(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-17
(45)【発行日】2023-11-28
(54)【発明の名称】電気刺激療法のECAPによる制御
(51)【国際特許分類】
A61N 1/36 20060101AFI20231120BHJP
【FI】
A61N1/36
(21)【出願番号】P 2020569874
(86)(22)【出願日】2019-06-21
(86)【国際出願番号】 US2019038573
(87)【国際公開番号】W WO2019246579
(87)【国際公開日】2019-12-26
【審査請求日】2022-06-17
(32)【優先日】2018-06-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507020152
【氏名又は名称】メドトロニック,インコーポレイテッド
(74)【代理人】
【識別番号】100118902
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100119781
【氏名又は名称】中村 彰吾
(72)【発明者】
【氏名】ディンスムア,デービッド・エイ
(72)【発明者】
【氏名】オーサー,ヘザー・ダイアン
(72)【発明者】
【氏名】スタンスラスキ,スコット・アール
(72)【発明者】
【氏名】ピーターソン,エリック・ジェイ
【審査官】神ノ田 奈央
(56)【参考文献】
【文献】国際公開第2018/080753(WO,A1)
【文献】国際公開第2018/106813(WO,A1)
【文献】国際公開第2017/173493(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 1/36
(57)【特許請求の範囲】
【請求項1】
システムであって、
刺激生成回路であって、
電気刺激療法を患者に送達することであって、前記電気刺激療法が、ある期間にわたって所定のパルス周波数で複数の通知パルスを含み、前記複数の通知パルスが、パラメータ値の第1の集合によって少なくとも部分的に定義される、送達することと、
前記ある期間にわたって複数の制御パルスを送達することであって、前記複数の制御パルスが、前記複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされ、前記複数の制御パルスが、前記パラメータ値の第1の集合とは異なるパラメータ値の第2の集合によって少なくとも部分的に定義される、送達することと、を行うように構成されている刺激生成回路と、
処理回路であって、
前記複数の制御パルスのうちの各制御パルスの後、かつ前記複数の通知パルスのうちの後続の通知パルスの前に、感知されたそれぞれの誘発複合活動電位(ECAP:evoked compound action potential)を受信することと、
少なくとも1つのそれぞれの誘発複合活動電位(ECAP)の特性が目標誘発複合活動電位(ECAP)特性から逸脱したとの判定に応じて、前記電気刺激療法の前記複数の通知パルスを少なくとも部分的に定義する前記パラメータ値の第1の集合のうちの1つ以上のパラメータ値を調整することと、
前記刺激生成回路を用いて、前記パラメータ値の第1の集合のうちの前記調整された1つ以上のパラメータ値に従って、前記患者に前記電気刺激療法を送達することと、を行うように構成されている、処理回路と、
を含む、システム。
【請求項2】
1つ以上のプロセッサと、
前記目標誘発複合活動電位(ECAP)特性を示す、上限を有する誘発複合活動電位(ECAP)調整ウィンドウをさらに含み、
前記1つ以上のプロセッサが、
前記複数の制御パルスのうちの各制御パルスの後の前記それぞれの誘発複合活動電位(ECAP)の振幅に基づいて、少なくとも1つのそれぞれの誘発複合活動電位(ECAP)の代表的な振幅を計算することと、
前記代表的な振幅が前記誘発複合活動電位(ECAP)調整ウィンドウの上限を超える場合、前記少なくとも1つのそれぞれの誘発複合活動電位(ECAP)に続く前記複数の通知パルスのうちの1つ以上の通知パルスの振幅を減少させることと、
を行うようにさらに構成され、
前記代表的な振幅が、
i) 単一の誘発複合活動電位(ECAP)の振幅、
ii)2つ以上の誘発複合活動電位(ECAP)の平均、
iii)2つ以上のそれぞれの誘発複合活動電位(ECAP)の中央値振幅、
iv)2つ以上のそれぞれの誘発複合活動電位(ECAP)の移動平均、
v)最後の4つの感知された誘発複合活動電位(ECAP)の平均振幅、
vi) 最後の4つより少ないまたはより多くの誘発複合活動電位(ECAP)の平均振幅、
のいずれかである、
請求項1に記載のシステム。
【請求項3】
1つ以上のプロセッサと、
前記目標誘発複合活動電位(ECAP)特性を示す、下限を有する誘発複合活動電位(ECAP)調整ウィンドウをさらに含み、
前記1つ以上のプロセッサが、
前記複数の制御パルスのうちの各制御パルスの後の前記それぞれの誘発複合活動電位(ECAP)の振幅に基づいて、少なくとも1つのそれぞれの誘発複合活動電位(ECAP)の代表的な振幅を計算することと、
前記代表的な振幅が前記誘発複合活動電位(ECAP)調整ウィンドウの下限を下回る場合、前記少なくとも1つのそれぞれの誘発複合活動電位(ECAP)に続く前記複数の制御パルスのうちの1つ以上の制御パルスの振幅を増加させることと、
を行うようにさらに構成され、
前記代表的な振幅が、
i) 単一の誘発複合活動電位(ECAP)の振幅、
ii)2つ以上の誘発複合活動電位(ECAP)の平均、
iii)2つ以上のそれぞれの誘発複合活動電位(ECAP)の中央値振幅、
iv)2つ以上のそれぞれの誘発複合活動電位(ECAP)の移動平均、
v)最後の4つの感知された誘発複合活動電位(ECAP)の平均振幅、
vi) 最後の4つより少ないまたはより多くの誘発複合活動電位(ECAP)の平均振幅、
のいずれかである、
請求項1に記載のシステム。
【請求項4】
誘発複合活動電位(ECAP)調整ウィンドウを記憶するように構成されているメモリと、
1つ以上の電極と、をさらに含み、
前記刺激生成回路が、
前記1つ以上の電極を用いて、前記患者に電気刺激療法を送達することと、
前記複数の制御パルスを、前記1つ以上の電極を用いて、前記患者に送達することと、を行うようにさらに構成されている、請求項2または3に記載のシステム。
【請求項5】
前記複数の通知パルスのうちの各通知パルスのパルス幅が、300マイクロ秒超であり、1000マイクロ秒未満である、請求項1~
4のいずれか一項に記載のシステム。
【請求項6】
前記複数の通知パルスの前記所定のパルス周波数が、400ヘルツ未満である、請求項1~
5のいずれか一項に記載のシステム。
【請求項7】
前記複数の制御パルスのうちの各制御パルスのパルス幅が、300マイクロ秒未満である、請求項1~
6のいずれか一項に記載のシステム。
【請求項8】
前記刺激生成回路が、
複数の時間イベントのうちの各時間イベント中に、前記複数の制御パルスのうちの1つの制御パルスを送達するようにさらに構成されており、
前記複数の時間イベントのうちの各時間イベントが、前記ある期間にわたって前記所定のパルス周波数において、前記複数の通知パルスのうちの連続する通知パルス間の時間を含む、請求項1~
7のいずれか一項に記載のシステム。
【請求項9】
前記刺激生成回路が、
複数の時間イベントのうちの各時間イベント中に、前記複数の制御パルスのうちの2つ以上の制御パルスを送達するようにさらに構成されており、
前記複数の時間イベントのうちの各時間イベントが、前記ある期間にわたって前記所定のパルス周波数において、前記複数の通知パルスのうちの連続する通知パルス間の時間を含む、請求項1~
7のいずれか一項に記載のシステム。
【請求項10】
前記パラメータ値の第1の集合のうちの1つ以上のパラメータ値が、パルス振幅、パルス幅、パルス周波数、およびパルス形状のうちの少なくとも1つを含む、請求項1~
9のいずれか一項に記載のシステム。
【請求項11】
センサをさらに含み、
前記1つ以上のプロセッサが、
前記センサから、前記患者の活動レベルが変化したことを示す信号を受信することと、
前記信号の受信に応じて、前記刺激生成回路を用いて前記患者に送達される前記複数の制御パルスの所定のパルス周波数の増加または減少の一方と、行うようにさらに構成されている、請求項1~
10のいずれか一項に記載のシステム。
【請求項12】
前記複数の通知パルスのうちの各通知パルスが、受動的な再充電相が後に続く単相(monophasic)パルスであり、前記複数の制御パルスのうちの各制御パルスが、二相パルスである、請求項1~
11のいずれか一項に記載のシステム。
【請求項13】
前記複数の制御パルスが、複数の非治療パルスを含み、前記複数の通知パルスが、複数の治療パルスを含む、請求項1~12のいずれか一項に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、電気刺激療法、より具体的には、電気刺激療法の制御に関する。
【背景技術】
【0002】
医療デバイスは、外付けであっても、埋め込み型であってもよく、慢性疼痛、振戦、パーキンソン病、てんかん、尿失禁または便失禁、性機能障害、肥満、または胃穿孔症のような様々な症状または状態を治療するために、様々な組織部位を介して患者に電気刺激療法を送達するために使用され得る。医療デバイスは、患者の脳、脊髄、骨盤神経、末梢神経、または消化管に関連する目標位置に近接して配置された電極を含む1つ以上のリード線を用いて電気刺激療法を送達し得る。脊髄近位、仙骨神経近位、脳内、および末梢神経近位への刺激は、それぞれ脊髄刺激(SCS)、仙骨神経刺激(SNM)、深部脳刺激(DBS)、末梢神経刺激(PNS)と称されることが多い。
【0003】
電気刺激療法は、一連の電気刺激パルスで医療デバイスによって送達されてもよく、電気刺激パルスを定義するパラメータは、周波数、振幅、パルス幅、およびパルス形状を含んでもよい。
【発明の概要】
【0004】
誘発複合活動電位(ECAP)を感知することによって電気刺激療法を制御するためのシステム、デバイス、および技術が説明されている。いくつかの例では、電気刺激パルスは、少なくとも部分的に互いにインターリーブされた通知パルスおよび制御パルスの形で送達される。制御パルスは、検出可能なECAP信号、例えばECAP試験パルスを誘発するように構成されているそれらの刺激パルスである。いくつかの例では、制御パルスは、患者の治療に寄与する可能性がある。他の例では、制御パルスは、例えば非治療パルスなど、患者の治療に寄与しない。このようにして、制御パルスは、患者の治療効果を誘発するように構成されてもよいし、されなくてもよい。通知パルスは、1つ以上の制御パルスから誘発された検出可能なECAP信号に基づく1つ以上のパラメータによって、少なくとも部分的に定義される刺激パルスである。このようにして、通知パルスは、制御パルスから検出されたECAP信号によって「通知」される。通知パルスは、疼痛症状を和らげる錯感覚などの治療を患者に提供するようにも構成されている。
【0005】
医療デバイス(例えば、埋め込み型医療デバイス)は、1つ以上のリードを用いて1つ以上の制御パルスを患者に送達でき、システムは、すべて連続する通知パルス間で、制御パルスによって誘発された結果として得られるECAP信号を感知することができる。例えば、ECAP信号の特性(例えば、電圧振幅)が目標ECAP特性から逸脱したとの判定に応じて、システムは、患者に送達される次の1つ以上の通知パルスおよび/または制御パルスの1つ以上の刺激パラメータを変更してもよい。例えば、システムは、所定のステップサイズによって、または患者の成長曲線を表すゲイン値に基づいて、通知パルス(および、いくつかの例では、制御パルスについて)の電流振幅を増加または減少させることができる。このようにして、システムは、通知パルスおよび/または制御パルスの1つ以上の刺激パラメータを調整することによって、一貫した量の神経活性化を維持するように構成され得る。本明細書で考察されるように、通知パルスによって誘発されるECAP信号は、医療デバイスによって検出されない場合があるので、通知パルスの1つ以上のパラメータの値は、制御パルスから検出されるECAP信号の特性から決定されてもよい。
【0006】
いくつかの例では、制御パルスは非治療パルスであってもよく、これは患者の治療に寄与するという主な目的なしに選択されたパラメータ値を有する刺激パルスである。この例では、1つ以上の非治療パルスが患者に送達されてもよく、システムは、すべて連続した治療パルス(例えば、患者の治療に寄与するように構成されている通知パルス)の間で、結果として得られるECAP信号を感知してもよい。ECAP信号の特性(例えば、電圧振幅)が目標ECAP特性から逸脱したとの判定に応じて、システムは、患者に送達される次の1つ以上の治療パルスの1つ以上の刺激パラメータを変更してもよい。例えば、システムは、所定のステップサイズによって、または患者の成長曲線を表すゲイン値に基づいて、治療パルスの電流振幅を増加または減少させることができる。このようにして、システムは、治療パルスの1つ以上の刺激パラメータを調整することによって、一貫した量の神経活性化を維持するように構成され得る。
【0007】
一例では、方法は、電気刺激療法を患者に送達することであって、電気刺激療法が、ある期間にわたって所定のパルス周波数で複数の通知パルスを含み、複数の通知パルスが、パラメータ値の第1の集合によって少なくとも部分的に定義される、送達することと、ある期間にわたって、複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされた複数の制御パルスを送達することであって、複数の制御パルスが、パラメータ値の第1の集合とは異なるパラメータ値の第2の集合によって少なくとも部分的に定義される、送達することと、複数の制御パルスのうちの1つ以上の制御パルスの後、かつ複数の通知パルスの直後の通知パルスよりも前に、それぞれの誘発複合活動電位(ECAP)を感知することと、少なくとも1つのそれぞれのECAPに基づいて、電気刺激療法の複数の通知パルスを少なくとも部分的に定義するパラメータ値の第1の集合うちの1つ以上のパラメータ値を調整することと、パラメータ値の第1の集合のうちの調整された1つ以上のパラメータ値に従って、電気刺激療法を患者に送達することと、を含む。
【0008】
別の例では、システムは、電気刺激療法を患者に送達することであって、電気刺激療法が、ある期間にわたって所定のパルス周波数で複数の通知パルスを含み、複数の通知パルスが、パラメータ値の第1の集合によって少なくとも部分的に定義される、送達することと、ある期間にわたって、複数の制御パルスを送達することであって、複数の制御パルスが、複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされ、複数の制御パルスが、パラメータ値の第1の集合とは異なるパラメータ値の第2の集合によって少なくとも部分的に定義される、送達することと、を行うように構成されている刺激生成回路と、複数の制御パルスのうちの1つ以上の制御パルスの後、かつ複数の通知パルスの直後の通知パルスよりも前に、感知されたそれぞれの誘発複合活動電位(ECAP)を受信することと、少なくとも1つのそれぞれのECAPに基づいて、電気刺激療法の複数の通知パルスを少なくとも部分的に定義するパラメータ値の第1の集合のうちの1つ以上のパラメータ値を調整することと、刺激生成回路を用いて、パラメータ値の第1の集合のうちの調整された1つ以上のパラメータ値に従って、電気刺激療法を患者に送達することと、を行うように構成されている処理回路と、を含む。
【0009】
別の例では、コンピュータ可読記憶媒体は、実行されたときに、1つ以上のプロセッサに、電気刺激療法の患者への送達を制御することであって、電気刺激療法が、ある期間にわたって所定のパルス周波数で複数の通知パルスを含み、複数の通知パルスが、パラメータ値の第1の集合によって少なくとも部分的に定義される、制御することと、ある期間にわたって、複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされた複数の制御パルスの送達を制御することであって、複数の制御パルスが、パラメータ値の第1の集合とは異なるパラメータ値の第2の集合によって少なくとも部分的に定義される、制御することと、複数の制御パルスのうちの1つ以上の制御パルスの後、かつ複数の通知パルスの直後の通知パルスよりも前に、感知されたそれぞれの誘発複合滑動電位(ECAP)を受信すること、少なくとも1つのそれぞれのECAPに基づいて、電気刺激療法の複数の通知パルスを少なくとも部分的に定義するパラメータ値の第1の集合のうちの1つ以上のパラメータ値を調整することと、パラメータ値の第1の集合のうちの調整された1つ以上のパラメータ値に従って、電気刺激療法の患者への送達を制御することと、を行わせる命令を含む。
【0010】
別の例では、方法は、制御刺激パルスを患者に送達することであって、制御刺激パルスが、第1のパルス幅を有する、送達することと、制御刺激パルスによって誘発された誘発複合活動電位(ECAP)信号を感知することと、ECAP信号の特性を特定することと、ECAP信号の特性およびゲイン値に基づいて、複数の通知パルスから通知刺激パルスを少なくとも部分的に定義するパラメータ値を判定することとであって、複数の通知パルスが、第1のパルス幅よりも長い第2のパルス幅を有する、判定することと、判定したパラメータ値に従って通知パルスを送達することと、を含む。
【0011】
別の例では、システムは、刺激生成回路であって、制御刺激パルスを患者に送達することであって、制御刺激パルスが、第1のパルス幅を有する、送達することと、複数の通知パルスから、かつパラメータ値に従って、通知刺激パルスを送達することであって、複数の通知パルスが、第1のパルス幅よりも長い第2のパルス幅を有する送達することと、を行うように構成されている刺激生成回路と、処理回路であって、制御刺激パルスによって誘発された感知された誘発複合活動電位(ECAP)信号を受信することと、ECAP信号の特性を特定することと、ECAP信号の特性とゲイン値に基づいて、通知パルスを少なくとも部分的に定義するパラメータ値を判定することと、を行うように構成されている処理回路と、を含む。
【0012】
別の例では、コンピュータ可読記憶媒体は、実行されたときに、1つ以上のプロセッサに、制御刺激パルスの患者への送達を制御することであって、制御刺激パルスが第1のパルス幅を有する、制御することと、制御刺激パルスによって誘発された誘発複合活動電位(ECAP)信号を感知することと、ECAP信号の特性を特定することと、ECAP信号の特性およびゲイン値に基づいて、複数の通知パルスから通知刺激パルスを少なくとも部分的に定義するパラメータ値を判定することとであって、複数の通知パルスが、第1のパルス幅よりも長い第2のパルス幅を有する、判定することと、判定したパラメータ値に従って通知パルスを送達することと、を行わせる命令を含む。
【0013】
本開示の技術の1つ以上の例の詳細は、添付の図面および以下の説明に記載されている。本技術の他の特徴、目的および利点は、説明および図面から、かつ特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0014】
【
図1】本開示の技術に従って脊髄刺激(SCS)療法を送達するように構成されている医療デバイスプログラマと埋め込み型医療デバイス(IMD)とを含む例示的なシステムを示す概念図である。
【
図2A】
図1の例示的なIMDのブロック図である。
【
図2B】
図1の例示的な外部プログラマのブロック図である。
【
図3】それぞれの刺激パルスに対して感知された例示的な誘発複合活動電位(ECAP)のグラフである。
【
図4A】本開示の1つ以上の技術による、電気刺激パルスおよびそれぞれの感知されたECAPの例を示すタイミング図である。
【
図4B】本開示の技術による、電気刺激パルスおよびそれぞれの感知されたECAPの例を示すタイミング図である。
【
図5】本開示の技術による、電気刺激パルスおよびそれぞれのECAPの別の例を示すタイミング図である。
【
図6】本開示の技術による、電気刺激パルスおよびそれぞれのECAPの別の例を示すタイミング図である。
【
図7】本開示の技術による、治療送達の例示的な技術を示すフローチャートである。
【
図8】入力に応じて、ECAP試験刺激の制御パルスの送達を調整するための例示的な技術を示すフローチャートである。
【
図9】刺激療法を調整するための例示的な技術を示すフローチャートである。
【
図10A】それぞれの刺激パルス振幅から感知されたECAPの例示的な成長曲線のグラフである。
【
図10B】刺激療法を調整するための例示的な技術を示す図である。
【
図11】刺激療法を調整するための例示的な技術を示すフローチャートである。
【
図12】感知されたECAPを用いて、フィードバック機構の有効性をテストする実験で使用された機器の例の図である。
【
図13】開ループを使用して感知されたECAP電圧振幅と、閉ループ構成における異なるフィードバック対象振幅とのグラフを含む。
【発明を実施するための形態】
【0015】
