IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インテル コーポレイションの特許一覧

特許7386644非対称デュアルバッテリシステムのための平衡充電及び放電制御
<>
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図1
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図2
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図3
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図4
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図5
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図6
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図7
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図8
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図9
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図10
  • 特許-非対称デュアルバッテリシステムのための平衡充電及び放電制御 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-16
(45)【発行日】2023-11-27
(54)【発明の名称】非対称デュアルバッテリシステムのための平衡充電及び放電制御
(51)【国際特許分類】
   H02J 7/02 20160101AFI20231117BHJP
   H02J 7/00 20060101ALI20231117BHJP
   H01M 10/48 20060101ALI20231117BHJP
   H01M 10/44 20060101ALI20231117BHJP
【FI】
H02J7/02 J
H02J7/00 J
H01M10/48 P
H01M10/44 P
【請求項の数】 22
【外国語出願】
(21)【出願番号】P 2019134483
(22)【出願日】2019-07-22
(65)【公開番号】P2020058220
(43)【公開日】2020-04-09
【審査請求日】2022-07-20
(31)【優先権主張番号】16/147,609
(32)【優先日】2018-09-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】593096712
【氏名又は名称】インテル コーポレイション
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【弁理士】
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】アニル バビー
(72)【発明者】
【氏名】アヌープ パルチュル
(72)【発明者】
【氏名】ショビット チャハル
(72)【発明者】
【氏名】ゴヴィンダラジ ジー
(72)【発明者】
【氏名】ヴィナヤ クマル チャンドラセカラ
【審査官】田中 慎太郎
(56)【参考文献】
【文献】米国特許出願公開第2012/0299530(US,A1)
【文献】特開2001-167753(JP,A)
【文献】特開2010-124379(JP,A)
【文献】米国特許出願公開第2018/0219389(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 7/02
H02J 7/00
H01M 10/48
H01M 10/44
(57)【特許請求の範囲】
【請求項1】
充電器及び第1バッテリを有する一次側であり、前記第1バッテリが前記一次側へ電力を供給する、前記一次側と、
第2バッテリを有する二次側であり、前記第2バッテリが前記二次側へ電力を供給する、前記二次側と、
前記一次側と前記二次側との間にあるヒンジ抵抗と
を有し、
前記充電器は、前記第1バッテリ及び前記第2バッテリを充電し、
前記一次側は、前記第2バッテリの電流経路内のバッテリインピーダンス、コネクタ抵抗、又は前記ヒンジ抵抗のうちの1つ以上を補償する、前記第1バッテリの電流経路内のフィードバック制御型アクティブデバイスを含み、
前記フィードバック制御型アクティブデバイスは、
前記第1バッテリのバッテリ電流経路を通る電流を感知する第1感知抵抗と、
前記第2バッテリのバッテリ電流経路を通る電流を感知する第2感知抵抗と、
第1増幅器及びトランジスタと、
前記トランジスタと並列に接続されたバイパス抵抗と
を含み、
前記第1増幅器は、前記第1感知抵抗及び前記第2感知抵抗での電圧降下が前記第1バッテリ及び前記第2バッテリの充電中に等しいように前記トランジスタの抵抗を調整するよう構成される、
システム。
【請求項2】
前記一次側は、当該システムのマザーボードを有する、
請求項1に記載のシステム。
【請求項3】
前記第1バッテリは、当該システムの第1ディスプレイへ電力を供給し、
前記第2バッテリは、当該システムの第2ディスプレイへ電力を供給する、
請求項1に記載のシステム。
【請求項4】
前記トランジスタは、電界効果トランジスタである、
請求項1乃至3のうちいずれか一項に記載のシステム。
【請求項5】
前記フィードバック制御型アクティブデバイスは、前記第1バッテリ及び前記第2バッテリの放電中に前記第1増幅器を無効にする第2増幅器を含む、
請求項1乃至4のうちいずれか一項に記載のシステム。
【請求項6】
前記第2増幅器は、前記第1バッテリ及び前記第2バッテリの前記放電中に前記トランジスタを完全にオンする、
請求項に記載のシステム。
【請求項7】
前記バイパス抵抗は、最大充電共有電流制限に基づき調整される、
請求項1乃至6のうちいずれか一項に記載のシステム。
【請求項8】
前記フィードバック制御型アクティブデバイスは、互い直列に結合された第1抵抗及び第2抵抗を含み、
直列に結合された前記第1抵抗及び前記第2抵抗の直列接続は、前記第1感知抵抗と並列に結合され、
互い直列に結合された前記第1抵抗及び前記第2抵抗の抵抗は、前記第1バッテリ及び前記第2バッテリの充電電流を調整するよう調整可能である、
請求項1乃至7のうちいずれか一項に記載のシステム。
【請求項9】
前記フィードバック制御型アクティブデバイスは、前記第1バッテリ及び前記第2バッテリの充電及び放電の平衡を保つ、
請求項1乃至のうちいずれか一項に記載のシステム。
【請求項10】
充電器及び第1バッテリを有する一次側であり、前記第1バッテリが前記一次側へ電力を供給する、前記一次側と、
第2バッテリを有する二次側であり、前記第2バッテリが前記二次側へ電力を供給する、前記二次側と、
前記一次側と前記二次側との間にあるヒンジ抵抗と
を有し、
前記充電器は、前記第1バッテリ及び前記第2バッテリを充電し、
前記二次側は、前記第1バッテリと前記第2バッテリとの間の電圧降下を補償する、前記第2バッテリの電流経路内のフィードバック制御型ブーストコンバータを含む、
システム。
【請求項11】
前記一次側は、当該システムのマザーボードを有する、
請求項10に記載のシステム。
【請求項12】
前記第1バッテリは、当該システムの第1ディスプレイへ電力を供給し、
前記第2バッテリは、当該システムの第2ディスプレイへ電力を供給する、
請求項10に記載のシステム。
【請求項13】
前記フィードバック制御型ブーストコンバータは、前記第1バッテリと前記第2バッテリとの間の電圧降下を補償するよう前記第2バッテリの前記電流経路内に直列に挿入された電圧源として機能する
請求項10乃至12のうちいずれか一項に記載のシステム。
【請求項14】
前記フィードバック制御型ブーストコンバータは、前記第1バッテリの電圧前記第2バッテリの電圧と比較する差動増幅器を含む、
請求項10乃至12のうちいずれか一項に記載のシステム。
【請求項15】
前記差動増幅器は、前記第1バッテリの電圧と前記第2バッテリの電圧との間の電圧差を増幅し、該増幅された電圧差は、前記ブーストコンバータを制御するために使用される
請求項14に記載のシステム。
【請求項16】
前記ブーストコンバータは、前記第1バッテリと前記第2バッテリとの間の電圧降下を補償するようデューティサイクルを調整する、
請求項15に記載のシステム。
【請求項17】
前記第1バッテリの容量が前記第2バッテリの容量と同じである場合に、前記フィードバック制御型ブーストコンバータは、前記第1バッテリ及び前記第2バッテリを等しい電圧で且つ等しい電流で放電する、
請求項10乃至12のうちいずれか一項に記載のシステム。
【請求項18】
前記第1バッテリの容量が前記第2バッテリの容量と同じでない場合に、前記フィードバック制御型ブーストコンバータは、前記第1バッテリの放電電流及び前記第2バッテリの放電電流を、それらの各々のバッテリ容量に比例するよう調整する、
請求項10乃至12のうちいずれか一項に記載のシステム。
【請求項19】
前記フィードバック制御型ブーストコンバータは、前記第1バッテリの電流を感知し、前記第1バッテリの前記感知された電流に応答して前記ブーストコンバータを制御する電流感知増幅器を含む、
請求項10乃至12のうちいずれか一項に記載のシステム。
【請求項20】
前記フィードバック制御型ブーストコンバータは、前記第1バッテリの電流を感知し、前記第2バッテリの電流を感知し、前記第1バッテリの前記感知された電流及び前記第2バッテリの前記感知された電流に応答して前記ブーストコンバータを制御する電流感知増幅器を含む、
請求項10乃至12のうちいずれか一項に記載のシステム。
【請求項21】
前記フィードバック制御型ブーストコンバータは、前記第1バッテリの放電電流及び前記第2バッテリの放電電流を等しいよう保つ、
請求項20に記載のシステム。
【請求項22】
前記フィードバック制御型ブーストコンバータは、前記充電器からの電流を前記第1バッテリへ及び前記第2バッテリへそれらの各々のバッテリ容量に関わらず分配する、
請求項10乃至12のうちいずれか一項に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、非対称デュアルバッテリシステムのための平衡充電及び放電制御に概して関係がある。
【背景技術】
【0002】
デュアルディスプレイ・コンバージド・モビリティデバイスは、モバイルコンピューティングにおいてますます使用されている。デュアルディスプレイを備えたデバイスの使用は、両方のディスプレイに給電するのに必要とされるバッテリ寿命を達成するために、デバイスの両側にバッテリを必要とすることがある。
【図面の簡単な説明】
【0003】
以下の詳細な説明は、添付の図面を参照することによって、より良く理解され得る。図面には、開示される対象の多数の特徴の具体的な例が含まれている。
【0004】
図1】いくつかの実施形態に従うシステムを表す。
図2】バッテリ電圧及びバッテリ容量を説明するグラフを表す。
図3】いくつかの実施形態に従って、バッテリ電圧及びバッテリ容量を説明するグラフを表す。
図4】いくつかの実施形態に従って、バッテリ充電終止電圧調整を表す。
図5】いくつかの実施形態に従うシステムを表す。
図6】いくつかの実施形態に従うシステムを表す。
図7】いくつかの実施形態に従うシステムを表す。
図8】いくつかの実施形態に従うシステムを表す。
