することも可能なことが理解されるだろう。
【0064】
高流量加湿及び酸素治療の一体型呼吸補助装置
図3を参照して、本発明の一実施形態による一体型呼吸補助装置10(呼吸装置)の主筐体を示す。呼吸装置10は、加圧又は高流量ガス流を生成するブロワユニットを備え、ガス流は次に、上述したように加湿ユニットによって加温加湿される。
図3に示されないが、呼吸装置10によって生成されたガス流は通常、可撓性送達導管又はチューブを備える患者インタフェースによって患者に送られ、導管又はチューブは、一端部において、呼吸装置10のガス流出口12に接続され、他端部において、ユーザインタフェースに接続され、ユーザインタフェースは通常、鼻カニューラであるか、又は代替的に、鼻マスク、フルフェイスマスク、気管切開接続具、又は任意の他の適するユーザインタフェースであり得る。
【0065】
この実施形態では、呼吸装置10には、例えば、
図2を参照して上述したタイプの加湿ユニット15が設けられる。加湿ユニット15は、加湿水チャンバ17と、ヒータプレート19とを備え、これらは、主筐体の前端部11に配置されるか、又は前端部11に向けて配置される、全体的に14で示される加湿ユニット区画内に設置される。
図3及び
図5を参照すると、加湿チャンバ17には、設置される場合、チャンバを呼吸装置の流路に接続するための流入ポート16及び流出ポート18が設けられる。例えば、流入ポート16は、加湿チャンバ17が、主筐体の後端部13に配置されるか、又は後端部13に向けて配置されるブロワユニットから流入口を通して加圧若しくは高流量ガス流を受け取るように、ブロワユニット後に流路に接続される。加温加湿されると、ガス流は、呼吸装置10のガス流出口12に流体接続された流出ポート18を介して加湿チャンバを出る。
【0066】
図6を参照して、呼吸装置10のガス流入口組立体20を主筐体の後端部13に示す。この実施形態では、ガス流入口組立体20は、周囲大気空気がブロワユニットによって装置に引き込まれる1つ又は複数の大気空気流入弁22と、補足ガス接続流入口24とを備え、補足ガス接続流入口24は、大気空気と混合して、酸素濃度を増大させる酸素流等の補足ガスの中央ガス供給源に接続し得る。更に詳細に後述するように、空気及び酸素の2成分ガス混合物は、ブロワユニットによって引き込まれるか、又は吸い込まれ、加圧されて、加湿ユニットに続けて送られるのに望ましい流量のガス流になり、加湿ユニットにおいて、ガス流は加温加湿され、それから患者インタフェースを介してエンドユーザに送られて、呼吸回路を完了する。
【0067】
図3を参照すると、この実施形態では、呼吸装置10の主筐体は、筐体下部26を含む2部構造のものであり、筐体下部26は、筐体上部28に脱着可能に結合又は嵌合され、一緒に組み立てられた場合に、ブロワユニットを囲み、加湿チャンバを受け取る加湿ユニット区画を提供する全体主筐体又はケースを形成する。しかし、3つ以上のパーツのマルチパーツ筐体構造又は単一の一体型主筐体を代替的に利用してもよいことが理解されるだろう。この実施形態では、筐体パーツはプラスチックから成形されるが、必要な場合、筐体の1つ又は複数の構成要素又はパーツを他の材料から形成し得ることが理解されるだろう。
【0068】
図7を参照して、筐体下部26の主ベース又は下側部26aを示す。
図8を参照すると、ユーザ制御インタフェース30が、筐体上部28の主上部28aに設けられ、ユーザ制御インタフェース30は、呼吸装置10を制御するためのユーザ制御装置及び/又はユーザディスプレイを備え得る。
【0069】
図9を参照して、呼吸装置10を示し、筐体上部28が取り外され、この実施形態では、収容され、主筐体の後端部13に向けて配置されるブロワユニット区画の主又は外部ブロワユニットケース32を露出している。呼吸装置10の制御システム電子回路を備え、ブロワユニットケース32に沿って搭載されるプロント回路基板31も、
図9に見られる。加湿チャンバ17の流入ポート16及び流出ポート18をブロワユニット及びガス流出口12にそれぞれ流体接続するコネクタ及び/又は導管23、25もより明確に示される。
図10は内部ブロワケース34を示し、このケース34は、ブロワユニットのモータ及びインペラを収容する。ブロワユニットのガス流出口は全体的に35で示される。内部ブロワケース34は、
図9に示される主ブロワユニットケース32内部に搭載又は収容される。
【0070】
図10Aを参照して、ブロワユニットのガス流出口35をより明確に見ることができる。ブロワユニットには、中央ガス流入アパーチャ又はポート37も設けられ、このアパーチャ又はポート37を通して、ガスをブロワユニットの回転インペラによって引き込まれる。この実施形態では、ブロワユニットの流入ポート37は、流路によってガス流入口組立体20に流体接続される。
【0071】
図11を参照すると、ベース区画36は、ブロワユニットの背後で、主筐体の後端部13に配置されるか、又は後端部13に向けて配置される。この実施形態では、ベース区画36は、筐体下部26に搭載されるか、又は筐体下部26内に収容される。ベース区画36は、上部又は蓋36aに出口ポート又はアパーチャ38を備え、このポート又はアパーチャ38は、動作に当たり、ガス流が、ガス流入口組立体20に入った後、ベース区画36からブロワユニット内を通って流れるように、導管及び/又はコネクタによってブロワユニットの流入ポート37に流体接続される。
図12は、主筐体の筐体下部26が図から省かれた状態で、ベース区画36をより明確に示す。加湿ユニット区画14も、
図12においてより明確に見える。
【0072】
ガス流の流路
動作に当たり、ガスのフロー又は流れは、ガス流入口組立体20からガス流出口12に、呼吸装置10を通る流路を介して輸送される。この実施形態では、流路はガス流入口組立体20で開始され、ガス流入口組立体20において、補足酸素が混合された大気空気等のガス流が呼吸装置10に入り、ベース区画36内の流路の流入セクションを通してチャネリング又は輸送されてから、上記のブロワユニット区画に入る。流路の流入セクションを出た後、ガス流はブロワユニットに入り、ガスは加圧又は加速されて、制御可能な流量を有する高流量ガス流になり、これは通常、高流量加湿治療用の高流量である。そのような用途では、流量は約1L/分~約100L/分の範囲、より好ましくは約2L/分~約60L/分の範囲であり得る。流路はブロワユニットを出て、流体接続された(例えば、導管、コネクタ、及び/又はポートを介して)加湿ユニットに入り、そこで、ガス流は加温加湿される。流路は、ガス流が加湿ユニットの流出口18から呼吸装置10のガス流出口12に輸送されたところで終わる。
【0073】
ガス流の流路の特定の部分又はセクション、例えば、加湿ユニット後の流路を完全に封止し得ることが理解されるだろう。さらに、流路は、加湿ユニットとブロワユニットとの間で封止してもよく、ブロワユニット前の流路の流入セクションも任意選択的に、ガス流入口組立体20後の大部分に沿って略封止し得る。ガス流を輸送する流路を、ブロワユニットを加湿ユニットに流体接続するなど、様々な構成要素に流体接続する導管、ポート、及び/又はコネクタで画定し得、及び/又は一般に、例えば、ガス流を呼吸装置に通して向ける、内壁又は内面から形成される囲まれたチャネル又は通路を構成することができる、呼吸装置内の筐体及びケースの形成によって画定し得ることが理解されるだろう。
【0074】
螺旋流入口流路-第1の実施形態
図14は、ベース区画36の後部に形成される流入アパーチャ58を示す。流入アパーチャ58は、ガス流入口組立体20の背後に配置される。
図15を参照して、ガス流流路の流入セクションの第1の実施形態について説明する。ガス流流路の流入セクションは、主筐体のベース区画36内に設けられ、呼吸装置10の後部においてガス流入口組立体20から、ベース区画の出口ポート38まで延び、それから、上記のブロワユニットの流入ポート37に入る。
図15に示されるように、示される流路の流入セクションは一般に、矢印XXで示される経路を辿る。
【0075】
この実施形態では、流路の流入セクションの少なくとも一部は、出口ポート38に達する際且つ出口ポート38を介してブロワユニット区画に入る前に安定した空気流を促進するような形状又は構成を有する。安定した空気流は、ノイズを低減し、流路のセンサゾーン内のセンサ組立体によって測定される検知ガス特性の精度を増大させることに役立つ。この実施形態では、安定した流れは、螺旋形であるか、又は螺旋形コース若しくは経路を提供する流路の流入セクションの少なくとも一部分によって生成又は提供される。例えば、
図15に示されるように、矢印XXで示される流路の少なくとも一部分は、徐々に締まる経路の形態である。「螺旋形」又は「螺旋」という語句は、連続し、開始点から終了点まで、1つ又は複数の巻きで徐々に巻かれる流路の任意の形態を意味することが意図される。半径低減率が一定又は可変であり得る、中心点又は中心軸に対して半径が低減する連続し、徐々に締まる曲線であるか、それとも基準点が中央に配置されているか否かに関係なく、経路が最も外側の巻き内に配置される基準点に向けて螺旋するように流路が巻かれた(すなわち、少なくとも1つの巻きで)、