本開示は、医療デバイスによって送達される制御刺激パルスに応じて、医療デバイスによって受容される誘発複合活動電位(ECAP)の1つ以上の特性に基づいて、患者に送達される電気刺激療法を自動的に調整するための医療デバイス、システム、および技術の例を説明する。電気刺激療法は、通常、2つ以上の電極を介して患者の標的組織(例えば、1つ以上の神経または筋肉)に送達される。電気刺激療法のパラメータ(例えば、電極の組み合わせ、電圧または電流の振幅、パルス幅、パルス周波数など)は、痛み、筋肉障害などの様々な症状を緩和するために、臨床医および/または患者によって選択される。しかしながら、患者が動くと、電極と標的組織との間の距離が変化する。神経漸増は、刺激強度および標的組織と電極との間の距離の関数であるため、電極を標的組織に近づけると、患者による知覚が増加し(例えば、痛みを伴う可能性がある)、電極を標的組織からさらに遠くに移動させると、患者に対する治療効果が低下する可能性がある。
【0016】
各ECAP信号は、電気刺激(例えば、刺激パルス)に応じて発火する軸索から生成される電位の重ね合わせを表しているため、ECAPは神経漸増の尺度となる。ECAP信号の特性(例えば、信号の一部分の振幅、1つ以上のピークの下の領域、周波数成分、および/または最大および/または最小ピークタイミング)の変化は、送達された刺激パルスによってどれだけ多くの軸索が活性化されたかについての関数として生じる。システムは、ECAP信号の特性の変化を監視し、その特性の変化を使用して、患者に送達される通知パルスおよび/または制御パルスの1つ以上の刺激パラメータを調整することができる。例えば、システムは、ECAP信号の振幅の増加を検出することに応じて、刺激パルスの強度を減少させる(例えば、電流振幅および/またはパルス幅を減少させる)ことができる。送達された刺激パルスが最初に神経を脱分極させた後、ECAP信号として検出可能な神経インパルスは、神経繊維に沿って迅速に移動する。したがって、第1の電極によって送達される刺激パルスのパルス幅が長すぎる場合、ECAPを感知するように構成されている異なる電極は、刺激パルス自体を、より低い振幅のECAP信号を不明瞭にするアーチファクトとして感知する。しかし、ECAP信号は、異なる神経線維が異なる速度で電位を伝播するため、電気刺激から電位が伝播するにつれて忠実性を失う。したがって、刺激電極から遠い距離でECAPを検出すると、パルス幅の長い刺激パルスによって引き起こされるアーチファクトを回避できるが、ECAP信号は、電極から標的組織までの距離が変化したときに発生するECAP信号の変化を検出するのに必要な忠実性を失う可能性がある。言い換えれば、システムは、刺激電極から任意の距離で、患者に治療を提供するように構成されている刺激パルスからのECAPを特定することができない場合がある。
【0017】
本明細書に記載されるように、医療デバイスは、以前に送達された制御パルスによって誘発されたECAP信号の1つ以上のパラメータに基づいて、患者に治療を提供するように構成されている複数の通知パルスおよび/または制御パルスを送達するように構成され得る。医療デバイスは、場合によっては、複数の通知パルスを送達することができ、これらは、制御パルスによって誘発されるECAP信号の1つ以上のパラメータに基づいて患者に治療を提供するか、少なくともそれに寄与するように構成されている。いくつかの例では、制御パルスは、患者の治療に寄与することなく、ECAP信号を誘発するように構成され得る。しかしながら、他の例では、制御パルスは、単独で、または通知パルスと組み合わせて、患者に治療を提供することができる。制御パルスは、通知パルスの送達とインターリーブされてもよい。例えば、医療デバイスは、連続する通知パルスの間で、制御パルスが送達され、制御パルスからECAP信号が感知されるように、通知パルスと制御パルスの送達を交互に行ってもよい。いくつかの例では、連続する通知パルスの送達の間で、複数の制御パルスが送達され、それぞれのECAP信号が感知される。いくつかの例では、複数の通知パルスが、連続する制御パルスの間で送達される。いずれの場合でも、通知パルスは、通知パルスが患者の治療結果をもたらすか、あるいは寄与することができるように選択された所定のパルス周波数に従って送達され得る。次に、1つ以上の制御パルスが送達され、それぞれのECAP信号が、所定のパルス周波数に従って送達される連続する通知パルス間の1つ以上の時間ウィンドウ内で感知される。所定のパルス周波数は、単一の一貫した周波数、または経時的に変化する変動周波数であり得る。制御パルスのパルス幅は、医療デバイスが制御パルスから誘発されたECAP信号を検出することを可能にするために、通知パルスのパルス幅よりも短くなり得る。別の言い方をすれば、通知パルスのパルス幅が長くなると、例えば、通知パルスがECAP信号と重畳するために、結果として生じるECAP信号が検出されるのを妨げる可能性がある。このようにして、医療デバイスは、医療デバイスからの通知パルスを中断することなく管理することができ、一方、ECAPは、通知パルスが送達されていない時間中に送達される制御パルスから感知することができる。
【0018】
一例では、制御パルスは患者の治療に寄与せず、非治療パルスと称されることがある。この例では、医療デバイスは、患者に治療を提供するように構成されている複数の治療パルス(例えば、通知パルス)と、患者に治療を提供するという主要な目的なしに、検出可能なECAP信号を誘発するように構成されている複数の非治療パルスとを送達するように構成され得る。非治療パルスは、治療パルスの送達とインターリーブされてもよい。例えば、医療デバイスは、連続する治療パルスの間で、非治療パルスが送達され、ECAP信号が感知されるように、治療パルスと非治療パルスの送達を交互に行ってもよい。いくつかの例では、連続する治療パルスの送達の間で、複数の非治療パルスが送達され、それぞれのECAP信号が感知される。いくつかの例では、複数の治療パルスが、連続する非治療パルスの間で送達される。いずれの場合でも、治療パルスは、治療パルスが患者に治療結果をもたらすことができるように、選択された所定のパルス周波数に従って送達され得る。次に、1つ以上の非治療パルスが送達され、所定のパルス周波数に従って送達される連続する治療パルス間の1つ以上の時間ウィンドウ内で、それぞれのECAP信号が感知される。このようにして、医療デバイスは、医療デバイスからの治療パルスを中断することなく管理することができ、一方、治療パルスが送達されていない時間中に送達される非治療パルスから、ECAPが感知される。
【0019】
システムは、医療デバイスによって受信された感知されたECAP信号の1つ以上の特性への変化を判定することに応じて、通知パルスを少なくとも部分的に定義する1つ以上のパラメータの値を調整することができる。例えば、医療デバイスは、制御パルスによって誘発されたECAP信号の振幅を測定し、それを、患者にとって適切であると以前に特定された目標ECAP振幅と比較することができる。ECAP信号の振幅(例えば、ECAP信号における1つ以上のピークの電圧振幅)が目標ECAP振幅よりも大きい場合、刺激電極が神経に近づいたため、制御パルスの強度が高すぎる可能性がある。医療デバイスは、通知パルスの強度(例えば、電流振幅、パルス幅、パルス周波数、スルーレート、またはそれらのいずれかの組み合わせ)を反応よく低減することができる。逆に、ECAP信号の振幅が目標ECAP振幅よりも小さい場合、刺激電極が神経から遠くに移動しているため、制御パルスの強度が十分に強くない可能性がある。医療デバイスは、通知パルスの強度を反応よく増加させることができる。このようにして、医療デバイスは、制御パルスから誘発されたECAP信号を監視して、情報パルスの1つ以上のパラメータを調整して、患者に効果的な治療を提供する神経活性化の量を維持することができる。
【0020】
制御パルスからの感知された電気的アーチファクトがECAP信号を不明瞭にすることを減少または防止するために、制御パルスのパルス幅は、通知パルスのパルス幅よりも短くてもよい(言い換えれば、通知パルスのパルス幅は、制御パルスのパルス幅より長くてもよい)。例えば、制御パルスは、約300マイクロ秒(μs)未満であり得る。一例では、制御パルスは、約100μsの正相と、約30μsの相間間隔で分離した約100μsの負相とを有する二相パルスであり得る。このようにして、リードの一端の刺激電極は制御パルスを送達することができ、同じリードの他端の電極は、制御パルス自体からの干渉なしに、または最小限に抑えて、ECAP信号を感知することができる。
【0021】
一例では、システムは、感知されたECAP信号に基づいて、通知パルスの1つ以上のパラメータを調整することができる。医療デバイスは、少なくとも1つのそれぞれのECAP信号の代表的な振幅を決定することができる。次に、医療デバイスは、代表的な振幅を、目標ECAP特性(例えば、目標ECAP振幅、または周波数成分、1つ以上のピークの下の領域、または1つ以上のピークのタイミングなどの他の特性)および目標ECAP調整ウィンドウと比較することができる。目標ECAP調整ウィンドウは、上限と下限を含む、目標ECAP振幅の周囲の振幅の範囲であってもよい。いくつかの例では、目標ECAP調整ウィンドウは、ECAP信号の小さな振動について、通知パルスの1つ以上のパラメータに調整が行われないように、差異をプラスマイナスした目標ECAP特性によって定義されてもよい。言い換えると、差異をプラスした目標ECAP特性が目標ECAP調整ウィンドウの上限であってよく、差異をマイナスした目標ECAP特性が目標ECAP調整ウィンドウの下限であってもよい。差異は、目標ECAP特性の上下で同じでも異なっていてもよい。少なくとも1つのそれぞれのECAPの代表的な振幅が、目標ECAP調整ウィンドウの上限よりも大きい場合、医療デバイスは、後続の通知パルスおよび制御パルスの振幅を減少させるように構成されていてもよい。制御パルスはまた、その後に検出されたECAP信号に基づいてさらに調整が必要かどうかを判断するために、調整されてもよい。少なくとも1つのそれぞれのECAPの代表的な振幅が、目標ECAP調整ウィンドウの下限よりも低い場合、医療デバイスは、少なくとも1つのそれぞれのECAPに続く通知パルスおよび制御パルスの振幅を増加させるように構成されていてもよい。通知パルスおよび制御パルスの振幅が変更される量は、ECAP信号の代表的な振幅の検出された変化に基づく所定の振幅ステップサイズまたは所定の割合であってもよい。このように、フィードバックループは、目標ECAP振幅をもう一度達成するために、2回以上の反復を必要とすることもある。
【0022】
別の例では、医療デバイスは動的フィードバックループを使用することができる。成長曲線は、それぞれの異なる刺激パルス振幅に対するECAP信号の特性の検出値の間の関係の傾きに基づいて判定される患者について判定されてもよい。したがって、医療デバイスは、目標ECAP特性値(例えば、振幅値、1つ以上のピークの下の領域、周波数成分、または最大および/または最小ピークタイミング)と、測定ECAP値との間の差を判定し、その差にゲイン値を乗算してもよい。その後、結果の値を使用して、測定ECAP値をもたらす制御パルスを定義する以前のパラメータ値を増減することができる。ゲイン値を使用して、通知パルスのパラメータ値を同様に調整することもできる。ゲイン値を使用することにより、システムは大きなECAP信号の変動に迅速に応答し、通知パルスと制御パルスを目標ECAPにリセット可能であってもよい。このプロセスは、患者の動きの間の電極から組織までの距離の変化に起因する効果の低い治療を生み出す通知パルスの数を減らすことができる。
【0023】
通知パルスおよび制御パルスは、一般に、本明細書では、異なるタイプの電気刺激を反映する異なる刺激パルスとして説明されている。しかしながら、異なるタイプの電気刺激、およびそのそれぞれのパルスは、様々な属性で説明されることがある。例えば、第1のタイプの電気刺激は、主に患者の治療に寄与するように構成されている第1のパルスを含み得る。この第1のタイプの電気刺激の第1のパルスはまた、第1のパルス自体に代表されるアーチファクトが、それぞれの誘発されたECAP信号の少なくとも一部分に重畳してこれを不明瞭にするため、第1のタイプの電気刺激の第1のパルスから誘発されたECAP信号を検出するシステムの能力を妨げるかまたは低下させる1つ以上の特性(例えば、パルス幅)を有していてもよい。第2のタイプの電気刺激は、システムによって感知され、かつ検出可能なECAP信号を誘発するために選択される1つ以上のパラメータ値によって定義される第2のパルスを含み得る。したがって、第2のパルスは、検出可能なECAP信号を誘発するように構成されているので、第2のパルスは、「制御パルス」、「感知パルス」、または「試験パルス」と称され得る。例えば、第2のタイプの電気刺激の第2のパルスは、ECAP信号を不明瞭にするか、そうでなければ第2のパルスの各々からECAP信号を検出するシステムの能力を妨げるまたは減少させるアーチファクトを発生させない(またはアーチファクトの存在を減少させる)ようなECAP信号の検出性を向上させてもよい。加えて、第2のパルスは、第1のタイプの電気刺激の第1のパルス(例えば、通知パルス)の1つ以上のパラメータ値を少なくとも修正するのに使用されるECAP信号を誘発するために選択されるパラメータ値によって定義されてもよい。したがって、第1のパルスは、少なくとも1つのパラメータ(例えば、電流および/または電圧の振幅、パルス幅、および/または周波数)によって第2のパルスと異なる場合がある。本明細書で考察されるように、いくつかの例では、第2のパルスは、第1のパルスのパルス幅よりも短いパルス幅を有する。第1のパルスは、第2のパルスの少なくともいくつかと少なくとも部分的にインターリーブされてもよい。例えば、システムは、1つの第1のパルスの送達と1つの第2のパルスの送達とを交互に行うことができる。別の例では、第1のパルスの数は、比または割合によって第2のパルスの数と異なる場合がある。第1と第2のパルスが完全にインターリーブされている場合、比は1:1になる可能性がある。第2のパルスが第1のパルスよりも少ない頻度で送達される例では、比は第1のパルス対第2のパルスで10:1となり得る。他の例では、第2のパルス、およびそれぞれの感知されたECAP信号)が第1のパルスよりも頻繁に発生する場合、第1のパルス対第2のパルスの比が1:4である可能性がある。第2のパルスは、患者によって知覚される治療または感覚に寄与する場合もあれば、寄与しない場合もあるが、第2のパルスの主要な目的は、第2のパルス自体を表すいずれかの感知されたアーチファクトとは別に、システムによって検出可能なそれぞれのECAP信号を誘発することである。第2のパルスによって誘発されたECAP信号は検出可能であるため、システムは、第1のパルス(例えば、通知パルス)を少なくとも部分的に定義する1つ以上のパラメータ値を「通知」または調整するために、1つ以上の第2のパルスからのECAP信号を使用することができる。
【0024】
電気刺激は、一般に、電気刺激パルスの形で本明細書に記載されているが、他の例では、電気刺激は、非パルスの形で送達され得る。例えば、電気刺激は、様々な波形形状、周波数、および振幅を有する信号として送達され得る。したがって、非パルス信号の形での電気刺激は、正弦波形または他の連続波形を有する可能性があるよりも、連続信号である可能性がある。
【0025】
図1は、患者105に電気刺激療法を送達するように構成されている埋め込み型医療デバイス(IMD)110を含む例示的なシステム100を示す概念図である。
図1に示される例では、IMD110は、本開示の技術に従って脊髄刺激(SCS)療法を送達するように構成されている。本開示で説明される技術は、一般に、外部および埋め込み型医療デバイス(IMD)を含む様々な医療デバイスに適用可能であるが、そのような技術のIMD、より具体的には、埋め込み型電気刺激装置(例えば、神経刺激装置)への適用は、例証のために説明される。より具体的には、本開示は、例証のために埋め込み型脊髄刺激(SCS)システムに言及するが、他のタイプの医療デバイスまたは医療デバイスの他の治療用途に関して限定されない。
【0026】
図1に示されるように、システム100は、IMD110、リード130Aおよび130B、ならびに通常は人間の患者である患者105に関連して示される外部プログラマ150を含む。
図1の例では、IMD110は、例えば慢性的な痛みまたは他の症状の緩和のために、リード130Aおよび/または130B(集合的に「リード130」)の電極のうちの1つ以上の電極を介して、患者105に電気刺激療法を生成して送達するように構成されている埋め込み型電気刺激装置である。他の例では、IMD110は、複数の電極を有する単一のリード、またはそれぞれが複数の電極を有する2つ以上のリードに結合することができる。電気刺激療法に加えて、IMD110はまた、通知パルスの治療に寄与する場合、またはそうでない場合もあるECAP信号を誘発するように構成されている制御パルスを生成および送達するように構成され得る。本明細書で考察されるように、いくつかの例では、制御パルスは、非治療的であり得る。IMD110は、数週間、数ヶ月、または数年さえも患者105内に埋め込まれたままでいる長期電気刺激装置であり得る。他の例では、IMD110は、長期治療のための電気刺激の有効性をスクリーニングまたは評価するために使用される一時的または試験的な刺激装置であり得る。一例では、IMD110は、患者105内に埋め込まれ、一方、別の例では、IMD110は、経皮的に埋め込まれたリードに結合された外部デバイスである。いくつかの例では、IMD110は1つ以上のリードを使用し、他の例では、IMD110は、リードレスである。
【0027】
IMD110は、患者105内にIMD110の構成要素(例えば、
図2Aに示される構成要素)を収容するのに十分ないずれかのポリマー、金属、または複合材料で構成され得る。この例では、IMD110は、チタンもしくはステンレス鋼などの生体適合性ハウジング、またはシリコーン、ポリウレタン、もしくは液晶ポリマーなどのポリマー材料で構成され、患者105の骨盤、腹部、または臀部の近くの部位に外科的に埋め込まれてもよい。他の例では、IMD110は、患者105内の他の好適な部位内に埋め込まれてもよく、これは、例えば、電気刺激療法の送達のための患者105内の対象部位に依存してもよい。IMD110の外部ハウジングは、再充電式または非再充電式の電源などの構成要素に気密封止を提供するように構成されていてもよい。加えて、いくつかの例では、IMD110の外部ハウジングは、再充電式の電源を充電するためのエネルギーの受容を容易にする材料から選択されてもよい。
【0028】
例えば、定電流または定電圧によるパルスであり得る電気刺激エネルギーは、埋め込み型リード130の1つ以上の電極(図示せず)を用いて、IMD110から患者105の1つ以上の標的組織部位に送達される。
図1の例では、リード130は、脊髄120の標的組織に隣接して定置された電極を有する。1つ以上の電極は、リード130の遠位先端に、および/またはリードに沿った中間点の他の位置に配置されてもよい。リード130は、埋め込まれ、IMD110に結合され得る。電極は、IMD110内の電気刺激発生器によって生成された電気刺激を患者105の組織に伝達することができる。リード130は、各々単一のリードであり得るが、リード130は、リード延長またはリード130の埋め込みまたは位置決めに役立つことのできる他のセグメントを含んでいてもよい。他のいくつかの例では、IMD110は、ハウジングから延びるリードではなく、刺激装置のハウジング上に配設された電極の1つ以上のアレイを有するリードレス刺激装置であり得る。加えて、他のいくつかの例では、システム100は、1つのリードまたは2つ以上のリードを含んでいてもよく、各々がIMD110に結合され、類似または異なる標的組織部位に向けられる。
【0029】
リード130の電極は、パドルリード上の電極パッド、リードの本体を取り囲む円形(例えば、リング)電極、適合電極、カフ電極、分割電極(例えば、連続したリング電極の代わりにリードの周囲の異なる周方向位置に配置された電極)、それらのいずれかの組み合わせ(例えば、リング電極および分割電極)、または治療のための単極、双極または多極の電極の組み合わせを形成することが可能ないずれかの他のタイプの電極であってもよい。リード130の遠位端の異なる軸方向位置に配設されたリング電極は、例示の目的で説明される。
【0030】
リード130を介した電極の配備は、例示の目的で説明されているが、電極のアレイは、異なる方法で配備されてもよい。例えば、リードレス刺激装置に関連するハウジングは、電極のアレイ、例えば、シフト操作を適用することができる行および/または列(または他のパターン)を有していてもよい。そのような電極は、表面電極、リング電極、または突起として配設することができる。さらなる代替手段として、電極アレイは、1つ以上のパドルリード上の電極の行および/または列によって形成されてもよい。いくつかの例では、電極アレイは、リードの周囲のそれぞれの位置に配設され得る電極セグメントを含んでいてもよく、例えば、円筒形リードの周囲の1つ以上の分割リングの形態で配設されてもよい。他の例では、リード130のうちの1つ以上は、リードの軸方向の長さに沿って8つのリング電極を有する線形リードである。別の例では、電極は、リードの軸方向の長さに沿って、リードの周辺に直線的に配設された分割リングである。
【0031】
リード130の電極を介したIMD110による電気刺激療法の刺激パルスを定義する療法刺激プログラムの刺激パラメータは、刺激プログラムに従って刺激を送達するためにどの電極が選択されたか、選択された電極の極性、すなわち、プログラムに対する電極の組み合わせ、および電圧または電流の振幅、パルス周波数、パルス幅、電極によって送達される刺激のパルス形状を特定する情報を含んでいてもよい。通知パルスのこれらの刺激パラメータは、通常、通知パルスの送達の前に判定される所定のパラメータ値である。しかしながら、いくつかの例では、システム100は、1つ以上の要因に基づいて、またはユーザ入力に基づいて、1つ以上のパラメータ値を自動的に変更してもよい。