図9】いくつかの実施形態に従うシステムを表す。
図10】いくつかの実施形態に従うシステムを表す。
図11】いくつかの実施形態に従うシステムを表す。
【0005】
いくつかの場合に、同じ番号は、本開示及び図面を通して、同じ構成要素及び特徴を参照するために使用される。いくつかの場合に、100番台の番号は、図1で当初見つけられる特徴を参照し、200番台の番号は、図2で当初見つけられる特徴を参照し、以降同様である。
【発明を実施するための形態】
【0006】
デュアルディスプレイ・コンバージド・モビリティデバイスは、モバイルコンピューティングにおいてますます使用されている。デュアルディスプレイを備えたデバイスの使用は、両方のディスプレイに給電するのに必要とされるバッテリ寿命を達成するために、デバイスの両側にバッテリを必要とすることがある。小型デバイスの場合に、1S2Pバッテリ構成が、空間的に最適化されたエネルギ管理解決法を提供する。例えば、2S構成、デュアルチャージャアプローチ、などは、より複雑であり、より多くの空間を消費する可能性がある。両側を機械的及び電気的に接続するヒンジの設計は、空間上の制約が非常にあり得る。その上、バッテリを並列に接続する配線は、ワイヤゲージ限界により、かなりの抵抗を示し得る。費用及び電気的複雑性を制御下に置くよう、ほとんどの印刷回路基板(PCB)エレクトロニクスは、必要とされるエレクトロニクス(例えば、第2ディスプレイ、タッチ、オーディオ、など)が他方の側に置かれた状態で、一方の側に配置され得る。これは、非対称な基板及びバッテリサイズ並びに負荷をもたらし得る。
【0007】
いくつかの実施形態で、一方の側(例えば、一次側又はマザーボード側)における充電器解決法は、電力管理集積回路(PMIC)及びUSB Type-Cポートのようなユニバーサルシリアルバス(USB)ポートといった要素が一方の側(例えば、マザーボード側)に配置され得るので、最適化され得る。しかし、充電器が一方の側にある場合に、折り畳み式のシステムにおいて他方の側へ配線を通すために、極めて薄い配線がデバイスの折り畳める部分を通され、例えば、ヒンジ抵抗並びに/又は折り畳める部分及びヒンジ抵抗によるインピーダンスを生じさせる。ヒンジ抵抗及び/又はインピーダンスにより、充電器を有する側のバッテリへの及び充電器から他方の側のバッテリへのバッテリ充電電流は、期待されるものとは異なる。例えば、充電器を有する側のバッテリは、充電器を有さない他方の側のバッテリよりも高い充電電流をとり得る。これは、例えば、ヒンジ抵抗の両端での電圧降下により起こり、遠くのバッテリへ流れるべき電流は、そのバッテリへ流れないことになる。その余分の電流のいくらかは、充電器を有する側のバッテリ(例えば、一次又はマザーボード側のバッテリ)へ更に流れ込む可能性がある。この状況は、不均衡な充電を引き起こし得る。例えば、充電器を有する側のバッテリは、十分に充電される一方で、他方の側のバッテリは、依然として充電中である。充電器を有する側のバッテリは、次いで、他方のバッテリが充電するのを待つ間、各充電動作中に、必要以上に充電されることになり、これは、必要以上に充電されているバッテリにとって良くない。これは特に、充電器側のバッテリの方が小さいという状況で厄介であり、例えば、充電器がマザーボード側にある状況で、マザーボード側のバッテリの方がシステムのその側での空間制約によりしばしば小さいということで、問題である。
【0008】
バッテリ放電中、充電器を有する側(例えば、一次側、メインボード側、又はマザーボード側)の負荷は、二次側の負荷よりもずっと大きくなり得るので、更にはヒンジ抵抗により、例えば、充電器を有する側のバッテリは、他方の側のバッテリよりもずっと速く放電され得る。充電器側のバッテリは放電され得る一方で、他方の側のバッテリは依然として電荷を有する。例えば、同じ容量を有するバッテリの場合に、容量の10~15%が二次側には依然として残っている可能性がある一方で、一次充電器側の容量は0%に近いことがあり得る。バッテリインピーダンスの不平衡は、ヒンジ抵抗の両端での大きい電圧降下とともに起こり得る。これは、システムのシャットダウンを生じさせる可能性がある。また、一次充電器側での電流は増大し、例えば、ヒンジ抵抗の両端での電圧降下により電流のほとんどを有し得る。他方の側のバッテリは、放電電流の大部分をサポートすることができない可能性がある。従って、いくつかの実施形態では、放電平衡が実施され得る。
【0009】
図1は、一次側102(例えば、マザーボード側)及び二次側104を含むシステム100を表す。いくつかの実施形態で、システム100は、デュアルディスプレイデバイス(例えば、モバイルコンピューティングで使用される。)に含まれ得る。デュアルディスプレイを備えたデバイスの使用は、両方のディスプレイに給電するのに必要とされるバッテリ寿命を達成するために、デバイスの両側にバッテリを必要とすることがある。いくつかの実施形態で、例えば、一次側102は、第1ディスプレイを含むシステム100の側であることができ、二次側104は、第2ディスプレイを含むシステム100の側であることができる(例えば、システム100は、デバイスの2つの異なる側でディスプレイを備えたデュアルディスプレイデバイスであることができる。)。
【0010】
一次側102は、メインボード負荷122、充電器124、バッテリ126(バッテリ1)、及びインダクタ128を含む。充電器124は、トランジスタ132(例えば、電界効果トランジスタ又はFET)を含む。二次側104は、二次側負荷142、バッテリ146(バッテリ2)、及び任意の電界効果トランジスタ(FET)148を含む。FET148は、VSYS2電圧降下を減らすために使用され得る。
【0011】
いくつかの実施形態で、一次側102のバッテリ126及び二次側104のバッテリ146は、一次側102に位置する単一の充電器124によって充電される、並列に結合された1Sバッテリであることができる。システム100はまた、ヒンジ抵抗HR1 162(例えば、100mオーム)、ヒンジ抵抗HR2 164(例えば、100mオーム)、及びヒンジ抵抗HR3 166(例えば、100mオーム)を含むこともできる。いくつかの実施形態で、システム100は、一次側102及び二次側104を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗の点で)折り畳まれ得る。
【0012】
いくつかの実施形態で、システム100の充電器124から駆動される充電電流は、より高い電流を有するバッテリ(バッテリ1 126又はバッテリ2 146のどちらか一方)が、より速い充電により、その電圧を増大させるまで、等しく分配され得ない。これは、バッテリ146のVBAT経路VBAT2(バッテリ電圧経路)及びGND経路GND2(接地電圧経路)における更なる電圧降下に起因し得る。システム100において、バッテリ1 126は、より小さい(例えば、マザーボード側に置かれる)ことがあり、充電の開始時に充電電流のほとんどを消費することになる。通常の放電中に、バッテリ1 126は、バッテリ2 146からのヒンジ抵抗降下により、より低い充電レベルにあり得る。いくつかの実施形態で、バッテリ1 126における保護デバイスによる過充電電流トリップの危険性があり得る。いくつかの実施形態で、急速充電時間は、バッテリ1 126がより早く一定電圧(CV)に達し、バッテリ2 146がより後の時点でCVに達するということで、かなり長くなり得る。いくつかの実施形態で、バッテリ1 126は、よりずっと高い充電器電流及びよりずっと低い終止電流にさらされることで、バッテリ2 146よりも早く消耗する可能性がある(例えば、バッテリ1 126は、より早くCVに達する。)。いくつかの実施形態で、バッテリ126及び146が高電流によりロックアウトしないことを確かにするよう最大総充電電流を制限することにより、急速充電時間も長くなる。いくつかの実施形態で、充電器124の入力部VINが充電中にプラグを引き抜かれる(プラグを差し込まれない)場合に、バッテリ126及び146は両方とも、異なる充電レベルになり、これは、バッテリ126及び146の間で電流を循環させることを引き起こし得る。それはまた、バッテリパックがともに負荷へ駆動することができるピーク電流を制限し得る。
【0013】
図2は、充電不平衡を有するシステム200を表す。システム200は、図2の左側にある第1バッテリパック202と、図2の右側にある第2バッテリパック204とを含む。第1バッテリパック202は、バッテリ1(BAT1)222及び抵抗224(例えば、75mオームの抵抗を有する。)を含む。第2バッテリパック204は、バッテリ2(BAT2)242及び抵抗244(例えば、75mオームの抵抗を有する。)を含む。システム200はまた、ヒンジ抵抗262(例えば、50mオームの抵抗を有する。)も含む。
【0014】
システム200は、例えば、50mオームの総ヒンジ抵抗(VBAT及びGND経路)を含む。いくつかの実施形態で、図2の左側にあるバッテリ1(BAT1)222は、例えば、1500mAHの容量を有し、図2の右側にあるバッテリ2(BAT2)242は、2500mAHの容量を有する。システム200におけるバッテリパック202及び204の夫々は、例えば、75mオームの内部抵抗を含む。両方のバッテリパック202及び204が同様の抵抗を有し得ることが知られ、抵抗のほとんどは保護回路に起因する。システム200の例では、充電器は、4Amp(例えば、1C充電)の総充電電流を駆動している。システム200におけるバッテリ電圧は等しく、CV充電レベルを十分に下回ることができる。
【0015】
いくつかの実施形態で、システム200は、一次側及び二次側を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗262の点で)折り畳まれ得る。いくつかの実施形態で、充電平衡によらないと、ヒンジ抵抗262による影響が現れる。例えば、充電の開始時に、ヒンジ抵抗降下により、BAT1 222の電流は2.5Aであり得、BAT2 242の電流は1.5Aであり得る。BAT2 242の電流は1.7C(充電電流の1.7倍である。)に近くなり、これは、BAT1 222の最大充電電流保護を始動させる可能性がある。この初期充電電流は、BAT1 222の寿命を著しく縮める可能性がある。通常の充電が依然として続く場合に、充電後しばらくして、充電電流は、自己平衡によりバッテリ容量に比例するようになる(例えば、IBAT1=1.5A及びIBAT2=2.5A)。充電器出力での電圧がCV(定電圧充電)レベル(例えば、4.2V)であるとき、例えば、次が起こり得る:VBAT1=4.2V及びVBAT2=3.89V。VBAT2電圧は、VBAT1がCV電圧に達するときにCV電圧から依然として非常に遠い可能性がある。すなわち、バッテリ2 242がCVモードにおける終止電流に達するとき、バッテリ2 242の充電電流は、その特定の終止電流レベルをはるかに下回っている可能性がある。これは、BAT1 222の寿命にも影響を及ぼし得る。
【0016】
いくつかの実施形態で、上記の課題の一部又は全てを解決するために、例えば、充電電流は、ヒンジ抵抗、接触抵抗、及びバッテリインピーダンスにかかわらず、両方のバッテリに等しく分配され得る。いくつかの実施形態で、充電電流は、バッテリ容量と同じ割合で分配され得る。
【0017】
いくつかの実施形態で、独立したバッテリ充電器が、各バッテリの独立した充電制御とともにバッテリごとに使用されてよい。しかし、バッテリごとの独立した充電器によれば、費用及び空間の要件がより高くなる。その上、一方の充電器が他方の充電器へ入力電力を供給する場合に電力を浪費せずにバッテリの放電を管理することは困難であり得る。