図14に示される任意の形状の螺旋経路であるかに関係なく、任意の均一又は非均一な螺旋経路が包含されることが意図される。
【0076】
流路の螺旋部は、設計要件に応じて、流路の流入セクション全体の大部分を形成してもよく、又は代替的に、流路の流入セクションの小部分を形成してもよい。この実施形態では、流路の螺旋部は概ね、42で示される場所から開始され、概ね44で示される場所で、内向きの1つの螺旋巻き後に終了する。流路の流入セクションは、螺旋部の開始42の前に初期セクション又は部分が全体として46で示される流入口ゾーンで開始され、そして、螺旋部の終了44後に全体的に48で示される終了セクション又は部分で終わる。この実施形態では、流路の流入セクションの終了部は、ブロワユニットへの出口ポート38が内部に配置されるより大きな遷移ゾーン48に向かって開く徐々に巻かれる流路の形態である。遷移ゾーン48は略湾曲した周壁を備え、周壁は、円周の少なくとも一部分に略一致し得るか、又は平面で見た場合に他の様式で湾曲するか、若しくは凹形をとる。
図15では、遷移ゾーンの円周壁セクションは、遷移ゾーン48内の中心点Yを中心として50と52との間に画定される。遷移ゾーン内の壁の形状は、流路の流入セクションを出て、ブロワユニットに入る際に、ガス流の安定した流れを促進し続けるように構成される。
【0077】
上述したように、呼吸装置10内の流路は、流路の様々なセクションを流体接続するコネクタ、ポート、及び/又は他の結合部を含む呼吸装置の導管、チューブ、筐体、又はケースの組み合わせから形成し得る。この実施形態では、流路の流入セクションは、2つの同じ広さに広がる壁54及び56によって略画定され、2つの壁54及び56は、互いから離間され、ベース区画内に囲まれて、ベース区画の上蓋36a及び主筐体(
図7参照)の筐体下部26のベース部又は下側部26a等の水平に延びる上下の壁又は表面により囲まれた導管、チャネル、又は通路を形成する。この実施形態に示されるように、壁54、56は直立しており、ベース区画の略水平の包囲上蓋36aと、筐体下部26の下側部26aとに対して略直交するか、又は略垂直に延びる。同じ広さに広がる壁54及び56が代替的に、1つ又は複数の平坦なプレート又は部材によって上及び/又は下から囲まれてもよいことが理解されるだろう。この実施形態では、流路、少なくとも流入セクションの螺旋部内の流路は、略矩形又は正方形の断面形を有するが、これが必須ではないことが理解されるだろう。代替の実施形態では、流路は、円形、楕円形、又は他の形状を含む任意の他の所望の断面形を有するように構成し得、形状は、流路の長さに沿って均一であってもよく、又は2つ以上の形状及び/又はサイズの間で変化してもよい。流入セクション、特に流路の流入セクションの螺旋部を、所望の螺旋形で延びるように形成される剛性形状の導管又はチューブから形成してもよいことも理解されるだろう。
【0078】
この実施形態では、流路の流入セクションの螺旋部の断面積は、螺旋部の長さに沿って略均一であるが、代替の実施形態では、断面積は螺旋部の長さに沿って非均一であってもよい。特に、同じ広がりに広がる壁54と56との間の幅(W)は、この実施形態では、流入セクションの螺旋部全体を通して略一定であるが、必要な場合、代替の実施形態では、螺旋部の流さに沿って可変であってもよい。
図17を参照すると、壁の高さ(H)も、好ましくは、流路の流入セクションの、少なくとも螺旋部に沿って一定であるが、他の実施形態では、必要な場合、可変であるように構成し得る。
【0079】
この実施形態では、流路の流入セクション全体は、流路が出口ポート38に遷移するまで、流入セクション内、少なくとも流入セクションの螺旋部内での流路の垂直でのずれ又は変位がないように、ベース区画36内の略同じ平面内に延び、出口ポート38において、流路は、ベース区画36上方のブロワユニットケース32内に垂直に延びる。
【0080】
この実施形態では、流路の遷移ゾーン前に実質的に配置される単一の螺旋部があり、遷移ゾーンにおいて、流路はブロワユニット区画32に入る。しかし、代替の実施形態では、流路が、流路内に直列配置された2つ以上の別個の螺旋部を備えてもよいことが理解されるだろう。複数の螺旋部がある場合、全てブロワユニットの前に配置してもよく、若しくはブロワユニット後、加湿ユニット前において流路に配置してもよく、又は代替的には、各領域に少なくとも1つの螺旋部を提供してもよい。好ましい実施形態では、1つ又は複数の螺旋部は、好ましくは、流路が加湿ユニットに入る前に提供され、より好ましくは、流路がブロワユニット又は安定した流れの促進が、ノイズ低減又はガス流特性検知精度にとって有益である流路の任意の他のセクションに入る前に提供される。
【0081】
センサ組立体
図15~
図17を参照すると、呼吸装置10は、ガス流の様々な特性又はパラメータを検知する、加湿ユニットの前で流路に沿って配置又は設置されるセンサ組立体60を備える。この実施形態では、センサ組立体60は、流路の流入セクションのセンサゾーン、好ましくは、ガス流が安定した流れ特性を有する場合、流路の流入セクションの螺旋部内に設けられる。センサ組立体60は、流路を流れているガス流の1つ又は複数の特性を検出又は検知する1つ又は複数のセンサ、センサ構成要素、又はセンサ装置を受け取って保持するように構成又は適合される
図16及び
図17に示されるセンサ筐体を備える。
図16及び
図17は、明確にするために、いかなるセンサもないセンサ組立体60の筐体を示す。筐体及びセンサについて、
図19~
図24を参照して更に詳細に説明する。
【0082】
この実施形態では、センサ筐体は、所望の場合には、交換、保守、又は修理のために取り外すことができるように、流路内に脱着可能に固定、搭載、係合、保持、又は嵌合されるモジュール式構成要素である。この実施形態では、流入セクションでの流路の壁56及び54は、流路の略直線セクション61内で不連続であり、それにより、センサ組立体60のセンサ筐体を受けて保持し得る受け又は搭載スロット、アパーチャ、溝、又はギャップを提供する。設置される場合、センサ組立体の筐体は、不連続壁54、56によって提供される保持ギャップを橋渡しして、流路を完成させる。この構成を用いて、センサ組立体60は、呼吸装置のバルク流路又は主流路内のガス流の1つ又は複数の特性の検知を提供するように構成される。換言すれば、センサ組立体60は、呼吸装置を通るバルク流路又は主流路に対する別個のチャンバ又は補助流路に配置されない。
【0083】
この実施形態では、センサ筐体は、摩擦嵌合を介して流路の搭載アパーチャ内で受けられ保持されるように構成される。しかし、クリップシステム、ラッチシステム、スナップ嵌め、又は任意の他の脱着可能な構成を含め、任意の他の脱着可能な搭載構成又は保持システムを代替的に使用してもよいことが理解されるだろう。
【0084】
センサ組立体60は、流路のガス流の1つ又は複数の特性を検知する1つ又は複数のセンサを搭載するように構成又は適合し得る。任意の適するセンサは、理解されるように、センサ筐体に搭載し得る。この実施形態では、センサ組立体は少なくとも、ガス流内の1つ又は複数のガスのガス組成又は濃度を検知又は測定するガス組成センサを備える。この実施形態では、ガス組成センサは、ガス濃度の特定に超音波又は音波を利用する超音波ガス組成センサシステムの形態である。特に、超音波ガス組成センサは、2成分ガス混合物内の2つのガスの相対ガス濃度を特定する2成分ガス検知又は分析を利用する。この実施形態では、ガス組成センサは、バルクガス流フロー内の酸素濃度を測定するように構成され、バルクガス流フローは、基本的に窒素(N2)及び酸素(O2)の2成分ガス混合物である、補足酸素で増強された大気空気からなる。超音波ガス濃度センサを、窒素(N2)及び二酸化炭素(CO2)又は任意の他の比率の2つのガスを含め、ガス流内の大気空気と混合された他の増強ガスのガス濃度を測定するように構成し得ることも理解されるだろう。例えば、超音波ガス濃度センサは、二酸化炭素(CO2)を測定し、制御された二酸化炭素レベルを患者に送り、患者の呼吸パターンを制御するように構成し得る。患者への二酸化炭素レベルを調整することにより、患者のチェーンストーク呼吸を制御することができる。患者の呼吸パターンの制御は、高地状況を模倣するアスリートトレーニング等の幾つかの状況で有用であり得る。
【0085】
上述したように、この実施形態では、呼吸装置10はガス流入口組立体20を備え、この組立体20は、周囲大気空気と、酸素供給ライン又はガスボトルからの酸素等の補足ガスとを受け取るように構成される。しかし、空気供給が必ずしも周囲である必要はなく、空気をガス吸入口組立体に空気供給ライン又はガスボトルから供給してもよいことが理解されるだろう。さらに、呼吸装置10が必ずしも空気の供給を受け取る必要がないことが理解されるだろう。呼吸装置10は、混合して、続けて患者インタフェースを介してエンドユーザに送るために適する任意の2つ以上のガスの供給を受け取るように構成し得る。ガスは、中央ガス供給ラインから、ガスボトルから、又は他の様式を含め、任意の適する手段によって呼吸装置のガス流入口組立体に供給し得る。
