(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-20
(45)【発行日】2023-11-29
(54)【発明の名称】内視鏡
(51)【国際特許分類】
A61B 1/00 20060101AFI20231121BHJP
【FI】
A61B1/00 731
A61B1/00 511
(21)【出願番号】P 2022144177
(22)【出願日】2022-09-09
(62)【分割の表示】P 2020549411の分割
【原出願日】2019-09-26
【審査請求日】2022-10-07
(31)【優先権主張番号】P 2018185223
(32)【優先日】2018-09-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】320008672
【氏名又は名称】i-PRO株式会社
(74)【代理人】
【識別番号】110002000
【氏名又は名称】弁理士法人栄光事務所
(72)【発明者】
【氏名】花田 康行
(72)【発明者】
【氏名】長田 晃典
(72)【発明者】
【氏名】末吉 正史
【審査官】増渕 俊仁
(56)【参考文献】
【文献】国際公開第2017/018126(WO,A1)
【文献】特開2008-224842(JP,A)
【文献】特開2004-008412(JP,A)
【文献】特開2004-344230(JP,A)
【文献】特開2001-178674(JP,A)
【文献】特開2010-211115(JP,A)
【文献】特許第6407386(JP,B1)
【文献】米国特許出願公開第2013/0271763(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 1/00-1/32
G02B 23/24-23/26
(57)【特許請求の範囲】
【請求項1】
イメージセンサと、撮像光学系と、被写体を蛍光発光させるための励起光の一部を遮断する励起光カットフィルタとを備える内視鏡であって、
前記イメージセンサは、
前記励起光に基づく蛍光を含む被写体からの光が入射する撮像面を有し、
前記撮像光学系は、
前記撮像面を覆う素子カバーガラスと、
前記素子カバーガラスよりも前記被写体の近くに配置されている対物カバーガラスと、
前記対物カバーガラスを通過した光を受光する第1受光面と前記第1受光面を通過した光を前記撮像面に向けて出射する出射凸面とを有し、前記対物カバーガラスから前記撮像面までの光路において前記対物カバーガラスと前記素子カバーガラスとの間に配置されている第1レンズユニットと、
前記第1レンズユニットを通過した光を受光する第2受光面と前記第2受光面を通過した光を前記撮像面に向けて出射する出射凹面とを有し、前記光路において前記第1レンズユニットと前記素子カバーガラスとの間に配置されている第2レンズユニットと、
前記光路において前記素子カバーガラスと前記対物カバーガラスとの間に配置されている絞りと、を含み、
前記励起光カットフィルタは、
前記素子カバーガラスと、前記対物カバーガラスと、前記第1レンズユニットと、前記第2レンズユニットと、のうち、いずれかひとつにおいて前記励起光カットフィルタへの光の入射角が所定の値以下となるように蒸着形成されている、
内視鏡。
【請求項2】
前記励起光カットフィルタへの光の入射角(θF)は、
前記励起光の強度がピークの1/e
2以下になる光線角度をθL、前記励起光カットフィルタが形成された前記素子カバーガラスと、前記対物カバーガラスと、前記第1レンズユニットと、前記第2レンズユニットと、のうち、いずれかひとつの屈折率をnLとした場合において、θF=sin
-1(nL*sinθL)(*は乗算の演算子を示す)である、
請求項1に記載の内視鏡。
【請求項3】
前記励起光カットフィルタは、透過禁止帯域として、前記励起光のピーク強度に対応する波長と、前記励起光の強度がピークの1/e
2以下になる波長とを含み、かつ、前記励起光に基づいて発生した蛍光の波長帯の一部を含むか、または前記蛍光の波長帯の全てを含まない反射型カットフィルタである、
請求項1に記載の内視鏡。
【請求項4】
前記励起光カットフィルタは、透過禁止帯域として、前記励起光のピーク強度に対応する波長と、前記励起光の強度がピークの1/e
2以下になる波長とを含み、かつ、前記励起光に基づいて発生した蛍光の波長帯の一部を含むか、または前記蛍光の波長帯の全てを含まない吸収型カットフィルタである、
請求項1に記載の内視鏡。
【請求項5】
前記所定の値は、25度未満である、
請求項1に記載の内視鏡。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、観察対象に照射される励起光に基づいて生じる蛍光を撮像する内視鏡に関する。
【背景技術】
【0002】
内視鏡が挿入される観察対象(例えば、患者の体内)で生じる蛍光を撮像する際、撮像対象(例えば、患部)に照射される励起光の入射を極力抑えるために、励起光の透過を遮断するための励起光カットフィルタが内視鏡の撮像光学系に配置される。例えば、特許文献1では、撮像光学系に少なくとも2枚の励起光カットフィルタが配置される内視鏡が知られている。これらの励起光カットフィルタは、それぞれ同一の透過率特性を持ち、赤から近赤外光領域において透過率を持ち、励起光の波長帯における透過率が0.1%以下、入射角25度の光線の透過率が0.1%以上であり、かつ入射角0度の光線の透過率が50%以上となる波長が680nm以上である。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1の構成では、複数(例えば、2枚)の励起光カットフィルタが光学系に配置され、さらに、第1の励起光カットフィルタより対物側、第1励起光カットフィルタと第2励起光カットフィルタとの間、のそれぞれには、パワーを持つ光学素子(例えば、両凸レンズ)が配置されている。
【0005】