【0018】
いくつかの実施形態で、夫々のバッテリ充電電流の電流制限は、バッテリが過剰な充電電流を経験しないように実施されてよい。夫々のバッテリ充電電流の電流制限は、電流が一定レベルでプログラムされ得る様態で実施されてよい。これは、バッテリ過充電保護が作動するのを防ぐことができるが、各バッテリへの充電電流は平衡され得ない。しかし、急速充電時間は、後の時点で一定電圧に達する第2バッテリよりも早く第1バッテリが一定電圧(CV)に達するということで相当に長くなり得る。その上、バッテリの一方は、より高い充電器電流及びよりずっと低い終止電流にさらされることで、より早く尽き得る。
【0019】
いくつかの実施形態で、バッテリが2S構成で配線される2Sアプローチが使用されてよい。これは、両方のバッテリが同じ充電/放電電流を経験することを確かにすることができる。しかし、両側のバッテリ容量が異なることで、充電平衡が主な課題である。費用/空間/効率を最適化された電力解決法が、2Dアプローチによっては得られない。
【0020】
適切でない充電電流分配の主な理由は、例えば、充電器からのバッテリの一方(例えば、バッテリ2)のVBAT及びGND経路内のヒンジ抵抗、コネクタ抵抗、及び/又はバッテリインピーダンスであり得る。いくつかの実施形態で、フィードバック制御されるアクティブデバイスが、バッテリの一方の電流経路に(例えば、バッテリ1の電流経路に)加えられ得、バッテリ電流経路(例えば、バッテリ1の電流経路)において、他のバッテリ経路(例えば、バッテリ2の電流経路)内のヒンジ抵抗、コネクタ抵抗、及び/又はバッテリインピーダンスを補償する抵抗を導入する。
【0021】
いくつかの実施形態で、単一の従来の1S充電器が使用されてよい。いくつかの実施形態で、充電器電流は、フィードバック制御によりバッテリ充電器からの総電流にかかわらず自動的に分配され得る。この分配はまた、電流がCVモード(定電圧モード)で低下するときにアクティブであることができる。いくつかの実施形態で、正確な、容量に基づく充電器電流分配は、ほんの少しの余分の回路空間により実施され得る。いくつかの実施形態で、二次バッテリ(例えば、バッテリ2)から一次バッテリ(例えば、バッテリ1)への大電流フローは、電流を制限することによって組み立て中に防止され得る。
【0022】
図3は、いくつかの実施形態に従うシステム300を表す。いくつかの実施形態で、システム300は充電電流分配回路を含む。いくつかの実施形態で、図3中の破線内の回路は、充電電流分配回路である。
【0023】
いくつかの実施形態で、図3は、一次側302(例えば、マザーボード側)及び二次側304を含むシステム300を表す。いくつかの実施形態で、システム300は、デュアルディスプレイデバイス(例えば、モバイルコンピューティングで使用される。)に含まれ得る。デュアルディスプレイを備えたデバイスの使用は、両方のディスプレイに給電するのに必要とされるバッテリ寿命を達成するために、デバイスの両側でバッテリを必要とし得る。いくつかの実施形態で、例えば、一次側302は、第1ディスプレイを含むシステム300の側であることができ、二次側304は、第2ディスプレイを含むシステム300の側であることができる(例えば、システム300は、デバイスの2つの異なる側でディスプレイを備えたデュアルディスプレイデバイスであることができる。)。
【0024】
一次側302は、メインボード負荷322、充電器324、バッテリ326(バッテリ1)、及びインダクタ328を含む。充電器324は、トランジスタ(例えば、電界効果トランジスタ又はFET)を含む。二次側304は、二次側負荷342、バッテリ346(バッテリ2)、及び任意の電界効果トランジスタ(FET)348を含む。FET348は、VSYS2電圧降下を低減するために使用され得る。
【0025】
いくつかの実施形態で、一次側302のバッテリ326及び二次側304のバッテリ346は、一次側302に位置する単一の充電器324によって充電される、並列に結合された1Sバッテリであることができる。システム300はまた、ヒンジ抵抗HR1 362(例えば、100mオーム)、ヒンジ抵抗HR2 364(例えば、100mオーム)、及びヒンジ抵抗HR3 366(例えば、100mオーム)を含むことができる。いくつかの実施形態で、システム300は、一次側302及び二次側304を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗の点で)折り畳められ得る。
【0026】
不適切な充電電流分配が、ヒンジ抵抗、コネクタ抵抗、及び/又はバッテリインピーダンスにより起こる可能性がある。例えば、不適切な充電電流分配は、充電器からバッテリへのVBAT及びGND経路内(例えば、図3に表される充電器324から、図3に表されるバッテリ2 346へのVBAT及びGND経路内)のヒンジ抵抗、コネクタ抵抗、及び/又はバッテリインピーダンスにより起こる可能性がある。
【0027】
いくつかの実施形態で、フィードバック制御されるアクティブデバイスが、バッテリ1 326の電流経路に含まれ得る。バッテリ1 326の電流経路内に含まれるフィードバック制御されるアクティブデバイスは、バッテリ2 346の経路内のヒンジ抵抗、コネクタ抵抗、及び/又はバッテリインピーダンスを補償することができる。例えば、いくつかの実施形態で、システム300は、フィードバック制御されるアクティブデバイスを含む(例えば、いくつかの実施形態で、破線に含まれる、一次側302の、図3に表される回路372は、フィードバック制御されるアクティブデバイスであることができる。)。
【0028】
いくつかの実施形態で、フィードバック制御されるアクティブデバイスのような回路372は、バッテリ1 326の電流経路に含まれ得、バッテリ1 326の電流経路において、バッテリ2 346の電流経路内のヒンジ抵抗、コネクタ抵抗、及び/又はバッテリインピーダンスを補償することができる抵抗を導入することができる。いくつかの実施形態で、抵抗RS1 374及び/又は抵抗RS2 376が、フィードバック制御されるアクティブデバイス372に含まれる。いくつかの実施形態で、抵抗RS1 374は、例えば、10mオームの抵抗を有し得る。いくつかの実施形態で、抵抗RS2 376は、例えば、10mオームの抵抗を有し得る。いくつかの実施形態で、抵抗RS1 374及び/又は抵抗RS2 376は、バッテリ電流経路の夫々を通る電流を感知する。いくつかの実施形態で、エラー増幅器378(例えば、Error Amp1)及び電界効果トランジスタ380(FET1)が、フィードバック制御されるアクティブデバイス372に含まれ得る。いくつかの実施形態で、エラー増幅器(例えば、Error Amp1 378)は、感知抵抗RS1 374及びRS2 376が等しく電圧を下げることを確かにするようFET1 380の抵抗を調整することができる。これは、バッテリ1 326及びバッテリ2 346への等しい電流(又はRS1 374及びRS2 376の抵抗値に基づく分配電流)を確かにすることができる。いくつかの実施形態で、図3中の破線に含まれる回路372は、いくつかの回路素子を示す。追加の構成要素が、例えば、フィードバック補償、レール・ツー・レール感知、バッテリ切れモードでのエラー増幅器電力を提供するのを助けるようシステム300に(例えば、図3中で破線によって表される回路372内に)含まれ得ることが知られる。
【0029】
いくつかの実施形態で、組み立て中に、二次側304は、一次側302のバッテリ326のみによる一定量の試験の後に組み立てられ得る。いくつかの実施形態で、一次バッテリ326は、二次バッテリ346よりも低い充電レベルにあることができる。いくつかの実施形態で、フィードバック制御されるアクティブデバイス(例えば、図3中の破線内の回路372)は、組み立て時に、電流を制限することによって、二次側304のバッテリ2 346から一次側302のバッテリ1 326への大電流フローを防止することができる。いくつかの実施形態で、図3のトランジスタFET1 380は、組み立て中に完全にオフしてよく、抵抗Rmax382は、二次側バッテリ2 346からの電流を制限することができる。いくつかの実施形態で、抵抗Rmax382の抵抗は0.2オームである。いくつかの実施形態で、システム設計に応じて、抵抗Rmax382の抵抗は、所望の最大充電共有電流制限に基づき調整され得る。
【0030】
いくつかの実施形態で、エラー増幅器(Error Amp2)384は、放電状態中に優位に立ち、トランジスタFET1 380を完全にオンすることができる。充電平衡は、感知抵抗RS1 374及び感知抵抗RS2 376を通る電流が正であるバッテリ充電中にのみ必要とされ得る。いくつかの実施形態で、ダイオードD1 386は、エラー増幅器2(Error Amp2)384が、FET1 380をオフするためにではなくオンするためにのみエラー増幅器1(Error Amp1)378を無効にすることができることを示し得る。いくつかの実施形態で、このロジックは、異なる方法で実施されてよい。
【0031】
いくつかの実施形態で、システム300は、2つの電流感知抵抗374及び376と、バイパス抵抗382を伴ったFET380と、2つの演算増幅器378及び384とを含む。いくつかの実施形態で、バッテリ1 326及びバッテリ2 346は同じサイズである。そのような状況で、バッテリ326及び346の充電電流が同じであることは有利である。従って、いくつかの実施形態で、抵抗RS1 374の両端での電圧降下及び抵抗RS2 376の両端での電圧降下は同じである。従って、いくつかの実施形態で、RS1 374及びRS2 376での電圧降下が同じである場合に、エラー増幅器Amp1 378への入力電圧はゼロである。エラー増幅器Amp1 378は、線形状態でトランジスタFET1 380を制御することができる。なお、それは、両方のバッテリ326及び346から充電器324への出力のインピーダンスが等しくなることを確かにするよう小さいインピーダンス(支援)を加えることができる。
【0032】
バッテリ電圧のための動作上の支援は、エラー増幅器Amp1 378によって制御される閉ループ制御を通じてFET1 380によって生成される。このように、FET1 380を通るインピーダンスは、VBAT2でのインピーダンスを整合させるために使用され得る。いくつかの実施形態で、Amp1 378への入力はゼロに保たれ、RS1 374の両端での電圧降下は、RS2 376の両端での電圧降下と同じであるよう保たれる。これは、各バッテリへの電流が充電中に変化する場合でさえ、バッテリ1 326及びバッテリ2 346への同様の電流を保つのを助ける。
【0033】
いくつかの実施形態で、増幅器Amp2 384は、(例えば、充電が取り除かれ、電流が充電中の電流フロートは逆方向に流れている場合に、)増幅器Amp1 378を無効にすることができる。例えば、バッテリ1 326の放電中、電流は、充電器324のトランジスタ332を通ってVSYSノードへ流れ、電力を、例えば、メインボード負荷322へ供給し得る。放電中、抵抗RS2 376にかかる電圧は、充電中にRS2 376にかかる電圧に対して逆にされ、Error Amp2 384の出力はゼロである。この状況で、D1 386は、FET1 380をローに引っ張って、それを完全にオンする。このように、バッテリ放電中に、FET1 380は完全にオンであり、増幅器384は、放電中に(RS1 374及びRS2 376以外の)追加のインピーダンスがないことを確かにするよう増幅器378より優位に立つ。異なる配置が異なる実施形態では可能であるが、いくつかの実施形態で、FET1 380のようなトランジスタが、VBAT2電力を整合させるようVBAT1で加えられる。