【0086】
この実施形態では、センサ組立体60は、ガス流の温度を測定するように構成される温度センサと、流路でのガス流の流量を検知するように構成される流量センサとも備える。
【0087】
直接流入口流路-第2の実施形態
図18A~
図18Cを参照して、ベース区画36内のガス流流路の流入セクションの第2の実施形態について説明する。図面中の同様の参照符号は、
図14~
図17を参照して説明した第1の実施形態の螺旋流入口流路と同様の構成要素を表す。この第2の実施形態では、流路の流入セクションは、ベース区画36の流入アパーチャ58と出口ポート38との間のより短くより直接的な流路である。より短くより直接的な流路により、ベース区画でのガス滞留時間が短縮され、それにより、周囲の電子構成要素に起因するガスの加熱が低減する。
【0088】
この実施形態では、流入口流路は、流入アパーチャ58と出口ポート38との間に延びる3つの主ゾーン又は主領域によって画定することができる。3つの領域は、流入口ゾーン39と、センサゾーン41と、遷移ゾーン43とである。
【0089】
図18Aを参照すると、流入口ゾーン又は領域39は、流入アパーチャ58と、大凡センサゾーン41前の遷移ラインEEとの間に延びる。この実施形態では、流入口流路の流入口ゾーン39は、2つの壁45と47との間に画定され、壁45及び47は、流入アパーチャ58において、又は流入アパーチャ58に向けてからセンサ組立体60に延びる。この実施形態では、流入口ゾーン39の断面積は、流入アパーチャ58からセンサゾーン41への遷移ラインEEに向かって徐々に減少又は低減し、それにより、流入口ゾーンでの壁の外形は、漏斗のような構成を形成する。例えば、側壁45及び47は、遷移ラインEEにおいて、又は遷移ラインEEに向けての互いからの変位に相対して、流入アパーチャ58において互いからより広い変位を有する。換言すれば、側壁45と47との間のこの距離又は変位は、流入口ゾーン39が流入アパーチャ58での広い開口部で始まり、流路が、センサゾーン41前の遷移ラインEEに向けて徐々に狭まるように、流入アパーチャ58から遷移ラインEEに向かって低減する。流入口ゾーンのこの漏斗のような構成は、加速するガス流フローを生み出し、続くセンサゾーンでのより安定したガス流を促進する。
【0090】
任意選択的に、流入口ゾーン39に、1つ又は複数のフローディレクタ49を設け得る。この実施形態では、流入口ゾーン39は、ガス流入口組立体からセンサゾーンに直接的な直線流路ではないという点で湾曲を備え、これは、流入口流路の1つ又は複数の領域において、流入口流路にわたり不均等な流れ又は速度勾配を生み出すおそれがある。これを相殺するために、流入口ゾーン39には、複数のフローディレクタ49が設けられ、フローディレクタ49は、流路のいかなる特定の壁にも向けて付勢されない、センサゾーン41への均等な空気流の促進を支援する外形又は形状が構成又は提供される弓形フィン又は湾曲フィン(
図18Cにより明確に示される)の形態である。フローディレクタ49の数及び形状又は外形を、センサゾーン41への所望の角度で空気流を向けるのを支援するように変更し得るが、好ましくは、バルクフローが、遷移ラインEE又はセンサ組立体60の前部開口部に対して略直交する方向でセンサゾーンに入るように構成されることが理解されるだろう。この実施形態では、フィン49は、センサゾーン41を通る安定した流れの提供を支援する。
図18Bを参照すると、フィン49は、繊細であるか、又は較正されたセンサ構成要素を含み得るセンサ組立体60へのユーザによるアクセスを阻止する改竄ガード又は保護ガードとしても機能し得る。この実施形態では、フィン49は、ベース区画36の上蓋36aに一体形成され、上蓋36aから流入口ゾーン内に下方に懸架されるが、フィンを代替的に、筐体下部26のベース部若しくは下側部26aに一体形成するか、又はベース部若しくは下側部26aから流入口ゾーン内に上方に延びるように取り付けてもよいことが理解されるだろう。フィンが必ずしも垂直に向けられる必要がなく、代替的に、流入口流路の流入口ゾーンの側壁から延びるか、又は任意の他の適する角度若しくは角度の混合物で向けられるように、水平に向けられてもよいことも理解されるだろう。
【0091】
センサゾーン41は、大凡遷移ラインEEでの流入口ゾーンの終わりと、大凡遷移ラインFFでの遷移ゾーン43の始まりとの間に画定される。センサゾーンは、
図15~
図17を参照して上述したタイプの、及びバルク流路に知って配置されて、ガス流の様々な特性又はパラメータを検知するモジュール式脱着可能センサ組立体60を備える。示されるように、側壁45、47の終了部はセンサ組立体60の開放前側内に延び、遷移ゾーン43のループ壁51の終了部は、センサ組立体60の逆の後方出口側に延びる。
図15~
図17を参照して説明した実施形態と同様に、センサ組立体60は、側壁45、47の終了部とループ壁51との間に提供又は形成される保持ギャップ内に脱着可能に保持される。
【0092】
遷移ゾーン43は、略湾曲した周壁又はループ壁51によって画定され、この壁51は、円周の少なくとも大部分に略一致し得るか、又は平面で見た場合に他の様式で湾曲するか、若しくは凹形をとる。この実施形態では、ループ壁51は、中心点53を中心として周囲に延び得る。遷移ゾーン43への開口部は、中心点53に相対して外側に延びて、センサ組立体60の出口側に係合するループ壁の終了部によって画定される。示されるように、略円形又は球形の遷移ゾーン43は、ベース区画36の上蓋36aに設けられる出口ポート38を通る空気流の流出口を備える。
【0093】
図14~
図17を参照して説明した螺旋流入口流路実施形態と同様に、
図18A~
図18Cのより短い直接流入口流路も、水平に延びる上下の壁又は表面によって上下から囲まれて、囲まれたチャネル又は空気流通路を形成する。流路は主に、同じ広さに広がる側壁45、47及びループ壁51によって画定され、これらの側壁は、例えば、ベース区画の上蓋36a及び主筐体の筐体下部26のベース部又は下側部26a(
図7参照)によって上下から囲まれる。示されるように、この実施形態では、側壁45、47、51は直立しており、ベース区画の略水平の包囲上蓋36aと、筐体下部26の下側部26aとに対して略直交するか、又は略垂直に延びる。
【0094】
センサ筐体及び位置
上記実施形態では、センサ組立体60はセンサゾーンに配置され、流路の流入セクションはブロワユニット前にある。しかし、センサ組立体は代替的に、加湿ユニット前の流路の任意の他の適する部分にあるセンサゾーンに配置してもよい。特に、流路のセンサゾーンは、ブロワユニットの前又は後を含め、流路内の、加湿ユニットの上流(すなわち、前)の任意の位置に配置し得る。
【0095】
センサ組立体60のセンサ筐体及びセンサについてこれより更に詳細に説明する。センサ組立体は、
図14~
図18Cを参照して説明した螺旋又は直接流入口流路実施形態のいずれかで利用し得る。
図19~
図23を参照すると、センサ組立体60はセンサ筐体62を備え、センサ筐体には、バルク流路でのガス流の様々な特性を測定する1つ又は複数のセンサが搭載される。この実施形態では、センサ筐体62は、第1の端部74と第2の端部76との間に延びる中央本体63を備える。本体63は中空であり、両端部に開口部を有し、それにより、ガス流が本体63の第1の端部74から第2の端部76に通る通路又は検知通路86を提供する。特に、ガス流は一般に、本体63の第1の端部74から第2の端部76に延びる、
図20に示される流軸110の方向に流れる。
【0096】
この実施形態では、本体63は、2つの離間された垂直側壁64及び66と、垂直に延びる側壁64、66の間に水平に延びる上壁68及び下壁70とにより、第1の端部74と第2の端部76との間に形成され、壁は集合的に検知通路を形成し画定する。本体は両端部74、76において開いており、両端部74、76は使用に当たり、ガス流が、側壁、上壁、及び下壁の内面によって画定される本体の中空内部又はキャビティを通って移動するように、流路方向と位置合わせされる。この実施形態では、側壁64と66との間の幅W及び上壁68と下壁70との間の高さ(H)は、センサ組立体の何れかの側を直に囲む流路の部分又はセクションの断面寸法に略対応する。
【0097】
センサの搭載
温度センサ及び流量センサ
図19、
図20、及び