本開示は、上述した従来の状況に鑑みて案出され、撮像光学系の構造の簡素化と蛍光画像の画質の劣化の抑制とを両立可能な内視鏡を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示は、光路を構成する複数の光学部品を有し、被写体に投与された蛍光薬剤を蛍光発光させるための励起光に基づく蛍光を含む、前記被写体からの光を前記光路に入射させて結像する撮像光学系と、前記撮像光学系により結像された前記被写体からの光を光電変換するイメージセンサと、前記撮像光学系の内部に1枚のみ配置され、前記被写体からの光のうち前記励起光の少なくとも一部の透過を遮断する励起光カットフィルタと、を備える、内視鏡を提供する。
【0007】
また、本開示は、光路を構成する複数の光学部品を有し、被写体に投与された蛍光薬剤を蛍光発光させるための励起光に基づく蛍光を含む、前記被写体からの光を前記光路に入射させて結像する撮像光学系と、前記撮像光学系により結像された前記被写体からの光を光電変換するイメージセンサと、前記被写体からの光のうち前記励起光の少なくとも一部の透過を遮断する励起光カットフィルタと、を備え、前記複数の光学部品は第1のレンズおよび前記第1のレンズの後端側に配置される第2のレンズを含み、互いに隣接する前記第1のレンズの後端面および前記第2のレンズの先端面は平面であり、前記励起光カットフィルタは、互いに隣接する前記第1のレンズの後端面および前記第2のレンズの先端面の間に内挿される、内視鏡を提供する。
【発明の効果】
【0008】
本発明によれば、撮像光学系の構造の簡素化と蛍光画像の画質の劣化の抑制とを両立可能な内視鏡を提供することができる。
【図面の簡単な説明】
【0009】
【
図1】実施の形態1に係る内視鏡システムの外観例を示す斜視図
【
図4】バンドカットフィルタの特性と励起光および蛍光の特性との一例を示すグラフ
【
図5】
図4の波長700~900nmの領域の特性の要部拡大図
【
図6】第1の撮像光学系の構成配置および光線の入射光路の一例を示す図
【
図7】第2の撮像光学系の構成配置および光線の入射光路の一例を示す図
【
図8】第3の撮像光学系の構成配置および光線の入射光路の一例を示す図
【
図9】第4の撮像光学系の構成配置および光線の入射光路の一例を示す図
【
図10】第1~第4のそれぞれの撮像光学系における発生光線に対応する最大入射角(空気換算)の一例を示す図
【発明を実施するための形態】
【0010】
(本開示に係る一形態を得るに至った経緯)
先ず、特許文献1に開示された複数枚の励起光カットフィルタを含む撮像光学系に比べ、撮像光学系の全光学長を短縮するために、励起光カットフィルタ(例えば、バンドカットフィルタ(BCF:Band Cut Filter))を1枚だけ配置することを検討する。励起光は、被写体(つまり、内視鏡の挿入部が挿入される観察対象のこと。例えば、患者の体内)に予め投与された蛍光薬剤(例えば、ICG(インドシアニングリーン))を蛍光発光させるために、被写体に照射される。
【0011】
バンドカットフィルタが1枚だけ配置され、そのバンドカットフィルタに入射する励起光(例えば、690nmm~820nm)の入射角が大きければ、バンドカットフィルタにおいて励起光の十分な反射(言い換えると、遮断)ができず、励起光がバンドカットフィルタを通過してしまう。この場合、励起光がバンドカットフィルタを透過して撮像光学系のイメージセンサ側に進入するので、撮像の際に不要光(言い換えると、撮像画像の画質を劣化させる要因となる光)である迷光が発生する可能性が増す。
【0012】
一方で、バンドカットフィルタへの励起光の入射角が所定の閾値(例えば、25度)未満程度である場合、バンドカットフィルタは、入射してくる励起光を十分に遮断できる。この場合、イメージセンサに結像される励起光の光量が低減されるので、イメージセンサにより撮像された画像の画質の劣化は抑制可能となることが期待される。
【0013】
そこで、以下の実施の形態では、バンドカットフィルタへの励起光の入射角が所定の閾値(例えば、25度)未満程度となるように、1枚のバンドカットフィルタを用いた簡素な構造で、蛍光の撮像に不要な励起光(690nmm~820nm)の透過を十分に遮断できるようにする。
【0014】
以下、適宜図面を参照しながら、本開示に係る内視鏡の構成や動作等を具体的に開示した実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
【0015】
図1は、実施の形態1に係る内視鏡システム11の外観例を示す斜視図である。以下の説明において、説明に用いる方向については
図1中の方向の記載に従う。具体的には、水平面に載置されたビデオプロセッサ13の筐体27の上方向と下方向をそれぞれ「上」、「下」と称する。また、内視鏡15が観察対象を撮像する側を「前(先)」と称し、ビデオプロセッサ13に接続される側を「後」と称する。また、内視鏡15が挿入される方向の右手側を「右」と称し、内視鏡15が挿入される方向の左手側を「左」と称する。
【0016】
内視鏡システム11は、内視鏡15と、ビデオプロセッサ13と、モニタ17とを含む構成である。内視鏡15は、例えば、医療用の軟性鏡である。ビデオプロセッサ13は、内視鏡15が観察対象(例えば、患者等である人体、あるいは、その人体内部の患部)を撮像することで得られた撮像画像(例えば、静止画および動画を含む)に対して画像処理を施す。ビデオプロセッサ13は、画像処理により得られた画像信号を表示用の画像信号としてモニタ17に送る。モニタ17は、ビデオプロセッサ13から出力される表示用の画像信号に従って、ビデオプロセッサ13により画像処理された、内視鏡15の撮像画像を表示する。画像処理は、例えば、色補正、階調補正、ゲイン調整を含むが、これらに限定されない。
【0017】
内視鏡15は、患者等である人体の観察対象(被写体の一例)に挿入され、その観察対象を撮像する。内視鏡15は、観察対象の内部に挿入されるスコープ19と、スコープ19の後端部が接続されるプラグ部21とを備える。また、スコープ19は、比較的長い可撓性を有する軟性部23と、軟性部23の先端に設けられた剛性を有する硬性部25とを含む構成である。スコープ19の構造については後述する。
【0018】