【0032】
刺激情報パルスに加えて、ECAP試験刺激プログラムは、リード130の電極の少なくともいくつかを介してIMD110によって送達される制御パルスを定義する刺激パラメータ値を定義することができる。これらの刺激パラメータ値は、制御パルスの送達のためにどの電極が選択されたか、選択された電極の極性、すなわち、プログラムに対する電極の組み合わせ、および電圧または電流の振幅、パルス周波数、パルス幅、電極によって送達される刺激のパルス形状を特定する情報を含んでいてもよい。各ECAP試験刺激プログラムのパラメータによって定義された刺激信号(例えば、1つ以上の刺激パルスまたは連続刺激波形)は、神経から複合活動電位を誘発するように構成されている。いくつかの例では、ECAP試験刺激プログラムは、通知パルスの周波数および/またはパルス幅に基づいて、制御パルスがいつ患者に送達されるかを定義することができる。しかしながら、各ECAP試験刺激プログラムによって定義される刺激は、患者の治療を提供、またはこれに寄与することを目的としてはいない。制御パルスが患者に貢献するか、または患者に治療を提供する例では、ECAP試験刺激プログラムもまた、治療刺激プログラムの代わりに、またはそれと同じように使用され得る。
【0033】
図1は、例えば、疼痛の治療に使用されるSCS療法を対象としているが、他の例では、システム100は、電気刺激療法の恩恵を受ける可能性のある他のいずれかの状態を治療するように構成されてもよい。例えば、システム100は、振戦、パーキンソン病、てんかん、骨盤底障害(例えば、尿失禁または他の膀胱機能障害、便失禁、骨盤痛、腸機能障害、または性機能障害)、肥満、胃麻痺、または精神障害(例えば、うつ病、躁病、強迫性障害、不安障害など)を治療するために使用されてもよい。一態様において、システム100は、深部脳刺激(DBS)、末梢神経刺激(PNS)、末梢神経野刺激(PNFS)、皮質刺激(CS)、骨盤底刺激、胃腸刺激、または患者105の状態を治療することが可能ないずれかの他の刺激療法の形態をとる治療を提供するように構成されていてもよい。
【0034】
いくつかの例では、リード130は、IMD110が、患者の活動、圧力、温度、または他の特性など、患者105の1つ以上のパラメータを監視できるように構成されている1つ以上のセンサを含んでいてもよい。リード130による治療送達に加えて、またはその代わりに、1つ以上のセンサを提供してもよい。
【0035】
IMD110は、リード130の一方または両方が有する電極の選択された組み合わせを用いて、単独で、またはIMD110の外部ハウジングが有するか、またはそれによって定義される電極と組み合わせて、電気刺激療法を患者105に送達するように構成されている。電気刺激療法の標的組織は、電気刺激の影響を受けるいずれかの組織であり得、これは、電気刺激パルスまたは連続波形の形態であり得る。いくつかの例では、標的組織は、神経、平滑筋または骨格筋を含む。
図1によって例示される例では、標的組織は、脊髄120に近接した組織であり、例えば脊髄120の髄腔内空間または硬膜外空間内、またはいくつかの例では、脊髄120から分岐する隣接神経である。リード130は、胸部、頸部、または腰部などのいずれかの好適な部位を介して、脊髄120に導入することができる。脊髄120の刺激は、例えば、疼痛信号が脊髄120を通って患者105の脳に伝わるのを防ぐことができる。患者105は、疼痛信号の中断を疼痛の軽減として知覚する可能性があり、したがって、効果的な治療結果が得られる。他の例では、脊髄120の刺激は、患者105による疼痛の知覚を減少させ得る知覚異常を引き起こすことがあり、したがって、効果的な治療結果を提供することができる。
【0036】
IMD110は、1つ以上の治療刺激プログラムに従って、患者105に対するリード130への電極を用いて、電気刺激治療を生成し、患者105内の標的刺激部位に送達する。治療刺激プログラムは、そのプログラムに従ってIMD110によって送達される治療の態様を定義する1つ以上のパラメータの値を定義する。例えば、パルスの形態でIMD110による刺激の送達を制御する治療刺激プログラムは、そのプログラムに従って、IMD110によって送達される刺激パルスの電圧または電流パルス振幅、パルス幅、およびパルスレート(例えば、パルス周波数)の値を定義することができる。治療刺激プログラムは、これらのパルスが患者の治療効果(例えば、知覚異常、疼痛遮断など)に寄与するように構成されている場合、制御パルスおよび/または通知パルスを定義することができる。
【0037】
さらに、IMD110は、リード130の電極の組み合わせを用いて、単独で、またはIMD110の外部ハウジングが有するか、またはそれによって定義される電極と組み合わせて、制御刺激を患者105に送達するように構成されている。制御刺激によって標的とされる組織は、電気刺激療法によって標的とされる同じ組織であり得るが、IMD110は、同じ、少なくともいくつかの同じ、または異なる電極を用いて制御パルスを送達してもよく、検出可能なECAP信号を誘発することを目的としてもよい。この制御刺激は、患者の治療効果に寄与する場合もあれば(例えば、治療刺激)、寄与しない場合もある(例えば、非治療刺激)。制御パルスは、通知パルスとインターリーブされた方法で送達できるので、臨床医および/またはユーザは、通知パルスに対していずれかの所望の電極の組み合わせを選択することができる。電気刺激療法と同様に、制御刺激は、電気刺激パルスまたは連続波形の形をとることができる。一例では、各制御パルスは、能動的な再充電相を使用する平衡二相方形パルスを含み得る。しかしながら、他の例では、制御パルスは、受動的な再充電相が続く単相パルスを含み得る。他の例では、制御パルスは、不均衡な二相部分および受動的な再充電部分を含み得る。必須ではないが、二相制御パルスは、二相パルスの第1の相に応じて、神経インパルスの伝播を促進するために、正相と負相との間に相間間隔を含み得る。制御刺激は、連続する通知パルス間のウィンドウの間など、電気刺激通知パルスの送達を中断することなく送達され得る。制御パルスは、組織からECAP信号を誘発することができ、IMD110は、リード130上の2つ以上の電極を用いてECAP信号を感知することができる。制御パルスが脊髄120に適用される場合、信号は、脊髄120からIMD110によって感知され得る。本明細書で考察されるように、制御刺激は、単独でまたは部分的に、患者が受ける治療効果に寄与し得る。言い換えれば、制御パルスは、いくつかの例では、追加の通知パルスなしで治療を提供するために送達されてもよい。制御パルスのみが患者に治療を提供することができる例では、制御刺激は、その患者の治療刺激であり得る。
【0038】
IMD110は、1つ以上のECAP試験刺激プログラムに従って、リード130の電極を用いて、患者105内の標的刺激部位に制御刺激を送達する。1つ以上のECAP試験刺激プログラムは、IMD110のメモリに記憶され得る。1つ以上のECAP試験刺激プログラムの各ECAP試験プログラムは、電流または電圧振幅、パルス幅、パルス周波数、電極の組み合わせ、およびいくつかの例では、患者105に送達される通知パルスに基づくタイミングなど、そのプログラムに従ってIMD110によって送達される制御刺激の態様を定義する1つ以上のパラメータの値を含む。いくつかの例では、IMD110は、複数のECAP試験刺激プログラムに従って、制御刺激を患者105に送達する。
【0039】
臨床医または患者105などのユーザは、外部プログラマ150のユーザインターフェースと相互作用して、IMD110をプログラムすることができる。IMD110のプログラミングは、一般に、IMD110の動作を制御するためのコマンド、プログラム、または他の情報の生成および転送を指す場合がある。このようにして、IMD110は、電気刺激療法(例えば、通知パルス、およびいくつかの例では制御パルス)および制御刺激(例えば、制御パルス)を制御するために、プログラマ150から転送されたコマンドおよびプログラムを受信することができる。例えば、外部プログラマ150は、例えば無線テレメトリまたは有線接続によって、IMD110の動作を制御するために、治療刺激プログラム、ECAP試験刺激プログラム、刺激パラメータ調整、治療刺激プログラム選択、ECAP試験プログラム選択、ユーザ入力、または他の情報を送信することができる。
【0040】
場合によっては、外部プログラマ150は、それが主に医師または臨床医による使用を目的としている場合、医師または臨床医プログラマとして特徴付けられてもよい。他の場合において、外部プログラマ150は、それが主に患者による使用を目的としている場合、患者プログラマとして特徴付けられてもよい。患者プログラマは、一般に、患者105にとって利用しやすく、また、多くの場合、患者の日常生活を通して患者105に携えられ得る携帯型デバイスであってもよい。例えば、患者プログラマは、患者が電気刺激療法を終了または変更したいときに、患者105からの入力を受信することができる。一般に、医師または臨床医プログラマは、IMD110が使用するための臨床医によるプログラムの選択および生成をサポートすることができるが、患者プログラマは、通常の使用中に患者によるそのようなプログラムの調整および選択をサポートすることができる。他の例では、外部プログラマ150は、IMD110の電源を再充電する外部充電デバイスを含むか、またはその一部であってもよい。このようにして、ユーザは、1つのデバイスまたは複数のデバイスを使用して、IMD110をプログラムおよび充電することができる。
【0041】
本明細書で説明するように、情報は、外部プログラマ150とIMD110との間で送信され得る。したがって、IMD110およびプログラマ150は、当技術分野で知られているいずれかの技術を使用する無線通信を用いて通信することができる。通信技術の例には、例えば、無線周波数(RF)テレメトリおよび誘導結合が含まれ得るが、他の技術もまた企図される。いくつかの例では、プログラマ150は、IMD110とプログラマ150との間の通信の品質またはセキュリティを改善するために、IMD110埋め込み部位の近くで患者の身体に近接して定置され得る通信ヘッドを含んでいてもよい。プログラマ150とIMD110との間の通信は、動力伝達中に、または動力伝達とは別に発生してもよい。
【0042】
いくつかの例では、IMD110は、外部プログラマ150からの命令に応じて、リード130上の電極(図示せず)を用いて、複数の治療刺激プログラムに従って、患者105の脊髄120の標的組織部位に電気刺激治療を提供する。いくつかの例では、IMD110は、患者105の治療ニーズが経時的に進化するにつれて、治療刺激プログラムを変更してもよい。例えば、治療刺激プログラムの変更は、複数の通知パルスの少なくとも1つのパラメータの調整を引き起こし得る。患者105が同じ治療を長期間受けると、治療の有効性が低下する可能性がある。場合によっては、複数の通知パルスのパラメータは、自動的に更新され得る。
【0043】
本開示において、電気刺激療法の有効性は、IMD110(つまり、ECAP信号の特性)によって送達される刺激パルスにより誘発される活動電位の1つ以上の特性(例えば、1つ以上のピークの振幅またはその間の振幅、または1つ以上のピークの曲線下の領域)によって示されてもよい。IMD110のリード130による電気刺激療法の送達は、標的組織内のニューロンに、標的組織を上下に移動する複合活動電位を引き起こし、最終的にIMD110の感知電極に到達してもよい。さらに、制御刺激はまた、少なくとも1つのECAPを誘発してもよく、制御刺激に応答するECAPはまた、治療の有効性の代理であってもよい。誘発される活動電位の量(例えば、活動電位信号を伝播するニューロンの数)は、振幅、パルス幅、周波数、パルス形状(例えば、パルスの開始および/または終了時のスルーレート)などの電気刺激パルスの様々なパラメータに基づいていてもよい。スルーレートは、各パルスまたはパルス内の各位相の開始および/または終了時におけるパルスの電圧および/または電流振幅の変化率を定義することができる。例えば、非常に高いスルーレートは、パルスの急峻な、または垂直に近いエッジを示し、低いスルーレートは、パルスの振幅のより長い増加(または減少)を示している。いくつかの例では、これらのパラメータは、電気刺激の強度に寄与してもよい。加えて、ECAP信号の特性(例えば、振幅)は、刺激電極と、送達された制御パルスによって生成される電場にさらされる神経との間の距離に基づいて変化してもよい。
【0044】
一例では、各通知パルスは、いくつかの例において約300μs~1000μs(すなわち、1ミリ秒)の間など、約300μs超のパルス幅を有し得る。これらのパルス幅では、通知パルスもECAP信号を不明瞭にするアーチファクトとして検出されるため、IMD110はECAP信号を十分に検出できない場合がある。ECAPが適切に記録されていない場合、IMD110に到達したECAPを目標ECAP特性(例えば、目標ECAP振幅)と比較することはできず、電気療法刺激を応答するECAPに従って変更することができない。通知パルスがこれらのより長いパルス幅を有する場合、IMD110は、制御パルスの形で制御刺激を送達することができる。制御パルスは、各相が約100μsの持続時間を有する二相パルスなど、約300μs未満のパルス幅を有していてもよい。制御パルスは、通知パルスよりも短いパルス幅を有し得るため、ECAP信号は、各制御パルスの後に感知および特定され、通知パルス(およびいくつかの例では制御パルス)に対して行われるべき変更についてIMD110に通知するために使用され得る。いくつかの例では、少なくともいくつかの通知パルスは、約300μs未満のパルス幅を有していてもよい。そのような例では、通知パルスとインターリーブされた制御パルスは、通知パルスのパルス幅よりも短いパルス幅を有していてもよい。他の例では、制御パルスは、通知パルスのパルス幅よりも大きいパルス幅を有していてもよい。一般に、「パルス幅」という用語は、単一パルスの各位相の集合的な持続時間、および適切な場合には相間間隔を指す。単一のパルスは、いくつかの例では単一の位相(すなわち、単相パルス)、または他の例では2相以上の位相(例えば、二相パルスまたは三相パルス)を含んでいてもよい。パルス幅は、パルスの最初の位相の開始時間から始まり、パルスの最後の位相の終了時間までの期間を定義する(例えば、100μs続く正相、100μs続く負相、および30μs続く相間間隔を有する二相パルスは、230μsのパルス幅を定義する)。
【0045】
説明したように、通知パルスの刺激パラメータ値を調整するための例示的な技術は、測定ECAP信号の特性の値を目標ECAP特性値と比較することに基づいている。1つ以上のECAP試験刺激プログラムによって定義される制御パルスの送達中に、IMD110は、リード130に挿入された2つ以上の電極を用いて、患者105の脊髄120の組織の電位を感知して、組織の電気的活動を測定する。IMD110は、例えば、1つ以上のリード130上の電極および関連する感知回路を用いて、患者105の標的組織からのECAPを感知する。いくつかの例では、IMD110は、患者105の内部または外部の1つ以上のセンサ、例えば1つ以上の電極および回路からECAPを示す信号を受信する。そのような例示的な信号は、患者105の組織のECAPを示す信号を含んでいてもよい。1つ以上のセンサの例には、患者105の複合活動電位、または複合活動電位を示す生理学的効果を測定するように構成されている1つ以上のセンサが含まれる。例えば、複合活動電位の生理学的効果を測定するために、1つ以上のセンサは、加速度計、圧力センサ、屈曲センサ、患者105の姿勢を検出するように構成されているセンサ、または患者105の呼吸機能を検出するように構成されているセンサであってもよい。しかしながら、他の例では、外部プログラマ150は、患者105の標的組織における複合活動電位を示す信号を受信し、IMD110に通知を送信する。
【0046】
図1の例では、IMD110は、複数の処理および計算機能を実行するものとして説明されている。しかしながら、外部プログラマ150は、代わりに、これらの機能の1つ、いくつか、またはすべてを実行してもよい。この代替例では、IMD110は、感知された信号を分析のために外部プログラマ150に中継するように機能し、外部プログラマ150は、感知された信号の分析に基づいて電気刺激療法を定義する1つ以上のパラメータを調整するようにIMD110に指示を送信する。例えば、IMD110は、ECAPを示す感知された信号を外部プログラマ150に中継してもよい。外部プログラマ150は、ECAPのパラメータ値を目標ECAP特性値と比較することができ、比較に応じて、外部プログラマ150は、患者105に送達される電気刺激通知パルスおよびいくつかの例では制御パルスを定義する1つ以上のパラメータを調整するようにIMD110に指示してもよい。
【0047】
本開示で説明される例示的な技術では、制御刺激パラメータおよび目標ECAP特性値は、最初は診療所で設定されてもよいが、患者105によって自宅で設定および/または調整されてもよい。目標ECAP特性値が設定されると、例示的な技術では、電極からニューロンまでの距離が変化した場合に、通知パルスパラメータを自動的に調整することが可能になり、神経活性化の一貫した量、および患者の治療の一貫した知覚が維持される。刺激パラメータ値を変更する能力はまた、測定ECAP値を目標ECAP特性値と比較することによって、刺激の強度(例えば、ECAPによって示される)を一貫して維持する能力とともに、治療が長期的な有効性を有することを可能にし得る。IMD110は、医師または患者105による介入なしにこれらの変更を実行してもよい。
【0048】
いくつかの例では、システムは、ある期間にわたって目標ECAP特性値を変更してもよい。システムは、通知パルスの強度を調整して、患者に様々な感覚を提供するために(例えば、神経活性化の量を増加または減少させる)、目標ECAP特性を変更するようにプログラムされてもよい。一例では、システムは、患者に治療上の救済を提供し得る波または他の感覚として知覚され得る感覚を患者に提供するために、所定の周波数で最大目標ECAP特性値と最小目標ECAP特性値との間で目標ECAP特性値を変動させるようにプログラムされてもよい。最大目標ECAP特性値、最小目標ECAP特性値、および所定の周波数は、IMD110のメモリに記憶することができ、外部プログラマ150からの信号(例えば、IMD110のメモリ内に記憶されている値を変更するためのユーザ要求)に応じて更新することができる。他の例では、目標ECAP特性値は、ある期間にわたって基本目標ECAP特性値まで着実に増加または着実に減少するようにプログラムしてもよい。他の例では、外部プログラマ150は、他の所定の機能またはパターンに従って、経時的に自動的に変化するように、目標ECAP特性値をプログラムすることができる。換言すれば、目標ECAP特性値は、所定の量または所定の割合によって漸進的に変化するようにプログラムしてもよく、所定の量または割合は、所定の関数(例えば、正弦関数、ランプ関数、指数関数、対数関数、など)に従って選択される。目標ECAP特性値を変更する増分は、特定のパルス数または特定の時間単位ごとに変更してもよい。システムは目標ECAP特性値を変更することができるが、目標ECAP特性値を満たすために、受信したECAP信号は、通知パルスおよび/または制御パルスの1つ以上のパラメータ値を調整するのにシステムによって依然として使用され得る。
【0049】
図2Aは、IMD200のブロック図である。IMD200は、
図1のIMD110の一例であり得る。
図2Aに示される例では、IMD200は、処理回路214、メモリ215、刺激発生器211、感知回路212、テレメトリ回路213、センサ216、および電源219を含む。これらの回路のそれぞれは、それぞれの回路に起因する機能を実行するように構成されているプログラム可能なまたは固定された機能回路であり得るか、またはそれらを含み得る。例えば、処理回路214は、固定機能またはプログラム可能な回路を含んでもよく、刺激発生器211は、パルスまたは連続波形のような刺激信号を1つ以上のチャネルで生成するように構成されている回路を含んでもよく、感知回路212は、信号を感知するための感知回路を含んでもよく、テレメトリ回路213は、信号を送受信するためのテレメトリ回路を含んでもよい。メモリ215は、処理回路214によって実行されると、IMD200に様々な機能を実行させるコンピュータ可読命令を格納することができる。メモリ215は、記憶デバイスまたは他の非一時的な媒体であり得る。
【0050】
図2Aに示される例では、メモリ215は、治療刺激プログラム217およびECAP試験刺激プログラム218を、メモリ215内の別個のメモリ、またはメモリ215内の別個の領域に格納する。メモリ215はまた、目標ECAPフィードバックルール221および患者ECAP特性222を記憶する。各記憶された治療刺激プログラム217は、刺激電極の組み合わせ、電極の極性、電流または電圧の振幅、パルス幅、パルスレート、およびパルス形状などの電気刺激パラメータの集合(例えば、パラメータ集合またはパラメータ値の集合)に対する値を定義する。各記憶された各ECAP試験刺激プログラム218は、刺激電極の組み合わせ、電極の極性、電流または電圧の振幅、パルス幅、パルスレート、およびパルス形状などの電気刺激パラメータの集合(例えば、制御刺激パラメータ集合)に対する値を定義する。ECAP試験刺激プログラム218はまた、治療刺激プログラム217内で定義された通知パルスのパルス幅および/または周波数に基づいて、制御パルスをいつ送達するかに関する指示などの追加情報を有していてもよい。