図22を参照すると、センサ組立体のこの実施形態には、温度センサ82及び流量センサ84を受けて保持する搭載アパーチャ78、80が設けられる。例えば、温度センサ搭載アパーチャ78が、センサ筐体の本体の上壁68に設けられ、温度センサを受けて保持するように構成される。同様に、別個の流量センサ搭載アパーチャ80が、センサ筐体62の本体63の上壁68に設けられ、流量センサを受けて保持するような形状又は構成を有する。センサ82、84は、摩擦嵌合、スナップ嵌め、又は任意の他の結合若しくは固定構成で各搭載アパーチャ78、80内に保持し得る。温度センサには、任意選択的に、赤外線放射遮蔽構成要素を設けることもできる。
【0098】
図20を参照すると、温度センサ82及び流量センサ84は、本体63の上壁68から検知通路86内に下方に懸架されるように搭載される。好ましくは、温度センサ82及び流量センサ84は、本体の端部74と76との間の略中央で懸架される。センサ82、84は必ずしも、上壁から懸架される必要はなく、また必ずしも垂直に向けられる必要はない。他の実施形態では、センサ82、84は、センサ筐体の本体63の上壁、下壁、又は側壁のうちの任意の壁に搭載又は固定し得る。さらに、支持壁又は搭載壁から検知通路へのセンサ82、84の向きは、垂直、水平、又は任意の他の適する角度であり得る。センサ82、84は必ずしも、支持壁に相対して中央に配置される必要はなく、検知通路内の任意の適する位置、中央、又は他の位置に配置し得る。センサ82、84は、同じ又は異なる支持壁から延びることもできる。
【0099】
この実施形態では、温度センサ82はモノリシック、デジタル、IC、温度送受信器であり得るが、アナログであれ、デジタルであれ関係なく、任意の代替のタイプの温度センサを利用し得る。この実施形態では、温度センサ82はシリコンバンドギャップ温度送受信器である。
【0100】
この実施形態では、流量センサ84は熱線風速計(HWA)フロー検出器を備える。一形態では、流量センサ84は定抵抗HWAであり、この場合、検出器は、検知通路に配置された温度被制御加熱ビードサーミスタを備え、そこから、予め設定された温度にビードを維持するために必要なエネルギー(電流)に基づいて流量を特定することができる。予め設定される温度は、好ましくは、O2測定の状況で検知通路を流れるガス流の局所温度をあまり変更しないレベルに設定されるように構成される。他の形態では、流量センサ84が定電流HWAを備え得、その場合、流量が、加熱されたビードの抵抗の変化から特定されることが理解されるだろう。必要な場合、流量センサ又は検出器の任意の他の適する形態を使用してもよいことが理解されるだろう。
【0101】
超音波ガス組成センサシステム
この実施形態では、超音波ガス組成センサが実施され、更に詳細に後述するように、非侵襲的クロスフロービーム、超音波エネルギーのパルス又は波に基づく2成分ガス分析を使用して、ガス流内の2成分ガス混合物の相対ガス濃度を検知するように構成される。
【0102】
センサ筐体は、超音波ガス組成センサシステムの超音波トランスデューサ構成要素を受けて保持する、全体的に90及び92で示されるトランスデューサ搭載組立体を備える。この実施形態では、トランスデューサ搭載組立体90、92は、本体63の対向する側に設けられ、それにより、検知通路86の対向する側に一対のトランスデューサを支持又は搭載する。トランスデューサは、検知通路86と位置合わせされるとともに、検知通路86を挟んで互いに面する。トランスデューサ搭載組立体90、92は、本体の各側壁64、66に搭載又は固定される。各トランスデューサ搭載組立体又はフォーメーションは、ガス組成センサシステムの相補的な寸法及び形状のトランスデューサ構成要素を受けて保持するような寸法及び形状の保持キャビティ90a、92aを提供するように構成される。この実施形態では、受けキャビティ90a、92aは略円筒形であり、本体の側壁64、66のそれぞれを通して提供される円形トランスデューサアパーチャに位置合わせされるか、又は円形トランスデューサアパーチャと同軸である。
図19は、側壁66のトランスデューサアパーチャ66aを示し、側壁64は同様に、対応するトランスデューサアパーチャを有するが、これは見えない。代替の実施形態では、トランスデューサ対を本体の上壁68及び下壁70に搭載可能であり、残りの温度センサ82及び流量センサ84は、いずれかの側壁64、66から検知通路内に延びるように搭載されることが理解されるだろう。
【0103】
図23及び
図24を参照すると、この実施形態では、各トランスデューサ搭載組立体90、92は円筒形ベース部90b、92bを有し、円筒形ベース部は、一端部では、本体63の各側壁64、66の各外面に固定又は搭載され、他端部において、円筒形ベース部から延びる少なくとも一対の対向するクリップ、クリップ部、又はフィンガ90c、92cが設けられる。円筒形ベース部は、延長クリップと組み合わせて、集合的に保持キャビティ90a、92aを画定し、その中に、トランスデューサ構成要素がしっかりと受けられ保持される。この実施形態では、各トランスデューサ搭載組立体には、円筒形ベース部90b、92bの全周に離間されるクリップ又はクリップ部90c、92cの円形アレイが設けられる。この実施形態では、3つの対向する対を形成する6つのクリップ部90c、92cが提供されるが、必要な場合、クリップ部の対の数を変更し得ることが理解されるだろう。
【0104】
クリップ部90c、92cは弾性可撓性を有し得、それにより、90d、92dでそれぞれ示される各受けキャビティ90a、92aの軸に相対してわずかに外側に撓み得る。クリップ部90c、92cは、各円筒形ベース部90b、92bから離れて延びるにつれて、各キャビティ軸90d、92dに向かう方向で先細りするように構成することもできる。これは、ベース部90b、92bから離れて延びるにつれて、直径が低減するか、又は徐々に先細りする寸法を有する円筒形保持キャビティを提供する。
図24に示されるように、各クリップ部90c、92cは、関連付けられた円筒形ベース部90b、92bから離れて延びる長さに沿って断面で見た場合、略弓形又は凹形であり、それにより、円筒形の円周部に一致する。
図23を参照すると、例として、各クリップ部は、円筒形ベース部90bに配置された第1の端部94と、トランスデューサ受けキャビティ90aの端部を画定する第2の端部又は終了端部96との間に延びる。この実施形態では、各クリップ部の終了端部96に向かう内面には、リッジ又はショルダ部97が設けられ、リッジ又はショルダ部97は、保持キャビティ内に延び、保持キャビティ内にトランスデューサ構成要素を固定するストップ又はグリップフォーメーションとして機能するように構成される。
【0105】
各トランスデューサ搭載組立体90、92内に、通常、円筒形状のトランスデューサ構成要素を設置する際、クリップ部90c、92cは、トランスデューサ構成要素が部分的に挿入されると、わずかに外側に撓み、次に、トランスデューサがキャビティ内に完全に係合すると、それぞれの静止状態に戻り、それにより、トランスデューサをそれぞれの保持キャビティ内にしっかりと握るか、又は保持する。
【0106】
必要な場合、トランスデューサ要素をセンサ筐体内で受けてそこに保持するために、他のトランスデューサ搭載組立体を代替的に使用することも可能なことが理解されるだろう。好ましくは、トランスデューサ搭載組立体は、トランスデューサ構成要素を脱着可能に固定可能なように構成され、それにより、トランスデューサは、必要な場合、交換又は修理のために、センサ筐体から取り外すことができる。
【0107】
この実施形態では、本体63及びトランスデューサ搭載組立体は、プラスチック等の適する材料から、互いに一体形成される。しかし、センサ筐体のパーツを別記に形成して、次に、一緒に固定又は接続してもよいことが理解されるだろう。
【0108】
図20を参照して、センサ筐体の各トランスデューサ搭載組立体90、92に設置されたトランスデューサ100、102を示す。この実施形態では、トランスデューサ及びトランスデューサ搭載組立体は、トランスデューサの前面が本体63の側壁64、66における各トランスデューサアパーチャ内に延び、それにより、側壁の残りの内面と同一の平面に置かれるように協働するように構成される。例えば、
図20を参照して、トランスデューサ102の前面102bは、側壁66の内面66bと略同じ平面にあるように示される。同じ構成が、対向するトランスデューサ構成要素100にも提供される。
【0109】
示されるように、この構成は一対のトランスデューサ100、102を提供し、これらのトランスデューサは、本体の第1の端部74から第2の端部76に通路86を通って移動するガス流の方向又は流軸110に略直交する方向に、超音波が送信されるように、互いに位置合わせされるとともに、本体63の検知通路86を挟んで互いに面する。
【0110】
音響ビーム路長を定義する一対のトランスデューサ100、102間の距離(例えば、
図19においてWで示される)は、所望の感度を提供するのに十分に大きいが、位相ラップラウンド不明瞭性を回避するのに十分に短いように選択される。例えば、トランスデューサ間の距離は、感度を増大させるのに十分に大きいように選択されるが、検知中のガス組成及び温度の範囲に予期される全位相シフトに基づいて制限される。
