(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-20
(45)【発行日】2023-11-29
(54)【発明の名称】フィンチューブ熱交換器
(51)【国際特許分類】
F28F 1/32 20060101AFI20231121BHJP
F28F 1/12 20060101ALI20231121BHJP
【FI】
F28F1/32 Z
F28F1/12 Z
(21)【出願番号】P 2019041390
(22)【出願日】2019-03-07
【審査請求日】2022-02-14
(73)【特許権者】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】100121083
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【氏名又は名称】天田 昌行
(74)【代理人】
【識別番号】100132067
【氏名又は名称】岡田 喜雅
(72)【発明者】
【氏名】中村 淳
(72)【発明者】
【氏名】岩崎 正道
【審査官】大谷 光司
(56)【参考文献】
【文献】特開2006-317046(JP,A)
【文献】特開平07-280478(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F28F1/00-1/44
(57)【特許請求の範囲】
【請求項1】
熱交換空気の流通方向と交差する方向に配列された複数本の伝熱管と、
前記伝熱管の管軸方向に一定間隔に配置される複数枚のフィンと、
前記複数枚のフィン間に配置される前記伝熱管を覆うフィンカラー部と、を備え、
前記複数枚のフィン間に配置される前記伝熱管に流路を設け、当該流路を介して前記熱交換空気の一部を前記熱交換空気の流通方向の下流側に排出し
、
前記流路は、前記フィンカラー部に形成される複数の貫通孔と、前記伝熱管に形成され、前記複数の貫通孔と連通する溝部と、を含んで構成されることを特徴とするフィンチューブ熱交換器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フィンチューブ熱交換器に関する。
【背景技術】
【0002】
産業用の熱交換器では、フィンチューブ熱交換器が一般的に用いられている。フィンチューブ熱交換器では、熱交換空気の流通方向と交差する方向に配列された複数本の伝熱管と、これらの伝熱管の管軸方向に配置される複数枚のフィン(伝熱板)とを有し、伝熱管内に液媒体を流し、伝熱管の外周面とフィンにガス体(熱交換空気)を当てて熱交換させる。複数枚のフィンは、伝熱面積を拡大することで、熱移動量の増大に寄与する。
【0003】
従来、このようなフィンチューブ熱交換器において、通風抵抗の増大を抑えつつ、熱交換効率を向上する各種の提案が行われている(例えば、特許文献1及び特許文献2参照)。特許文献1に記載のフィンチューブ熱交換器では、フィン面に対して所定の迎角を有し、且つ、伝熱管の中心から遠い端部で後退角を有するスリット状のルーバを備えている。このフィンチューブ熱交換器では、ルーバに後退角を設けることで、迎角の拡大による通風抵抗の増大を抑えつつ、熱交換効率の向上を図っている。
【0004】
また、特許文献2に記載のフィンチューブ熱交換器では、伝熱管(パイプ)の周囲に配置されたフィンにスリット状の切り起こし部を設け、当該切り起こし部の形状を、伝熱管の近傍で狭くする一方、離れるに従って広くなるように構成している。このフィンチューブ熱交換器では、伝熱管からの距離に応じて熱交換空気が通過するスリットの数を変えることで、通風抵抗を小さくし、熱交換効率の向上を図っている。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第4536583号公報