【0051】
したがって、いくつかの例では、刺激発生器211は、上記の電気刺激パラメータに従って、電気刺激信号を生成する。パラメータ値の他の範囲も有用であり得、患者105内の標的刺激部位に依存し得る。刺激パルスが説明されているが、刺激信号は、連続時間信号(例えば、正弦波)などのいずれかの形態であり得る。スイッチ回路210は、1つ以上のスイッチアレイ、1つ以上のマルチプレクサ、1つ以上のスイッチ(例えば、スイッチマトリックスまたは他の一群のスイッチ)、または刺激発生器211からの刺激信号を1つ以上の電極232、234に向けるように構成されている他の電気回路、または1つ以上の電極232、234からの感知信号を感知回路212に向けるように構成されている他の電気回路を含んでもよい。他の例では、刺激発生器211および/または感知回路212は、スイッチ回路210を含んでもよいし、含まなくてもよい電極232、234のうちの1つ以上に信号を向けるための感知回路を含んでもよい。
【0052】
処理回路214は、マイクロプロセッサ、コントローラ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、ディスクリート論理回路、または本明細書において処理回路214に起因する機能を提供するように構成されている他の処理回路のうちのいずれか1つ以上を含んでもよく、ファームウェア、ハードウェア、ソフトウェア、またはそれらのいずれかの組み合わせとして具現化されてもよい。処理回路214は、刺激発生器211を制御して、メモリ215に格納された治療刺激プログラム217およびECAP試験刺激プログラム218に従って刺激信号を生成し、刺激信号の各々の振幅、パルス幅、パルスレート、およびパルス形状など、プログラムのうちの1つ以上によって指定された刺激パラメータ値を適用する。
【0053】
図2Aに示される例では、電極232の集合は、電極232A、232B、232C、および232Dを含み、電極234の集合は、電極234A、234B、234C、および234Dを含む。他の例では、単一のリードは、リードの単一の軸方向の長さに沿って、8つの電極232および234すべてを含み得る。処理回路214はまた、刺激発生器211を制御して、刺激信号を生成し、電極232、234の選択された組み合わせに印加する。いくつかの例では、刺激発生器211は、リード230内の選択された導線に刺激信号を結合することができるスイッチ回路(スイッチ回路210の代わりに、またはこれに加えて)を含み、これにより、刺激信号は次に、選択された電極232、234を介して送達される。そのようなスイッチ回路は、選択された電極232、234に刺激エネルギーを選択的に結合し、選択された電極232、234で患者の脊髄(
図2Aには図示せず)の生体電気的神経信号を選択的に感知するように構成されているスイッチアレイ、スイッチマトリックス、マルチプレクサ、またはいずれかの他のタイプのスイッチング回路であってもよい。
【0054】
しかしながら、他の例では、刺激発生器211は、スイッチ回路を含まず、スイッチ回路212は、刺激発生器211と電極232、234との間をインターフェース接続しない。これらの例では、刺激発生器211は、電極の各対が固有の信号回路を有するように、電極232、234の各々に接続された電圧源、電流源、電圧シンク、または電流シンクの複数の対を含む。言い換えれば、これらの例では、電極232、234の各々は、電極232、234間の信号の切り替えとは対照的に、それ自体の信号回路を用いて(例えば、調整された電圧源とシンク、または調整された電流ソースとシンクの組み合わせを用いて)独立して制御される。
【0055】
それぞれのリード線230上の電極232、234は、様々な異なる設計で構成され得る。例えば、リード230の一方または両方は、リードの長さに沿った各長手方向位置に1つ以上の電極、例えば、リードの周囲の異なる周囲の位置における1つの電極を、位置A、位置B、位置C、および位置Dの各々において含むことができる。一例では、電極は、例えば、スイッチ回路210および/または刺激発生器211のスイッチング回路を用い、リードのハウジング内で直線状またはコイル状であり、リードの近位端にあるコネクタまで延びるそれぞれのワイヤを用いて、刺激発生器211に電気的に結合されていてもよい。別の例では、リードの電極の各々は、薄膜上に堆積された電極であってもよい。薄膜は、近位端コネクタまで薄膜の全長にわたる各電極のための導電性トレースを含んでいてもよい。次いで、薄膜を内部部材の周りに巻き付けて(例えば、らせん状の巻き付け)、リード230を形成してもよい。これらおよび他の構造を使用して、複雑な電極形状のリードを作製することができる。
【0056】
感知回路212は、
図2Aの刺激発生器211および処理回路214を有する共通のハウジングに組み込まれるが、他の例では、感知回路212は、IMD200とは別のハウジング内にあってもよく、有線または無線通信技術を用いて処理回路214と通信してもよい。
【0057】
いくつかの例では、電極232および234のうちの1つ以上が、ECAPを感知するのに好適であり得る。例えば、電極232および234は、ECAP信号の一部分の電圧振幅を感知することができ、ここで、感知された電圧振幅は、ECAP信号の特性である。
【0058】
センサ216は、それぞれの患者パラメータの値を感知する1つ以上の感知素子を含んでいてもよい。説明したように、電極232および234は、ECAPのパラメータ値を感知する電極であってもよい。センサ216は、1つ以上の加速度計、光学センサ、化学センサ、温度センサ、圧力センサ、またはいずれかの他のタイプのセンサを含み得る。センサ216は、治療の送達を制御するためのフィードバックとして使用され得る患者パラメータ値を出力することができる。例えば、センサ216は、患者の活動を示すことができ、処理回路214は、増加した患者の活動の検出に応じて、制御パルスおよびECAPの感知の頻度を増加させることができる。一例では、処理回路214は、患者の活動が活動閾値を超えたことを示すセンサ216からの信号に応じて、制御パルスおよび対応するECAP感知を開始することができる。逆に、処理回路214は、減少した患者の活動の検出に応じて、制御パルスおよびECAPの感知の頻度を減少させることができる。例えば、感知された患者の活動が閾値を超えたことをもはや示さないセンサ216に応じて、処理回路214は、制御パルスおよびECAPの感知の送達を一時停止または停止することができる。このようにして、処理回路214は、制御パルスを動的に送達し、患者の活動に基づいてECAP信号を感知して、電極からニューロンまでの距離が変化する可能性が低いときにシステムの電力消費を減らし、電極からニューロンまでの距離が変化する可能性があるときにECAPの変化に対するシステムの応答を増加させることができる。IMD200は、IMD200のハウジング内に、かつ/またはリード130あるいは他のリードのうちの1つを用いて結合された追加のセンサを含んでいてもよい。加えて、IMD200は、例えば、テレメトリ回路213を用いて、リモートセンサから無線でセンサ信号を受信することができる。いくつかの例では、これらのリモートセンサのうちの1つ以上は、患者の外部にあってもよい(例えば、皮膚の外表面上に装着されるか、衣服に取り付けられるか、またはそうでなければ患者の外部に配置される)。いくつかの例では、センサ216からの信号は、位置または身体状態(例えば、寝ている、起きている、座っている、立っているなど)を示してもよく、処理回路214は、示された位置または身体状態に従って目標ECAP特性値を選択してもよい。
【0059】
テレメトリ回路213は、処理回路214の制御下で、IMD200と外部プログラマ(
図2Aには図示せず)または別のコンピューティングデバイスとの間の無線通信をサポートする。IMD200の処理回路214は、プログラムの更新として、テレメトリ回路213を用いて、外部プログラマから振幅および電極の組み合わせなどの様々な刺激パラメータの値を受信することができる。治療刺激プログラム217およびECAP試験刺激プログラム218に対する更新は、メモリ215内に記憶されてもよい。IMD200のテレメトリ回路213、ならびに外部プログラマなど、本明細書に記載の他のデバイスおよびシステムのテレメトリ回路は、無線周波数(RF)通信技術によって通信を達成することができる。加えて、テレメトリ回路213は、IMD200と外部プログラマとの近位誘導的相互作用を用いて、外部医療デバイスプログラマ(
図2Aには図示せず)と通信することができる。外部プログラマは、
図1の外部プログラマ150の一例であり得る。したがって、テレメトリ回路213は、継続的に、定期的な間隔で、またはIMD110もしくは外部プログラマからの要求に応じて、外部プログラマに情報を送信することができる。
【0060】
電源219は、IMD200の様々な構成要素に動作電力を送達する。電源219は、動作電力を生成するための、再充電式または非再充電式電池、および発電回路を含み得る。再充電は、外部充電器とIMD200内の誘導充電コイルとの間の近位誘導的相互作用を介して達成することができる。他の例では、従来の一次電池を使用することができる。
【0061】
本開示の技術によれば、IMD200の刺激発生器211は、テレメトリ回路213を用いて、患者の脊髄の標的組織部位に治療刺激プログラム217に従って電気刺激治療を、リード線230の電極232、234および/またはIMD200のハウジングの複数の電極の組み合わせを用いて送達するための指示を受け取る。刺激発生器211は、テレメトリ回路213を用いて、ECAP試験刺激プログラム218に従って、制御刺激を患者に送達するためのユーザ命令を受信することができる。複数の制御パルスの各パルスは、電極232および234のうちのいくつかを用いて、感知回路212によって感知されるECAPを誘発することができる。ECAP試験刺激プログラム218は、刺激発生器211に、複数の通知パルスの少なくともいくつかとインターリーブされた複数の制御パルスを送達するように指示することができる。処理回路214は、感知回路212によって感知された電気信号を用いて、制御刺激に応じて生成されたECAP信号を示す情報(例えば、電圧または電力などの電気単位におけるECAPの特性を示す数値)を受信することができる。治療刺激プログラム217は、以下の技術に従って、感知回路212で記録されたECAPに従って更新され得る。
【0062】
一例では、複数の通知パルスは各々、約300μs超であり、約2000μs未満(すなわち、2ミリ秒)のパルス幅を有する。いくつかの例では、通知パルス幅は、約300μs超であり、約800μs未満である。別の例では、通知パルス幅は、約300μs超であり、約500μs未満である。一例では、通知パルスは、約450μsのパルス幅および約60ヘルツのパルス周波数を有する。通知パルスの振幅(電流および/または電圧)は、約0.5mA(またはボルト)~約10mA(またはボルト)の間であってもよく、他の例では、振幅はより低くても、より大きくてもよい。いくつかの例では、システムは、2つ以上の刺激プログラムからの通知パルスを送達することができ、それにより、ある刺激プログラムからの通知パルスは、別の刺激プログラムからの通知パルスとは異なる少なくとも1つのパラメータ値を有する。
【0063】
複数の制御パルスの各制御パルスは、約300μs未満のパルス幅を有していてもよい。一例では、複数の制御パルスの各制御パルスは、約100μsの幅を有する正相、約100μsの幅を有する負相、および約30μsの幅を有する相間間隔を有する二相パルスであってもよい。いくつかの例では、正相および負相は、他の例では各々90μsまたは120μsであり得る。他の例では、制御パルスは各々、約60μs以下のパルス幅を有し得る。複数の通知パルスのパルス幅が比較的長いため、通知パルス自体がECAP信号中に発生し、ECAP信号を不明瞭にするため、感知回路212は、通知パルスから誘発されたECAP信号を適切に記録することができない場合がある。しかしながら、複数の制御パルスなどの約300マイクロ秒未満のパルス幅を有する刺激パルスは、電極232、234のうちの2つ以上を用いて、感知回路212において制御パルスが完了した後に、感知され得るECAPを誘発することに適している場合もある。いくつかの例では、制御パルスは、制御パルスが患者の治療に寄与しないという点で、非治療パルスであり得る。他の例では、制御パルスは、患者の症状および/または状態を低減または排除することによって、患者が受ける治療を完全に提供するか、または部分的に寄与することができる。
【0064】
検出可能なECAP信号を誘発する目的で送達される制御パルスは、いくつかの例では、約6mA~12mAの間の電流振幅を有し得るが、他の例では、より高い、またはより低い振幅が使用され得る。制御パルスの周波数は、いくつかの例では、約50ヘルツ~400ヘルツの間であってもよく、これは、各治療パルスに対して1つの制御パルスが送達されるときの通知パルスの所定のパルス周波数と一致し得る。所定のパルス周波数は、単一の周波数または経時的に変化する周波数であってもよい(例えば、パルス間隔は、所定のパターン、式、または予定に従って、経時的に変化してもよい)。いくつかの例では、システムは、患者の入力、または患者の姿勢または活動などの感知されたパラメータに基づいて、所定のパルス周波数を変更することができる。そのような関係は、制御パルスが通知パルスと完全にインターリーブされる(例えば、交互になる)ときに存在し得る。しかしながら、制御パルスの周波数は、2つ以上の制御パルスが連続する通知パルスの間に送達される場合、その通知パルスよりも高い周波数で送達され得る。他の例では、制御パルスの周波数は、少なくともいくつかの通知パルスがそれらの間に送達される制御パルスなしで送達される場合、通知パルスよりも低い周波数で送達され得る。制御パルスの周波数は、患者の活動などの他の要因に基づいて、制御パルスの送達、および結果として生じるECAP感知を調整するようにシステムが構成されている場合、経時的に変化する周波数で送達され得る。
【0065】
一例では、複数の通知パルスの所定のパルス周波数は、約400ヘルツ未満であり得る。いくつかの例では、複数の通知パルスの所定のパルス周波数は、約50ヘルツ~70ヘルツの間であり得る。一例では、複数の通知パルスの所定のパルス周波数は、約60ヘルツであり得る。しかしながら、通知パルスは、他の例では、400ヘルツ超または50ヘルツ未満の周波数を有し得る。いくつかの例では、通知パルスの所定のパルス周波数は、単一の周波数、または経時的に変化する周波数であり得る。加えて、通知パルスは、パルスのバーストで送達されてもよく、パルスのバースト間周波数は十分に低いので、そのため、制御パルスおよび感知されたECAPは、通知パルスのバースト内で送達される連続する通知パルス間のウィンドウ内に依然として収まることができる。
【0066】
複数の通知パルスのうちの各通知パルスは、少なくとも1つのECAPの感知を隠すか、または不明瞭にするアーチファクトとして感知され得るので、複数の制御パルスは、複数の時間イベント中に患者に送達され得る。例えば、複数の時間イベントのうちの時間イベント(例えば、ウィンドウ)は、所定のパルス周波数での複数の通知パルスの連続する通知パルス間の時間(例えば、ウィンドウ)であってもよい。複数の制御パルスのうちの1つ以上の制御パルスは、各時間イベント中に患者に送達されてもよい。結果として、制御パルスは、通知パルスが送達されない間、複数の制御パルスが患者に送達されるように、通知パルスの少なくともいくつかとインターリーブされてもよい。一例では、時間イベント中に送達された制御パルスから誘発されたECAPは、同じ時間イベント中に感知回路212によって記録されてもよい。別の例では、時間イベント中に送達された2つ以上のそれぞれの制御パルスに応答する2つ以上のECAPは、同じ時間イベント中に感知回路212によって記録されてもよい。
【0067】
いくつかの例では、治療刺激プログラム217は、ECAP試験刺激プログラム218に従って患者に送達される複数の制御パルスに応じて受信された複数のECAPに従って更新されてもよい。例えば、処理回路214は、感知回路212によって感知されたECAPの1つ以上の特性を、メモリ215に記憶された目標ECAP特性(例えば、患者のECAP特性222)と比較することによって、治療刺激プログラム217をリアルタイムで更新することができる。例えば、処理回路214は、感知回路212で受信された各ECAP信号の振幅を判定するように構成され、処理回路214は、さらに、少なくとも1つのそれぞれのECAP信号の代表的な振幅を判定し、一連のECAP信号の代表的な振幅を、目標ECAP調整ウィンドウ(例えば、患者ECAP特性222に記憶されている差異をプラスマイナスした目標ECAP振幅)と比較するように構成されている。したがって、目標ECAP調整ウィンドウは、目標ECAP振幅から逸脱した振幅の範囲でああってもよい。例えば、目標ECAP調整ウィンドウは、下限振幅値(例えば、目標ECAP振幅から差異をマイナスしたもの)から上限振幅値(例えば、目標ECAP振幅に差異をプラスしたもの)まで及ぶ場合がある。一般に、下限振幅値は目標ECAP振幅未満であり、上限振幅値は目標ECAP振幅を超える。
【0068】
少なくとも1つのそれぞれのECAP信号の代表的な振幅(例えば、単一のECAP信号の振幅または2つ以上のECAP振幅の平均)が上限振幅値を超える場合、処理回路214は、治療刺激プログラム217およびECAP試験刺激プログラム218のうちの1つ以上を調整し、少なくとも1つのそれぞれのECAPに続く通知パルスおよび制御パルスの振幅を減少させることができる。通知パルスおよび制御パルスの振幅は、異なる所定のステップまたは異なる所定の割合で減少させてもよい。さらに、少なくとも1つのそれぞれのECAPの代表的な振幅が下限振幅値未満である場合、処理回路214は、治療刺激プログラム217およびECAP試験刺激プログラム218を調整することができ、プログラム217および218は、少なくとも1つのそれぞれのECAPに続く情報パルスと制御パルスの振幅を増加させるように刺激発生器211を指示することができる。さらに、少なくとも1つのそれぞれのECAPの代表的な振幅が下限振幅値超であり、上限振幅値未満である場合、処理回路214は、プログラム217および218を変更できず、刺激発生器211は、少なくとも1つのそれぞれのECAPに続く通知パルスの振幅を維持することができる。一例では、プログラム217および218を調整することは、複数の通知パルスおよび複数の制御パルスの1つ以上のパラメータを変更することを含んでいてもよい。一例では、少なくとも1つのそれぞれのECAPは、一連の4つの連続するECAPを含んでいてもよい。
【0069】
一例では、処理回路214は、目標ECAP振幅と少なくとも1つのそれぞれのECAPの代表的な振幅との間の差に反比例する少なくとも1つのそれぞれのECAPに続く通知パルスおよび制御パルスの振幅を変更することができる。例えば、少なくとも1つのそれぞれのECAPの代表的な振幅が目標ECAP振幅より20%低い場合、処理回路214は、通知パルスおよび制御パルスの振幅が20%増加するように治療プログラム217および218を更新することができる。一例では、代表的な振幅は、感知回路212によって感知された2つ以上のそれぞれのECAP信号の平均振幅であってもよい。他の例では、代表的な振幅は、2つ以上のそれぞれのECAP信号の中央値振幅、または2つ以上のそれぞれのECAP信号の移動平均であってもよい。
【0070】
別の例では、処理回路214は、感知回路212によって感知されたそれぞれのECAP信号の振幅を判定してもよい。それぞれのECAP信号の振幅と、患者ECAP特性222に記憶された目標ECAP振幅との間の比較に応じて、処理回路214は、それぞれのECAP信号の振幅と目標ECAP振幅との間の割合の差を判定することができる。結果として、処理回路214は、後続の通知パルスの振幅を、それぞれのECAPの振幅と目標ECAP振幅との間の割合の差に反比例するように調整することができる。
【0071】
他の例では、処理回路214は、少なくとも1つのそれぞれのECAPの代表的な振幅を使用して、パルス幅、パルス周波数、およびパルス形状など、送達される通知パルスの他のパラメータを変更することができる。これらのパラメータはすべて、通知パルスの強度に寄与していてもよく、これらのパラメータ値のうちの1つ以上を変更すると、通知パルスの強度が効果的に調整されて、刺激電極とECAP信号の代表的な振幅によって示される神経との間の変更された距離を補償することができる。
【0072】
いくつかの例では、リード230は、線形8電極リード(図示せず)であってもよく、感知および刺激送達は、各々、異なる電極の集合を使用して実行されてもよい。線形8電極リードでは、各電極に0~7まで連続して番号を付けることができる。例えば、制御パルスは、電極1をカソードとして、電極0および2をアノード(例えば、保護されたカソード)として使用して生成することができ、それぞれのECAP信号は、電極アレイの反対側の端に配置される電極6および7を使用して感知することができる。この戦略は、それぞれのECAPの感知と刺激パルスの干渉を最小限に抑えることができる。他の電極の組み合わせを実施することができ、電極の組み合わせは、テレメトリ回路213を用いて、患者プログラマを使用して変更することができる。例えば、刺激電極および感知電極は、互いにより近くに配置してもよい。制御パルスのパルス幅を短くすると、感知電極を刺激電極に近づけることができる。