ビデオプロセッサ13は、筐体27を有し、内視鏡15により撮像された撮像画像に対して画像処理を施し、画像処理後の画像信号を表示用の画像信号として出力する。筐体27の前面には、プラグ部21の基端部29が挿入されるソケット部31が配置される。プラグ部21がソケット部31に挿入され、内視鏡15とビデオプロセッサ13とが電気的に接続されることで、内視鏡15とビデオプロセッサ13との間で電力および各種信号(例えば映像信号、制御信号)の送受信が可能となる。これらの電力および各種信号は、スコープ19の内部に挿通された伝送ケーブル231(
図3参照)を介して、プラグ部21から軟性部23に導かれる。また、硬性部25の内側に設けられたイメージセンサ33(
図3参照)から出力される撮像画像の画像信号は、伝送ケーブル231を介して、プラグ部21からビデオプロセッサ13に伝送される。
【0019】
また、筐体27には、可視光(白色光)を照射するための可視光源(図示略)と励起光(例えば、IR帯の励起光)を照射するためのIR励起光源(図示略)とが内蔵されている。
【0020】
可視光源は、医師等(医師等の補助をする者を含む。以下同様。)により操作されると、可視光(白色光)を発光(照射)する。この可視光(白色光)は、光ファイバ49,49(ライトガイドの一例)を介して内視鏡15の挿入方向先端に導光されて観察対象に向けて照明される。
【0021】
同様に、IR励起光源は、医師等により操作されると、IR帯の励起光を発光(照射)する。この励起光は、光ファイバ39,41(ライトガイドの一例)を介して内視鏡15の挿入方向先端に導光されて観察対象に向けて照明される。
【0022】
ビデオプロセッサ13は、伝送ケーブル231を介して内視鏡15から伝送された画像信号に対し、画像処理を施し、画像処理後の画像信号を表示用の画像信号に変換して、モニタ17に出力する。
【0023】
モニタ17は、例えば、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)、あるいは有機EL(Electroluminescence)ディスプレイ等の表示デバイスにより構成される。モニタ17は、内視鏡15によって撮像された観察対象の撮像画像を表示する。具体的には、モニタ17は、可視光の撮像により取得した可視光画像と、励起光に基づく蛍光の撮像により発生した蛍光画像とを表示する。
【0024】
図2は、内視鏡15の先端側の外観例を示す斜視図である。硬性部25の先端面には、撮像窓35が配置される。撮像窓35は、例えば、光学ガラスあるいは光学プラスチック等の光学材料を含んで形成され、観察対象(被写体の一例)からの光を入射する。観察対象からの光は、例えば、白色光が照射された場合の観察対象により反射された光(つまり、可視光)、あるいは、IR帯の励起光が照射された場合の観察対象により反射された光(つまり、励起光)および励起光により生じた蛍光である。
【0025】
内視鏡15は、蛍光観察用の励起光を被写体の観察対象に照射し、励起光の照射に基づいて被写体内に予め注射等で投与された蛍光薬剤(例えば、ICG)から発せられる蛍光を撮像し、蛍光画像を取得できる。このような蛍光観察では、例えば380nm~450nmの波長帯域を有する紫外線、あるいは、690~820nmの波長帯域を有するIR帯の励起光が用いられる。以下、実施の形態1では、蛍光観察用の励起光として、IR(Infrared)励起光を用いる例を説明するが、励起光はこれに限定されない。
【0026】
硬性部25の先端面には、IR励起光源からの励起光を伝送(導光)するための一対の光ファイバ39,41の先端が露出する照明窓43,45が配置される。硬性部25の先端面には、可視光源からの可視光を伝送(導光)するための一対の光ファイバ49,50の先端が露出する一対の照明窓51が配置される。IR用の一対の照明窓43,45は、硬性部25の先端に設けられる円形状の先端フランジ53における直径方向の両端側に配置される。また、可視光用の一対の照明窓51,51は、同様に先端フランジ53における直径方向の両端側に配置される。これらIR用の一対の照明窓43,45と、可視光用の一対の照明窓51,51とは、例えば、円周方向に等間隔で配置される。なお、IR用の一対の光ファイバ39,41、および可視光用の一対の光ファイバ49,49の数は、上記以外でもよい。
【0027】
図3は、内視鏡15の硬性部25の一例を示す断面図である。
図3の断面は、例えば、
図2の照明窓43,撮像窓35,照明窓45のそれぞれの中心を全て通る平面で切った断面として表されてもよいし、あるいは、
図2の照明窓51,撮像窓35,照明窓51のそれぞれの中心を全て通る平面で切った断面として表されてもよい。
【0028】
内視鏡15は、レンズ支持部材239により撮像光学系を収容可能に支持するレンズユニット235と、撮像面241が素子カバーガラス243によって覆われるイメージセンサ33と、撮像面241の中心にレンズの光軸を一致させたレンズユニット235と素子カバーガラス243(センサ用ガラスの一例)とを固定する接着用樹脂37と、イメージセンサ33の撮像面と反対側(つまり、後側)の面に設けられた4つの導体接続部249のそれぞれに接続される4本の電線245を有する伝送ケーブル231と、を備える。
【0029】
レンズ支持部材239には、光学材料(例えばガラス、樹脂等)により形成された複数(図示例では、3枚)の平凸レンズL1,両凸レンズL2,両凹レンズL3と、平凸レンズL1の前面に形成された絞りAP1と、が互いに光軸の方向に近接した状態で組み込まれている。絞りAP1は平凸レンズL1への入射光量の調整に設けられ、絞りAP1を通過した光だけが平凸レンズL1に入射可能となる。平凸レンズL1,両凸レンズL2,両凹レンズL3は、全周にわたってレンズ支持部材239の内周面に接着剤により固定されている。なお、以下の説明において、両凹レンズL3の代わりに凹平レンズが設けられてもよい。
【0030】