【文献】特開平11-63874号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述した特許文献1及び特許文献2に記載のフィンチューブ熱交換器においては、特殊な形状を有するルーバや切り起こし部をフィンに設けることで、伝熱係数を高めながら通風抵抗が増大するのを抑制している。ところで、円筒形状の伝熱管を有するフィンチューブ熱交換器においては、伝熱管からの流体(熱交換空気)の剥離が空気抵抗や熱伝達率向上の障害要因となっている。このような流体の剥離を抑制することは、熱交換器全体の熱交換効率の向上に寄与すると考えられる。
【0007】
本発明は、このような実情に鑑みてなされたものであり、熱交換空気の剥離の抑制を通じて空気抵抗を低減するとともに熱交換効率を向上することができるフィンチューブ熱交換器を提供することを目的の一つとする。
【課題を解決するための手段】
【0008】
本発明の一態様のフィンチューブ熱交換器は、熱交換空気の流通方向と交差する方向に配列された複数本の伝熱管と、前記伝熱管の管軸方向に一定間隔に配置される複数枚のフィンと、前記複数枚のフィン間に配置される前記伝熱管を覆うフィンカラー部と、を備え、前記複数枚のフィン間に配置される前記伝熱管に流路を設け、当該流路を介して前記熱交換空気の一部を前記熱交換空気の流通方向の下流側に排出し、前記流路は、前記フィンカラー部に形成される複数の貫通孔と、前記伝熱管に形成され、前記複数の貫通孔と連通する溝部と、を含んで構成されることを特徴とする。
【発明の効果】
【0009】
本発明によれば、熱交換空気の剥離の抑制を通じて空気抵抗を低減するとともに熱交換効率を向上することができる。
【図面の簡単な説明】
【0010】
【
図1】本実施の形態に係るフィンチューブ熱交換器の斜視図である。
【
図2】フィンチューブ熱交換器における伝熱管周辺の熱交換空気の流通状態の一例の説明図である。
【
図3】本実施の形態に係るフィンチューブ熱交換器の要部の斜視図である。
【
図4】本実施の形態に係るフィンチューブ熱交換器における伝熱管周辺の熱交換空気の流通状態の説明図である。
【発明を実施するための形態】
【0011】
以下、本発明の複数の実施の形態について添付図面を参照して詳細に説明する。本発明に係るフィンチューブ熱交換器は、例えば、地熱発電設備内に設置される凝縮器などに好適に利用される。しかしながら、本発明に係るフィンチューブ熱交換器は、これに限定されるものではなく、石油化学工場や精油工場の空冷式熱交換器や、焼却炉の空冷式復水器などの任意の熱交換器に適用することができる。
【0012】
一般に、産業用の熱交換器として利用されるフィンチューブ熱交換器は、熱交換空気の流通方向と交差する方向に配列された複数本の伝熱管と、これらの伝熱管の管軸方向に配置される複数枚のフィンとを有している。このようなフィンチューブ熱交換器では、伝熱管内に液媒体を流し、伝熱管の外周面とフィンにガス体を当てて熱交換させている。
【0013】
従来、このようなフィンチューブ熱交換器において、通風抵抗の増大を抑えつつ、熱交換効率を向上する各種の提案が行われている。例えば、フィン面に対して所定の迎角を有し、且つ、伝熱管の中心から遠い端部で後退角を有するスリット状のルーバを備えるフィンチューブ熱交換器が知られている。このフィンチューブ熱交換器では、特殊な形状を有するルーバをフィンに設けることで、伝熱係数を高めながら、通風抵抗が増大するのを抑制している。
【0014】
ところで、円筒形状の伝熱管を有するフィンチューブ熱交換器においては、伝熱管からの熱交換空気の剥離により、伝熱管における熱交換空気の下流側領域に死水域が形成されてしまう。死水域では、伝熱管下流側領域の圧力回復がなくなり負圧域が形成されるため、大きな空気抵抗が発生する。また、死水域では熱交換作用が生まれないため、熱伝達率の向上に寄与しない。このように、フィンチューブ熱交換器における熱交換効率を十分に向上できない。
【0015】
本発明者らは、このような伝熱管からの熱交換空気の剥離が、通風抵抗増大と伝熱性能の障害の双方の要因となっていることに着目した。そして、伝熱管からの熱交換空気の剥離を抑制させることが、伝熱管下流側領域に形成される死水域を縮減し、熱交換効率の向上に寄与することを見出し、本発明に想到した。