【0111】
センサ制御システム及び回路
図20を参照すると、トランスデューサ100、102の電気端子又はコネクタ100a、102aは、センサ筐体の本体63の側から突出し、温度センサ82及び流量センサ84の電気端子82a、84aは、本体63の上壁68の外面においてアクセス可能である。可撓性配線織物又はテープ112が、センサ筐体の側及び上面にわたり延びて、センサの電気端子への配線接続を提供し得る。配線112は、呼吸装置10のセンサ制御システム及び回路まで延び、センサ制御システム及び回路は、これより更に後述するように、センサを制御するように構成される。
【0112】
図25を参照すると、配線112を介してセンサ構成要素100、102、84、及び82に電気的に接続されたセンサ制御システム150の一例を例として説明する。マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ等の任意のプログラマブル装置での実施を含め、電子センサ制御システム150をソフトウェア又はハードウェアで実施し得るとともに、及びこれが、メモリ及び関連付けられた入出力回路を適宜有し得ることが理解されるだろう。センサ制御システム150の様々なモジュールが、様々であり得、更に別個であり得、又は一体化し得、
図25が、センサ制御システムの一般機能についての単なる例として説明されることが理解されるだろう。センサ制御システム150は、呼吸装置の主制御システムと一体化してもよく、又は主コントローラ若しくは制御システムと通信する別個のサブシステムであってもよい。センサ制御システム150については、窒素/酸素混合物と略同等である空気/酸素混合物等の2成分ガス混合物内のガス組成又はガスの相対濃度を特定するように配置されるセンサの特定の配置又は構成を参照して説明される。しかし、センサ制御システムを、ガス流内の他のガス濃度を示す情報を提供するように構成し得ることが理解されるだろう。
【0113】
流量モジュール
流量センサ84は、センサ筐体の検知通路86を通って流れるガス流110の、例えば毎分リットル数単位での流量を検知し、代表的な流量信号152を生成するように構成され、この信号は、センサ制御システム150内の流量モジュール154によって受信され処理される。モータ速度センサ120も、好ましくは、モータ速度、例えば、ブロワユニットモータの毎分回転数(rpm)を検知するためにブロワユニットに設けられる。モータ速度センサ120は代表的なモータ速度信号156を生成し、この信号は、モータ速度モジュール158によって受信され処理される。
【0114】
温度モジュール
温度モジュール160は、センサ筐体の検知通路86を通って流れるガス流の温度を表す、温度センサ82によって生成される温度信号162を受信して処理するように構成される。この実施形態では、温度センサ82は、トランスデューサ100と102との間の音響ビーム路の近傍でのガス流の温度を検知するように構成される。
【0115】
温度モジュール160は任意選択的に、温度補償を温度信号162に適用して、温度センサ82によって生成される潜在的な誤差又はオフセットを補償するように構成される。特に、センサ組立体60はブロワユニット区画及び他の電子回路の後に配置されるため、回路及びモータからの熱が、動作状況に応じて、温度センサ82によって検知される温度に影響を及ぼすおそれがある。例えば、センサ組立体上方の熱に起因して、温度信号162は、真の温度よりも高いガス流温度を示すことがある。特定の動作状況でのこの潜在的な誤差を補償するために、温度モジュール160は、以下の式に基づいて温度補償係数又は補正を適用するように構成される:Tcorrected=Tsensor+ΔT。
式中:
・Tcorrectedは、補償後の補正された温度であり、
・Tsensorは、信号162によって表される、温度センサ82によって検知される温度であり、
・ΔTは、呼吸装置の現在の動作状況に基づいて計算又は予測される温度誤差
である。
【0116】
温度誤差(ΔT)は、呼吸装置10の動作状況に応じて変更される。この実施形態では、温度誤差は、呼吸装置内のガス流の現在の流量152と、現在のモータ速度156とに関連するシステム状況との比例関係に基づいて計算される。通常、流量の増大は冷却の影響を有し、一方、モータ速度の増大は、使用電力の増大に起因して、呼吸装置の筐体内の加熱を増大させる。動作に当たり、温度モジュールは、現在のシステム動作状況、特に現在の流量152及びモータ速度156に基づいて温度誤差ΔTを連続して、又は定期的に計算するように構成される。次に、更新された温度誤差ΔTが、温度センサから検知された入力温度Tsensor162に適用されて、補正された温度Tcorrectedを生成する。
【0117】
一実施形態では、ΔT=α×(モータ速度/流量)であり、式中、αは定数である。しかし、代替的に、呼吸装置の動作に関連し、温度センサ82の近傍で生じる可能性が高い温度変動に影響を及ぼす1つ又は複数の他の動作状況又はシステム変動を考慮に入れる参照表又は他のアルゴリズムに基づいてΔTを計算してもよいことが理解されるだろう。幾つかの実施形態では、ΔTは、長期実行期間中に呼吸装置に蓄えられる熱等の温度変動に影響を有する時間に依存する影響を組み込み得る。例えば、ΔTは、呼吸装置の1つ又は複数のパーツの熱キャパシタンスに起因するような時間により変動する影響を表す積分微分式として表すこともできる。
【0118】
ガス組成モジュール
ガス組成センサシステムは、超音波2成分ガス検知システムとして構成される。上述したように、この実施形態でのガス組成検知システムは、センサ筐体の検知通路の両側に設けられる一対の超音波トランスデューサ構成要素100、102を備える。トランスデューサ構成要素のうちの一方である100は、検知通路を通るガス流の方向に略直交する方向において、通路にわたり単方向超音波又は音響ビーム波又はパルスを他方の超音波トランスデューサに送信する超音波送信器として構成され、他方の超音波トランスデューサは、通路の他方の側で、送信された超音波又はパルスを受信する超音波受信器として構成される。この実施形態では、トランスデューサ構成要素100、102は、通常、狭い帯域幅で動作する圧電セラミックトランスデューサ素子又は任意の他の適する、動作可能な超音波トランスデューサ素子であり得る。この実施形態では、トランスデューサ素子は、約25kHzの周波数で動作するが、これは所望に応じて変更し得る。好ましい形態では、動作周波数は、ガス組成検知がユーザにとって無音であるように、人間の可聴音響スペクトルよりも上であり、且つ/又はノイズ源からの干渉を低減又は最小化するのに十分に高い周波数であるように選択される。
【0119】
超音波送信器100及び受信器102は、ガス組成モジュール174のドライバ回路170及び受信器回路172によってそれぞれ制御される。特に、ドライバ回路170は、制御励起信号176を超音波トランスデューサに提供して、超音波エネルギーのパルスを送信するように超音波トランスデューサを駆動する。超音波受信器102は、パルスを検知し、代表的な受信信号178を生成し、この信号は、受信器回路172によって受信されて処理される。この実施形態では、パルスシステムが利用されるが、代替の実施形態では、連続波又は定常波手法を利用し得る。
【0120】
超音波を使用する2成分ガス分析は、この場合では、センサ筐体の検知通路86を通って流れるガス流のバルク流又は主流であるガス試料を通る音響パルスの速度の検知に基づく。音速は、ガスの平均分子重量及び温度の関数である。この構成では、ガス組成モジュール174は、温度モジュール160から、超音波トランスデューサ間のビーム路の間を流れるガスの指示温度を表す温度信号164を受信する。音の検知速度及び検知温度の知識を用いて、ガス流のガス組成を特定又は計算し得る。特に、検知通路にわたる音速の測定値を使用して、超音波を用いる2成分ガス分析の分野で既知のように、参照表の形態で記憶される経験的な関係、標準アルゴリズム、又はデータの参照により、2つの既知のガスの比率を推測し得る。代替的に、温度センサが利用されない場合、超音波トランスデューサのビーム路内のガス流の温度の推定値を、2成分ガス分析計算で使用してもよいことが理解されるだろう。そのような代替の実施形態では、ビーム路内のガス流の温度推定値を使用することができるように、ガス流の温度を狭い温度帯内にあるように調整又は制御し得る。
【0121】
幾つかの実施形態では、呼吸装置には、湿度センサを設けることもでき、湿度センサは、流路内に配置され、センサ組立体を通って流れるガス流の湿度を示す湿度信号を生成するように構成される。そのような実施形態では、ガス組成は、検知された音速と、検知された温度及び/又は検知された湿度によって特定し得る。湿度センサは、相対湿度センサ又は絶対湿度センサであり得る。幾つかの実施形態では、ガス組成は、温度センサを必要とせずに、検知された音速及び検知された湿度に基づいて特定し得る。