【0034】
図4は、いくつかの実施形態に従うフロー400を表す。いくつかの実施形態で、フロー400は充電電流平衡を実施する。いくつかの実施形態で、フロー400は402から開始する。404で、入力ソースが準備できているかどうかに関して判断がされる。入力ソースが404で準備できていない場合には、充電は406で無効にされ、フローは404へ戻る。入力ソースが404で準備できている場合には、408で、充電電流が、例えば、抵抗RS1 374で、正であるかどうかに関して判断がされる。充電電流が408で正でない場合には、充電平衡は410で無効にされ(例えば、FET1 380が完全にオンされたままである。)、フローは408へ戻る。充電電流が408で正である場合には、アクティブ充電電流平衡が412で有効にされ、フローは404へ戻る。
【0035】
いくつかの実施形態で、充電平衡400は、例えば、RS1 374を通る充電電流が正である場合にのみ、有効にされる。これは、Error Amp2 384によって感知され得る。Error Amp2 384は、Error Amp1 376を無効にするよう構成され得、あるいは、同じ機能が、Error Amp2 384からの出力を用いてError Amp1 376のためのイネーブル入力を制御することによって実施され得る。図3及び/又は図4で表されているもの以外の、いくつかの実施形態に従う他の実施も、実装され得ることが知られる。
【0036】
いくつかの実施形態で、各バッテリへの充電電流が平衡状態であると、充電器レベル(例えば、充電CVレベル)は、充電器出力からバッテリ端子までの総電圧降下を補償するよう増大することができる。例えば、充電の状態が約80%であると、CV電圧は再び、充電時間を縮めるためにバッテリ要件を満足するよう調整され得る。
【0037】
図5は、いくつかの実施形態に従う充電電流分配回路500を表す。いくつかの実施形態で、充電電流分配回路500は、システム300に(例えば、図3中の破線内に表される回路372の全部又は一部に代えて)含まれ得る。
【0038】
いくつかの実施形態で、充電電流分配回路500はレシオメトリック(ratio metric)充電電流分配回路である。いくつかの実施形態で、充電電流分配回路500は、異なる電流感知抵抗値を選択することなしに、バッテリ容量に基づき正確に充電電流の平衡を保つことができる。10mオーム範囲の感知抵抗で、細かい分解能を得ることは困難であり得る。
【0039】
回路500は、抵抗R1 502、抵抗R2 504、抵抗RS1 574、抵抗RS2 576、エラー増幅器578(例えば、Error Amp1)、電界効果トランジスタ580(FET1)、抵抗Rmax582、エラー増幅器2(Error Amp2)584、及びダイオードD1 586を含む。いくつかの実施形態で、抵抗RS1 574、抵抗RS2 576、エラー増幅器578(例えば、Error Amp1)、電界効果トランジスタ580(FET1)、抵抗Rmax582、エラー増幅器2(Error Amp2)584、及びダイオードD1 586は、抵抗RS1 374、抵抗RS2 376、エラー増幅器378(例えば、Error Amp1)、電界効果トランジスタ380(FET1)、抵抗Rmax382、エラー増幅器2(Error Amp2)384、及びダイオードD1 386と夫々同じであるか又は同様であることができる。いくつかの実施形態で、回路500は、バッテリ2(BAT2)がバッテリ1(BAT1)よりも容量が大きいシステムで使用され得る。しかし、回路は、バッテリ1(BAT1)がバッテリ2(BAT2)よりも容量が大きい場合に交換され得ることが知られる。いくつかの実施形態で、回路500の抵抗R1 502及び抵抗R2 504は、感知抵抗RS1 574にかかる電圧を分割することができる。いくつかの実施形態で、感知抵抗RS1 574の抵抗は、例えば、10mオームであることができる。エラー増幅器578は、抵抗R1 502にかかる電圧がR2 504にかかる電圧に等しいことを確かにするよう電流を調整することができる。いくつかの実施形態で、抵抗R1 502及び抵抗R2 504の抵抗の比は、必要とされる結果を得るよう調整され得る。
【0040】
いくつかの実施形態で、システム300における破線内の充電電流分配回路及び/又は充電電流分配回路500は調整可能である。すなわち、いくつかの実施形態に従って、各バッテリへの充電電流を測定し、次いで、バッテリ1経路内のアクティブデバイスのインピーダンスを調整することは、種々の方法で実施され得る。
【0041】
いくつかの実施形態で、システム300は、同じ側の電流感知による簡単な解決法であることができる。しかし、いくつかの実施形態に従って、二次側から、バッテリ残量感知抵抗からの電流感知情報が、一次側へもたらされ得る。これは、例えば、充電及び放電中のRS1での追加の電圧降下及び追加のRS1抵抗を省くことができる。いくつかの実施形態で、RS2は、バッテリ1経路内での追加の電圧降下を回避するための正供給電流感知バッテリ残量計とともに一次側でバッテリ残量計(バッテリ残量計1)のための電流感知のために使用され得る。
【0042】
より高い容量の二次側バッテリから一次側プロセッサ基板に対するヒンジ抵抗は、特に、バッテリ充電状態がローである場合に、システムによって引き込まれ得る最大電流(例えば、最大電力制限電流、最大PL4電流、及び/又は最大電力制限4電流)を相当に低下させ得ることが知られる。
【0043】
いくつかの実施形態で、抵抗R1 502及び抵抗R2 504は、図5で表されるように、回路372において抵抗RS1 574と並列に加えられる。いくつかの実施形態で、抵抗RS1 374の右手側を感知することに代えて、増幅器578は、抵抗R1 502と抵抗R2 504との中点を感知する。この実施は、バッテリ1 326及びバッテリ2 346が同じサイズでない場合に(例えば、バッテリ1 326がバッテリ2 346よりも小さい場合、又はバッテリ2 346がバッテリ1 326よりも小さい場合に)、使用され得る。例えば、バッテリ1 326がバッテリ2 346よりも小さい場合に、バッテリ2 346の電流は、より高い必要がある。例えば、バッテリ1 326の容量が1単位であり、バッテリ2 346の容量が2単位である場合に、例えば、バッテリ1 326へ送られる電流よりも2倍多い電流がバッテリ2 346へ送られる必要があり得る(例えば、バッテリ2 346へは2Aであり、バッテリ1へは1Aである。)。この状況で、R1 502の抵抗及びR2 504の抵抗が等しい場合に、制御ループは、バッテリ2 346が、バッテリ1 326へ供給される2倍の電流を得ることができることを確かにすることができる。R1 502及びR2 504の抵抗は、バッテリ326及び346の夫々へ供給される電流が等しいことを確かにするよう、バッテリ1 326及びバッテリ2 346の容量に従って調整され得る。バッテリ1 326及びバッテリ2 346の容量が等しい実施形態では、抵抗R1 502はオープンであることができ、R2 504の抵抗はゼロであることができ、同じ電流が各バッテリへ印加されることが確かにされる。
【0044】
図6は、第1(一次側)バッテリパック602及び第2(二次側)バッテリパック604を有するシステム600を表す。システム600は、例えば、50mオームの総ヒンジ抵抗662を含むことができる。いくつかの実施形態で、システム600は、一次側及び二次側を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗662の点で)折り畳まれ得る。第1バッテリパック602は、第1バッテリ1(BAT1)622及び抵抗624を含む。第2バッテリパック604は、第2バッテリ2(BAT2)642及び抵抗644を含む。一次側バッテリ622(例えば、バッテリ1又はBAT1)及び二次側バッテリ642(例えば、バッテリ2又はBAT2)は、並列に接続され得る。システム600は、例えば、50mオームの総ヒンジ抵抗662を含むことができる。いくつかの実施形態で、図6の左側にあるバッテリ1(BAT1)622は、例えば、1500mAHの容量を有し、図6の右側にあるバッテリ2(BAT2)642は、2500mAHの容量を有する。いくつかの実施形態で、両方のバッテリ622及び642は、リチウムイオン(Li ion)充電式バッテリであることができる。システム600におけるバッテリパック602及び604の夫々は、例えば、内部抵抗624及び644を夫々含むことができる(例えば、75mオームの内部抵抗を夫々有する。)。システム600の例では、システムが有限な最低システム電圧(例えば、3Vに制限。)で最大限の電力を引き込もうとしている場合に、電流を引き込むことが可能である(例えば、12.8Ampの電流を引き込むことが可能である。)。例となる12.8Ampのうち、例えば、8Ampが一次側バッテリ622によって寄与され得、4.8Ampが二次側バッテリ642によって寄与され得る。
【0045】
一次側バッテリ電流は、3C限界(例えば、3倍の容量又は充電電流C限界、例えば、4.5Amp)を超える可能性があり、電流が長すぎる期間続く場合(例えば、電流が10ms間続く場合)にトリップを引き起こすことがある。同時に、システムは、二次側バッテリ(例えば、3C=7.5Amp)を十分に使用することができない。3Cは、限界の例として使用されることが知られる。いくつかの実施形態で、例えば、バッテリに応じて、他の、例となる限界は、2C又は4Cであるか、あるいは、2Cから4Cの範囲にあってよい。
【0046】
放電平衡なしでは、システムは、一次側バッテリ電流が、例えば、4.5Ampよりも小さい(例えば、3Cに満たない)ように、総電流を制限しなければならない。総システム電流は、7.2Amp(総容量の1.8C)に制限され得る。いくつかの実施形態で、ターボ性能は、放電平衡及び適切な電流共有(例えば、適切な3C電流共有又は他の限界電流共有)により、例えば、66%だけ(例えば、7.2Aよりむしろ12Aに)高められ得る。これは、バッテリ充電状態に無関係な方法で実施され得る。
【0047】
バッテリインピーダンスが充電の終わり近くで増大する場合に、ターボは、最低システム電圧により及び/又はヒンジ抵抗の付加により、更に制限され得る。
【0048】
有用な容量の問題も起こる可能性がある。例えば、各バッテリから引き込まれる瞬時放電電流は、負荷プロファイル、バッテリインピーダンス、ヒンジ抵抗、及び/又はどちら側に負荷が接続されるか、などに依存し得る。一次負荷の方が大きい場合に、一次ディスプレイ側バッテリは空になり、一方、二次ディスプレイ側バッテリは依然として電荷が残っている。
【0049】