【0016】
すなわち、本発明の骨子は、熱交換空気の流通方向と交差する方向に配列された複数本の伝熱管と、これらの伝熱管の管軸方向に一定間隔に配置される複数枚のフィンと、を備え、複数枚のフィン間における熱交換空気の当接面の内部に流路を設け、当該流路を介して熱交換空気の一部を伝熱管における熱交換空気の流通方向の下流側に排出することである。本発明において、当接面とは、熱交換空気が接する伝熱管表面またはフィンから伝熱管表面に突出したフィンカラー部を指す。
【0017】
本発明によれば、複数枚のフィン間における熱交換空気の当接面に設けられた流路を介して伝熱管近傍で流れの遅くなった熱交換空気を伝熱管の下流側に吸入するとともに、伝熱管近傍よりも僅かに離れた位置を流れる熱交換空気(流れの速い熱交換空気)を伝熱管近傍に引き寄せることができる。これにより、伝熱管表面における速度勾配の低下を抑制でき、伝熱管からの熱交換空気の剥離を遅延させることができる。この結果、伝熱管の下流側領域に形成される死水域を縮減することができるので、熱交換効率を向上することができる。
【0018】
以下、本発明の一実施の形態に係るフィンチューブ熱交換器の構成について、
図1を参照して説明する。以下においては、説明の便宜上、本発明に係るフィンチューブ交換器が地熱発電設備内に設置される凝縮器に適用される場合について説明する。しかしながら、本発明に係るフィンチューブ交換器は、詳細について後述するように、フィンチューブ熱交換器を構成する伝熱管に流す液媒体を変更し、各種工場に設置される熱回収器などに適用することもできる。
【0019】
図1は、本実施の形態に係るフィンチューブ熱交換器(以下、適宜「熱交換器」という)1の斜視図である。なお、
図1においては、説明の便宜上、フィンチューブ10の一部を抜粋して示すと共に、一部のフィンチューブ10の断面を示している。以下においては、
図1に示す上下方向、前後方向及び左右方向を、本実施の形態に係る熱交換器1の上下方向、前後方向及び左右方向として説明する。
【0020】
本実施の形態に係る熱交換器1が適用される凝縮器は、熱交換器1と、熱交換器1と対向して配置される不図示の送風機とを含んで構成される。ここでは、送風機が熱交換器1の上方側に配置されるものとするが、これに限定されない。送風機は、熱交換器1の下方側から空気(熱交換空気)を吸い上げ、上方側の外部空間に送り出す。すなわち、熱交換空気は、熱交換器1の上下方向に流通する。吸い上げられた熱交換空気は、熱交換器1で熱交換されることで暖められた後、外部に放出される。
【0021】
熱交換器1は、
図1に示すように、複数本のフィンチューブ10を含んで構成される。フィンチューブ10は、熱交換空気の流通方向(熱交換器1の上下方向)に配列されると共に、熱交換空気の流通方向と交差する方向(例えば、熱交換器1の左右方向)に配列されている。熱交換空気の流通方向と交差する方向に配列される複数本のフィンチューブ10は、熱交換空気の流通方向と直交する方向に配列されることが一般的である。
【0022】
図1に示すように、フィンチューブ10は、熱交換器1の左右方向に一定の間隔を挟んで配列されている。相対的に上方側に配置されたフィンチューブ10は、相対的に下方側に配置された隣り合う一対のフィンチューブ10の中央に配置される(
図1に示す最上位置のフィンチューブ10を参照)。同様に、相対的に下方側に配置されたフィンチューブ10は、相対的に上方側に配置された隣り合う一対のフィンチューブ10の中央に配置される(
図1に示す最下位置のフィンチューブ10を参照)。言い換えると、複数本のフィンチューブ10は、正面視にて、千鳥状に配置されている。
【0023】