【0122】
ガス組成検知システムを使用して、ガス組成内の任意の2つの既知のガスの各比率を測定し得る。この実施形態では、ガス組成モジュールは、窒素/酸素混合物と略同等である、補足酸素が混合された空気の混合物内の相対ガス濃度を特定するように構成される。そのような2成分ガス混合物では、音速を監視し、温度を考慮に入れることにより、ガスの平均分子重量を特定することができ、したがって、2つのガスの相対濃度を特定し得る。この比率から、ガス流の酸素濃度又は窒素濃度を抽出し得る。
【0123】
この実施形態では、ガス組成モジュール124は分析器又はコントローラ180を備え、分析又はコントローラ180は、制御信号171、173を用いて、各ドライバ回路170及び受信器回路172を介して超音波トランスデューサ100、102を動作させるように構成される。分析器180は、温度モジュール160からの補正温度信号164を受信して処理するようにも構成される。動作に当たり、分析器180は、検知通路にわたり単方向超音波又は音響パルスを所望の頻度で定期的に送信して、音響パルスの音速を特定するように構成される。次に、音速の測定値を、温度モジュール160からの温度の知識と共に使用して、ガス組成を特定する。音響パルスの速度は、タイマ回路を使用して、位相検出を介して、通路にわたって送信器100から受信器102に直接又は間接的に移動する音響パルスの移動時間を測定することを含め、任意の所望の様式で特定し得る。適する信号処理が実施される場合、位相を追跡して、「ラップアラウンド」の影響を最小に抑えることができることが理解されるだろう。トランスデューサ素子100と102との間の距離は既知であり、センサ筐体の側壁64と66との間の幅(
図19ではW)と同様であり、したがって、音速は、移動時間と、トランスデューサ間の距離(ビーム路長に対応する)とに基づいて特定することができる。特に、分析計には、トランスデューサ間の距離及び/又は音速検知を介してガス組成を特定するに当たり有用な任意の他の一般的に妥当な、又は装置固有の特徴を示すデータを予めプログラムし、そのデータを用いて較正し得る。較正は、温度の関数としてのトランスデューサ素子100と102との間の距離の変化を考慮に入れることができる。例えば、センサ筐体の側壁64と66との間の距離は、温度が変化する場合に増減し得る。
【0124】
任意選択的に、ガス組成センサモジュールには、ユーザ選択可能又は予めプログラムされるスケーリング係数又は補正係数を構成して、好ましくは、圧力スイング吸着法を使用する市販の酸素濃縮器から呼吸装置に酸素が供給される場合に使用される酸素濃度を特定する際にアルゴンを考慮に入れ得る。例えば、ユーザは、制御システムをアクティブ化して、アルゴンスケーリング係数又はアルゴン補正係数を利用して、検知される酸素濃度を変更して、あらゆるアルゴン成分を除去し、計算酸素濃度をもたらし得る。
【0125】
センサ制御システム150は、センサ組立体又は他のセンサによって検知される様々な特性を示すデータ又は信号を出力し得る。例えば、モジュール154、158、160からの出力信号又はデータ182、184、及び186は、検知された流量182、モータ速度184、及び温度186を表し得る。同様に、ガス組成モジュールは、超音波ガス組成検知システムによって検知されるガス組成を示す1つ又は複数の出力信号又はデータ188を生成するように構成される。この実施形態では、出力信号188は、ガス流内の酸素割合又は酸素(O2)濃度を表し得る。代替的には、信号又は追加の信号は、窒素(N2)の濃度又は割合を表し得る。例えば、二酸化炭素(CO2)を含むが、これに限定されないガス流内の他のガス濃度を表す信号を提供するように、システムを変更し得ることも理解されるだろう。
【0126】
次に、呼吸装置の主コントローラが、1つ又は複数のガス濃度出力信号188を受信して処理し得る。例えば、主コントローラは、酸素信号188に基づいて、検知された酸素読み取り値を呼吸装置の出力ディスプレイに表示するように構成し得る。一実施形態では、ユーザ制御インタフェース30(
図8参照)は、超音波ガス組成センサシステムによって検知されたガス濃度読み取り値、例えば、酸素濃度又は他の1つ若しくは複数のガス濃度レベルを表示するように構成し得る。
【0127】
幾つかの実施形態では、主コントローラは、1つ又は複数のガス濃度レベル、例えば、酸素濃度が、最大閾値及び/又は最小閾値によって定義されるユーザ定義範囲内に留まるか否かを判断するように構成される。例えば、そのような実施形態では、主コントローラは、ガス濃度出力信号188に基づく検知ガス濃度レベルを、ユーザ定義又は選択ガス濃度レベル閾値と比較するように構成し得る。検知されたレベルが最小閾値未満であるか、若しくは最大閾値を超える場合、又は他の様式でユーザ定義範囲外である場合、主コントローラは、可聴、可視、触知性、又はこれらの任意の組み合わせであり得る、装置に組み込まれたアラームをトリガー又はアクティブ化し得る。主コントローラは任意選択的に、装置をシャットダウンするか、又はトリガーされる各アラームに適切な任意の他の動作機能をトリガーすることもできる。
【0128】
幾つかの実施形態では、呼吸装置10は、国際公開第2007/069922号パンフレットに記載されるタイプの消毒システム及び/又はクリーニングモードを備え、この国際公開パンフレットの内容を参照により援用する。そのような消毒システムは、加熱された乾性ガスを、ユーザインタフェースへのガス流路の部分に循環させることにより、熱消毒を利用する。そのような実施形態では、主コントローラは、任意の消毒システム又はクリーニングモードを開始する前に、検知酸素信号188に基づいて、ガス流路内の酸素濃度レベルが、予め設定される酸素濃度レベル未満であるか否かを判断するように構成される。例えば、主コントローラは、火災の危険を最小に抑えるために、検知酸素濃度が安全な範囲内、好ましくは約30%未満になるまで、いかなるクリーニングモードの開始も阻止するように構成し得る。
【0129】
酸素信号188を更に使用して、ブロワユニットのモータ速度を自動的に制御して、ガス流の流量を変更し、それにより、酸素濃度を変更若しくは変えることができ、又は万が一、酸素濃度が予め設定された上限閾値若しくは下限閾値外になる場合には装置の動作を停止させることができる。代替的には、呼吸装置のユーザは、プリントされた参照表に基づいて酸素濃度を推定する必要なく、表示された酸素読み取り値からのリアルタイムフィードバックに基づいて、呼吸装置に接続された中央ガス源からの酸素供給流量を手動で制御し、それにより、酸素濃度を変更し得る。幾つかの実施形態では、呼吸装置は、中央ガス源からの酸素供給流量を自動的に変更するか、又は変える値を有し、それにより、酸素濃度を変更し得る。主コントローラは、酸素信号188を受信し、それに従って、所望の酸素濃度に対応する酸素信号188の所定の値に達するまで、酸素弁を調整することができる。
【0130】
代替の超音波ガス組成センサシステム構成
図26A~
図26Eを参照して、クロスフロー超音波ビーム又はパルスの送受信によってガス流を通る音速を検知するガス組成検知システムの超音波トランスデューサの様々な代替の構成について説明する。同様の参照符号は同様の構成要素を表す。
【0131】
図26Aを参照して、
図19~
図25を参照して上述した実施形態のトランスデューサ構成200を概略的に示す。示されるように、このトランスデューサ構成は、検知通路206の両側からそれぞれ対向する一対のトランスデューサ202、204がある構成を提供し、空気流路方向は全体的に208で示される。この構成200では、トランスデューサ202、204のそれぞれは、専用送信器又は専用受信器のいずれかとして駆動され、それにより、超音波パルス210は、送信器トランスデューサから受信器トランスデューサに空気流路にわたって単方向に送信される。示されるように、トランスデューサ対は、空気流路方向208に対して位置合わせされ(すなわち、互いに変位なしの上流又は下流)、空気流路方向に略直交するクロスフローパルスを送信するように構成される。
【0132】
図26Bを参照して、代替のトランスデューサ構成220を示し、この構成では、一対のトランスデューサ222、224が、検知通路の両側に互いに対向して設けられるが、各トランスデューサは、送信器及び受信器の両方として動作し得る。すなわち、各トランスデューサは超音波送信器-受信器又は送受信器である。この構成では、双方向超音波パルス226を送信器対222と224との間で送信し得る。例えば、パルスを、トランスデューサ間で前後に交互に、又は任意の他の順番若しくはパターンで送信し得る。ここでも、トランスデューサ対は、空気流路方向に対して位置合わせされ、空気流路方向に略直交するクロスフローパルスを送信するように構成される。
【0133】