レンズ支持部材239を構成する金属材料としては、例えばニッケルが用いられる。ニッケルは、剛性率が比較的高くかつ耐食性も高く、硬性部25を構成する材料として適している。また、内視鏡15を用いた検査時または手術時に硬性部25からレンズ支持部材239を構成するニッケルが直接的に露出しないように、検査前または手術前の時点で、レンズ支持部材239の周囲はモールド樹脂217によってムラ無く被覆され、かつ硬性部25が生体適合コーティングを施されることが好ましい。ニッケルに代えて、例えば銅ニッケル合金を用いてもよい。銅ニッケル合金も高い耐食性を有しており、硬性部25を構成する材料として適している。また、レンズ支持部材239を構成する金属材料としては、好ましくは、電鋳(電気めっき)によって製造が可能な材料が選択される。
【0031】
イメージセンサ33は、例えば前後方向から見て正方形形状をなす小型のCCD(Charge Coupled Device)あるいはCMOS(Complementary Metal-Oxide Semiconductor)の撮像デバイスにより構成される。イメージセンサ33では、外部から入射した光が、レンズ支持部材239内の光学レンズ群によって集光されて撮像面241に結像される。また、イメージセンサ33では、撮像面241が素子カバーガラス243(例えば、後述するセンサ用ガラスSG2)によって保護されるように覆われる。
【0032】
イメージセンサ33の背面側の後部には、4つの導体接続部249が設けられる。導体接続部249は、例えばLGA(Land grid array)によって形成することができる。4つの導体接続部249は、一対の電力接続部と、一対の信号接続部とからなる。4つの導体接続部249は、伝送ケーブル231の4本の電線245と電気的に接続される。伝送ケーブル231は、電線245である一対の電力線と、電線245である一対の信号線とからなる。即ち、導体接続部249の一対の電力接続部には、伝送ケーブル231の一対の電力線が接続される。導体接続部249の一対の信号接続部には、伝送ケーブル231の一対の信号線が接続される。
【0033】
この内視鏡15によれば、レンズユニット235とイメージセンサ33とが、接着用樹脂37によって所定距離保持した状態で固定される。固定されたレンズユニット235とイメージセンサ33とは、レンズユニット235の光軸と、撮像面241の中心とが位置合わせされている。また、レンズユニット235とイメージセンサ33との距離は、レンズユニット235を通る被写体からの入射光が、イメージセンサ33の撮像面241に合焦する距離で位置合わせされている。レンズユニット235とイメージセンサ33とは、位置合わせされた後に固定されている。
【0034】
固定されたレンズユニット235とイメージセンサ33との間には、離間部が形成される。離間部は、レンズユニット235とイメージセンサ33とが、相対的に位置合わせされ、相互が接着用樹脂37によって固定されることで、形状が定まる。即ち、離間部は、レンズユニット235とイメージセンサ33との位置合わせ用の調整ギャップとなっている。
【0035】
図4は、バンドカットフィルタの特性と励起光および蛍光の特性との一例を示すグラフである。内視鏡15は、バンドカットフィルタ(IR励起光カットフィルタの一例)を、反射型カットフィルタにより構成できる。この場合、バンドカットフィルタは、非吸収性フィルタとなるので、誘電体フィルタ(即ち、反射型カットフィルタ)と称し、吸収を示す金属フィルタと区別することができる。
【0036】
バンドカットフィルタは、透過帯と阻止帯との境89(エッジ)、境91が急峻なエッジフィルタとなる。この種のエッジフィルタで要請されるのは、一般的に阻止帯から透過帯への変化ができるだけ鋭く、かつ、透過帯ができるだけ100%に近いことである。実施の形態1に係るバンドカットフィルタでは、阻止帯のほぼ中央が励起光の波長となっている。
【0037】
図5は、
図4の波長700~900nmの領域の特性の要部拡大図である。ここで、励起光による蛍光は、励起光に対して数%の微弱なものとなる。特に人体に無害な医療用の蛍光薬剤であるインドシアニングリーン(ICG)を体内の患部周囲に投与し、観察部位(例えば、ICGが集積する患部)にIR帯の励起光を当てて蛍光を生じさせることで患部を光らせて撮像する場合が考えられる。そのため、ビデオプロセッサ13は、蛍光発光画像(蛍光画像)のゲインを上げるようにゲインを調整する。そのため、微弱な励起光の侵入によっても画質の低下が生じる。このような事情から、阻止帯は、励起光の波長に対して十分な範囲を確保したい。
【0038】
一方で、励起光による蛍光は、励起光の波長帯に連続してなだらかな波長範囲でピークとなる。そこで、バンドカットフィルタの阻止帯と透過帯との境91が重要となる。即ち、境91は、励起光波長から離間させつつ、蛍光波長Wkはできるだけ取り込みたい要請がある。バンドカットフィルタは、阻止帯(透過禁止帯域)が、励起光のピーク強度に対応する波長と、励起光の強度がピークの1/Exp2(つまり、e2)以下になる波長とを含み、かつ、発生した蛍光波長Wkの全てを含まない波長(または、発生した蛍光波長Wkの一部を含む波長)としている。eは、2.71828…(以下、略)であり、自然対数の底である。即ち、バンドカットフィルタは、蛍光波長Wkのうち特に微弱で、励起光に近接する波長領域を阻止帯に含めることで切り捨てている。これにより、励起光の侵入を極力抑制しながら、かつ、微弱な蛍光波長Wkのうち実効ある有効蛍光波長Wkaを効率よく取り込み可能としている。
【0039】
この反射型のバンドカットフィルタは、光学濃度(OD値)の高いものを使用することが好ましい。OD値は、例えば5以上とすることが望ましい。バンドカットフィルタは、OD値を高めに設定することにより、励起光の通過をより阻止しやすくできる。
【0040】
また、内視鏡15は、バンドカットフィルタを、吸収型カットフィルタにより構成できる。吸収型カットフィルタとしては、入射光線角度依存性の少ないフィルタガラス(吸収タイプ)を用いることができる。この吸収型のバンドカットフィルタの場合も、阻止帯(透過禁止帯域)が、励起光のピーク強度に対応する波長と、励起光の強度がピークの1/Exp2(つまり、e2)以下になる波長とを含み、かつ、発生した蛍光波長Wkの全てを含まない波長(または、発生した蛍光波長Wkの一部を含む波長)とすることができる。これにより、上述同様の作用効果を有する。つまり、吸収型のバンドカットフィルタは、蛍光波長Wkのうち特に微弱で、励起光に近接する波長領域を阻止帯に含めることで切り捨てている。これにより、励起光の侵入を極力抑制しながら、かつ、微弱な蛍光波長Wkのうち実効ある有効蛍光波長Wkaを効率よく取り込み可能としている。