【0073】
ECAPフィードバックルール221は、処理回路214が、感知されたECAP信号を、通知パルスを定義し、治療刺激プログラム217として記憶される1つ以上のパラメータを変更するためのフィードバックとしてどのように使用するかを定義することができる。例えば、ECAPフィードバックルール221は、代表的なECAP振幅と目標ECAP振幅との間の割合の差を使用して、情報パルスの現在の振幅を、
図9に記載の技術など、割合の差と同じ比に逆調整することを指定してもよい。別の例として、ECAPフィードバックルール221は、
図11を参照して説明したように、目標ECAP振幅の間の差がゲイン値に乗算され、通知パルスおよび制御パルスの以前の電流振幅に加算されることを指定してもよい。いずれの場合でも、ECAPフィードバックルール221は、感知されたECAP信号に基づいて、通知パルスおよび/または制御パルスをどのように調整するかを処理回路14に指示することができる。
【0074】
一例では、センサ216は、患者の活動の変化または姿勢の変化を検出することができる。処理回路214は、患者の活動レベルまたは姿勢が変化したという指示をセンサ216から受信することができ、処理回路214は、ECAP試験刺激プログラム218に従って複数の制御パルスの送達を開始または変更するように構成され得る。例えば、処理回路214は、患者の活動が増加したという指示を受信したことに応じて、制御パルス送達およびそれぞれのECAP感知の頻度を増加させることができ、これは、電極と神経との間の距離が変化する可能性があることを示している。代替的に、処理回路214は、患者の活動が減少したという指示を受信したことに応じて、制御パルス送達およびそれぞれのECAP感知の頻度を減少させることができる。いくつかの例では、1つ以上のパラメータ(例えば、周波数、振幅、スルーレート、パルス持続時間など)は、患者の活動が変化したという指示を受診したことに応じて、調整(例えば、増加または減少)することができる。処理回路214は、センサ216から受信した信号に従って、治療刺激プログラム217およびECAP試験刺激プログラム218を更新するようにさらに構成されてもよい。
【0075】
図2Bは、例示的な外部プログラマ300のブロック図である。外部プログラマ300は、
図1の外部プログラマ150の一例であり得る。プログラマ300は、一般に、ハンドヘルドデバイスとして説明され得るが、プログラマ300は、より大きな携帯型デバイスまたはむしろ固定式のデバイスであり得る。加えて、他の例では、プログラマ300は、外部充電デバイスの一部として含まれ得るか、または外部充電デバイスの機能を含み得る。
図2Bに示されるように、プログラマ300は、処理回路353、メモリ354、ユーザインターフェース351、テレメトリ回路352、および電源355を含み得る。メモリ354は、処理回路353によって実行されると、処理回路353および外部プログラマ300に、本開示全体を通して外部プログラマ300に属する機能を提供させる命令を記憶していてもよい。これらの構成要素、回路、またはモジュールの各々は、本明細書に記載の機能の一部またはすべてを実行するように構成されている電気回路を含み得る。例えば、処理回路353は、処理回路353に関して考察されたプロセスを実行するように構成されている処理回路を含み得る。
【0076】
一般に、プログラマ300は、プログラマ300、さらにプログラマ300の処理回路353、ユーザインターフェース351、およびテレメトリ回路352に帰属する技術を実行するために、単独で、またはソフトウェアおよび/もしくはファームウェアと組み合わせて、任意の好適なハードウェアの配設を含む。様々な例において、プログラマ300は、1つ以上のマイクロプロセッサ、DSP、ASIC、FPGA、または他の同等の集積または個別論理回路などの1つ以上のプロセッサ、ならびにそのような構成要素のいずれかの組み合わせを含んでいてもよい。プログラマ300はまた、様々な例では、RAM、ROM、PROM、EPROM、EEPROM、フラッシュメモリ、ハードディスク、CD-ROMなどのメモリ354を含んでいてもよく、これは、1つ以上のプロセッサにそれに帰属する動作を実行させるための実行可能命令を含んでいる。さらに、処理回路353およびテレメトリ回路352は別個のモジュールとして説明されているが、いくつかの例では、処理回路353およびテレメトリ回路352は機能的に統合されている。いくつかの例では、処理回路353およびテレメトリ回路352は、ASIC、DSP、FPGA、または他のハードウェアユニットなどの個々のハードウェアユニットに対応する。
【0077】
メモリ354(例えば、記憶デバイス)は、処理回路353によって実行されると、処理回路353およびプログラマ300に、本開示全体を通してプログラマ300に属する機能を提供させる命令を記憶していてもよい。例えば、メモリ354は、処理回路353に、メモリからパラメータ集合を取得させ、空間電極移動パターンを選択させ、またはユーザ入力を受信して対応するコマンドをIMD300に送信させる命令、または他の任意の機能のための命令を含んでいてもよい。加えて、メモリ354は、複数のプログラムを含んでいてもよく、各プログラムは、治療刺激または制御刺激を定義するパラメータ集合を含む。メモリ354はまた、医療デバイス(例えば、IMD110)から受信したデータを記憶してもよい。例えば、メモリ354は、医療デバイスの感知モジュールで記録されたECAP関連データを記憶することができ、メモリ354はまた、医療デバイスの1つ以上のセンサからのデータを記憶することができる。
【0078】
ユーザインターフェース351は、ボタンまたはキーパッド、ライト、音声コマンド用のスピーカ、液晶(LCD)、発光ダイオード(LED)、または有機発光ダイオード(OLED)などのディスプレイを含んでもよい。いくつかの例では、ディスプレイはタッチスクリーンであってもよい。ユーザインターフェース351は、電気刺激の送達、特定した患者の行動、感知された患者のパラメータ値、患者の行動基準、または他のそのような情報に関連するいずれかの情報を表示するように構成されてもよい。ユーザインターフェース351はまた、ユーザインターフェース351を用いてユーザ入力を受信してもよい。入力は、例えば、キーパッド上のボタンを押すか、またはタッチスクリーンからアイコンを選択するという形であってもよい。入力は、電気刺激の開始または停止を要求することができ、入力は、新しい空間電極移動パターンまたは既存の空間電極移動パターンへの変更を要求することができ、または入力は、電気刺激の送達に対するいくつかの他の変更を要求することができる。
【0079】
テレメトリ回路352は、処理回路353の制御下で、医療デバイスとプログラマ300との間の無線通信をサポートすることができる。テレメトリ回路352はまた、無線通信技術を用いて別のコンピューティングデバイスと通信するか、または有線接続を介して直接通信するように構成されていてもよい。いくつかの例では、テレメトリ回路352は、RFまたは近位誘導媒体を用いて無線通信を提供する。いくつかの例では、テレメトリ回路352は、内部または外部アンテナなどの様々な形態をとることができるアンテナを含む。
【0080】
プログラマ300とIMD110との間の通信を容易にするために使用できるローカル無線通信技術の例には、802.11またはブルートゥース(登録商標)仕様セットまたは他の標準または独自のテレメトリプロトコルに従ったRF通信が含まれる。このようにして、他の外部デバイスは、安全な無線接続を確立する必要なしに、プログラマ300と通信することができてもよい。本明細書に記載されるように、テレメトリ回路352は、電気刺激療法の送達のために、空間電極運動パターンまたは他の刺激パラメータ値をIMD110に送信するように構成され得る。
【0081】
いくつかの例では、パラメータまたは治療刺激プログラムの選択は、患者に送達するために医療デバイスに送信されてもよい。他の例では、治療は、患者が自分自身で実行しなければならない、または介護者が患者のために実行しなければならない投薬、活動、または他の指示を含んでいてもよい。いくつかの例では、プログラマ300は、新しい命令があることを示す視覚的、聴覚的、および/または触覚的通知を提供してもよい。プログラマ300は、いくつかの例では、命令が完了したことを認めるユーザ入力を受信することを要求してもよい。
【0082】
本開示の技術によれば、外部プログラマ300のユーザインターフェース351は、1つ以上の治療刺激プログラムを更新するように、または1つ以上のECAP試験刺激プログラムを更新するように、医療デバイスのプロセッサに指示する臨床医からの指示を受信する。治療刺激プログラムおよびECAP試験刺激プログラムを更新することは、プログラムに従って医療デバイスによって送達される刺激パルスの1つ以上のパラメータ、例えば、振幅、パルス幅、周波数、および通知パルスおよび/または制御パルスのパルス形状を変更することを含んでいてもよい。ユーザインターフェース351はまた、治療刺激および制御刺激を含む任意の電気刺激を開始または停止するように命令する臨床医からの指示を受信してもよい。
【0083】
図2Bに示されるプログラマ300のアーキテクチャが例として示されている。本開示で説明される技術は、
図2Bの例示的なプログラマ300、ならびに本明細書で具体的に説明されていない他のタイプのシステムで実施され得る。本開示のいかなるものも、本開示の技術を
図2Bによって示す例示的なアーキテクチャに限定するように解釈されるべきではない。
【0084】
図3は、それぞれの刺激パルスについて感知された例示的な誘発複合活動電位(ECAP)のグラフ390である。
図3に示すように、グラフ390は、例示的なECAP信号392(点線)およびECAP信号394(実線)を示している。ECAP信号392および394の各々は、保護カソードから送達された制御パルス、およびパルスの各正相と負相との間の相間間隔を含む二相パルスから感知されてもよい。刺激電極の保護カソードは、8電極リードの端に配置することができ、2つの感知電極は、8電極リードのもう一方の端に提供される。ECAP信号392は、閾値以下の刺激パルスの結果として感知された電圧振幅を示している。ECAP信号392のピーク396が検出され、送達された制御パルスのアーチファクトを表す。しかしながら、制御パルスが閾値以下であったため、ECAP信号392のアーチファクトの後に伝搬信号は検出されない。
【0085】
ECAP信号392とは対照的に、ECAP信号394は、閾値を超える制御パルスから検出された電圧振幅を表す。ECAP信号394のピーク396が検出され、送達された制御パルスのアーチファクトを表す。ピーク396の後、ECAP信号394は、ピークP1、N1、およびP2も含んでおり、これらは、ECAPからの伝播活動電位を表す3つの典型的なピークである。アーチファクト、ならびにピークP1、N1、およびP2の例示的な継続時間は、約1ミリ秒(ms)である。ECAP信号394のECAPを検出する場合、様々な特性が特定されてもよい。例えば、ECAPの特性は、N1とP2の間の振幅であってもよい。このN1-P2振幅は、アーチファクトが比較的大きな信号であるP1に影響する場合でも、簡単に検出可能であってもよく、N1-P2振幅は信号の電子ドリフトによる影響を最小限に抑えることができる。他の例では、通知パルスを制御するために使用されるECAPの特性は、中性電圧またはゼロ電圧に対するP1、N1、またはP2の振幅であってもよい。いくつかの例では、通知パルスを制御するために使用されるECAPの特性は、ピークP1、N1、またはP2のうちの2つ以上の合計であってもよい。他の例では、ECAP信号394の特性は、ピークP1、N1、および/またはP2のうちの1つ以上の下の領域であってもよい。他の例では、ECAPの特性は、ピークP1、N1、またはP2のうちの1つと別のピークとの比であってもよい。いくつかの例では、ECAPの特性は、N1とP2の間の傾きなど、ECAP信号の2点間の傾きであってもよい。他の例では、ECAPの特性は、N1とP2との間の時間など、ECAPの2点間の時間であってもよい。ECAP信号の2点間の時間は、ECAPの待機時間と称される場合があり、制御パルスによって捕捉されている線維のタイプを示していることもある。待機時間が短い(つまり、待機時間の値が小さい)ECAP信号は、信号の伝播が速い神経線維の割合が高いことを示しているが、待機時間が長い(つまり、待機時間の値が大きい)ECAP信号は、伝播が遅い神経線維の割合が高いことを示している。ECAP信号の他の特性は、他の例で使用されてもよい。
【0086】
ECAP信号の振幅は、パルス振幅が閾値よりも大きい限り、制御パルスの振幅の増加とともに増加するので、それにより、神経は脱分極して信号を伝播する。目標ECAP特性(例えば、目標ECAP振幅)は、通知パルスが患者に効果的な治療を提供すると判定されたたときに、制御パルスから検出されるECAP信号から判定されてもよい。したがって、ECAP信号は、刺激電極と、その時に送達される通知パルスの刺激パラメータ値に適切な神経との間の距離を表す。したがって、IMD110は、測定ECAP特性値に対する検出された変化を使用して、通知パルスパラメータ値を変更し、通知パルス送達中に目標ECAP特性値を維持することを試みることができる。
【0087】
図4Aは、本開示の1つ以上の技術による、電気刺激パルスおよびそれぞれの感知されたECAP信号の例を示すタイミング
図400Aである。例えば、
図4Aは、
図2のIMD200を参照して説明されている。図示されるように、タイミング
図400Aは、第1のチャネル402、複数の制御パルス404A~404N(集合的に「制御パルス404」)、第2のチャネル406、複数のそれぞれのECAP408A~408N(集合的に「ECAP408」)、および複数の刺激干渉信号409A~409N(集合的に「刺激干渉信号409」)を含む。
図4Aの例では、制御パルス404はまた、患者に治療を提供することができ、通知パルスは治療に必要ではない。
【0088】
第1のチャネル402は、電極232、234のうちの少なくとも1つの電極の電圧(または電流)を示す時間/電圧(および/または電流)グラフである。一例では、第1のチャネル402の刺激電極は、第2のチャネル406の感知電極としてリードの反対側に配置され得る。制御パルス404は、電極232、234の少なくとも1つによって患者の脊髄に送達される電気パルスであり得、制御パルス404は、相間間隔を有する平衡二相方形パルスであり得る。換言すれば、制御パルス404の各々は、相間間隔によって分離された負相および正相で示されている。例えば、制御パルス404は、それが正電圧を有するのと同じ時間および振幅の間、負電圧を有し得る。負電圧相は、正電圧相の前または後であり得ることに留意されたい。制御パルス404は、IMD200の記憶デバイス212に記憶されたECAP試験刺激プログラム218に従って送達され得、ECAP試験刺激プログラム218は、外部プログラマを用いたユーザ入力に従って更新され得、および/またはセンサ222(複数可)からの信号に従って更新され得る。一例では、制御パルス404は、約300マイクロ秒未満のパルス幅を有し得る(例えば、正相、負相、および相間間隔の合計時間は300マイクロ秒未満である)。別の例では、制御パルス404は、二相パルスの各位相に対して約100μsのパルス幅を有し得る。
図4Aに示されるように、制御パルス404は、チャネル402に対応する信号を送達または感知する1つ以上の電極を用いて送達され得る。制御パルス404の送達は、保護カソード電極の組み合わせにおけるリード線230によって送達され得る。例えば、リード線230が線形8電極リード線である場合、保護カソードの組み合わせは、中央のカソード電極と、カソード電極に直接隣接するアノード電極である。一部の患者にとって、制御パルス404は、患者の状態および/または症状を治療する治療を十分に提供し得る。したがって、これらの患者またはこれらの患者の治療の少なくともいくつかの側面について、追加の通知パルスは必要ない場合がある。
【0089】
第2のチャネル406は、電極232、234のうちの少なくとも1つの電極の電圧(または電流)を示す時間/電圧(および/または電流)グラフである。一例では、第2のチャネル406の電極は、第1のチャネル402の電極としてリードの反対側に配置され得る。ECAP408は、制御パルス404に応じて、患者の脊髄からの電極232、234において感知され得る。ECAP408は、制御パルス404の発信から離れて神経に沿って伝播することができる電気信号である。一例では、ECAP408は、制御パルス404を送達するために使用される電極とは異なる電極によって感知される。
図4Aに示されるように、ECAP408は、第2のチャネル406上に記録され得る。
【0090】
刺激干渉信号409A、409B、および409N(例えば、刺激パルスのアーチファクト)は、リード線230によって感知され得、制御パルス404の送達と同じ期間中に感知され得る。干渉信号は、ECAP408よりも大きな振幅および強度を有し得るので、刺激干渉信号409の発生中にIMD200に到達するいかなるECAPも、IMD200の感知回路206によって適切に感知されない可能性がある。しかしながら、ECAP408は、各制御パルス404の完了後に各ECAP408が低下するので、感知回路206によって十分に感知され得る。
図4Aに示されるように、刺激干渉信号409およびECAP408は、チャネル406上に記録され得る。
【0091】
図4Bは、本開示のいくつかの技術による、電気刺激パルスおよびそれぞれの感知されたECAPの一例を示すタイミング
図400Bである。便宜上、
図4Bは、
図2AのIMD200を参照して説明されている。図示されるように、タイミング
図400Bは、第1のチャネル410、複数の制御パルス412A~412N(集合的に「制御パルス412」)、第2のチャネル420、受動的な再充電相426A~426N(集合的に「受動的な再充電相426」)を含む複数の通知パルス424A~424N(集合的に「通知パルス424」)、第3のチャネル430、複数のそれぞれのECAP436A~436N(集合的に「ECAP436」)、および複数の刺激干渉信号438A~438N(集合的に「刺激干渉信号438」)を含む。
【0092】
第1のチャネル410は、電極232、234のうちの少なくとも1つの電極の電圧(または電流)を示す時間/電圧(および/または電流)グラフである。一例では、第1のチャネル410の刺激電極は、第3のチャネル430の感知電極としてリードの反対側に配置され得る。制御パルス412は、電極232、234の少なくとも1つによって患者の脊髄に送達される電気パルスであり得、制御パルス412は、相間間隔を有する平衡二相方形パルスであり得る。換言すれば、制御パルス412の各々は、相間間隔によって分離された負相および正相で示されている。例えば、制御パルス412は、それが正電圧を有するのと同じ時間および振幅の間、負電圧を有し得る。負電圧相は、正電圧相の前または後であり得ることに留意されたい。制御パルス412は、IMD200のメモリ250に格納されたECAP試験刺激プログラム218に従って送達され得、ECAP試験刺激プログラム218は、外部プログラマを用いたユーザ入力に従って更新され得、および/またはセンサ216からの信号に従って更新され得る。一例では、制御パルス412は、約300マイクロ秒未満のパルス幅を有し得る(例えば、正相、負相、および相間間隔の合計時間は300マイクロ秒未満である)。別の例では、制御パルス412は、二相パルスの各位相に対して約100μsのパルス幅を有し得る。
図4に示されるように、制御パルス412は、チャネル410に対応する信号を送達または感知する1つ以上の電極を用いて送達され得る。制御パルス412の送達は、保護カソード電極の組み合わせにおけるリード線230によって送達され得る。例えば、リード線230が線形8電極リード線である場合、保護カソードの組み合わせは、中央のカソード電極と、カソード電極に直接隣接するアノード電極である。
【0093】
第2のチャネル420は、通知パルスについて、電極232、234のうちの少なくとも1つの電極の電圧(または電流)を示す時間/電圧(および/または電流)グラフである。一例では、第2のチャネル420の電極は、第1のチャネル410および第3のチャネル430の電極と部分的または完全に共通の電極を共有することができる。通知パルス424はまた、制御パルス412を送達するように構成されている同じリード230によって送達され得る。通知パルス424は、2種類のパルスが重複する期間中に送達されないように、制御パルス412とインターリーブされてもよい。しかしながら、通知パルス424は、制御パルス412を送達するのとまったく同じ電極によって送達されても、されなくてもよい。通知パルス424は、約300μs超であり、約1000μs未満のパルス幅を有する単相パルスであり得る。実際、通知パルス424は、制御パルス412よりも長いパルス幅を有するように構成され得る。
図4に示されるように、通知パルス424は、チャネル420上に送達され得る。
【0094】