図7は、第1(一次側)バッテリパック702及び第2(二次側)バッテリパック704を有するシステム700を表す。第1バッテリパック702は、第1バッテリ1(BAT1)722及び抵抗724を含む。第2バッテリパック704は、第2バッテリ2(BAT2)742及び抵抗744を含む。一次側バッテリ(例えば、バッテリ1又はBAT1)722及び二次側バッテリ(例えば、バッテリ2又はBAT2)742は、並列に接続され得る。システム700は、例えば、50mオームの総ヒンジ抵抗762を含むことができる。いくつかの実施形態で、システム700は、一次側及び二次側を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗762の点で)折り畳まれ得る。いくつかの実施形態で、図7の左側にあるバッテリ1(BAT1)722は、例えば、1500mAHの容量を有し、図7の右側にあるバッテリ2(BAT2)742は、2500mAHの容量を有する。いくつかの実施形態で、両方のバッテリ722及び742は、リチウムイオン(Li ion)充電式バッテリであることができる。システム700におけるバッテリパック702及び704の夫々は、例えば、内部抵抗724及び744を夫々含むことができる(例えば、両方とも75mオームの内部抵抗を有する。)。システム700の例では、システム負荷は一次側で合計2Aとなる。いくらかの放電時間の後、バッテリ電流は、バッテリの各々の容量に比例するようになる。これらの条件下で、バッテリ電圧差は約100mVになる。二次側704の100mV高い電圧は、一次バッテリ722が既に空のときに二次バッテリ742に残っている約10%の残存電荷に変換され得る。
【0050】
システムによって見られるバッテリインピーダンスは、一次側バッテリが完全に空であり、二次側バッテリが依然としていくらかの電荷が残っている場合に、大幅に増大し得る。これは、最低システム電圧のトリップを引き起こさずに、可能なピーク負荷電流を制限することができる。負荷によって見られる実効バッテリインピーダンスは、大部分は二次側バッテリインピーダンス及びヒンジ抵抗に起因し得る。予期しないトリップを回避するために、システムはこの時点まで放電せず、それによってバッテリ容量を浪費することになる。ヒンジ抵抗、一次側負荷電力、及び他の要因に応じて、浪費される電荷は、5~10%の範囲に及ぶ可能性がある。
【0051】
一次ディスプレイ側負荷が周期的な高電流を有する場合に(これは、しばしば、コンピュータ装置に当てはまる。)、そのほとんどは一次ディスプレイ側バッテリによって供給され、後に二次ディスプレイ側バッテリによって補充され得る。二次側バッテリは、サージ電流後に一次側バッテリを充電することができる。これは、一次側バッテリの充放電周期を長くし、それをより速く劣化させ得る。従って、いくつかの実施形態に従って、放電電流の等しい分配が、ヒンジ抵抗、接触抵抗、及びバッテリインピーダンスにかかわらず一次側バッテリ及び二次側バッテリの両方に対してなされる。いくつかの実施形態で、放電電流は、バッテリ容量の比率と同じ比率で分配される。
【0052】
デュアル充電器アプローチが、例えば、二次側バッテリ(例えば、バッテリ2)からの逆昇圧モードを通じて第1充電器入力電圧(VIN)を駆動する第2充電器とともに使用されてよい。デュアル充電器アプローチは、バッテリ電圧経路(VBAT経路)と組み合わされ得る。デュアル充電器アプローチでは、第2バッテリからの放電は、5V VBUS2に昇圧後に5Vから一次側バッテリ電圧に降圧するので、非常に効率が悪くなる。二次バッテリは、利用可能である場合に、特別の充電管理制御を付加しなければ、最初に完全に放電され得る。組み合わされたVBAT(又はVBATA)を備えたデュアル充電器は、充電電流平衡を解決することができるが、放電電流平衡を解決することはできない。すなわち、より高い容量の二次側バッテリから一次側プロセッサ基板に対するヒンジ抵抗に関連して、性能問題が起こる可能性がある。これは、特に、バッテリ充電状態がローである場合に、システムから引き込まれ得る最大PL4電流を相当に低下させ得る。また、有用な容量の問題が、負荷プロファイル、バッテリインピーダンス、ヒンジ抵抗、及びどちら側に負荷が接続されるかに応じて、各バッテリから引き込まれる瞬時放電電流により起こる可能性があり、そして、一次負荷がより大きい場合には、一次ディスプレイ側バッテリは空になり、一方、二次ディスプレイ側バッテリは依然としていくらかの電荷が残っている。更に、バッテリ寿命の問題が起こる可能性がある。一次ディスプレイ側が周期的な高電流を有する場合に、ほとんどの供給は一次側バッテリからであり、後に二次側バッテリによって補充され、そして、一次側バッテリの充放電周期は長くなり、それをより速く劣化させ得る。
【0053】
放電電流インピーダンスは、充電器からの二次側バッテリ(例えば、バッテリ2)のVBAT及びGND経路内のヒンジ抵抗、コネクタ抵抗、及び/又はバッテリインピーダンスにより起こり得る。いくつかの実施形態に従って、フィードバック制御されるブーストコンバータが二次側バッテリ経路(バッテリ2経路)に含まれ得る。これは、一次側バッテリ(バッテリ1)と二次側バッテリ(バッテリ2)との間の電圧降下を補償するよう経路内で直列電圧を付加する。これは、接地経路降下を含むことができる。いくつかの実施形態で、バッテリ電圧は両方とも、放電中に同じレベルで間接的に調整及び/又は追跡される。バッテリ電圧が互いに追従する場合に、放電電流はバッテリ容量に比例するようになる。フィードバック制御ループが十分に速く応答するよう設計される場合に、バッテリ電流は、全ての実際的な負荷条件(例えば、直流又は脈動)について適切に共有され得る。
【0054】
いくつかの実施形態で、単一1S充電器が使用されてよい。いくつかの実施形態で、放電電流は、バッテリ容量にかかわらず自動的に分配され得る。いくつかの実施形態で、より良いVBATAピーク電流は、ブーストコンバータの付加によりPL4 SOC負荷をサポートするよう得られる。いくつかの実施形態で、二次側負荷がブーストコンバータの出力側で接続されるということで、二次バッテリ電流(バッテリ2電流)は最大レベルまで増大され得、バッテリ電圧は最小化され得る。これは、バッテリが空に近くなるまでPL4性能を許すことができる。いくつかの実施形態で、電圧追跡は、バッテリ容量に比例する放電電流を可能にすることができる。
【0055】
図8は、いくつかの実施形態に従うシステム800を表す。いくつかの実施形態で、図8は、一次側802(例えば、マザーボード側)及び二次側804を含むシステム800を表す。いくつかの実施形態で、システム800は、デュアルディスプレイデバイス(例えば、モバイルコンピューティングで使用される。)に含まれ得る。デュアルディスプレイを備えたデバイスの使用は、両方のディスプレイに給電するのに必要とされるバッテリ寿命を達成するために、デバイスの両側でバッテリを必要とし得る。いくつかの実施形態で、例えば、一次側802は、第1ディスプレイを含むシステム800の側であることができ、二次側804は、第2ディスプレイを含むシステム800の側であることができる(例えば、システム800は、デバイスの2つの異なる側でディスプレイを備えたデュアルディスプレイデバイスであることができる。)。
【0056】
一次側802は、メインボード負荷822、充電器824、バッテリ826(バッテリ1)、及びインダクタ828を含む。充電器824は、トランジスタ832(例えば、電界効果トランジスタ又はFET)を含む。二次側804は、二次側負荷842及びバッテリ846(バッテリ2)を含む。
【0057】
いくつかの実施形態で、一次側802のバッテリ826及び二次側804のバッテリ846は、一次側802に位置する単一の充電器824によって充電される、並列に結合された1Sバッテリであることができる。システム800はまた、ヒンジ抵抗HR1 862(例えば、100mオーム)、ヒンジ抵抗HR2 864(例えば、100mオーム)、及びヒンジ抵抗HR3 866(例えば、100mオーム)を含むことができる。いくつかの実施形態で、システム800は、一次側802及び二次側804を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗の点で)折り畳められ得る。
【0058】
いくつかの実施形態で、システム800は、バッテリ放電平衡回路を含む。いくつかの実施形態で、図8中の破線内の回路872が放電平衡回路である。いくつかの実施形態で、一次側のバッテリ1電圧は、Error Amp1(エラー増幅器1)を用いて差動的に感知され、二次側のバッテリ2電圧と比較される。比較された誤差は、バッテリ正側及び接地側(GND側)での電圧降下を含むことができる。ブーストコンバータ876(例えば、図8に表される、バイパスを備えた昇圧段)は、この増幅された電圧差を用いて制御される。いくつかの実施形態で、ブーストコンバータ876は、バッテリ1 826とバッテリ2 846との間の正及びGND経路での電圧降下を補償するように出力での電圧が昇圧されることを確かにするよう、そのデューティサイクルを有効に調整することができる。制御ループは、バッテリ2の総インピーダンスにかかる電圧を制御するために使用される。従って、ループ応答は速くなる。
【0059】
いくつかの実施形態で、両方のバッテリ(バッテリ1及びバッテリ2)が等しい容量を有する場合に、放電は同じ電圧で開始することができ、両方のバッテリは等しい内部インピーダンスを有する。制御ループは、VBAT1及びVBAT2が等しくなるまで調整するということで、ブーストコンバータ及び制御ループは、両方のバッテリインピーダンスが等しく電圧を下げるまで調整することができる。これは、バッテリ電流を等しくなるよう制御することができる。
【0060】
いくつかの実施形態で、バッテリ(バッテリ1及びバッテリ2)が異なる容量を有する場合に、バッテリは同じ電圧で始動し、両方のバッテリは等しい内部インピーダンスを有する。放電電流は同じレベルから開始することができる。容量が小さい方のバッテリは、その場合に、しばらくの間より速く消耗する可能性があり、制御ループ及び/又はブーストコンバータは、バッテリ電流をバッテリ容量に比例するように調整することができる。容量が小さい方のバッテリは、次の式1に従って、より低いレベルにまで放電しなければならない:

ΔV=BATTimp×ΔI (式1)

ここで、ΔVは、容量が小さい方のバッテリが放電する必要がある余分の電圧であり、ΔIは、放電電流をバッテリ容量に比例させるための電流差であり、BATTimpは、ヒンジ抵抗を除く総バッテリインピーダンスである。
【0061】
いくつかの実施形態で、バッテリインピーダンス及び容量の組み合わせは全て、異なるΔV値でバッテリ容量に比例した放電電流に収束し得る。ΔVは、例えば、バッテリインピーダンスがバッテリ容量に比例しない場合に、1S2P又は1SNP構成において避けられないことがある。しかし、いくつかの状況で、ΔVの実際の値は小さくなり、無視されるほど十分に小さくなり得る。
【0062】
いくつかの実施形態で、ヒンジ抵抗降下が一次側で正であり、電流が一次側から二次側へ流れている場合に、バッテリ放電は、例えば、図8のError Amp2 880を用いてVBAT1とVBAT2を比較するフィードバックループを用いて、FET(例えば、図8のFET2 878のような、二次側のFET)をアクティブ領域で動作させることによって、平衡にされ得る。いくつかの実施形態で、Error Amp2は、放電平衡ロジック882からの入力を更に受ける。二次側負荷電力が支配的である場合に、FET2 878が完全にオンであるならば、バッテリ2 846がより速く放電し得る。FET2 878が完全にオフであるならば、バッテリ1 826がより速く放電し得る。FET2 878を通る電流を制御することによって、放電中にVBAT1及びVBAT2を同じ電圧レベルに保つことが可能である。いくつかの実施形態で、SOC PL2/PL4ロジック884は、例えば、必要に応じて感知することによって、VBAT1を下げるために使用され得る。
【0063】