【0041】
次に、バンドカットフィルタを含む内視鏡15の撮像光学系の構成配置例について、
図6~
図9を参照して説明する。
【0042】
(第1の撮像光学系の構成配置)
図6は、第1の撮像光学系55の構成配置および光線の入射光路の一例を示す図である。第1の撮像光学系55は、内視鏡15の先端側(言い換えると、対物側、あるいは励起光の入射側)から光軸に沿って、対物カバーガラスCG1、絞りAP1、平凸レンズL1、平板ガラスFG1、両凸レンズL2、両凹レンズL3、およびセンサ用ガラスSG2が順に配置された構成である。
【0043】
第1の撮像光学系55では、平板ガラスFG1の先端側の面(つまり、平凸レンズL1側の面)には、バンドカットフィルタ111の蒸着膜が形成される。なお、第1の撮像光学系55において、バンドカットフィルタ111の蒸着膜は、平板ガラスFG1の撮像側の面(つまり、両凸レンズL2側の面)、あるいは、平板ガラスFG1の両側の面に形成されてもよい。平板ガラスFG1の厚みは、例えば0.30mmである。
【0044】
また、両凸レンズL2と両凹レンズL3の間には、例えば空気よりも屈折率の大きい接着剤が充填され、両凸レンズL2と両凹レンズL3との間の接着層が形成される。この接着層によって両凸レンズL2が両凹レンズL3と密着するので、両凸レンズL2と両凹レンズL3との間には、空気層が介在しなくなる。また、センサ用ガラスSG2の背面(後面)には、イメージセンサ33が配置される。
【0045】
絞りAP1は、入射角を制限することで入射光の通過を絞る開口絞り(Aperture Stop)として作用し、Fナンバーに対応する。絞りAP1は、観察対象からの光(上述参照)のうち結像させたい部分の光線だけを通過させる。主光線は、開口絞りが十分に絞られたときでも開口の中心を通る。内視鏡15では、この絞りAP1を通った光線が第1の撮像光学系55によって集光されてイメージセンサ33で結像される。
【0046】
第1の撮像光学系55では、励起光を含む入射光b1は、絞りAP1を通って平凸レンズL1に入射し、平凸レンズL1で光軸方向に収束し、平板ガラスFG1の表面に蒸着膜として形成されたバンドカットフィルタ111に入射する。この場合、バンドカットフィルタ111への入射角(つまり、バンドカットフィルタ111に対する垂直方向からの角度)は、光線を屈折させるパワーを有する平凸レンズL1により小さくなる。つまり、入射光b1は、垂直に近い傾き(言い換えると、0度に近い入射角)でバンドカットフィルタ111に入射する。バンドカットフィルタ111は、入射光b1に含まれる励起光を効率良く反射し、その透過を十分に遮断できる。
【0047】
例えば、入射角が最も大きくなると考えられる像高FAが値1.0の位置(つまり、バンドカットフィルタ111への入射光の中で最もバンドカットフィルタ111の中心から離れた位置)に入射する上光線がバンドカットフィルタ111に入射するケースをシミュレートする。この場合、第1の撮像光学系55の構成配置によれば、バンドカットフィルタ111への入射角(つまり、最大光線角)は、空気換算で24.9度となり、所定の閾値(例えば25度)未満であった(
図10参照)。所定の閾値は、バンドカットフィルタに入射する光を十分に反射可能な(つまり、通過させにくい)な光の入射角を示す。
【0048】
バンドカットフィルタ111を透過した入射光b2は、両凸レンズL2および両凹レンズL3を通過して収束し、センサ用ガラスSG2の背面(後面)に配置されたイメージセンサ33に結像される。
【0049】
ここで、第1の撮像光学系55を構成する各種レンズならびにバンドカットフィルタ111(BCF)に係るレンズデータを、表1に示す。ここで、BFはバックフォーカス(レンズ後端からイメージセンサまでの距離)を表し、以下同様である。
【0050】
【0051】
このように、第1の撮像光学系55では、平板ガラスFG1の片面(例えば、対物側の表面)にバンドカットフィルタ111の蒸着膜が形成され、バンドカットフィルタ111が平凸レンズL1と対向するように、平板ガラスFG1を平凸レンズL1と両凸レンズL2の間に配置することで簡単に構成配置される。従って、1枚だけのバンドカットフィルタ111が配置された第1の撮像光学系55ならびに内視鏡15を容易に製造できる。
【0052】
なお、バンドカットフィルタ111の蒸着膜が形成される面は、平板ガラスFG1の裏面(イメージセンサ側の面)であってもよい。また、平板ガラスFG1の表面(対物側の面)と裏面(撮像側の面)の両面に、バンドカットフィルタ111の蒸着膜が形成されてもよい。これらのいずれの場合でも、平板ガラスFG1の表面にバンドカットフィルタ111が形成された場合と同様の効果(つまり、像高FAが値1.0である上光線のバンドカットフィルタ111への入射角が25度未満となり、励起光が適正に遮断される効果)が得られる。
【0053】
(第2の撮像光学系の構成配置)
図7は、第2の撮像光学系56の構成配置および光線の入射光路の一例を示す図である。第2の撮像光学系56の説明において、第1の撮像光学系55と同一の構成要素については同一の符号を付すことでその構成や作用の説明を簡略化または省略し、異なる内容について説明する。
【0054】
第2の撮像光学系56では、第1の撮像光学系55の構成に対し、バンドカットフィルタ111の蒸着膜が形成される平板ガラスFG1が省略される。つまり、平凸レンズL1の出射側のレンズ表面(具体的には、凸レンズ曲面)にバンドカットフィルタ112の蒸着膜が形成される。第2の撮像光学系56は、内視鏡15の先端側(言い換えると、対物側、あるいは励起光の入射側)から光軸に沿って、対物カバーガラスCG1、絞りAP1、平凸レンズL1、バンドカットフィルタ112、両凸レンズL2、両凹レンズL3、およびセンサ用ガラスSG2が順に配置された構成である。