フィンチューブ10は、伝熱管11と、伝熱管11の外周面に配置された複数枚のフィン(伝熱板)12とを有する。伝熱管11は、概して円管形状を有しており、熱交換器1の前後方向に延在して構成される。例えば、伝熱管11には、外径寸法が25mmの円管が使用されるが、これに限定されない。伝熱管11の内部は、液媒体が流通可能に構成されている。例えば、液媒体として、温水を使用することができる。伝熱管11の表面温度は、内部を流通する液媒体の温度に応じて変化する。
【0024】
複数枚のフィン12は、伝熱管11の外周面に接合されている。例えば、フィン12は、伝熱管11の外径の一部又は全部を拡張する拡管加工により伝熱管11の外周面に接合されるが、これに限定されない。フィン12は、伝熱管11の管軸方向に一定間隔を空けて配置されている。例えば、フィン12は、2mm間隔、或いは、5mm間隔で配置される。全てのフィン12は、同一の形状を有している。フィン12は、正面視にて、概して円環形状を有している。各フィン12の内縁部には、フィンカラー部121が設けられている。フィンカラー部121の所定位置には、複数の貫通孔122が形成されている。これらの貫通孔122は、後述する熱交換空気の流路13の一部を構成する。
【0025】
ここで、一般的なフィンチューブ熱交換器における伝熱管11の周辺の熱交換空気の流通状態について、
図2を参照して説明する。
図2は、フィンチューブ熱交換器における伝熱管11の周辺の熱交換空気の流通状態の一例の説明図である。
図2Aにおいては、フィンチューブ10の正面図を示し、
図2Bにおいては、伝熱管11の表面近傍を模式的に示している。
図2においては、説明の便宜上、本実施の形態と共通の符号を付与するものとする。また、
図2Aにおいては、熱交換空気の流れを破線矢印にて示している。なお、
図2に示すフィンチューブ熱交換器では、本実施の形態に係る熱交換器1と異なり、熱交換空気の流路13が設けられていない。
【0026】
送風機によりフィンチューブ熱交換器の下方側から熱交換空気が吸い上げられると、熱交換空気は、伝熱管11の下方側部分に当たり、その外周面に沿って上方側に流通する。そして、熱交換空気は、
図2Aに示すように、伝熱管11における熱交換空気の流通方向の下流側領域にて、伝熱管11から剥離し、伝熱管11よりも外側(左右方向の外側)の領域を流通する。これにより、伝熱管11の上方側には、死水域Aが形成されてしまう。
【0027】
ここで、伝熱管11から熱交換空気が剥離する仕組みについて説明する。伝熱管11の表面周辺において、熱交換空気は、
図2Bに破線で示す速度境界層Bを有した状態で流通している。速度境界層Bの内側を流通する熱交換空気は、粘性の影響により速度勾配(∂u/∂y)を有する。そして伝熱管11の表面との摩擦の影響を受けて、下流側に進むに従ってエネルギを失いながら流通し、例えば、逆圧力勾配の流れ(流れ方向に圧力が高くなる流れ)において伝熱管11の表面の速度勾配(∂u/∂y)の値は、
図2Bに示す位置A、位置B及び位置Cの順に小さくなる。そして、位置Dにて0となる。
【0028】
位置Dより下流側において、エネルギを失った熱交換空気は、圧力に逆らいながら流れることができず、伝熱管11の表面から剥離する。熱交換空気が伝熱管11の表面から離れる位置(ここでは、位置D)は、剥離点と呼ばれる。剥離点の下流側には、伝熱管11の表面近傍に、熱交換空気が流れない領域Cが形成される。領域Cでは、伝熱管11の表面近傍に逆流が生じ、
図2Bに示すように渦が発生する。
【0029】
このような熱交換空気の剥離を抑制するために、本実施の形態に係る熱交換器1では、隣り合うフィン12の間における熱交換空気の当接面の内部に流路を設け、当該流路を介して熱交換空気の一部を伝熱管11の背面側(熱交換空気の流通方向の下流側)に排出する。本実施の形態においては、熱交換空気の当接面は、フィンカラー部121の外周面で構成される。
図3は、本実施の形態に係る熱交換器1の要部の斜視図である。
図3Aにおいては、フィン12を伝熱管11に接合する前の状態を示し、
図3Bにおいては、フィン12を伝熱管11に接合した状態を示している。
【0030】