図26Cを参照して、代替のエコートランスデューサ構成230を示し、この構成では、送信器トランスデューサと受信器トランスデューサとの対は、単一の超音波送信器-受信器トランスデューサ232の形態で設けられ、このトランスデューサ232は、検知通路の片側に設けられ、検知通路206にわたってクロスフロー音響パルス236を送信し、検知通路の逆側から反射される反射パルス又はエコーを受信するように構成される。
【0134】
図26Dを参照して、代替のトランスデューサ構成240を示し、この構成では、送信器トランスデューサ242及び受信器トランスデューサ244は、空気流路に対して互いから変位されており(すなわち、一方が他方の上流にある)、検知通路の両側にある。
図26Dでは、受信器が送信器の上流にあるが、逆の構成を利用することも可能である。この構成を用いる場合、送信器242は、ビーム246で示されるように、検知通路206にわたり受信器244に直接クロスフローパルスを送信するか、又はビーム248で示されるように、少なくとも2つの反射を含む反射路によってより長い間接的な路長を生み出すことができる。示されるように、この変位構成を用いる場合、音響パルスは、空気流路方向208に略直交するのではなく、傾斜して横断するクロスフロー方向を有する。単方向構成が示されるが、トランスデューサ242、244が代替的に、超音波送信器-受信器であり、双方向ビームパルスをトランスデューサ間で前後(すなわち、空気流に対して上流及び下流の両方)に送信可能にしてもよいことも理解されるだろう。
【0135】
図26Eを参照して、
図26Dの構成を変更したものである代替のトランスデューサ構成250を示し、この構成では、送信器252及び受信器254はここでも、空気流方向208において互いから変位されるが、検知通路の同じ側に配置され、それにより、送信されるクロスフローパルス256は、検知通路206の逆側からの少なくとも1つの反射(又はより長い路長の場合には複数の反射)を備える。その他の点では、双方向動作並びに送信器及び受信器の位置の交換を含め、
図26Dを参照して説明される代替の選択肢と同じ代替の選択肢が適用される。
【0136】
図27A~
図27Cを参照して、流れに沿った超音波ビーム又はパルスの送受信によってガス流を通る音速を検知するガス組成検知システムの超音波トランスデューサの様々な更なる代替の構成について説明する。同様の参照符号は同様の構成要素を表す。
【0137】
図27Aを参照して、代替のトランスデューサ構成260を示し、この構成では、検知通路206の両側から互いに対向する一対のトランスデューサ262、264があり、空気流路方向又は軸は全体的に208で示される。この構成260では、トランスデューサ262、264のそれぞれは、専用送信器又は専用受信器のいずれかとして駆動され、それにより、検知通路206でのガス流路軸208に略位置合わせされるか、又は平行する流れに沿った超音波パルス266が、送信器と受信器との間のビーム路で単方向的に送信される。示される実施形態では、送信器は受信器の上流にあるが、逆の構成を利用することも可能なことが理解されるだろう。この構成を用いる場合、流量センサが検知通路に設けられて、検知通路でのガス流の流量を示す流量信号を提供する。前の実施形態を用いて上述された様式と同様にして、検知通路での音速を導出又は特定することも可能であり、流量信号が、計算音速信号でガス流量を除去又は補償する信号処理において利用されることが理解されるだろう。
【0138】
図27Bを参照して、代替のトランスデューサ構成270を示し、この構成では、一対のトランスデューサ272、274が、
図27Aと同様に、検知通路の両側から互いに対向して設けられるが、各トランスデューサは、送信器及び受信器の両方として動作し得る。すなわち、各トランスデューサは超音波送信器-受信器又は送受信器である。この構成では、流れに沿った双方向超音波パルス276をトランスデューサ対272と274との間で送信し得る。例えば、パルスは、パルスを、トランスデューサ間で前後に交互に、又は任意の他の順番若しくはパターンで送信し得る。ここでも、トランスデューサ対は、空気流路軸208に対して位置合わせされ、検知通路206での空気流路軸208に略位置合わせされるか、又は平行する1つ又は複数のビーム路で流れに沿ったパルスを送信するように構成される。この構成を用いる場合、音速信号の流量成分は、送受信される音響パルスの処理から直接導出又は特定することができるため、別個の流量センサを必ずしも設ける必要はない。
【0139】
図27Cを参照して、代替のエコートランスデューサ構成280を示し、この構成では、送信器トランスデューサと受信器トランスデューサとの対は、単一の超音波送信器-受信器トランスデューサ282の形態で設けられ、このトランスデューサ282は、検知通路の片側(開始部であれ、又は終了部であれ)に設けられ、空気流軸208に略位置合わせされるか、又は平行するビーム路で、検知通路206に沿って、流れに沿った音響パルス286を送信し、検知通路の逆端部から反射される反射パルス又はエコーを受信するように構成される。示される実施形態では、送信器-受信器282は通路の端部に示されるが、代替的に、通路の開始部に配置することもできる。
図27Aの構成のように、流量センサが検知通路に設けられて、音速の計算が空気流量成分を補償できるようにする。
【0140】
図26B~
図26E及び
図27A~
図27Cの代替の構成を用いて、それに従って、検知通路での音速を検知するように、ドライバ回路、受信器回路、及び信号処理を構成可能であり、次に、上述したように、音速を使用してガス組成が特定されることが理解される。
【0141】
好ましい特徴
1.加温加湿されたガス流を提供するように構成される呼吸補助装置であって、ガス供給を受け取るように構成されるガス流入口と、ガス供給から加圧ガス流を生成するように構成されるブロワユニットと、加圧ガス流を加温加湿するように構成される加湿ユニットと、加温加湿されたガス流のガス流出口と、ガス流入口からブロワユニット及び加湿ユニットを通してガス流出口に呼吸装置を通るガス流の流路と、流路内において、加湿ユニットの前に設けられるセンサ組立体であって、ガス流内の1つ又は複数のガス濃度を検知する超音波ガス組成センサシステムを備える、センサ組立体とを備える、呼吸補助装置。
【0142】
2.超音波ガス組成センサシステムは送信器と受信器との送受信器対を備え、送受信器対は、送信器から受信器に、ガス流を通してクロスフロー音響パルスを送信して、センサ組立体の近傍でのガス流内での音速を検知するように動作可能である、段落1による呼吸補助装置。
【0143】
3.送信器と受信器との送受信器対は、音響パルスが、ガス流の流れる方向に略直交する方向においてガス流を移動するように配置される、段落2による呼吸補助装置。
【0144】
4.送信器と受信器との送受信器対は、音響パルスが、ガス流の流れる方向に対して傾斜するが、直交はしないクロスフローでガス流を移動するように配置される、段落2による呼吸補助装置。
【0145】
5.送信器と受信器との送受信器対は、送信器として構成されるトランスデューサと、受信器として構成されるトランスデューサを備えて、単方向音響パルスを送信する、段落2~4の何れか1つによる呼吸補助装置。
【0146】
6.送信器と受信器との送受信器対は、双方向音響パルスを送信するように構成される一対の送信器-受信器トランスデューサを備える、段落2~4の何れか1つによる呼吸補助装置。
【0147】
7.送信器及び受信器は、ガス流の流れる方向に関連して互いに位置合わせされ、流路を挟んで互いに面する、段落5又は6による呼吸補助装置。
【0148】
8.送信器及び受信器は、ガス流の流れる方向において互いから変位される、段落5又は6による呼吸補助装置。
【0149】
9.音響パルスは、送信器と受信器との間で直接的なビーム路を有する、段落8による呼吸補助装置。
【0150】
10.音響パルスは、送信器と受信器との間で間接的であり、1つ又は複数の反射を経るビーム路を有する、段落8による呼吸補助装置。
【0151】
11.送信器トランスデューサと受信器トランスデューサとの対は、クロスフロー音響パルスを送信し、エコーリターンパルスを受信するように構成される単一の送信器-受信器の形態である、段落2~4の何れか1つによる呼吸補助装置。
【0152】
12.超音波ガス組成センサシステムは、送信器から受信器に、ガス流を通して流れに沿った音響パルスを送信して、センサ組立体の近傍でのガス流内での音速を検知するように動作可能な送信器トランスデューサと受信器トランスデューサとの対を備える、段落2による呼吸補助装置。
【0153】
13.超音波ガス組成センサシステムの送信器トランスデューサと受信器トランスデューサとの対に動作可能に接続され、ガス流を通る音速を検知し、音速を示す音速信号を生成するようにトランスデューサ対を動作させるように構成されるセンサ制御システムを更に備える、段落2~12の何れか1つによる呼吸補助装置。
【0154】