通知パルス424は、受動的な再充電のために構成されてもよい。例えば、各通知パルス424の後に、刺激電極上の電荷を均等化するために、受動的な再充電相426が続いてもよい。刺激パルスに続いて組織に残っている電荷が、反対の印加電荷によって組織から即座に除去される能動的な再充電用に構成されているパルスとは異なり、受動的な充電は、通知パルスの終了後、組織が何らかの基準電圧(例えば、接地またはレール電圧)まで自然に放電することを可能にする。いくつかの例では、医療デバイスの電極は、医療デバイス本体において接地され得る。この場合、通知パルス424の終了に続いて、電極を取り囲む組織上の電荷が医療デバイスに散逸し、パルスの終了後の組織に残っている電荷の急速な減衰を生じさせる可能性がある。この急速な減衰は、受動的な再充電相426に示されている。受動的な再充電相426は、先行する通知パルス424のパルス幅に加えて持続時間を有し得る。他の例(
図4には図示せず)では、通知パルス424は、能動的な再充電を含むパルスと称され得る正負の相(およびいくつかの例では、各位相間の間の相間間隔)を有する二相パルスであってもよい。二相パルスである通知パルスは、次の受動的な再充電相を有する場合もあれば、有していない場合もある。通知パルス424は、定義されてもよく、1つ以上の刺激プログラムの一部であってもよい。通知パルス424の各々は、同じパラメータ値(例えば、同じパルス幅、振幅、およびパルス形状)を有するものとして示されているが、通知パルス424のいくつかは、互いに異なる値を有する1つ以上のパラメータを有し得る。
【0095】
第3のチャネル430は、電極232、234のうちの少なくとも1つの電極の電圧(または電流)を示す時間/電圧(および/または電流)グラフである。一例では、第3のチャネル430の電極は、第1のチャネル410の電極としてリードの反対側に配置され得る。ECAP436は、制御パルス412に応じて、患者の脊髄からの電極232、234において感知され得る。ECAP436は、制御パルス412の発信から離れて神経に沿って伝播することができる電気信号である。一例では、ECAP436は、制御パルス412を送達するために使用される電極とは異なる電極によって感知される。
図4に示されるように、ECAP436は、第3のチャネル430上に記録され得る。
【0096】
刺激干渉信号438A、438B、および438N(例えば、刺激パルスのアーチファクト)は、リード線230によって感知され得、制御パルス412および通知パルス424の送達と同じ期間中に感知され得る。干渉信号は、ECAP436よりも大きな振幅および強度を有し得るので、刺激干渉信号438の発生中にIMD200に到達するいかなるECAPも、IMD200の感知回路212によって適切に感知されない可能性がある。しかしながら、ECAP436は、各制御パルス412の完了後、および次の通知パルス424の送達前に、各ECAP436が低下するので、感知回路212によって十分に感知され得る。
図4に示されるように、刺激干渉信号438およびECAP436は、チャネル430上に記録され得る。
【0097】
図5は、本開示の技術による、電気刺激パルスおよびそれぞれのECAPの別の例を示すタイミング
図500である。便宜上、
図5は、
図2AのIMD200を参照して説明されている。図示されるように、タイミング
図500は、第1のチャネル510、複数の制御パルス512A~512N(集合的に「制御パルス512」)、第2のチャネル520、受動的な再充電相526A~526N(集合的に「受動的な再充電相526」)を含む複数の通知パルス524A~524N(集合的に「通知パルス524」)、第3のチャネル530、複数のそれぞれのECAP536A~536N(集合的に「ECAP536」)、および複数の刺激干渉信号538A~538N(集合的に「刺激干渉信号538」)を含む。
図5は、以下に詳述する相違点を除いて、
図4と実質的に同様であってもよい。
【0098】
2つ以上(例えば、2つ)の制御パルス512は、複数の時間イベントの各時間イベント(例えば、ウィンドウ)の間に送達され得、各時間イベントは、2つの連続する通知パルス524の間の時間を表す。例えば、各時間イベント中に、第1の制御パルスの直後に第1のそれぞれのECAPが続いてもよく、第1のそれぞれのECAPの完了に続いて、第2の制御パルスの直後に第2のそれぞれのECAPが続いてもよい。通知パルスは、2番目のそれぞれのECAPに続いて開始されてもよい。ここに示されていない他の例では、複数の時間イベントの各時間イベント中に、3つ以上の制御パルス512が送達され、それぞれのECAP信号が感知されてもよい。
【0099】
図6は、本開示の技術法による、電気刺激パルスおよびそれぞれのECAPの別の例を示すタイミング
図600である。便宜上、
図6は、
図2AのIMD200を参照して説明されている。図示されるように、タイミング
図600は、第1のチャネル610、複数の制御パルス612A~612N(集合的に「制御パルス612」)、第2のチャネル620、受動的な再充電相626A~626N(集合的に「受動的な再充電相626」)を含む複数の通知パルス624A~624N(集合的に「通知パルス624」)、第3のチャネル630、複数のそれぞれのECAP636A~636N(集合的に「ECAP636」)、および複数の刺激干渉信号438A~438N(集合的に「刺激干渉信号438」)を含む。
図6は、以下に詳述する相違点を除いて、
図4と実質的に同様であってもよい。
【0100】
図4および
図5に示される前述の例では、少なくとも1つの制御パルスは、連続する通知パルスの各対の間で、送達され、インターリーブされていた。しかしながら、いくつかの例では、制御パルス612は、複数の時間イベントの各時間イベント(またはウィンドウ)の間に送達されず、各時間イベントは、2つの連続する通知パルス624の間の時間を表す。
図6の例に示されるように、制御パルス612は、通知パルス624Aの後、および通知パルス624Bの前に送達されない。言い換えれば、連続した通知パルス624Aおよび624Bは、介在する制御パルスなしで送達され得る。いずれの場合も、通知パルスは所定の周波数に従って送達され、制御パルスは、通知パルスの間のいずれかの時間で送達され得る。いくつかの例では、通知パルス624Aおよび通知パルス624Bの両方のパラメータ値は、それらが同じ刺激プログラムによって定義されるため、同じであり得る。他の例では、通知パルス624Aおよび通知パルス624Bは、異なる振幅、パルス幅、パルス周波数、または電極の組み合わせなど、値が異なる少なくとも1つの刺激パラメータを有し得る。このようにして、通知パルス624Aは、第1の刺激プログラムの一部であり得、一方、通知パルス624Bは、第1の刺激プログラムとは異なる第2の刺激プログラムの一部であり得る。したがって、処理回路214は、2つ以上の異なる刺激プログラムから通知パルスを送達してもよく、ここで、処理回路214は、同じ制御パルス(例えば、制御パルス612A)からの検出されたECAP信号を使用して、複数の刺激プログラム(例えば、通知パルス624Aおよび624Bの両方)における通知パルスの1つ以上のパラメータ値を「通知する」か、または他の方法で調整する。複数の刺激プログラムのこの概念は、本明細書に記載されているいずれかの通知パルスに適用することができる。
【0101】
制御パルスは、ECAP試験刺激プログラム218に従って与えられてもよい。処理回路214は、テレメトリ回路213を用いてユーザ入力に従って、またセンサ216からの信号によって、ECAP試験刺激プログラムを更新するように構成され得る。例えば、臨床医は、患者プログラマを操作し、ECAP試験刺激プログラム218を更新するための命令を含む信号をテレメトリ回路213に送信することができる。臨床医は、制御刺激を
図4~6に示されている例のいずれかに設定することができ、臨床医はまた、制御刺激を
図4~6に示されていない構成にカスタマイズすることができる。臨床医は、制御刺激の中止または制御刺激の開始をいつでも選択することができる。いくつかの例では、患者の姿勢または活動レベルが変化したことを検出すると、制御刺激が開始される。
【0102】
図7は、本開示の技術による、治療送達のための例示的な動作700を示すフローチャートである。便宜上、
図7は、
図1のIMD110に関して説明されている。しかしながら、
図7の技術は、IMD110の異なる構成要素によって、または追加もしくは代替の医療デバイスによって実行され得る。
【0103】
図7の例では、IMD110は、電気刺激療法を患者105に送達することができ、電気刺激療法は、ある期間にわたって所定のパルス周波数で複数の通知パルスを含む(710)。さらに、IMD110は、ある期間にわたって、複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされた複数の制御パルスを送達することができる(720)。本明細書に記載されるように、制御パルスは、患者の治療に寄与するように構成されてもよく、またはされなくてもよい。例えば、1つ以上の制御パルスは、連続する通知パルスの間に送達され得る。別の例として、1つ以上の通知パルスが、連続する制御パルスの間に送達され得る。IMD110は、複数の制御パルスのうちの1つ以上の制御パルスの後、および複数の通知パルスの直後の通知パルスの前に、それぞれのECAPを感知することができる(730)。感知に続いて、IMD110は、少なくとも1つのそれぞれのECAPに基づいて、電気刺激療法の複数の通知パルスを少なくとも部分的に定義する1つ以上のパラメータ値を調整することができる(740)。例えば、IMD110は、感知されたECAPの特性の値を目標ECAP特性値と比較し、通知パルス、およびいくつかの例では、制御パルスを調整して、目標ECAP特性値を維持することができる。IMD110は、電極130を用いて、調整された1つ以上のパラメータ値に従って、患者105の脊髄120への電気刺激療法を送達してもよい(750)。
【0104】
図8は、センサ入力に応じて、制御パルスを送達するための例示的な動作800を示すフローチャートである。便宜上、
図8は、
図2AのIMD200に関して説明されている。しかしながら、
図8の技術は、IMD200の異なる構成要素によって、または追加もしくは代替の医療デバイスによって実行され得る。
【0105】
図8の例では、処理回路214は、電気刺激療法(例えば、通知パルス)およびECAP試験刺激を制御パルスで送達してもよい(810)。処理回路214は、電気刺激療法の送達中、患者の活動を監視する(820)。患者の活動には、患者の動きの変化、異なる姿勢への切り替え、または電極を標的組織(例えば、ニューロン)に対して移動させうる他のタイプの活動が含まれてもよい。
【0106】
処理回路214が患者の活動の変化を検出しない場合(ブロック830の「いいえ」の分岐)、処理回路214は、電気刺激療法を送達し続けることができる(810)。処理回路214が患者の活動の変化を検出する場合(ブロック830の「はい」の分岐)、処理回路214は、患者の活動の変化に従って、ECAP試験刺激プログラムを更新することができる(840)。例えば、処理回路214は、患者の活動の増加を検出することに応じて、制御パルスが送達され、ECAP信号が感知される頻度を増加させることができる。いくつかの例では、この頻度の増加は、指定された期間または無期限に継続する場合がある。次に、処理回路214は、刺激発生器211を制御して、更新されたECAP試験刺激プログラムに従って制御パルスを患者に送達し(850)、電気刺激療法を送達し続けることができる(810)。他の例では、処理回路214は、活動が変更されたか、または間もなく変更されることを示すユーザ入力を受信したことに応じて、ECAP試験刺激プログラムを更新することができる。代替的に、患者が、刺激療法が適切な時間内に活動または姿勢の変化に適応していないと考えている場合、患者は、ECAPセンシングの頻度の増加を要求することができる。
【0107】
図9は、本開示の技術による治療送達のための例示的な動作900を示すフローチャートである。便宜上、
図9は、
図2AのIMD200に関して説明されている。しかしながら、
図9の技術は、IMD200の異なる構成要素によって、または追加もしくは代替の医療デバイスによって実行され得る。動作900は、感知されたECAP信号を使用して刺激療法を制御するための例示的なフィードバック機構である。
【0108】
図9に示されるように、IMD200の処理回路214は、目標ECAP振幅を判定することができる(910)。目標ECAP振幅は、IMD200に記憶されている患者のECAP特性222において示され得る。一例の目標ECAP振幅は、ECAP信号において検出可能なN1-P2振幅であってもよい。他の例では、処理回路214は、所定の機能(例えば、正弦波関数、ステップ関数、指数関数、または他の予定)に従って、ある期間にわたって目標ECAP振幅を自動的に変更してもよい。次に、処理回路920は、通知パルスおよび制御パルスを送達し、制御パルスによって誘発された結果のECAPを感知する(920)。次に、処理回路214は、1つ以上の感知されたECAPの代表的な振幅を判定する(930)。例えば、代表的な振幅は、最後の4つの感知されたECAP信号の平均振幅であり得る。しかしながら、代表的な振幅は、より少ないまたはより多くのECAPからのものであってもよい。
【0109】
次に、処理回路214は、1つ以上のそれぞれのECAPの代表的な振幅が目標ECAP調整ウィンドウの上限よりも大きいかどうかを判定する(940)。本明細書で考察されるように、目標ECAP調整ウィンドウは、差異をプラスマイナスした目標ECAP振幅によって定義され得る。したがって、差異をプラスした目標ECAP振幅により、目標ECAP調整ウィンドウの上限が定義されてもよい。同様に、差異をマイナスした目標ECAP振幅によって、目標ECAP調整ウィンドウの下限が定義されてもよい。このようにして、目標ECAP調整ウィンドウを決定することができるので、感知されたECAP振幅の小さな振動について、通知パルスの1つ以上のパラメータに調整が行われることはない。処理回路214が、1つ以上のECAPの代表的な振幅が調整ウィンドウをプラスした目標ECAP振幅値よりも大きいと判断した場合(ブロック940の「はい」の分岐)、処理回路214は、通知パルスと制御パルスの振幅をそれぞれの値だけ減少させる(950)。例えば、通知パルスおよび制御パルスのそれぞれの振幅は、所定のステップで減少させてもよい。別の例として、通知パルスおよび制御パルスのそれぞれの振幅は、代表的な振幅と目標ECAP振幅との間の差に比例する量だけ減少させてもよい。処理回路214が、代表的な振幅が目標ECAP調整ウィンドウの上限よりも小さいと判断した場合(ブロック940の「いいえ」の分岐)、処理回路214はブロック960に移動する。
【0110】
ブロック960で、処理回路214は、1つ以上のそれぞれのECAPの代表的な振幅が、目標ECAP調整ウィンドウの下限よりも大きいかどうかを判定する。1つ以上のそれぞれのECAPの代表的な振幅が、目標ECAP調整ウィンドウの下限よりも小さい場合(ブロック960の「はい」の分岐)、処理回路214は、通知パルスおよび制御パルスの振幅をそれぞれの値だけ増加させる(970)。例えば、通知パルスおよび制御パルスのそれぞれの振幅は、所定のステップで増加させてもよい。別の例として、通知パルスおよび制御パルスのそれぞれの振幅は、代表的な振幅と目標ECAP振幅との間の差に比例する量だけ増加させてもよい。次に、処理回路214は、増加または減少した振幅に従って、通知パルスおよび制御パルスを送達し続ける。いくつかの例では、ステップ950または970で通知パルスおよび/または制御パルスに適用される減少または増加は、次の予定通知パルスまたは制御パルスの振幅または他のパラメータに適用されてもよい。このように、次の通知パルスに減少が適用された場合でも、減少をマイナスした次の通知パルスの予定振幅が以前の通知パルスの振幅よりも大きい場合には、次の通知パルスの全体的な新しい振幅が以前の通知パルスの振幅よりも大きくなる可能性がある。
【0111】
通知パルスおよび制御パルスの振幅を調整するための動作900のプロセスが説明されているが、他の例では、他のパラメータ値を変更してもよい。例えば、感知されたECAP信号を使用して、通知パルスおよび制御パルスのパルス幅を増加または減少させて、組織に送達される電荷の量を調整し、一定の量の神経活性化を維持することができる。他の例では、電極の組み合わせは、異なる量の電荷を送達し、各通知パルスによって回復中のニューロンの数を変更するために調整してもよい。他の例では、処理回路214は、ECAP信号の特性が目標ECAP調整ウィンドウより大きいかまたは小さいことに応じて、通知ドパルスのスルーレート(すなわち、パルスまたはパルスの各相の開始および/または終了時の電圧および/または振幅の変化率)を調整するように構成されていてもよい。例えば、ECAP信号の代表的な振幅が目標ECAP調整ウィンドウの上限よりも大きい場合、処理回路214は、次の通知パルスのスルーレートを減少させる(すなわち、パルスの振幅をよりゆっくりと上昇させる)ことができる。ECAP信号の代表的な振幅が目標ECAP調整ウィンドウの下限よりも小さい場合、処理回路214は、次の通知パルスのスルーレートを増加させる(すなわち、パルスの振幅をより速く上昇させる)ことができる。スルーレートは、パルスの強度に寄与する可能性がある。処理回路214は、動作900のプロセスに従って、通知パルスを定義する1つ以上のパラメータを変更することができる。
【0112】
他の例では、処理回路214は、制御パルスの振幅を調整することなく動作900を実行することができる。このようにして、処理回路214は、制御パルスの同じ振幅を維持し、感知されたECAP信号(複数可)の最後の、または最近の代表的な振幅と比較して、感知されたECAP信号(複数可)の代表的な振幅の変化に応じて、振幅(または他のパラメータ)を調整し、電極から神経までの距離の変化を検出してもよい。制御パルスのみが患者に治療を提供する他の例では、
図9の技術は、通知パルスを調整または送達することなく、システムによって使用されてもよい。
【0113】
図10Aは、それぞれの刺激パルス振幅から感知されたECAPの例示的な成長曲線1002のグラフ1000である。グラフ1000は、刺激パルスのそれぞれの異なる電流振幅に対して点として示されているECAPの例を示している。通常、ECAPは、刺激パルス振幅が、
図10Aの例では約4.5mAの電流で閾値に達するまで生成されない。次に、電流振幅が増加すると、ECAP振幅もほぼ直線的に増加する。この直線的な関係は、成長曲線1002によって示されている。
図10Aの例では、この傾斜は約32μV/mAであり得る。しかしながら、傾斜は、埋め込まれる電極のタイプ、電極が埋め込まれる場所、刺激に対する患者のニューロンの感度、神経学的機能障害、または他の要因に基づいて、患者ごとに異なる場合がある。
【0114】
直線的に増加するこの成長曲線の傾斜は、感知されたECAP振幅とパルス振幅の関係を示すため、ここでは「ゲイン」と称される場合がある。別の言い方をすれば、ゲイン値は、患者に送達されたそれぞれの較正刺激パルスから誘発され、刺激パラメータ(例えば、電流振幅、電圧振幅、またはパルス幅)の異なる値によって少なくとも部分的に定義されるECAP信号の特性値(例えば、N1-P2振幅またはECAP信号のいずれかのピークの振幅のような振幅)の成長曲線の傾斜を表してもよい。例えば、患者のゲイン値を使用して、感知されたECAP振幅に基づいて、通知パルス振幅および制御振幅を動的に調整することができる。いくつかの例では、同様の患者の履歴データに基づいて、患者のゲインを概算することができる。他の例では、システムは、システムで治療を開始する前に、患者に固有のカスタム成長曲線およびゲインを生成してもよい。
【0115】
図10Bは、刺激療法を調整するための例示的な技術を示す図である。
図10Bの例に示すように、本明細書に記載されたIMD200またはいずれかの他のデバイスまたはシステムなどのシステムは、刺激に対する患者の感度を表すゲイン値に基づいて、通知パルスおよび制御パルスの振幅(または他のパラメータ)を動的に調整してもよい。IMD200の処理回路214は、刺激発生器211を制御して、制御パルスを患者に送達することができる。次に、処理回路214は、感知回路212を制御して、制御パルスによって誘発されたECAP信号を感知し、次いで、ECAP信号の特性(例えば、ECAP信号の振幅)を特定することができる。次に、処理回路214は、ECAP信号の特性とゲイン値とに基づいて、少なくとも部分的に通知パルスを定義するパラメータ値(例えば、振幅、パルス幅値、パルス周波数値、および/またはスルーレート値)を判定してもよい。次に、プロセッサ214は、刺激発生器211を制御して、判定された通知パルスに従って通知パルスを送達することができる。
【0116】
図10Bに示されるように、制御パルス1016は、3つの電極の保護カソードとして示される電極の組み合わせ1024を用いて患者に送達される。結果として生じるECAPは、差動増幅器1030に供給される電極の組み合わせ1028のリードの対向端にある2つの電極によって感知される。感知された各ECAPについて、処理回路214は、ECAP信号の一部分の振幅、例えばECAP信号の一部分からのN1-P2電圧振幅を測定してもよい。処理回路214は、例えば、最新の連続した、2、3、5,5、6、またはそれ以上のECAP振幅の平均値を求めるなど、最近測定されたECAP振幅の平均値を求めてもよい。いくつかの例では、平均は平均値または中央値であり得る。いくつかの例では、振幅値がエラーであると判定された場合、1つ以上のECAP振幅を計算から無視することができる。次に、測定振幅(または平均測定振幅)が、選択された目標ECAP振幅1010から減算され、差分振幅が生成される。選択された目標ECAP振幅1010は、医師または患者が通知パルスから効果的な治療法を最初に発見したときに感知されたECAPから判定されてもよい。この目標ECAP振幅1010は、本質的に、刺激電極と標的ニューロン(例えば、SCSの場合の脊髄)との間の基準距離を表し得る。