図3に示すように、伝熱管11の表面には、複数の溝部111が設けられている。溝部111は、伝熱管11の外周面の一部に、伝熱管11の周方向に沿って設けられている。例えば、溝部111は、熱交換空気の流通方向の伝熱管11の下流側の一部に設けられるが、これに限定されない。溝部111は、伝熱管11の管軸方向に一定間隔を空けて配列されている。これらの溝部111は、フィン12が伝熱管11に接合された場合に隣り合うフィン12の間の位置に配置される。すなわち、これらの溝部111は、フィンカラー部121に重なるように配置される。
【0031】
一方、フィンカラー部121には、複数(本実施の形態では3つ)の貫通孔122が形成されている。複数の貫通孔122は、熱交換空気の流通方向と直交する方向(
図3Aに示す左右方向)に沿った直線上の位置に配置される一対の貫通孔122a、122bと、熱交換空気の流通方向(
図3Aに示す上下方向)の最も下流側の位置に対応して配置される貫通孔122cとを有している。これらの貫通孔122a~122cは、90度間隔で配置されている。貫通孔122aと貫通孔122bとは、正面視にて、伝熱管11の管軸方向の中心を挟んで対向する位置に配置される。これらの貫通孔122a、122bは、熱交換空気の流入孔や吸込み孔と呼ぶこともできる。貫通孔122cは、熱交換空気の排出孔と呼ぶこともできる。
【0032】
伝熱管11の外周面に複数のフィン12が接合された場合において、同一のフィンカラー部121に形成された貫通孔122a~122cは、同一の溝部111に対応する位置に配置される。これらの貫通孔122a~122cと、溝部111と、フィンカラー部121の内周面とで熱交換空気の流路13が形成される(
図4参照)。すなわち、貫通孔122a、122bから流路13に流入した熱交換空気は、溝部111内を通って貫通孔122cから排出される。これらの流路は、伝熱管11の近傍を流通する熱交換空気の一部を吸い込み、伝熱管11の背面側(
図3に示す上方側)に流通させる役割を果たす。
【0033】
ここで、本実施の形態に係る熱交換器1における伝熱管11の周辺の熱交換空気の流通状態について、
図4を参照して説明する。
図4は、本実施の形態に係る熱交換器1における伝熱管11周辺の熱交換空気の流通状態の説明図である。
図4Aにおいては、流路13を通る伝熱管11の近傍の断面を模式的に示し、
図4Bにおいては、フィンチューブ10の正面図を示している。また、
図4A及び
図4Bにおいては、一部の熱交換空気の流れを破線矢印にて示している。
【0034】
図4Aに示すように、伝熱管11(フィンカラー部121)の表面近傍を流れる熱交換空気は、貫通孔122aを介して流路13内に進入している。これにより、伝熱管11の近傍で流れが遅くなった熱交換空気が流路13を介して伝熱管11の下流側に排出される。より具体的には、位置Cにおける伝熱管11の近傍で流れが遅くなった熱交換空気が流路13を介いて伝熱管11の下流側に排出される。これにより、伝熱管11の近傍よりも僅かに離れた位置を流れる熱交換空気(流れの速い熱交換空気)が伝熱管11の近傍に引き寄せられる。この結果、伝熱管11表面における速度勾配の低下を抑制でき、伝熱管11の表面からの熱交換空気の剥離を遅延させることができる。
【0035】
図2Bとの比較において具体的に説明する。
図2Bに示すように、流路13が設けられていないフィンチューブ熱交換器では、熱交換空気の剥離点が位置Dであった。これに対し、本実施の形態に係る熱交換器1では、熱交換空気の剥離点が位置Eまで遅延している。このため、熱交換空気の剥離は、位置Eの下流側で発生する。
【0036】
このように熱交換空気の剥離を遅延させることにより、
図4Bに示すように、伝熱管11の下流側領域で、
図2Aに示す死水域Aの領域が縮減される。この結果、伝熱管下流域側の負圧域を縮小することができ、空気抵抗を低減できるとともに、フィン12における熱交換作用を発揮する領域を拡大することができ、熱交換効率を向上することができる。
【0037】