【0055】
第2の撮像光学系56では、励起光を含む入射光b1は、絞りAP1を通って平凸レンズL1に入射し、平凸レンズL1で光軸方向に収束する。平凸レンズL1内の入射光は、出射側のレンズ曲面上に形成されたバンドカットフィルタ112に入射する。
【0056】
この場合、入射光b1は、平凸レンズL1の出射側のレンズ曲面に対し、垂直に近い傾きで出射する。つまり、出射側のレンズ曲面に形成されたバンドカットフィルタ112への入射角(バンドカットフィルタ112の法線方向からの角度)が小さく、第1の撮像光学系55と同様、入射光b1は、垂直に近い傾き(言い換えると、0度に近い入射角)でバンドカットフィルタ112に入射する。バンドカットフィルタ112は、入射光b1に含まれる励起光を反射し、その透過を十分に遮断できる。
【0057】
例えば、入射角が最も大きくなると考えられる像高FAが値0.0の位置(つまり、バンドカットフィルタ112の中心位置)に入射する上下光線がバンドカットフィルタ112に入射するケースをシミュレートする。この場合、第2の撮像光学系56の配置構成によれば、バンドカットフィルタ112への入射角(つまり、最大光線角)は、空気換算で13.7度となり、所定の閾値(25度)未満であった(
図10参照)。
【0058】
バンドカットフィルタ112を透過した入射光b2は、両凸レンズL2および両凹レンズL3を通過して収束し、センサ用ガラスSG2の背面(後面)に配置されたイメージセンサ33に結像される。
【0059】
ここで、第2の撮像光学系56を構成する各種レンズならびにバンドカットフィルタ112(BCF)に係るレンズデータを、表2に示す。
【0060】
【0061】
このように、第2の撮像光学系56では、平凸レンズL1のレンズ曲面にバンドカットフィルタ112の蒸着膜が形成される。従って、第1の撮像光学系55のバンドカットフィルタ111の蒸着膜が形成される平板ガラスFG1の構成を省略できる。これにより、第1の撮像光学系55に比べて、第2の撮像光学系56の全光学長をより一層短縮でき、第2の撮像光学系56をコンパクトな形状に設計でき、第2の撮像光学系56ならびに内視鏡15の製造をより容易にできる。
【0062】
(第3の撮像光学系の構成配置)
図8は、第3の撮像光学系57の構成配置および光線の入射光路の一例を示す図である。第3の撮像光学系57の説明において、第1の撮像光学系55と同一の構成要素については同一の符号を付すことでその構成や作用の説明を簡略化または省略し、異なる内容について説明する。
【0063】
第3の撮像光学系57では、第2の撮像光学系56と同様、バンドカットフィルタ111の蒸着膜が形成される平板ガラスFG1が省略される。具体的には、両凸レンズL2は、光軸に対して垂直な断面が平坦な面となる、入射側の凸平レンズL2fおよび出射側の平凸レンズL2bにより構成される。凸平レンズL2fの背面(後面)および平凸レンズL2bの前面のいずれか一方の面には、バンドカットフィルタ113の蒸着膜が形成される。
【0064】
蒸着膜が形成された後、凸平レンズL2fの背面と平凸レンズL2bの前面とが、バンドカットフィルタ113の蒸着膜が介在した状態で、接着剤等によって貼り合わせられる。この接着剤は、空気よりも大きな屈折率を有する。これにより、内部にバンドカットフィルタ113が配置された両凸レンズL2が成形される。両凸レンズL2の内部は、第3の撮像光学系57において、光線角が最も小さい領域である。従って、バンドカットフィルタ113に対し、光線を垂直に近い方向(言い換えると、0度に近い入射角)から入射できる。第3の撮像光学系57は、内視鏡15の先端側(言い換えると、対物側、あるいは励起光の入射側)から光軸に沿って、対物カバーガラスCG1、絞りAP1、平凸レンズL1、両凸レンズL2(具体的には、凸平レンズL2f、バンドカットフィルタ113、平凸レンズL2b)、両凹レンズL3、およびセンサ用ガラスSG2が順に配置された構成である。
【0065】
第3の撮像光学系57では、励起光を含む入射光b1は、絞りAP1を通って平凸レンズL1に入射し、平凸レンズL1で光軸方向に収束して両凸レンズL2の凸平レンズL2fに入射する。凸平レンズL2fの内部では、光線角の傾きが小さく、凸平レンズL2fと平凸レンズL2bの間に介在するバンドカットフィルタ113に対し、垂直に近い方向(言い換えると、0度に近い入射角)から光線が入射する。バンドカットフィルタ113は、入射光b1に含まれる励起光を効率良く反射し、その透過を十分に遮断できる。
【0066】
例えば、入射角が最も大きくなると考えられる像高FAが値1.0の位置(つまり、バンドカットフィルタ113への入射光の中で最もバンドカットフィルタ113の中心から離れた位置)に入射する下光線がバンドカットフィルタ113に入射するケースをシミュレートする。この場合、バンドカットフィルタ113への入射角(つまり、最大光線角)は、空気換算で17.1度となり、所定の閾値(25度)未満であった(
図10参照)。
【0067】
ここで、バンドカットフィルタ113が両凸レンズL2の内部に配置される場合、バンドカットフィルタ113への入射光は、空気からでなく、レンズ媒質から入射する。したがって、レンズ媒質では、バンドカットフィルタへの入射角θ2は、スネルの法則により、数式(1)に従って算出可能となる。
【0068】
【0069】
数式(1)において、nd1は、空気の屈折率であり、値1である。nd2は、レンズ媒質の屈折率であり、値1.77である。θ11は空気への入射角であり、17.1度である。θ2はレンズ媒質への入射角である。
【0070】
計算の結果、レンズ媒質換算で、θ2は9.6度となった。従って、バンドカットフィルタ113への入射角は、第3の撮像光学系57の構成配置によれば、より一層垂直方向に近くなる(つまり、入射角が0度に近くなる)。
【0071】
バンドカットフィルタ112を透過した入射光b2は、両凸レンズL2の平凸レンズL2bおよび両凹レンズL3を通過して収束し、センサ用ガラスSG2の背面(後面)に配置されたイメージセンサ33に結像する。