14.センサ制御システムは、少なくとも、ガス流を通る音速を示す信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される、段落13による呼吸補助装置。
【0155】
15.センサ組立体は温度センサを更に備え、温度センサは、センサ組立体の近傍でのガス流の温度を測定し、代表的な温度信号を生成するように構成され、センサ制御システムは、音速信号及び温度信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される、段落13又は14による呼吸補助装置。
【0156】
16.センサ組立体は湿度センサを更に備え、湿度センサは、センサ組立体の近傍でのガス流内の湿度を測定し、代表的な湿度信号を生成するように構成され、センサ制御システムは、音速信号及び湿度信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される、段落13又は14による呼吸補助装置。
【0157】
17.センサ組立体は、センサ組立体の近傍でのガス流の温度を測定し、代表的な温度センサを生成するように構成される温度センサと、センサ組立体の近傍でのガス流内の湿度を測定し、代表的な湿度信号を生成するように構成される湿度センサとを更に備え、センサ制御システムは、音速信号、温度信号、及び湿度信号に基づいて、ガス流内のガス濃度を示す1つ又は複数のガス濃度信号を生成するように構成される、段落13又は14による呼吸補助装置。
【0158】
18.センサ制御システムは、温度補正を温度信号に適用して、温度センサに影響する、呼吸装置内の熱によって生じる任意の予測温度検知誤差を補償するように構成される、段落15又は17による呼吸補助装置。
【0159】
19.センサ組立体は、流量センサを更に備え、流量センサは、センサ組立体の近傍でのガス流の流量を検知し、代表的な流量信号を生成するように構成され、システムは、ブロワユニットのモータ速度を検知し、代表的なモータ速度信号を生成するように構成される、設けられたモータ速度センサを更に備え、温度補正は、少なくとも、流量信号及び/又はモータ速度信号に基づいてセンサ制御システムによって計算される、段落18による呼吸補助装置。
【0160】
20.センサ制御システムは、ガス流内の酸素濃度を表すガス濃度信号を生成するように構成される、段落13~19の何れか1つによる呼吸補助装置。
【0161】
21.センサ制御システムは、ガス流内の二酸化炭素濃度を表すガス濃度信号を生成するように構成される、段落13~19の何れか1つによる呼吸補助装置。
【0162】
22.センサ組立体は流路内に脱着可能に搭載される、段落1~21の何れか1つによる呼吸補助装置。
【0163】
23.流路は、流路の少なくとも1つのセクション又は部分でのガス流の安定した流れを促進するような形状又は構成を有する、段落1~22の何れか1つによる呼吸補助装置。
【0164】
24.流路は、センサ組立体を含む流路のセクション又は部分での安定した流れを促進するような形状又は構成を有する、段落23による呼吸補助装置。
【0165】
25.流路は、ガス流入口において、又はガス流入口に向かう1つ又は複数のフローディレクタを備える、段落23又は24による呼吸補助装置。
【0166】
26.各フローディレクタは、弓形フィンの形態である、段落25による補助呼吸装置。
【0167】
27.流路は、ガス流の安定した流れを促進する少なくとも1つの螺旋部分又はセクションを備える、段落23~26の何れか1つによる呼吸補助装置。
【0168】
28.流路は、ガス流入口とブロワユニットとの間に延びる流入セクションを備え、流入セクションは少なくとも1つの螺旋部を備える、段落27による呼吸補助装置。
【0169】
29.センサ組立体は流路の螺旋部分に配置される、段落27又は28による呼吸補助装置。
【0170】
30.螺旋部は1つ又は複数の略直線のセクションを備え、センサ組立体は直線セクションのうちの1つに配置される、段落29による呼吸補助装置。
【0171】
31.センサ組立体は、本体を備えるセンサ筐体を備え、本体は、中空であり、第1の開放端部と第2の開放端部との間に延びる周壁によって画定され、それにより、本体内において壁の間に検知通路を画定し、検知通路を通って、ガス流は、本体の第1の端部と第2の端部との間に延びる流軸の方向に流れることができ、送信器トランスデューサと受信器トランスデューサとの対は、検知通路の対向する壁又は側に配置される、段落2~30の何れか1つによる呼吸補助装置。
【0172】
32.センサ筐体は、2つの離間された側壁と、側壁の間に延びる上壁及び下壁とを備えて、本体に沿って、第1の端部と第2の端部との間に検知通路を画定する本体と、本体の対向する壁に配置される一対のトランスデューサ搭載組立体であって、それぞれが、本体の検知通路にわたり、トランスデューサ対の各トランスデューサが位置合わせされ、互いに面するようトランスデューサ対の各トランスデューサを受けて保持するように構成される、一対のトランスデューサ搭載組立体とを備える、段落31による呼吸補助装置。
【0173】
33.ブロワユニットは、最高で100リットル/分の流量を有するガス流をガス流出口において生成するように動作可能である、段落1~32の何れか1つによる呼吸補助装置。
【0174】
34.ガス流入口は、大気空気と、酸素供給源からの純粋な酸素との混合物を含むガスの供給を受け取るように構成される、段落1~33の何れか1つによる呼吸補助装置。
【0175】
35.ガス流入口は、大気空気と、二酸化炭素供給源からの二酸化炭素との混合物を含むガスの供給を受け取るように構成される、段落1~33の何れか1つによる呼吸補助装置。
【0176】
36.流路は装置のバルク流路内にある、段落1~35の何れか1つによる呼吸補助装置。
【0177】
37.呼吸補助装置内のガス流のインライン流路検知を行うセンサ組立体であって、本体を備えるセンサ筐体を備え、本体は、中空であり、第1の開放端部と第2の開放端部との間に延びる周壁によって画定され、それにより、本体内において壁の間に検知通路を画定し、検知通路を通って、ガス流は、本体の第1の端部と第2の端部との間に延びる流軸の方向に流れることができ、センサ組立体は、検知通路を流れるガス流内の1つ又は複数のガス濃度を検知する、センサ筐体に搭載される超音波ガス組成センサシステムと、検知通路を流れるガス流の温度を検知する、センサ筐体に搭載される温度センサと、検知通路を流れるガス流の流量を検知する、センサ筐体に搭載される流量センサとを備える、センサ組立体。
【0178】
38.センサ筐体は、呼吸補助装置の流路内の相補的な保持アパーチャに脱着可能に係合するように構成される、段落37によるセンサ組立体。
【0179】
39.超音波ガス組成センサシステムは、送信器から受信器に、ガス流を通して、検知通路を通って流れるガス流の流軸に略直交する方向に音響パルスを送信するように動作可能な送信器トランスデューサと受信器トランスデューサとの対を備える、段落37又は38によるセンサ組立体。
【0180】
40.送信器トランスデューサと受信器トランスデューサとの対は、検知通路の対向する壁又は側に配置される、段落39によるセンサ組立体。
【0181】
41.センサ筐体の本体は、2つの離間された側壁と、側壁の間に延びる上壁及び下壁とを備えて、本体に沿って、第1の端部と第2の端部との間に検知通路を画定し、本体は、本体の対向する壁に配置される一対のトランスデューサ搭載組立体を備え得、一対のトランスデューサ搭載組立体はそれぞれ、本体の検知通路にわたり、トランスデューサ対の各トランスデューサが位置合わせされ、互いに面するようトランスデューサ対の各トランスデューサを受けて保持するように構成される、段落39又は40によるセンサ組立体。
【0182】
42.一対のトランスデューサ搭載組立体は、本体の対向する側壁に配置され、各トランスデューサ搭載組立体は、対の各トランスデューサを内部で受けて保持する保持キャビティを備える、段落41によるセンサ組立体。
【0183】
43.各トランスデューサ搭載組立体は、本体の各側壁から延びる円筒形ベース部と、ベース部から延びる少なくとも一対の対向するクリップとを備え、ベース部及びクリップは集合的に、保持キャビティを画定する、段落42によるセンサ組立体。
【0184】
44.本体の各側壁は、トランスデューサアパーチャを備え、トランスデューサアパーチャは、関連付けられたトランスデューサ搭載組立体と位置合わせされ、トランスデューサアパーチャを通して、トランスデューサの動作前面が延びて、検知通路にアクセスし得る、段落43によるセンサ組立体。
【0185】
45.トランスデューサ搭載組立体は、トランスデューサの動作面が、センサ筐体の本体の各壁の内面と略同一の平面にあるように各トランスデューサを配置するように構成される、段落44によるセンサ組立体。
【0186】
本発明の上記説明は、本発明の好ましい形態を含む。添付の特許請求の範囲により規定される本発明の範囲から逸脱せずに、変更を行い得る。