以上説明したように、本実施の形態に係る熱交換器1においては、熱交換空気の流通方向と交差する方向に配列された複数本の伝熱管11と、これらの伝熱管11の管軸方向に一定間隔に配置される複数枚のフィン12と、を備え、複数枚のフィン12間における熱交換空気の当接面の内部に流路13を設け、この流路13を介して熱交換空気の一部を伝熱管11における熱交換空気の流通方向の下流側に排出している。この構成によれば、複数枚のフィン12間における熱交換空気の当接面に設けられた流路13を介して伝熱管11近傍で流れの遅くなった熱交換空気を伝熱管11の下流側に吸入するとともに、伝熱管近傍よりも僅かに離れた位置を流れる熱交換空気(流れの速い熱交換空気)を伝熱管近傍に引き寄せることができる。これにより、伝熱管11表面における速度勾配の低下を抑制でき、伝熱管11の表面からの熱交換空気の剥離を遅延させることができる。この結果、伝熱管11の下流側領域で死水域を縮減することができるので、フィン12内で熱交換空気が流れる領域を拡大でき、空気抵抗を低減するとともに熱交換効率を向上することができる。
【0038】
特に、本実施の形態に係る熱交換器1においては、複数枚のフィン12間に配置される伝熱管11を覆うフィンカラー部121を備えている。そして、流路13は、フィンカラー部121に形成される複数の貫通孔122と、伝熱管11に形成され、複数の貫通孔122と連通する溝部111とを含んで構成されている。このように、伝熱管11の一部(溝部111)とフィンカラー部121の一部(貫通孔122)とを組み合わせて流路13を構成することで、複雑な加工処理を必要とすることなく流路13を形成することができ、フィンチューブ10の製造に要するコスト及び時間を低減することができる。
【0039】
なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている部材や孔などの大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
【0040】
例えば、上記実施の形態においては、熱交換空気の流通方向と直交する方向(
図3Aに示す左右方向)に沿った直線上の位置に一対の貫通孔122a、122bを配置し、熱交換空気の流通方向(
図3Aに示す上下方向)の最も下流側の位置に対応して配置される貫通孔122cを配置する場合について説明している。しかしながら、これらの貫通孔122の配置については、上記内容に限定されるものではなく適宜変更が可能である。一対の貫通孔122a、122bは、熱交換空気の流通方向と直交する方向に配置されていなくてもよく、熱交換空気の剥離点の近傍であることを前提として任意の位置に配置することができる。また、貫通孔122cは、熱交換空気の流通方向(
図3Aに示す上下方向)の下流側の位置であることを前提として任意の位置に配置することができる。
【0041】
また、上記実施の形態においては、伝熱管11に設けた溝部111と、貫通孔122a~122cと、フィンカラー部121の内周面とで流路13を構成する場合について説明している。しかしながら、流路13の構成については、これに限定されるものではなく適宜変更が可能である。例えば、フィン12がフィンカラー部121を備えない態様においては、伝熱管11の内部に流路を形成してもよい。すなわち、伝熱管11自体に熱交換空気の流入孔及び排出孔を設けると共に、これらを接続する溝部を設けることで流路を構成してもよい。この場合には、伝熱管11の表面が複数枚のフィン12間における熱交換空気の当接面を構成する。さらに、流路13の全ての構成をフィンカラー部121の内部に設ける構成としてもよい。
【産業上の利用可能性】
【0042】
以上説明したように、本発明は、熱交換空気の剥離の抑制を通じて空気抵抗を低減するとともに熱交換効率を向上することができるという効果を有し、特に、発電所等に設置される産業用の熱交換器に有用である。
【符号の説明】
【0043】
1 :熱交換器
10 :フィンチューブ
11 :伝熱管
12 :フィン
13 :流路
111 :溝部
121 :フィンカラー部
122、122a~122c:貫通孔