【0072】
ここで、第3の撮像光学系57を構成する各種レンズならびにバンドカットフィルタ111(BCF)に係るレンズデータを示す。
【0073】
【0074】
このように、第3の撮像光学系57では、第2の撮像光学系56と同様、第1の撮像光学系55に比べて第3の撮像光学系57の全光学長をより一層短縮でき、第3の撮像光学系57をコンパクトな形状に設計でき、第3の撮像光学系57ならびに内視鏡15の製造をより容易にできる。しかも、レンズ内部で励起光の反射が起こるので、空気からの入射角と比べ、レンズ内部の入射角は小さくなる。これにより、バンドカットフィルタに対し、垂直に近い方向から、光線が入射する。また、両凸レンズL2の領域では、第3の撮像光学系57において、光線が最も光軸方向に近くなるので、光線は、より一層バンドカットフィルタ113に対し、垂直に近い方向から入射できる。従って、バンドカットフィルタ113による励起光の反射を効率良く行うことができる。
【0075】
(第4撮像光学系の構成配置)
図9は、第4の撮像光学系58の構成配置および光線の入射光路の一例を示す図である。第4の撮像光学系58において、第1の撮像光学系55と同一の構成要素については同一の符号を付すことでその構成や作用の説明を簡略化または省略し、異なる内容について説明する。
【0076】
第4の撮像光学系58では、第2の撮像光学系56および第3の撮像光学系57と同様、バンドカットフィルタ111の蒸着膜が形成される平板ガラスFG1が省略される。具体的には、前段(対物側)の2枚のレンズL10は、入射光の色収差を低減するためのレンズとして構成されており、凹凸レンズL11と凹凸レンズL12で組み合わされる。なお、色収差を低減する2枚のレンズは、
図9に示す例に限定されず、両凹レンズと両凸レンズで組み合わされてもよい。
【0077】
後段のレンズL20は、光軸に対して垂直な断面が平坦な面となる、凸平レンズL21と平凹レンズL22とにより構成される。凸平レンズL21の背面(後面)および平凹レンズL22の前面のいずれか一方の面には、バンドカットフィルタ114の蒸着膜が形成される。
【0078】
蒸着膜が形成された後、凸平レンズL21の背面と平凹レンズL22の前面とが、バンドカットフィルタ114の蒸着膜が介在した状態で、接着剤等によって貼り合わせられる。この接着剤は、空気よりも大きな屈折率を有する。これにより、後段のレンズL20は、内部にバンドカットフィルタ114が配置された凹凸レンズに成形される。この凹凸レンズの内部は、光線角の傾きが最も小さい領域である。従って、バンドカットフィルタ114に対し、光線を垂直に近い方向(言い換えると、0度に近い入射角)から入射できる。第4の撮像光学系58は、内視鏡15の先端側(言い換えると、対物側、あるいは励起光の入射側)から光軸に沿って、対物カバーガラスCG1、絞りAP1、レンズL10(具体的には、凹凸レンズL11、凹凸レンズL12)、レンズL20(具体的には、凸平レンズL21、バンドカットフィルタ114、平凹レンズL22)、およびセンサ用ガラスSG2が順に配置された構成である。
【0079】
第4の撮像光学系58では、励起光を含む入射光b1は、絞りAP1を通って前段のレンズL10に入射し、前段のレンズL10で光軸方向に収束し、後段のレンズL20に入射する。このとき、前段のレンズL10では、入射光に対し、凹凸レンズL11および凹凸レンズL12によって色収差が低減される。色収差を低減するレンズの組み合わせとて、例えば、クラウン系ガラスによる凸レンズとフリント系ガラスによる凹レンズとの組み合わせにより、色ずれ(色収差)を打ち消す(キャンセル)アクロマートレンズが挙げられる。
【0080】
前段のレンズL10から出射した光線は、後段のレンズL20に入射する。後段のレンズL20の内部では、光線角の傾きが小さく、凸平レンズL21と平凹レンズL22の間に介在するバンドカットフィルタ114に対し、垂直に近い方向(言い換えると、0度に近い入射角)から光線が入射する。バンドカットフィルタ114は、入射光b1に含まれる励起光を効率良く反射し、その透過を十分に遮断できる。
【0081】
例えば、入射角が最も大きくなると考えられる像高FAが値0.6の位置(つまり、バンドカットフィルタ114への入射光の中でバンドカットフィルタ114の中心から上端までの距離が60%離れた位置)に入射する上光線がバンドカットフィルタ114に入射するケースをシミュレートする。この場合、バンドカットフィルタ114への入射角(つまり、最大光線角)は、空気換算で9.5度となり、所定の閾値(25度)と比べて小さな値となった(
図10参照)。
【0082】
バンドカットフィルタ114を透過した入射光b2は、平凹レンズL22を通って収束し、センサ用ガラスSG2の背面に配置されたイメージセンサ33に結像する。
【0083】
ここで、第3の撮像光学系57を構成する各種レンズならびにバンドカットフィルタ111(BCF)に係るレンズデータを示す。
【0084】
【0085】
このように、第4の撮像光学系58では、第2の撮像光学系56および第3の撮像光学系57と同様、第1の撮像光学系55に比べて第4の撮像光学系58の全光学長をより一層短縮でき、第4の撮像光学系58をコンパクトな形状に設計でき、第4の撮像光学系58ならびに内視鏡15の製造をより容易にできる。しかも、レンズ内部で励起光の反射が起こるので、空気換算された場合、入射角と比べ、レンズ内部の入射角は小さくなる。また、後段のレンズL20の領域では、第4の撮像光学系58において、光線が最も光軸に近い方向となるので、光線は、より一層バンドカットフィルタに対し、垂直に近い方向から入射できる。従って、バンドカットフィルタによる励起光の反射を効率良く行うことができ、励起光の透過を遮断できる。
【0086】
図10は、第1~第4のそれぞれの撮像光学系における発生光線に対応する最大入射角(空気換算)の一例を示す図である。上述したように、第1の撮像光学系55~第4の撮像光学系58のいずれにおいても、最大光線角は、所定の閾値(25°)未満である。