【0117】
次に、差分振幅に患者のゲイン値を乗算して、予備差分値1012を生成する。予備差分値がECAPパルス振幅(例えば、制御パルス振幅)に加算されて、次の制御パルス1016を少なくとも部分的に定義する新しい、または調整されたECAPパルス振幅を生成する。
【0118】
通知パルス振幅を調整するために、差分値にスケーリング係数1018を乗算して、治療差分値を生成する。例えば、スケーリング係数は、以前に送達された通知パルス振幅と以前に送達された制御パルス振幅との比であり得る。次に、治療差分値は、以前に送達された通知パルス振幅1020に加算され、次の通知パルス1022を少なくとも部分的に定義する新しい、または調整された通知パルス振幅を生成する。このプロセスは、複数の刺激プログラムからの通知パルスに適用できる。例えば、2つの異なる刺激プログラムからの通知パルスが刺激療法の一部として送達される場合、システムは、それぞれのスケーリング係数に差分値を乗算して、各刺激プログラムの通知パルスのそれぞれの治療差分値を取得することができる。次の通知パルス1022(または複数の刺激プログラムが治療に関与している場合にはパルス)は、次に、制御パルス1016とインターリーブされて、電極の組み合わせ1026を用いて患者に送達される。いくつかの例では、連続する通知パルスの間に、少なくとも2つの制御パルスが送達され、少なくとも2つのそれぞれのECAP信号が感知され得る。このように制御パルスの周波数を増加させることにより、システムは、電極とニューロンとの間の距離の変化に対して、通知パルスの振幅を迅速に調整することを可能にし得る。電極の組み合わせ1026は、電極の組み合わせ1024および1028とは異なるが、電極の組み合わせ1026は、通知パルスが制御パルスおよび感知されたECAP信号と重複しないように送達されるため、治療にとって望ましいリード上の電極のいずれかの集合であり得る。いくつかの例では、次の制御パルスまたは通知パルスは、以前の通知パルスまたは制御パルスよりも高いまたは低い振幅(または他のパラメータ)を有するように予定されてもよい。したがって、システムは、それぞれの差分値を、単に以前の制御パルスまたは通知パルスの以前の振幅または他のパラメータに適用するのではなく、制御パルスおよび/または情報パルスの差分値を、次の制御パルスおよび/または通知パルスの予定された振幅(または他のパラメータ)に適用してもよい。
【0119】
いくつかの例では、通知パルスのパルス幅は、約300μs超、かつ約1000μs未満であってよい。他の例では、通知パルスのパルス幅は、約300μs未満、または1000μs超であってもよい。通知パルスは、受動的な再充電相に続く単相パルスであり得る。しかしながら、他の例では、通知パルスは、正相および負相を含む二相パルスであり得る。いくつかの例では、制御パルス幅は約300μs未満であってよい。いくつかの例では、制御パルスは、正相および負相を含む二相パルスである。例えば、二相制御パルスは、約100μsの持続時間を有する正相、約100μsの持続時間を有する負相、および約30μsの持続時間の相間間隔を含み得る。このようにして、結果として生じるECAP信号を検出する前に、制御パルスを完了することができる。いくつかの例では、通知パルスは300μs未満であってもよいが、(二相パルスの)次の受動的な再充電相または能動的な再充電相でさえ、その通知パルスからの検出可能なECAP信号を不明瞭にする可能性がある。加えて、通知パルスのパルス幅に関係なく、通知パルスが、結果として生じるECAP信号の感知または検出可能なECAP信号の生成を別の方法で妨害するであろうパラメータ値(例えば、振幅、パルス幅、周波数、パルス形状、電極の組み合わせなど)を有することができるように、制御パルスから生じるECAP信号を感知することが有益である場合がある。
【0120】
図10Bの一例では、複数の刺激プログラムは、制御パルスから検出されたECAP信号から通知される通知パルスを定義することができる。例えば、1~8のラベルが付いた8つの電極を持つリードの場合、制御パルスは、最初に210μsのパルス幅(90μsの正の位相、30μsの間の位相間隔、および90μsの負の位相)で10.0ミリアンペア(mA)において送達されてもよい。制御パルスは、電極7上にカソードがあり、電極7の両側の電極6および8にアノードがある保護カソード構成で送達されてもよい。1つの刺激プログラムは、電極6上のカソードおよび電極4上のアノードを有する800μs(400μsの正相および400μsの負相)のパルス幅を有する4.0mAの第1の通知パルスを定義してもよい。別の刺激プログラムは、電極2上のカソードおよび電極3上のアノードを有する400μs(200μsの正相および200μsの負相)のパルス幅を有する5.0mAの第2の通知パルスを定義してもよい。第1および第2の通知パルスは、経時的にインターリーブされてもよく、各それぞれの刺激プログラムからの第1および第2の通知パルスの両方は、制御パルスから検出されたECAP信号と、制御パルスに対する第1および第2の通知パルスの各々についてのスケーリング係数または比に基づいて、調整または通知されてもよい。例えば、第1の通知パルスのスケーリング係数は40%(例えば、4.0mAを10mAで割ったもの)であり得、第2の通知パルスのスケーリング係数は、50%(例えば、5.0mAを10mAで割ったもの)であり得る。したがって、2mAの決定された差分値1012が次の制御パルスに追加されると判定された場合、システムは、第1の刺激プログラムからの次の第1の通知パルスを0.8mA(4.8mA)だけ増加させるべきであると判定し、第2の刺激プログラムからの次の第2の通知パルスを1.0mA(6.0mA)だけ増加させるべきであると判定し得る。このようにして、システムは、単一の制御パルスから検出されたECAP信号に基づいて、2つ以上の刺激プログラムからの通知パルスを調整することができる。
【0121】
図10Bの技術は、通知パルスおよび制御パルスの振幅の調整について説明されているが、他の例では、他のパラメータ値を変更してもよい。例えば、感知されたECAP信号を使用して、通知パルスおよび制御パルスのパルス幅を増加または減少させて、組織に送達される電荷の量を調整し、一定の量の神経活性化を維持することができる。他の例では、電極の組み合わせは、異なる量の電荷を送達し、各通知パルスによって回復中のニューロンの数を変更するために調整してもよい。他の例では、処理回路214は、最新のECAP振幅の振幅など、ECAP信号の特性に応じて、通知パルスおよび/または制御パルスのスルーレート(すなわち、パルスまたはパルスの各相の開始および/または終了時の電圧および/または振幅の変化率)を調整するように構成され得る。振幅以外のパラメータの場合、そのタイプのパラメータを適切に調整するために、各タイプのパラメータに固有のゲイン値を決定する必要があるかもしれない。処理回路214は、
図10Bのプロセスに従って、通知パルスおよび/または制御パルスを定義する1つ以上のパラメータを変更することができる。例えば、ECAP信号を使用して、それぞれのパルスパラメータに対して複数の同時フィードバック機構を同時に制御することができる。他の例では、処理回路214は、処理回路214が特定のパラメータの調整の限界に達したときに、2つ以上のフィードバック機構を切り替えることができる。例えば、処理回路214は、振幅が範囲(例えば、臨床医によって定義された範囲)内に留まる限り、フィードバック制御機構を使用して振幅を調整し、その後、振幅が範囲を超えることに応じて、通知パルスおよび/または制御パルスの異なるパラメータ(例えば、パルス幅またはスルーレート)を調整するために、別のフィードバック制御機構に切り替えるように構成されていてもよい。
【0122】
他の例では、処理回路214は、制御パルスの振幅を調整することなく、
図10Bの技術を実行することができる。このようにして、処理回路214は、制御パルスの同じ振幅を維持し、感知されたECAP信号(複数可)の最後の、または最近の平均振幅と比較して、感知されたECAP信号(複数可)の平均振幅の変化に応じて、通知パルスの振幅(または他のパラメータ)を調整し、電極から神経までの距離の変化を検出してもよい。この場合、目標ECAP振幅1010は、例えば、目標ECAP振幅と最新の感知されたECAP振幅(または平均振幅)との間の差によって調整され得る。制御パルスのみが患者に治療を提供する他の例では、
図10Bの技術は、通知パルスを調整または送達することなく、システムによって使用され得る。
【0123】
図11は、刺激療法を調整するための例示的な動作1100を示すフローチャートである。IMD200および処理回路214は、
図11の例で説明されるが、IMD110または他のデバイスまたはシステムなどの他のIMDは、動作1100を実行するか、または部分的に実行することができる。動作1100は、
図10Bに関連する図および考察と同様であり得る。
【0124】
図11の例では、処理回路214は、目標ECAP振幅を判定する(1102)。目標ECAP振幅は、最初に患者に送達されたサンプル刺激に基づいて判定されてもよい。目標ECAP振幅は、ECAP信号のN1-P2振幅であってもよいが、ECAP信号の1つ以上の異なるピークの振幅など、振幅の他の測定値を代わりに使用してもよい。代替的に、目標ECAP振幅は、代わりに、ECAP信号の1つ以上のピークの下の領域、ECAP信号の周波数成分、ECAP信号の最大および/または最小ピークタイミング、またはECAP信号のいずれかの他の特性などのECAP信号の異なる特性であってもよい。いくつかの例では、処理回路214は、ニューロン活性化の量を変化させ、いくつかの例では、通知パルスの知覚された感覚を変化させるために、所定の関数(例えば、正弦関数)に従って、あり期間にわたって目標ECAP振幅を自動的に変更するように構成されている。
【0125】
処理回路214は、以前に感知されたECAP信号から測定振幅を受信する。ECAP信号をフィードバックとして使用して、患者の電気刺激療法の通知パルスを制御するために、処理回路214は、測定振幅を目標ECAP振幅から減算して、差分振幅を生成する(1104)。いくつかの例では、または追加の測定振幅がプロセスから利用可能になると、処理回路214は、特定の数の最近の測定振幅(例えば、2つ以上)の平均値を求めて、測定ECAP振幅の移動平均を作成し、目標ECAP振幅から平均測定振幅を減算して、ECAP信号間の変動を平滑化してもよい。したがって、差分振幅は、電極がニューロンに対してどれだけ移動したかを表すものであり、通知パルスと制御パルスの振幅を調整するために使用して、患者に対して痛みを和らげるニューロンの神経活性化の一貫した量を維持することができる。
【0126】
次に、処理回路214は、差分振幅に患者のゲイン値を乗算して、予備差分値を生成する(1106)。ゲイン値は、患者の成長曲線の傾斜を表す場合がある。次に、処理回路214は、予備差分値を使用して、後続の通知パルスと制御パルス(例えば、ECAP試験パルス)の両方の振幅を調整する。処理回路214は、予備差分値を制御パルス振幅に加算して、新しい制御パルス振幅を生成する(1108)。次に、処理回路214は、刺激発生器211を制御して、制御パルスの周波数または通知パルス間の次の利用可能なウィンドウなどに従って、予定された時間において新しい制御パルス振幅によって定義される後続の制御パルスを送達する(1110)。処理回路214はまた、感知回路212を制御して、最近送達された制御パルスによって誘発された感知されたECAPの振幅を測定し(1112)、ブロック1104においてフィードバックとして再び使用する。
【0127】
制御パルスの振幅を調整することに加えて、処理回路214は、予備振幅を使用して、通知パルス振幅を調整する。処理回路214は、差分値にスケーリング係数を乗算して、新しい治療差分値を生成する(1114)。スケーリング係数は、ブロック1104で使用される測定振幅の生成に使用されるECAP信号を誘発した、最後に送達された通知パルスの振幅と、最後に送達された制御パルスの振幅との間の比として判定されてもよい。差分振幅は制御パルスの振幅に基づいて生成されたため、スケーリング係数は、通知パルスの差分振幅を拡大してもよい。次に、処理回路214は、治療の差分値を直近の通知パルス振幅に追加して、新しい通知パルス振幅を生成する(1116)。次に、処理回路214は、刺激発生器211を制御して、通知パルス(1118)の所定のパルス周波数に従って、予定された時間に新たに調整された通知パルス振幅で次の通知パルスを送達する。
【0128】
動作1100は、通知パルスおよび制御パルスの振幅の調整について説明されているが、他の例では、同様の動作を使用して、他の刺激パラメータを調整することができる。例えば、通知パルスと制御パルスの強度に寄与するパラメータは、パルス幅、パルス周波数、さらにはパルス形状(例えば、1パルスあたりの電荷量)などの神経活性化の量に影響を与えることがある。したがって、処理回路214は、制御パルスから誘発された感知されたECAP信号を使用して、振幅の代わりに、または振幅に加えて、異なるパラメータを調整することができる。例えば、処理回路214は、減少したECAP振幅の検出に応じて、通知パルスおよび制御パルスのパルス幅を増加させることができる。
【0129】
図12は、感知されたECAPを使用してフィードバック機構の有効性を試験する実験で使用された例示的な機器の図である。
図12に示されるように、システム1000は、リード1204、刺激発生器1206、ECAP増幅器1208、フィードバック制御デバイス1210、信号デジタイザ1212、アナログーデジタル変換器1214、およびデータ記憶デバイス1216を含み得る。フィードバック制御デバイス1210は、刺激発生器1206を制御して、リード1204上の電極を用いて刺激パルス(例えば、制御パルス)を患者1202(例えば、ヒツジ)に送達することができる。ECAP増幅器1208は、結果として生じるECAP信号を感知し、これは後のレビューのためにデジタル化され、データ記憶デバイス1216に記憶される。加えて、ECAP信号は、フィードバック制御デバイス1210によって受信され、ECAP振幅を測定し、例えば、
図10Bおよび11に記載のフィードバック機構などのフィードバック制御機構に従って制御パルスを調整するために使用される。
図12のこの実験的構成は、
図13のグラフに示されるように、フィードバック制御機構の有効性を評価するために使用され得る。
【0130】
図13は、
図12に記載された実験においてフィードバック機構を使用して感知されたECAP電圧振幅のグラフを含む。
図13に示されるように、グラフ1300、1304、1308、および1312は、経時的に検出されたECAP信号の測定N1-P2振幅を示している。グラフ1302、1306、1310、および1314は、類似のN1-P2振幅をグループ化して、測定N1-P2振幅が互いにどの程度密接にグループ化されているか、またはどの程度離れているかを示している。ECAP信号からのより一貫した、または密接にグループ化された、測定振幅は、フィードバック機構が目標ECAP振幅を維持し、患者(例えば、
図12のヒツジ)に一貫した量の神経活性化を提供していることを示す。
【0131】
グラフ1300および1302は、開ループにおいて、または制御パルスの振幅を調整するためにフィードバック機構が採用されていない場合に、測定ECAP振幅が経時的にどのように変化するかを示している。言い換えれば、測定ECAP振幅は、電極からニューロンまでの距離が変化しているため、ヒツジが移動するにつれて変化する。対照的に、フィードバック機構を採用すると、0.15mVの目標ECAP振幅に対するECAP振幅を示すグラフ1304および1306、0.20mVの目標ECAP振幅に対するECAP振幅を示すグラフ1308および1310、および0.25mVの目標ECAP振幅に対するECAP振幅を示すグラフ1312および1314が得られる。パルス振幅を制御するためにフィードバック機構が採用されている場合のこれらのグラフに示されているように、ECAP振幅は、開ループ送達と比較して変動が少なく、経時的に比較的一貫した状態を維持している。これらのグラフは、本明細書に記載されたフィードバック制御機構が、患者の動きおよび活動の間であっても、患者に対する一貫した治療効果をもたらす可能性のある一貫した量の神経活性化を維持するのに有効であり得ることを示している。
【0132】
以下の例は、本明細書に記載の例示的なシステム、デバイス、および方法である。実施例1:方法であって、電気刺激療法を患者に送達することであって、電気刺激療法が、ある期間にわたって所定のパルス周波数で複数の通知パルスを含み、複数の通知パルスが、パラメータ値の第1の集合によって少なくとも部分的に定義される、送達することと、ある期間にわたって、複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされた複数の制御パルスを送達することであって、複数の制御パルスが、パラメータ値の第1の集合とは異なるパラメータ値の第2の集合によって少なくとも部分的に定義される、送達することと、複数の制御パルスのうちの1つ以上の制御パルスの後、かつ複数の通知パルスの直後の通知パルスよりも前に、それぞれの誘発複合活動電位(ECAP)を感知することと、少なくとも1つのそれぞれのECAPに基づいて、電気刺激療法の複数の通知パルスを少なくとも部分的に定義するパラメータ値の第1の集合のうちの1つ以上のパラメータ値を調整することと、パラメータ値の第1の集合のうちの調整された1つ以上のパラメータ値に従って、電気刺激療法を患者に送達することと、を含む方法。
【0133】
実施例2:複数の通知パルスのうちの各通知パルスのパルス幅が約300マイクロ秒超であり、約1000マイクロ秒未満である、実施例1の方法。
【0134】
実施例3:複数の通知パルスの周波数が約400ヘルツ未満である、実施例1および2のいずれかの組み合わせの方法。
【0135】
実施例4:複数の制御パルスのうちの各制御パルスのパルス幅が約300マイクロ秒未満である、実施例1~3のいずれかの組み合わせの方法。
【0136】
実施例5:複数の制御パルスを送達することが、複数の時間イベントのうちの各時間イベント中に、複数の制御パルスのうちの1つの制御パルスを送達することを含み、複数の時間イベントのうちの各時間イベントが、ある期間にわたって所定のパルス周波数において複数の情報パルスのうちの連続する情報パルス間の時間を含む、実施例1~4のいずれかの組み合わせの方法。
【0137】
実施例6:複数の制御パルスを送達することが、複数の時間イベントのうちの各時間イベント中に、複数の制御パルスのうちの2つ以上の制御パルスを送達することを含み、複数の時間イベントのうちの各時間イベントが、ある期間にわたって所定のパルス周波数において複数の通知パルスのうちの連続する通知パルス間の時間を含む、実施例1~5のいずれかの組み合わせの方法。
【0138】
実施例7:各感知されたそれぞれのECAPについて、少なくとも1つのそれぞれのECAPの代表的な振幅を判定することと、少なくとも1つのそれぞれのECAPの代表的な振幅を目標ECAP振幅と比較することと、をさらに含み、1つ以上のパラメータ値を調整することが、代表的な振幅と目標ECAP振幅との比較に基づいて、1つ以上のパラメータ値を調整することを含む、実施例1~6のいずれかの組み合わせの方法。
【0139】
実施例8:代表的な振幅が目標ECAP調整ウィンドウの上限超であると判定することに応じて、少なくとも1つのそれぞれのECAPに続く複数の通知パルスのうちの1つ以上の通知パルスの振幅を減少させることと、代表的な振幅が目標ECAP調整ウィンドウの上限値超であると判定することに応じて、少なくとも1つのそれぞれのECAPに続く複数の制御パルスのうちの1つ以上の制御パルスの振幅を減少させることと、をさらに含む、実施例1~7のいずれかの組み合わせの方法。
【0140】
実施例9:代表的な振幅が目標ECAP調整ウィンドウの下限未満であると判定することに応じて、少なくとも1つのそれぞれのECAPに続く複数の通知パルスのうちの1つ以上の通知パルスの振幅を増加させることと、代表的な振幅が目標ECAP調整ウィンドウの下限値未満であると判定することに応じて、少なくとも1つのそれぞれのECAPに続く複数の制御パルスのうちの1つ以上の制御パルスの振幅を増加させることと、をさらに含む、実施例1~8のいずれかの組み合わせの方法。
【0141】
実施例10:各感知されたそれぞれのECAPについて、それぞれのECAPの振幅を判定することと、それぞれのECAPの振幅と目標ECAP振幅との間の割合差を判定することと、をさらに含み、1つ以上のパラメータ値を調整することが、それぞれのECAPの振幅と目標ECAP振幅との間の割合差に反比例するように後続の通知パルスの振幅値を変更することを含む、実施例1~9のいずれかの組み合わせの方法。
【0142】