本明細書で記載されるように、図8では、小さい昇圧制御段が含まれ得る。昇圧制御は、ヒンジ抵抗による電圧降下を補償することができる。バッテリ1 826は、増幅器874によって差動的に感知され、昇圧を制御することで、バッテリ2 846が同じであることが確かにされる。昇圧を使用することによって、バッテリは、ヒンジ抵抗の他方の側に有効に配置される(すなわち、システムの観点から、バッテリ2 846は、バッテリ1 826側にあるよう現れる。)。ヒンジ抵抗による電圧の如何なる降下も、昇圧段によって補償される。これは、各バッテリが、負荷の差2にかかわらず、サージ電流の間でさえ、同じ比率で(すなわち、同じ電流で)放電することを確かにすることができ、且つ、各バッテリを同じ電圧レベルに保つことができる。
【0064】
図9は、いくつかの実施形態に従うブーストコンバータ回路900を表す。いくつかの実施形態で、ブーストコンバータ回路900は、システム800に(例えば、図8中で破線内に表された回路872の一部又は全部に代えて)含まれ得る。回路900は、エラー増幅器(Error Amp1)974、昇圧制御部976、トランジスタQ1 978(例えば、FET)、トランジスタQ2 980(例えば、FET)、トランジスタQ3 982(例えば、FET)、インダクタ984、キャパシタ986、及びキャパシタ988を含む。
【0065】
いくつかの実施形態で、図9で表されるブーストコンバータ回路900は、同期型ブーストコンバータ(例えば、通常の同期型ブーストコンバータ)である。いくつかの実施形態で、トランジスタQ1 978及びQ2 980(例えば、電界効果トランジスタQ1及びQ2又はFET Q1及びQ2)がブーストコンバータ部を形成することができる。いくつかの実施形態で、トランジスタQ3 982(例えば、電界効果トランジスタQ3又はFET Q3)は、バイパストランジスタ(又はバイパスFET)であることができる。通常動作中、トランジスタQ1 978及びQ3 982は、外部の電圧制御ループによって制御される内部ループのための必要とされるインダクタ電流レベルに基づきスイッチングし得る。いくつかの実施形態で、トランジスタQ3 982は、昇圧機能が必要とされない充電中に及び低負荷電流レベルの間(例えば、ヒンジ抵抗降下が極めて低く、無視可能である場合)に有効にされ得るバイパストランジスタである。このように、充電からの及びスタンバイ中の損失は低減され得る。放電電流が極めて小さい場合、システムはスタンバイ状態にある場合、アクティブな放電平衡は不要である場合、などに、Q3は、昇圧制御部(ブーストコンバータ)をスリープにするために使用され得、スタンバイモードでのエネルギ浪費は回避され得る。
【0066】
ブーストコンバータの効率は、通常動作モードで非常に高くなる。例えば、総システム負荷が1A(~4W)であり、二次側が0.5Aに寄与しており、200mオームの総ヒンジ抵抗での100mV降下を補償しているとき、ブーストコンバータの効率は、通常サイズの部品を用いて1MHzで動作しながら95%を超えることができる。効率は、より小さい負荷に対して周波数が1MHzから(例えば、パルススキッピングにより100kHzまで)下げられる場合に、更に高くなり得る。このような効率の推定/例は、電圧降下によるヒンジ抵抗での損失を含まないことがある。
【0067】
いくつかの実施形態で、ブーストコンバータ入力電圧は、ブーストコンバータにとって典型的なRHP(right half plane)ゼロを補償する必要がないように制御され得る。従って、ループ帯域幅は、RHPゼロの1/3に制限されず、パルス負荷電流に追従するようループ制御を速くする。
【0068】
いくつかの実施形態で、一次側での総負荷電流は、二次側でよりも高くなり、ヒンジ抵抗を通る電流は、二次側から一次側へ流れ得る。よって、ブーストコンバータは、一方向でのヒンジ抵抗電圧降下しか補償することができない。
【0069】
いくつかの実施形態で、ヒンジ抵抗降下が一次側で正であり、電流が一次側から二次側へ流れている場合に、バッテリ放電は、例えば、図8のError Amp2 880を用いてVBAT1とVBAT2を比較するフィードバックループを用いて、FET(例えば、図8のFET2 878のような、二次側のFET)をアクティブ領域で動作させることによって、平衡にされ得る。二次側負荷電力が支配的である場合に、FET2 878が完全にオンであるならば、バッテリ2 846がより速く放電し得る。FET2 878が完全にオフであるならば、バッテリ1 826がより速く放電し得る。FET2 878を通る電流を制御することによって、放電中にVBAT1及びVBAT2を同じ電圧レベルに保つことが可能である。
【0070】
図10は、いくつかの実施形態に従うシステム1000を表す。いくつかの実施形態で、システム1000は、バッテリ放電平衡回路を含む。
【0071】
いくつかの実施形態で、図10は、一次側1002(例えば、マザーボード側)及び二次側1004を含むシステム1000を表す。いくつかの実施形態で、システム1000は、デュアルディスプレイデバイス(例えば、モバイルコンピューティングで使用される。)に含まれ得る。デュアルディスプレイを備えたデバイスの使用は、両方のディスプレイに給電するのに必要とされるバッテリ寿命を達成するために、デバイスの両側でバッテリを必要とし得る。いくつかの実施形態で、例えば、一次側1002は、第1ディスプレイを含むシステム1000の側であることができ、二次側1004は、第2ディスプレイを含むシステム1000の側であることができる(例えば、システム1000は、デバイスの2つの異なる側でディスプレイを備えたデュアルディスプレイデバイスであることができる。)。
【0072】
一次側1002は、メインボード負荷1022、充電器1024、バッテリ1026(バッテリ1)、及びインダクタ1028を含む。充電器1024は、トランジスタ1032(例えば、電界効果トランジスタ又はFET)を含む。二次側1004は、二次側負荷1042及びバッテリ1046(バッテリ2)を含む。
【0073】
いくつかの実施形態で、一次側1002のバッテリ1026及び二次側1004のバッテリ1046は、一次側1002に位置する単一の充電器1024によって充電される、並列に結合された1Sバッテリであることができる。システム1000はまた、ヒンジ抵抗HR1 1062(例えば、100mオーム)、ヒンジ抵抗HR2 1064(例えば、100mオーム)、及びヒンジ抵抗HR3 1066(例えば、100mオーム)を含むことができる。いくつかの実施形態で、システム1000は、一次側及び二次側を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗の点で)折り畳められ得る。
【0074】
いくつかの実施形態で、システム1000は、バッテリ放電平衡回路を含む。バッテリ放電平衡回路は、バッテリ残量計1034、感知抵抗1036(例えば、10オーム)、出力電流(“Current Out”)を供給する電流センサ1038、Error Amp1 1074、ブーストコンバータ1076(例えば、バイパスを備えた昇圧段)、トランジスタ(例えば、電界効果トランジスタFET2)1078、トランジスタ1078に対するイネーブル信号1080(例えば、バッテリ放電中に供給されるイネーブル信号)、抵抗R_gain1082、感知抵抗1092(例えば、10オーム)、及びバッテリ残量計1094のうちの1つ以上(又は全て)を含む。
【0075】
いくつかの実施形態で、システム1000は、バイパスを備えた昇圧段1076を含むブーストコンバータ構成を用いて制御を提供することができる。いくつかの実施形態で、バッテリ2 1046のインダクタ電流は、測定されたバッテリ1 1026の電流に整合するよう直接制御され得る。いくつかの実施形態で、別個の電流感知増幅器1074が、バッテリ残量計1034のための感知抵抗1036からバッテリ1 1026の電流を感知するために使用されてよく、あるいは、バッテリ残量計自体が、出力電流を供給することができる。
【0076】
いくつかの実施形態で、出力電流は、二次側1004のGND2に対する電圧に変換され、コモンモードノイズが除去され得る。利得は、抵抗R_gain1082を用いてバッテリ容量に比例して調整され得る。いくつかの実施形態で、平均インダクタ電流は、制御ループから1つの極を取り除きながら、制御され得る。これは、制御ループの速さを大いに改善することができるが、インダクタ電流の正確測定は困難であり得る。
【0077】
いくつかの実施形態で、システム1000において、バッテリ1電流が感知され、昇圧は、バッテリ2電流が同じであるように調整される。バッテリ1のIBAT1電流、バッテリ2のIBAT2電流、及び昇圧インダクタの電流I_INDUCTORは、バッテリが同じ容量を有する実施形態では、全てがシステム100内で等しいように制御され得る。しかし、バッテリが同じ容量を有していない状況では、抵抗1082R_gainが、バッテリの放電電流を然るべく変化させることによってバッテリの非対称な放電を提供するよう調整され得る。
【0078】
図11は、いくつかの実施形態に従うシステム1100を表す。いくつかの実施形態で、システム1100は、バッテリ放電平衡回路を含む。
【0079】
いくつかの実施形態で、図11は、一次側1102(例えば、マザーボード側)及び二次側1104を含むシステム1100を表す。いくつかの実施形態で、システム1100は、デュアルディスプレイデバイス(例えば、モバイルコンピューティングで使用される。)に含まれ得る。デュアルディスプレイを備えたデバイスの使用は、両方のディスプレイに給電するのに必要とされるバッテリ寿命を達成するために、デバイスの両側でバッテリを必要とし得る。いくつかの実施形態で、例えば、一次側1102は、第1ディスプレイを含むシステム1100の側であることができ、二次側1104は、第2ディスプレイを含むシステム1100の側であることができる(例えば、システム1100は、デバイスの2つの異なる側でディスプレイを備えたデュアルディスプレイデバイスであることができる。)。
【0080】
一次側1102は、メインボード負荷1122、充電器1124、バッテリ1126(バッテリ1)、及びインダクタ1128を含む。充電器1124は、トランジスタ1132(例えば、電界効果トランジスタ又はFET)を含む。二次側1104は、二次側負荷1142及びバッテリ1146(バッテリ2)を含む。
【0081】
いくつかの実施形態で、一次側1102のバッテリ1126及び二次側1104のバッテリ1146は、一次側1102に位置する単一の充電器1124によって充電される、並列に結合された1Sバッテリであることができる。システム1100はまた、ヒンジ抵抗HR1 1162(例えば、100mオーム)、ヒンジ抵抗HR2 1164(例えば、100mオーム)、及びヒンジ抵抗HR3 1166(例えば、100mオーム)を含むことができる。いくつかの実施形態で、システム1100は、一次側1102及び二次側1104を備えた折り畳み式デバイスであり、両側が互いに対して(例えば、ヒンジ抵抗の点で)折り畳められ得る。
【0082】
いくつかの実施形態で、システム1100は、バッテリ放電平衡回路を含む。バッテリ放電平衡回路は、バッテリ残量計1134、感知抵抗1136(例えば、10オーム)、出力電流(“Current Out”)を供給する電流センサ1138、Error Amp1 1174、ブーストコンバータ1176(例えば、バイパスを備えた昇圧段)、トランジスタ(例えば、電界効果トランジスタFET2)1178、トランジスタ1178に対するイネーブル信号1180(例えば、バッテリ放電中に供給されるイネーブル信号)、抵抗R_gain1182、感知抵抗1192(例えば、10オーム)、バッテリ残量計1194、及び/又は出力電流を供給する電流感知増幅器1196のうちの1つ以上(又は全て)を含む。
【0083】
いくつかの実施形態で、システム1100は、バッテリ残量計の感知抵抗電圧を測定することによって(例えば、バッテリ残量計1134が抵抗1136の電圧を感知し、且つ/あるいは、バッテリ残量計1194が抵抗1192の電圧を感知する。)、バッテリ1電流及びバッテリ2電流を制御し得る。いくつかの実施形態で、システム1100は、システム1000よりも高い精度を有し得るが、システム1100の応答は、フィルタキャパシタによって加えられた余分の極により、システム1000の応答よりも相対的に遅くなる。しかし、システム1100は、実際の負荷条件を満足するほど十分に速い応答時間を依然として獲得することができる。図10及び図11は、いくつかの実施形態に従う放電平衡の単純化のために、使用され得る追加のFET2関連回路を表さない。いくつかの実施形態で、例えば、図8に表されるFET2制御実施が、例えば、二次側負荷が支配的である場合に、図10で及び/又は図11で使用されてよい。この実施は、図10のシステム100とともに及び/又は図11のシステム1100とともに使用されてもよい。
【0084】
いくつかの実施形態で、フィードバック制御ループが十分に速くない場合に、又はより瞬時的なサージ電力が二次バッテリから望まれる場合に、VBAT1感知電圧は、SOC制御を用いて人為的に低減され得る。短期間では、バッテリ2の最大放電容量が、電流を一次側に送り出すために(例えば、PL4電流に対応するために)利用されてよい。感知されたVBAT1電圧が低い場合に、ブーストコンバータは、変更されたVBAT1感知電圧を満足するよう、二次バッテリ(バッテリ2)から引き込まれる電流を増大させ得る。
【0085】
いくつかの実施形態で、二次側負荷は、(例えば、システム800、システム1000、及び/又はシステム1100内の)ブーストコンバータの出力側へ接続されてよい。これは、最低システム電圧を侵害すること及び予期せぬトリップの危険性がないことが確かにすることができる。よって、いくつかの実施形態で、バッテリ2から一次側へのSOC制御されたサージ電力供給を有効にするために一次側から二次側へのもう1つの追加の制御ワイヤ接続を使用する必要はない。VBAT1感知ライン自体は、この機能を有効にするよう感知電圧を操作するために使用されてよい。
【0086】
開示される対象の「一実施形態」又は「実施形態」又は「いくつかの実施形態」との明細書中の言及は、実施形態に関連して記載される特定の特徴、構造、又は特性が、開示される対象の少なくとも1つの実施形態に含まれることを意味する。よって、「一実施形態で」又は「いくつかの実施形態で」との言い回しが、本明細書の全体を通して様々な箇所で現れ得るが、この表現は、必ずしも同じ実施形態に言及していないことがある。
【0087】
例1 いくつかの例で、システムは、充電器及び第1バッテリを有する一次側と、第2バッテリを有する二次側とを含む。第1バッテリは、一次側へ電力を供給する。第2バッテリは、二次側へ電力を供給する。一次側と二次側との間にはヒンジ抵抗がある。充電器は、第1バッテリ及び第2バッテリを充電する。一次側は、第1バッテリの電流経路にあり、二次側の電流経路内のヒンジ抵抗、コネクタ抵抗、又はバッテリインピーダンスのうちの1つ以上を補償するフィードバック制御型アクティブデバイスを含む。
【0088】
例2は、例1の対象を含む。例2で、一次側は、システムのマザーボードを含む。
【0089】
例3は、例1乃至2のいずれかの対象を含む。例3で、第1バッテリは、システムの第1ディスプレイへ電力を供給し、第2バッテリは、システムの第2ディスプレイへ電力を供給する。
【0090】
例4は、例1乃至3のいずれかの対象を含む。例4で、フィードバック制御型アクティブデバイスは、第1バッテリのバッテリ電流経路を通る電流を感知する第1感知抵抗と、第2バッテリのバッテリ電流経路を通る電流を感知する第2感知抵抗とを含む。
【0091】
例5は、例1乃至4のいずれかの対象を含む。例5で、フィードバック制御型アクティブデバイスは、第1増幅器及びトランジスタを含み、第1増幅器は、第1感知抵抗及び第2感知抵抗での電圧降下が第1バッテリ及び第2バッテリの充電中に等しいように、トランジスタの抵抗を調整する。
【0092】
例6は、例1乃至5のいずれかの対象を含む。例6で、トランジスタは電界効果トランジスタである。
【0093】
例7は、例1乃至6のいずれかの対象を含む。例7で、フィードバック制御型アクティブデバイスは、第1バッテリ及び第2バッテリの放電中に第1増幅器を無効にする第2増幅器を含む。
【0094】
例8は、例1乃至7のいずれかの対象を含む。例8で、第2増幅器は、第1バッテリ及び第2バッテリの放電中にトランジスタを完全にオンする。
【0095】
例9は、例1乃至8のいずれかの対象を含む。例9で、フィードバック制御型アクティブデバイスは、トランジスタと並列にバイパス抵抗を含む。
【0096】
例10は、例1乃至9のいずれかの対象を含む。例10で、バイパス抵抗は、最大充電共有電流制限に基づき調整される。
【0097】
例11は、例1乃至10のいずれかの対象を含む。例11で、フィードバック制御型アクティブデバイスは、互いと直列に結合された第1抵抗及び第2抵抗を含み、直列に結合された第1抵抗及び第2抵抗の直列接続は、第1感知抵抗と並列に結合され、互いと直列に結合された第1抵抗及び第2抵抗の抵抗は、第1バッテリ及び第2バッテリの充電電流を調整するよう調整可能である。
【0098】
例12は、例1乃至11のいずれかの対象を含む。例12で、フィードバック制御型アクティブデバイスは、第1バッテリ及び第2バッテリの充電及び放電の平衡を保つ。
【0099】
例13 いくつかの例で、システムは、充電器及び第1バッテリを有する一次側と、第2バッテリを有する二次側とを含む。第1バッテリは、一次側へ電力を供給する。第2バッテリは、二次側へ電力を供給する。システムは、一次側と二次側との間にヒンジ抵抗を含む。充電器は、第1バッテリ及び前記第2バッテリを充電する。二次側は、第1バッテリと第2バッテリとの間の電圧降下を補償する、第2バッテリの電流経路内のフィードバック制御型ブーストコンバータを含む。
【0100】
例14は、例13の対象を含む。例14で、一次側は、システムのマザーボードを含む。
【0101】
例15は、例13乃至14のいずれかの対象を含む。例15で、第1バッテリは、システムの第1ディスプレイへ電力を供給し、第2バッテリは、システムの第2ディスプレイへ電力を供給する。
【0102】
例16は、例13乃至15のいずれかの対象を含む。例16で、フィードバック制御型ブーストコンバータは、第1バッテリと第2バッテリとの間の電圧降下を補償するよう第2バッテリの電流経路内に直列電圧を含める。
【0103】
例17は、例13乃至16のいずれかの対象を含む。例17で、フィードバック制御型ブーストコンバータは、第1バッテリの電圧を差動的に感知し、それを第2バッテリの電圧と比較する増幅器を含む。
【0104】
例18は、例13乃至17のいずれかの対象を含む。例18で、増幅器は、増幅された電圧差を用いてブーストコンバータを制御する。
【0105】
例19は、例13乃至18のいずれかの対象を含む。例19で、ブーストコンバータは、第1バッテリと第2バッテリとの間の電圧降下を補償するようデューティサイクルを調整する。
【0106】
例20は、例13乃至19のいずれかの対象を含む。例20で、第1バッテリの容量が第2バッテリの容量と同じである場合に、フィードバック制御型ブーストコンバータは、第1バッテリ及び第2バッテリを等しい電圧で且つ等しい電流で放電する。
【0107】
例21は、例13乃至20のいずれかの対象を含む。例21で、第1バッテリの容量が第2バッテリの容量と同じでない場合に、フィードバック制御型ブーストコンバータは、第1バッテリの放電電流及び第2バッテリの放電電流を、それらの各々のバッテリ容量に比例するよう調整する。
【0108】
例22は、例13乃至21のいずれかの対象を含む。例22で、フィードバック制御型ブーストコンバータは、第1バッテリの電流を感知し、第1バッテリの前記感知された電流に応答してブーストコンバータを制御する電流感知増幅器を含む。
【0109】
例23は、例13乃至22のいずれかの対象を含む。例23で、フィードバック制御型ブーストコンバータは、第1バッテリの電流を感知し、第2バッテリの電流を感知し、第1バッテリの感知された電流及び第2バッテリの感知された電流に応答してブーストコンバータを制御する電流感知増幅器を含む。
【0110】
例24は、例13乃至23のいずれかの対象を含む。例24で、フィードバック制御型ブーストコンバータは、第1バッテリの放電電流及び第2バッテリの放電電流を等しいよう保つ。
【0111】
例25は、例13乃至24のいずれかの対象を含む。例25で、フィードバック制御型ブーストコンバータは、放電電流を第1バッテリへ及び第2バッテリへバッテリ容量に関わらず自動的に分配する。
【0112】
例26 いくつかの例で、システムは、充電する手段及び第1バッテリを有する一次側と、第2バッテリを有する二次側とを含む。第1バッテリは、一次側へ電力を供給する。第2バッテリは、二次側へ電力を供給する。一次側と二次側との間にはヒンジ抵抗がある。充電する手段は、第1バッテリ及び第2バッテリを充電する。一次側は、二次側の電流経路内のヒンジ抵抗、コネクタ抵抗、又はバッテリインピーダンスのうちの1つ以上を補償する手段を含んで第1バッテリの電流経路においてフィードバックを制御する手段を含む。
【0113】
例27は、例26の対象を含む。例27で、一次側は、システムのマザーボードを含む。
【0114】
例28は、例26乃至27のいずれかの対象を含む。例28で、第1バッテリは、システムの第1ディスプレイへ電力を供給し、第2バッテリは、システムの第2ディスプレイへ電力を供給する。
【0115】
例29は、例26乃至28のいずれかの対象を含む。例29で、フィードバック制御手段は、第1バッテリのバッテリ電流経路を通る電流を感知する第1感知手段と、第2バッテリのバッテリ電流経路を通る電流を感知する第2感知手段とを含む。
【0116】
例30は、例26乃至29のいずれかの対象を含む。例5で、フィードバック制御手段は、第1増幅手段及びトランジスタを含み、第1増幅手段は、第1感知手段及び第2感知手段での電圧降下が第1バッテリ及び第2バッテリの充電中に等しいように、トランジスタの抵抗を調整する。
【0117】
例31は、例26乃至30のいずれかの対象を含む。例31で、トランジスタは電界効果トランジスタである。
【0118】
例32は、例26乃至31のいずれかの対象を含む。例32で、フィードバック制御手段は、第1バッテリ及び第2バッテリの放電中に第1増幅手段を無効にする第2増幅手段を含む。
【0119】
例33は、例26乃至32のいずれかの対象を含む。例33で、第2増幅手段は、第1バッテリ及び第2バッテリの放電中にトランジスタを完全にオンする。
【0120】
例34は、例26乃至33のいずれかの対象を含む。例34で、フィードバック制御手段は、トランジスタと並列にバイパス抵抗を含む。
【0121】
例35は、例26乃至34のいずれかの対象を含む。例35で、バイパス抵抗は、最大充電共有電流制限に基づき調整される。
【0122】
例36は、例26乃至35のいずれかの対象を含む。例36で、フィードバック制御手段は、互いと直列に結合された第1抵抗及び第2抵抗を含み、直列に結合された第1抵抗及び第2抵抗の直列接続は、第1感知手段と並列に結合され、互いと直列に結合された第1抵抗及び第2抵抗の抵抗は、第1バッテリ及び第2バッテリの充電電流を調整するよう調整可能である。
【0123】