実施例11:センサから、患者の活動レベルが変化したことを示す信号を受信することと、信号の受信に応じて、患者に送達される複数の制御パルスの周波数を増加または減少させることの一方と、をさらに含む、実施例1~10のいずれかの方法。
【0143】
実施例12:複数の通知パルスのうちの各通知パルスが、受動的な再充電相が後に続く単相パルスであり、複数の制御パルスのうちの各制御パルスが、正相および負相を含む二相パルスである、実施例1~11のいずれかの組み合わせの方法。
【0144】
実施例13:複数の通知パルスのうちの各通知パルスが、第1の正相および第1の負相を含む第1の二相パルスであり、複数の制御パルスのうちの各制御パルスが、第2の正相および第2の負相を含む第2の二相パルスである、実施例1~12のいずれかの組み合わせの方法。
【0145】
実施例14:複数の制御パルスが複数の非治療パルスを含み、複数の通知パルスが複数の治療パルスを含む、実施例1~13のいずれかの組み合わせの方法。
【0146】
実施例15:システムであって、刺激生成回路であって、電気刺激療法を患者に送達することであって、電気刺激療法が、ある期間にわたって所定のパルス周波数で複数の通知パルスを含み、複数の通知パルスが、パラメータ値の第1の集合によって少なくとも部分的に定義される、送達することと、ある期間にわたって、複数の制御パルスを送達することであって、複数の制御パルスが、複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされ、複数の制御パルスが、パラメータ値の第1の集合とは異なるパラメータ値の第2の集合によって少なくとも部分的に定義される、送達することと、を行うように構成されている刺激生成回路と、処理回路であって、複数の制御パルスのうちの1つ以上の制御パルスの後、かつ複数の通知パルスの直後の通知パルスよりも前に、感知されたそれぞれの誘発複合活動電位(ECAP)を受信することと、少なくとも1つのそれぞれのECAPに基づいて、電気刺激療法の複数の通知パルスを少なくとも部分的に定義するパラメータ値の第1の集合のうちの1つ以上のパラメータ値を調整することと、刺激生成回路を用いて、パラメータ値の第1の集合のうちの調整された1つ以上のパラメータ値に従って、電気刺激療法を患者に送達することと、を行うように構成されている処理回路と、を含むシステム。
【0147】
実施例16:複数の通知パルスのうちの各通知パルスのパルス幅が約300マイクロ秒超であり、約1000マイクロ秒未満である、実施例15のシステム。
【0148】
実施例17:複数の通知パルスの所定のパルス周波数が約400ヘルツ未満である、実施例15および16のいずれかの組み合わせに記載のシステム。
【0149】
実施例18:複数の制御パルスのうちの各制御パルスのパルス幅が約300マイクロ秒未満である、実施例15~17のいずれかの組み合わせに記載のシステム。
【0150】
実施例19:刺激生成器が、複数の時間イベントのうちの各時間イベント中に、複数の制御パルスのうちの1つの制御パルスを送達するようにさらに構成されており、複数の時間イベントのうちの各時間イベントが、ある期間にわたって所定のパルス周波数において複数の情報パルスのうちの連続する情報パルス間の時間を含む、実施例15~18のいずれかの組み合わせに記載のシステム。
【0151】
実施例20:刺激生成器が、複数の時間イベントのうちの各時間イベント中に、複数の制御パルスのうちの2つ以上の制御パルスを送達するようにさらに構成されており、複数の時間イベントのうちの各時間イベントが、ある期間にわたって所定のパルス周波数において複数の通知パルスのうちの連続する通知パルス間の時間を含む、実施例15~19のいずれかの組み合わせに記載のシステム。
【0152】
実施例21:1つ以上のパラメータ値が、パルス振幅、パルス幅、パルス周波数、およびパルス形状のうちの少なくとも1つを含む、実施例15~20のいずれかの組み合わせに記載のシステム。
【0153】
実施例22:目標ECAP振幅と、下限から上限までの範囲のECAP調整ウィンドウと、をさらに含み、目標ECAP振幅が、ECAP調整ウィンドウ内にあり、1つ以上のプロセッサが、複数の制御パルスのうちの1つ以上の制御パルスのそれぞれの後のそれぞれのECAPの振幅を判定することと、少なくとも1つのそれぞれのECAPの代表的な振幅を計算することと、を行うようにさらに構成されている、実施例15~21のいずれかの組み合わせに記載のシステム。
【0154】
実施例23:1つ以上のプロセッサが、代表的な振幅が目標ECAP調整ウィンドウの上限値超である場合に、少なくとも1つのそれぞれのECAPに続く複数の通知パルスのうちの1つ以上の通知パルスの振幅を減少させることと、代表的な振幅が目標ECAP調整ウィンドウの上限値超である場合に、少なくとも1つのそれぞれのECAPに続く複数の制御パルスのうちの1つ以上の制御パルスの振幅を減少させることと、を行うようにさらに構成されている、実施例15~22のいずれかの組み合わせに記載のシステム。
【0155】
実施例24:1つ以上のプロセッサが、代表的な振幅が目標ECAP調整ウィンドウの下限値未満である場合に、少なくとも1つのそれぞれのECAPに続く複数の通知パルスのうちの1つ以上の通知パルスの振幅を増加させることと、代表的な振幅が目標ECAP調整ウィンドウの下限値未満である場合に、少なくとも1つのそれぞれのECAPに続く複数の制御パルスのうちの1つ以上の制御パルスの振幅を増加させることと、を行うようにさらに構成されている、実施例15~23のいずれかの組み合わせに記載のシステム。
【0156】
実施例25:センサをさらに含み、1つ以上のプロセッサが、センサから、患者の活動レベルが変化したことを示す信号を受信することと、信号の受信に応じて、刺激生成回路を用いて患者に送達される複数の制御パルスの周波数を増加または減少させることの一方と、を行うようにさらに構成されている、実施例15~24のいずれかのシステム。
【0157】
実施例26:複数の通知パルスのうちの各通知パルスが、受動的な再充電相が後に続く単相パルスであり、複数の制御パルスのうちの各制御パルスが、二相パルスである、実施例15~25のいずれかの組み合わせに記載のシステム。
【0158】
実施例27:目標ECAP振幅およびECAP調整ウィンドウを記憶するように構成されているメモリと、1つ以上の電極と、をさらに含み、刺激生成回路が、電気刺激療法を1つ以上の電極を用いて患者に送達することと、複数の制御パルスを1つ以上の電極を用いて患者に送達することと、を行うようにさらに構成されている、実施例15~26のいずれかの組み合わせに記載のシステム。
【0159】
実施例28:複数の制御パルスが複数の非治療パルスを含み、複数の通知パルスが複数の治療パルスを含む、実施例15~27のいずれかの組み合わせに記載のシステム。
【0160】
実施例29:コンピュータ可読記憶媒体であって、実行されたときに、1つ以上のプロセッサに、電気刺激療法の患者への送達を制御することであって、電気刺激療法が、ある期間にわたって所定のパルス周波数で複数の通知パルスを含み、複数の通知パルスが、パラメータ値の第1の集合によって少なくとも部分的に定義される、制御することと、ある期間にわたって、複数の通知パルスのうちの少なくともいくつかの通知パルスとインターリーブされた複数の制御パルスの送達を制御することであって、複数の制御パルスが、パラメータ値の第1の集合とは異なるパラメータ値の第2の集合によって少なくとも部分的に定義される、制御することと、複数の制御パルスのうちの1つ以上の制御パルスの後、かつ複数の通知パルスの直後の通知パルスよりも前に、感知されたそれぞれの誘発複合滑動電位(ECAP)を受信すること、少なくとも1つのそれぞれのECAPに基づいて、電気刺激療法の複数の通知パルスを少なくとも部分的に定義するパラメータ値の第1の集合のうちの1つ以上のパラメータ値を調整することと、パラメータ値の第1の集合のうちの調整された1つ以上のパラメータ値に従って、電気刺激療法の患者への送達を制御することと、を行わせる命令を含むコンピュータ可読記憶媒体。
【0161】
実施例30:方法であって、制御刺激パルスを患者に送達することであって、制御刺激パルスが、第1のパルス幅を有する、送達することと、制御刺激パルスによって誘発された誘発複合活動電位(ECAP)信号を感知することと、ECAP信号の特性を特定することと、ECAP信号の特性およびゲイン値に基づいて、複数の通知パルスから通知刺激パルスを少なくとも部分的に定義する治療パラメータ値を判定することとであって、複数の通知パルスが、第1のパルス幅よりも長い第2のパルス幅を有する、判定することと、判定した治療パラメータ値に従って通知パルスを送達することと、を含む方法。
【0162】
実施例31:ゲイン値が、患者に送達され、刺激パラメータの異なる値によって少なくとも部分的に定義される、それぞれの較正刺激パルスから誘発されたECAP信号の特性の値の成長曲線の傾斜を表す、実施例30の方法。
【0163】
実施例32:ECAP信号の特性がECAP信号の一部分の測定振幅であり、治療パラメータ値が新しい通知振幅値を含み、新しい通知振幅値を判定することが、患者の目標ECAP振幅値から測定振幅を減算して、差分振幅を生成することと、差分振幅にゲイン値を乗算して、予備差分値を生成することと、予備差分値にスケーリング係数を乗算して、通知差分値を生成することであって、スケーリング係数が、制御刺激パルスの前に送達される以前の通知刺激パルスを定義する以前の通知振幅値の、制御刺激パルスを定義する制御振幅値に対する比を表す、生成することと、通知差分値を以前の通知振幅値に加算して、通知刺激パルスを少なくとも部分的に定義する新しい通知振幅値を生成することと、を含む、実施例30および31のいずれかの組み合わせの方法。
【0164】
実施例33:制御パルスが第1の制御パルスであり、該方法が、第1の制御刺激パルスを定義する以前の制御振幅値に予備差分値を加算することにより、第2の制御刺激パルスを定義する新しい制御振幅値を生成することをさらに含み、第2の制御刺激パルスが、第1の制御刺激パルスの送達に続いて患者に送達される、実施例30~32のいずれかの組み合わせの方法。
【0165】
実施例34:通知刺激パルスが、第1の通知刺激パルスであり、該方法が、第1の通知刺激パルスの送達後に、新しい通知振幅値によって少なくとも部分的に定義される第2の通知刺激パルスを送達することをさらに含む、実施例30~33のいずれかの組み合わせの方法。
【0166】
実施例35:ECAP信号の一部分の測定振幅が、ECAP信号のN1ピークとP2ピークとの間の電圧振幅を含む、実施例30~34のいずれかの組み合わせの方法。
【0167】
実施例36:ECAP信号の特性およびゲイン値に基づいて、通知刺激パルスを少なくとも部分的に定義する治療パラメータ値を判定することが、複数の連続して感知されたECAP信号の特性の平均値およびゲイン値に基づいて、通知刺激パルスを少なくとも部分的に定義する治療パラメータ値を判定することを含み、複数の連続して感知されたECAP信号がECAP信号を含む、実施例30~35のいずれかの組み合わせの方法。
【0168】
実施例37:複数の制御刺激パルスが制御刺激パルスを含み、複数の通知刺激パルスが通知刺激パルスを含み、該方法が、複数の制御刺激パルスを複数の通知刺激パルスのうちの少なくともいくつかとインターリーブさせることをさらに含む、実施例30~36のいずれかの組み合わせの方法。
【0169】
実施例38:複数の制御刺激パルスを複数の通知刺激パルスのうちの少なくともいくつかとインターリーブさせることが、複数の制御刺激パルスのうちの少なくとも2つの制御刺激パルスを、連続する通知刺激パルス間で送達することと、連続する通知刺激パルスの間に、少なくとも2つの制御刺激パルスのそれぞれの制御刺激パルスによって誘発される少なくとも2つのECAP信号を感知することと、を含む、実施例30~37のいずれかの組み合わせの方法。
【0170】
実施例39:通知刺激パルスのパルス幅が約300マイクロ秒超であり、約1000マイクロ秒未満である、実施例30~38のいずれかの組み合わせの方法。
【0171】
実施例40:制御刺激パルスのパルス幅が約300マイクロ秒未満である、実施例30~39のいずれかの組み合わせの方法。
【0172】
実施例41:通知刺激パルスが、受動的な再充電相が後に続く単相パルスであり、制御刺激パルスが、正相および負相を含む二相パルスである、実施例30~40のいずれかの組み合わせの方法。
【0173】
実施例42:通知刺激パルスが、第1の正相および第1の負相を含む第1の二相パルスであり、制御刺激パルスが、第2の正相および第2の負相を含む第2の二相パルスである、実施例30~41のいずれかの組み合わせの方法。
【0174】
実施例43:複数の制御刺激パルスが複数の非治療パルスを含み、複数の通知パルスが複数の治療パルスを含む、実施例30~42のいずれかの組み合わせの方法。
【0175】
実施例44:システムであって、刺激生成回路であって、制御刺激パルスを患者に送達することであって、制御刺激パルスが、第1のパルス幅を有する、送達することと、複数の通知パルスから、治療パラメータ値に従って、通知刺激パルスを送達することであって、複数の通知パルスが、第1のパルス幅よりも長い第2のパルス幅を有する送達することと、を行うように構成されている刺激生成回路と、処理回路であって、制御刺激パルスによって誘発された感知された誘発複合活動電位(ECAP)信号を受信することと、ECAP信号の特性を特定することと、ECAP信号の特性とゲイン値に基づいて、通知パルスを少なくとも部分的に定義するパラメータ値を判定することと、を行うように構成されている処理回路と、を含むシステム。
【0176】
実施例45:ゲイン値が、患者に送達され、刺激パラメータの異なる値によって少なくとも部分的に定義される、それぞれの較正刺激パルスから誘発されたECAP信号の特性の値の成長曲線の傾斜を表す、実施例44の方法。
【0177】
実施例46:ECAP信号の特性がECAP信号の一部分の測定振幅であり、治療パラメータ値が新しい通知振幅値を含み、処理回路が、新しい治療パラメータ値を判定することを、患者の目標ECAP振幅値から測定振幅を減算して、差分振幅を生成することと、差分振幅にゲイン値を乗算して、予備差分値を生成することと、予備差分値にスケーリング係数を乗算して、通知差分値を生成することであって、スケーリング係数が、制御刺激パルスの前に送達される以前の通知刺激パルスを定義する以前の通知振幅値の、制御刺激パルスを定義する制御振幅値に対する比を表す、生成することと、通知差分値を以前の通知振幅値に加算して、通知刺激パルスを少なくとも部分的に定義する新しい通知振幅値を生成することと、によって行うように構成されている、実施例44および45のいずれかの組み合わせに記載のシステム。
【0178】
実施例47:制御パルスが第1の制御パルスであり、処理回路が、第1の制御刺激パルスを定義する以前の制御振幅値に予備差分値を加算することにより、第2の制御刺激パルスを定義する新しい制御振幅値を生成するように構成され、第2の制御刺激パルスが、第1の制御刺激パルスの送達に続いて患者に送達される、実施例44~46のいずれかの組み合わせに記載のシステム。
【0179】
実施例48:通知刺激パルスが第1の通知刺激パルスであり、処理回路が、刺激生成回路を制御して、第1の通知刺激パルスの送達後に、新しい通知振幅値によって少なくとも部分的に定義される第2の通知刺激パルスを送達するように構成されている、実施例44~47のいずれかの組み合わせに記載のシステム。
【0180】
実施例49:ECAP信号の一部分の測定振幅が、ECAP信号のN1ピークとP2ピークとの間の電圧振幅を含む、実施例44~48のいずれかの組み合わせに記載のシステム。
【0181】
実施例50:処理回路が、ECAP信号の特性およびゲイン値に基づいて、通知刺激パルスを少なくとも部分的に定義する治療パラメータ値を判定することを、複数の連続して感知されたECAP信号の特性の平均値およびゲイン値に基づいて、通知刺激パルスを少なくとも部分的に定義する治療パラメータ値を判定することによって行うように構成されており、複数の連続して感知されたECAP信号がECAP信号を含む、実施例44~49のいずれかの組み合わせに記載のシステム。
【0182】
実施例51:複数の制御刺激パルスが前記制御刺激パルスを含み、複数の通知刺激パルスが通知刺激パルスを含み、処理回路が、刺激生成回路を制御して、複数の制御刺激パルスを複数の通知刺激パルスのうちの少なくともいくつかとインターリーブさせるように構成されている、実施例44~50のいずれかの組み合わせに記載のシステム。
【0183】
実施例52:処理回路が、刺激発生回路を制御して、複数の制御刺激パルスを複数の通知刺激パルスのうちの少なくともいくつか内でとインターリーブさせることを、刺激発生回路を制御して、複数の制御刺激パルスのうちの少なくとも2つの制御刺激パルスを、連続する通知刺激パルス間で送達することと、感知回路を制御して、連続する通知刺激パルスの間に、少なくとも2つの制御刺激パルスのそれぞれの制御刺激パルスによって誘発される少なくとも2つのECAP信号を感知することと、によって行うように構成されている、実施例44~51のいずれかの組み合わせに記載のシステム。
【0184】
実施例53:通知刺激パルスのパルス幅が約300マイクロ秒超であり、約1000マイクロ秒未満である、実施例44~52のいずれかの組み合わせに記載のシステム。
【0185】
実施例54:制御刺激パルスのパルス幅が約300マイクロ秒未満である、実施例44~53のいずれかのシステム。
【0186】
実施例55:通知刺激パルスが、受動的な再充電相が後に続く単相パルスであり、制御刺激パルスが、正相および負相を含む二相パルスである、実施例44~54のいずれかの組み合わせに記載のシステム。
【0187】
実施例56:通知刺激パルスが、第1の正相および第1の負相を含む第1の二相パルスであり、制御刺激パルスが、第2の正相および第2の負相を含む第2の二相パルスである、実施例44~55のいずれかの組み合わせに記載のシステム。
【0188】
実施例57:複数の制御パルスが、複数の非治療パルスを含み、複数の通知パルスが、複数の治療パルスを含む、実施例44~56のいずれかの組み合わせに記載のシステム。
【0189】
実施例58:コンピュータ可読記憶媒体であって、実行されたときに、1つ以上のプロセッサに、制御刺激パルスの患者への送達を制御することであって、制御刺激パルスが第1のパルス幅を有する、制御することと、制御刺激パルスによって誘発された誘発複合活動電位(ECAP)信号を感知することと、ECAP信号の特性を特定することと、ECAP信号の特性およびゲイン値に基づいて、複数の通知パルスから通知刺激パルスを少なくとも部分的に定義するパラメータ値を判定することとであって、複数の通知パルスが、第1のパルス幅よりも長い第2のパルス幅を有する、判定することと、判定したパラメータ値に従って通知パルスを送達することと、を行わせる命令を含むコンピュータ可読記憶媒体。
【0190】
本開示に記載される技術は、少なくとも部分的に、ハードウェア、ソフトウェア、ファームウェア、またはそれらのいずれかの組み合わせで実装されてもよい。例えば、記載された技術の様々な態様は、1つ以上のマイクロプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、あるいは他の同等の統合または個別論理回路、およびそのような構成要素のいずれかの組み合わせを含む、1つ以上のプロセッサまたは処理回路内に実装されてもよい。「プロセッサ」または「処理回路」という用語は、一般に、単独で、または他の論理回路と組み合わせた前述の論理回路のいずれか、または他の同等の回路を指し得る。ハードウェアを含む制御ユニットはまた、本開示の1つ以上の技術を実行してもよい。
【0191】
そのようなハードウェア、ソフトウェア、ファームウェアは、本開示に記載の様々な動作および機能をサポートするために、同じデバイス内または別個のデバイス内で実装されてもよい。加えて、記載されたユニット、回路、または構成要素のいずれかは、離散的ではあるが相互運用可能な論理デバイスとして一緒にまたは別々に実装されてもよい。異なる機能を回路またはユニットとして表現することは、異なる機能的な側面を強調することを意図しており、必ずしもそのような回路またはユニットが別個のハードウェアまたはソフトウェア構成要素によって実現されなければならないことを意味するものではない。むしろ、1つ以上の回路またはユニットに関連する機能は、別個のハードウェアまたはソフトウェア構成要素によって実行されてもよいし、共通または別個のハードウェアまたはソフトウェア構成要素内に統合されてもよい。
【0192】
本開示に記載される技術はまた、非一時的媒体として記述され得る命令を含む、コンピュータ可読記憶媒体などのコンピュータ可読媒体において具体化または符号化されてもよい。コンピュータ可読記憶媒体に埋め込まれたまたは符号化された命令は、例えば、命令が実行されたときに、プログラム可能なプロセッサまたは他のプロセッサにその方法を実行させることができる。コンピュータ読み取り可能な記憶媒体は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、プログラマブル読み取り専用メモリ(PROM)、消去可能なプログラマブル読み取り専用メモリ(EPROM)、電子的に消去可能なプログラマブル読み取り専用メモリ(EEPROM)、フラッシュメモリ、ハードディスク、CD-ROM、フロッピーディスク、カセット、磁気媒体、光学媒体、または他のコンピュータ読み取り可能な媒体を含むことができる。