例37は、例26乃至36のいずれかの対象を含む。例37で、フィードバック制御手段は、第1バッテリ及び第2バッテリの充電及び放電の平衡を保つ手段を含む。
【0124】
例38 いくつかの例で、システムは、充電する手段及び第1バッテリを有する一次側と、第2バッテリを有する二次側とを含む。第1バッテリは、一次側へ電力を供給する。第2バッテリは、二次側へ電力を供給する。システムは、一次側と二次側との間にヒンジ抵抗を含む。充電する手段は、第1バッテリ及び前記第2バッテリを充電する。二次側は、第1バッテリと第2バッテリとの間の電圧降下を補償する、第2バッテリの電流経路においてフィードバックを制御する昇圧変換手段を含む。
【0125】
例39は、例38の対象を含む。例39で、一次側は、システムのマザーボードを含む。
【0126】
例40は、例38乃至39のいずれかの対象を含む。例40で、第1バッテリは、システムの第1ディスプレイへ電力を供給し、第2バッテリは、システムの第2ディスプレイへ電力を供給する。
【0127】
例41は、例38乃至40のいずれかの対象を含む。例41で、フィードバックを制御する昇圧変換手段は、第1バッテリと第2バッテリとの間の電圧降下を補償するよう第2バッテリの電流経路内に直列電圧を含める。
【0128】
例42は、例38乃至40のいずれかの対象を含む。例42で、フィードバックを制御する昇圧変換手段は、第1バッテリの電圧を差動的に感知し、それを第2バッテリの電圧と比較する増幅手段を含む。
【0129】
例43は、例38乃至42のいずれかの対象を含む。例43で、増幅手段は、増幅された電圧差を用いて昇圧変換手段を制御する。
【0130】
例44は、例38乃至43のいずれかの対象を含む。例44で、昇圧変換手段は、第1バッテリと第2バッテリとの間の電圧降下を補償するようデューティサイクルを調整する手段を含む。
【0131】
例45は、例38乃至44のいずれかの対象を含む。例45で、第1バッテリの容量が第2バッテリの容量と同じである場合に、フィードバックを制御する昇圧変換手段は、第1バッテリ及び第2バッテリを等しい電圧で且つ等しい電流で放電する手段を含む。
【0132】
例46は、例38乃至45のいずれかの対象を含む。例46で、第1バッテリの容量が第2バッテリの容量と同じでない場合に、フィードバックを制御する昇圧変換手段は、第1バッテリの放電電流及び第2バッテリの放電電流を、それらの各々のバッテリ容量に比例するよう調整する手段を含む。
【0133】
例47は、例38乃至46のいずれかの対象を含む。例47で、フィードバックを制御する昇圧変換手段は、第1バッテリの電流を感知し、第1バッテリの前記感知された電流に応答してブーストコンバータを制御する電流感知増幅器を含む。
【0134】
例48は、例38乃至47のいずれかの対象を含む。例48で、フィードバックを制御する昇圧変換手段は、第1バッテリの電流を感知し、第2バッテリの電流を感知し、第1バッテリの感知された電流及び第2バッテリの感知された電流に応答してブーストコンバータを制御する電流感知増幅器を含む。
【0135】
例49は、例38乃至48のいずれかの対象を含む。例49で、フィードバックを制御する昇圧変換手段は、第1バッテリの放電電流及び第2バッテリの放電電流を等しいよう保つ手段を含む。
【0136】
例50は、例38乃至49のいずれかの対象を含む。例50で、フィードバックを制御する昇圧変換手段は、放電電流を第1バッテリへ及び第2バッテリへバッテリ容量に関わらず自動的に分配する手段を含む。
【0137】
例51 いくつかの例で、一次側は、充電器及び第1バッテリを含み、二次側は、第2バッテリを含む。一次側と二次側との間にはヒンジ抵抗がある。一次側は、二次側の電流経路内のヒンジ抵抗を、コネクタ抵抗を、又はバッテリインピーダンスを補償する、第1バッテリの経路内のフィードバック制御型アクティブデバイスを含む。
【0138】
例52 いくつかの例で、一次側は、充電器及び第1バッテリを含み、二次側は、第2バッテリを含む。一次側と二次側との間にはヒンジ抵抗がある。二次側は、第1バッテリと第2バッテリとの間の電圧降下を補償する、第2バッテリ経路内のフィードバック制御型ブーストコンバータを含む。
【0139】
例53 いくつかの例で、装置は、いずれかの他の例で見られるように方法を実行し又は装置を実現する手段を含む。
【0140】
例54 いくつかの例で、マシン読み出し可能なストレージは、実行される場合に、いずれかの他の例で見られるように方法を実施し又は装置を実現するマシン読み出し可能な命令を含む。
【0141】
例55 いくつかの例で、1つ以上のマシン読み出し可能な媒体は、実行される場合に、マシンに、いずれかの他の例の装置を実現させ又は方法を実行させるコードを含む。
【0142】
例となる実施形態、及び開示される対象の例が、図面における回路図、フロー図、ブロック図などを参照して記載されているが、当業者は、開示される対象を実施する多数の他の方法が代替的に使用されてよいことを容易に理解するだろう。例えば、図中の要素の配置、又は図中のブロックの実行順序は、変更されてよく、あるいは、回路図中の回路素子のいくつか、及び記載されているブロック/フロー図内のブロックは、変更、削除、又は結合されてよい。図示又は記載されている如何なる要素も、変更、削除、又は結合されてよい。
【0143】
上記の説明では、開示される対象の様々な態様が記載されてきた。説明のために、具体的な数、システム、及び構成が、対象の完全な理解を提供するために示されてきた。しかし、当業者に明らかなように、対象は、具体的な詳細によらずに実施されてもよい。他の事例では、よく知られている特徴、構成要素又はモジュールは、開示される対象を不明りょうにしないように省略、簡略化、結合、又は分割されている。
【0144】
開示される対象の様々な実施形態は、ハードウェア、ファームウェア、ソフトウェア、又はそれらの組み合わせにおいて実施されてよく、命令、関数、プロシージャ、データ構造、ロジック、アプリケーションプログラム、シミュレーションの設計表現又はフォーマット、エミュレーション、及び設計の組み立てのようなプログラムコードを参照して、又はそれと関連して記載され得る。プログラムコードは、マシンによってアクセスされる場合に、マシンがタスクを実行し、抽象データ型若しくは低レベルハードウェアコンテキストを定義し、又は結果を生成することをもたらす。
【0145】
プログラムコードは、設計されたハードウェアが実行すると期待される方法のモデルを本質的に提供するハードウェア記述言語又は他の機能記述言語を用いてハードウェアを表現し得る。プログラムコードは、アセンブリ若しくは機械語若しくはハードウェア定義言語、又はコンパイル又はインタプリトされ得るデータであってよい。更に、当該技術で、何らかの形でソフトウェアを話すことは、行動をとること又は結果を引き起こすこととして一般的である。
そのような表現は、プロセッサに動作を実行させるか又は結果を生じさせる処理システムによるプログラムコードの実行を述べる簡単な方法にすぎない。
【0146】
プログラムコードは、例えば、固体状態メモリ、ハードデバイス、フロッピー(登録商標)ディスク、光学ストレージ、テープ、フラッシュメモリ、メモリスティック、デジタルビデオディスク、デジタルバーサタイルディスク(DVD)、などや、マシンアクセス可能な生物学的状態保持ストレージのような、より風変わりな媒体を含む記憶デバイス又は関連するマシン読み出し可能な若しくはマシンアクセス可能な媒体のような、1つ以上の揮発性又は不揮発性メモリデバイスに記憶されてよい。マシン読み出し可能な媒体は、アンテナ、光ファイバ、通信インターフェイス、などのような、マシンによって読み出し可能な形で情報を記憶、送信又は受信するための如何なる有形なメカニズムも含んでよい。プログラムコードは、パケット、シリアルデータ、パラレルデータ、などの形で伝送されてよく、圧縮又は暗号化されたフォーマットで使用されてよい。
【0147】
プログラムコードは、プロセッサ、プロセッサによって読み出し可能な揮発性若しくは不揮発性メモリ、少なくとも1つの入力装置又は1つ以上の出力装置を夫々が含むモバイル又は固定コンピュータ、パーソナルデジタルアシスタント、セットトップボックス、携帯電話機及びページャ、並びに他の電子機器のようなプログラム可能なマシンで実行されるプログラムにおいて実施されてよい。プログラムコードは、記載される実施形態を実行し、出力情報を生成するよう、入力装置により入力されたデータに適用されてよい。出力情報は、1つ以上の出力装置に適用されてよい。当業者に明らかなように、開示される対象の実施形態は、マルチプロセッサ又はマルチコアプロセッサシステム、ミニコンピュータ、メインフレームコンピュータ、及び実質的に如何なるデバイスにも埋め込まれ得る広く普及した又は小規模のコンピュータ又はプロセッサを含む様々なコンピュータシステム構成により実施可能である。開示される対象の実施形態はまた、通信ネットワークを通じてリンクされる遠隔の処理装置によってタスクが実行され得る分散型コンピュータ環境でも実施可能である。
【0148】
動作は逐次プロセスとして記載されることがあるが、一部の動作は実際には、並行して、同時に、又は分散環境で、シングル又はマルチプロセッサマシンによるアクセスのためにローカルで又は遠隔で記憶されたプログラムコードにより実行されてよい。その上、いくつかの実施形態で、動作の順序は、開示される対象の主旨から外れることなしに並べ直されてよい。プログラムコードは、埋込型コントローラによって又はそれとともに使用されてよい。
【0149】
開示される対象は、実例となる実施形態を参照して記載されてきたが、本明細書は、限定的な意味で解釈されるよう意図されない。実例となる実施形態の様々な変更、及び対象の他の実施形態は、当業者には明らかであり、開示される対象の適用範囲内にあると見なされる。例えば、表されている実施形態の夫々及び記載されている実施形態の夫々で、本願の図面及び明細書は、図示又は記載されるデバイスが特定の図で示されるか又は特定の図を参照して記載される全ての構成要素を含むことを示すよう意図されないことが理解されるべきである。その上、夫々の要素は、ロジックにより実施されてよく、ロジックは、本願で言及されるように、例えば、あらゆる適切なハードウェア(例えば、特に、プロセッサ)、ソフトウェア(例えば、特に、アプリケーション)、ファームウェア、又はハードウェア、ソフトウェア、及びファームウェアのあらゆる適切な組み合わせを含むことができる。
【符号の説明】
【0150】
100,200,300,600,700,800,1000,1100 システム
102,302,802,1002,1102 一次側
104,304,804,1004,1104 二次側
122,322,822,1022,1122 メインボード負荷
124,324,824,1024,1124 充電器
126,222,326,622,722,826,1026,1126 バッテリ1
128,328、828,1028,1128 インダクタ
142,342,842,1042,1142 二次側負荷
146,242,346,642,742,846,1046,1146 バッテリ2
162,164,166,262,662,762 ヒンジ抵抗
202,602 第1バッテリパック
204,604 第2バッテリパック
372 フィードバック制御型アクティブデバイス
500 充電電流分配回路
872 バッテリ放電平衡回路
876,1076 ブーストコンバータ
900 ブーストコンバータ回路
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11