【0087】
このように、第1の撮像光学系55~第4の撮像光学系58では、従来、2枚以上のバンドカットフィルタを配置した場合と比べ、バンドカットフィルタを1枚配置しただけであるので、撮像光学系の全光学長を短縮できる。
【0088】
また、特に第2の撮像光学系56~第4の撮像光学系58に限っては、レンズ内部または外部でバンドカットフィルタを蒸着膜として形成することで、第1の撮像光学系55のように平板ガラスFG1に蒸着膜を形成する場合と比べ、平板ガラスの厚み(0.3mm)を省くことができ、その分、撮像光学系の全光学長をより一層短縮できる。また、1枚のバンドカットフィルタの場合、励起光が面に対して垂直方向に近い入射角で入射すると、励起光の反射率は大きくなるが、入射角が大きくなると、励起光の迷光により励起光を反射しきれなくなる。従って、入射角が小さくなるような領域にバンドカットフィルタを蒸着によって形成することで、バンドカットフィルタは、励起光を効率良く反射できる。
【0089】
以上により、実施の形態1に係る内視鏡15は、被写体からの可視光もしくは被写体に投与された蛍光薬剤を蛍光発光させるための励起光に基づく蛍光を含む、被写体からの光を光路に入射させて結像する撮像光学系(例えば、第1の撮像光学系55)を有する。内視鏡15は、第1の撮像光学系55により結像された被写体からの光を光電変換するイメージセンサ33を有する。内視鏡15は、第1の撮像光学系55の内部に1枚のみ配置され、被写体からの光のうち励起光の少なくとも一部の透過を遮断するバンドカットフィルタ111(励起光カットフィルタの一例)を有する。
【0090】
第1の撮像光学系55では、先端側から光軸に沿って、対物カバーガラスCG1、絞りAP1、平凸レンズL1、平板ガラスFG1、両凸レンズL2、両凹レンズL3、およびセンサ用ガラスSG2(光路を構成する複数の光学部品の一例)が順に配置される。これにより、内視鏡15は、1枚のバンドカットフィルタを用いた簡素な構造で、蛍光の撮像に不要な励起光の通過を効果的に低減できるので、光学長の短縮化を実現した上で励起光による撮像画像の画質の劣化を抑制できる。
【0091】
また、第1の撮像光学系55において、バンドカットフィルタ111(励起光カットフィルタの一例)は、平凸レンズL1(最も対物側の光学部品の一例)に隣接される平板ガラスFG1の対物側および撮像側のいずれか一方または両方に形成される。なお、バンドカットフィルタ111は、複数の光学部品の間、あるいは複数の光学部品の最も対物側に隣接される平板ガラスFG1内に形成されてもよい。これにより、バンドカットフィルタ111を含む内視鏡15の撮像光学系を容易に製造できる。
【0092】
また、第3,第4の撮像光学系57,58において、バンドカットフィルタ113,114(励起光カットフィルタの一例)は、複数の光学部品のうち内挿されるいずれかの光学部品(例えば、両凸レンズL2,レンズL20)に平面蒸着されて形成される。これにより、光軸に近い方向(言い換えると、0度に近い入射角)から光線を入射でき、励起光のイメージセンサ33への受光量が低減される。また、撮像光学系の全光学長を短縮できる。
【0093】
また、第3,第4の撮像光学系57,58において、バンドカットフィルタ113,114の面は、両凸レンズL2,レンズL20の隣接するいずれかの光学部品(例えば、凸平レンズL2fあるいは平凸レンズL2b、または、凸平レンズL21あるいは平凹レンズL22)と接着され、その接着は空気よりも屈折率の高い接着剤で充填される。これにより、光軸に近い方向(言い換えると、0度に近い入射角)から光線を入射でき、励起光のイメージセンサ33への受光量が低減される。
【0094】
また、第1の撮像光学系55において、バンドカットフィルタ111の面は、隣接するいずれかの光学部品(例えば、平凸レンズL1)との間で、空隙(つまり、空気層)を有する。これにより、空隙によって光線が広がることなく、光軸に近い方向から光線を入射でき、励起光のイメージセンサ33への受光量が低減される。
【0095】
また、第2の撮像光学系56において、バンドカットフィルタ112は、隣接するいずれかの光学部品(例えば、平凸レンズL1)が有する曲面に蒸着されて形成される。これにより、光線が光軸に近い方向でなく拡散しても、バンドカットフィルタ112の法線方向に近い入射角で入射でき、励起光のイメージセンサ33への受光量が低減される。また、撮像光学系の全光学長を短縮できる。
【0096】
また、第4の撮像光学系58において、いずれかの光学部品以外の他の光学部品(例えば、前段のレンズL10)は、色収差を低減可能な2枚以上のレンズ(例えば、凹凸レンズL11および凹凸レンズL12)の組み合わせにより構成される。これにより、色収差を低減するとともに、色の違いによらず励起光の透過を遮断でき、励起光のイメージセンサ33への受光量が低減される。
【0097】
また、バンドカットフィルタは、撮像光学系を構成する複数の光学部品のうちいずれかの光学部品に蒸着して形成される。バンドカットフィルタの角度依存性として、励起光の強度がピークの1/e2以下になる光線角度をθL、バンドカットフィルタが形成された光学部品の屈折率をnL、バンドカットフィルタへの光の入射角をθFとした場合、θF=sin-1(nL*sinθL)が他の部位(つまり他の光学部品)上に形成あるいは他の部品(つまり他の光学部品)内に挿入された励起光カットフィルタへの入射角よりも小さい関係を満たす(*は乗算の演算子を示す)。これにより、励起光の強度がピークの1/e2以上の励起光を反射させ、その透過を遮断でき、励起光のイメージセンサ33への受光量が低減される。
【0098】
また、バンドカットフィルタ111,112,113,114は、反射型カットフィルタにより構成され、透過禁止帯域として、励起光のピーク強度に対応する波長と、励起光の強度がピークの1/e2以下になる波長とを含み、かつ、励起光に基づいて発生した蛍光の波長帯の一部を含むか、または蛍光の波長帯の全てを含まない波長である。これにより、励起光の透過を確実に遮断でき、蛍光を透過させることができる。つまり、励起光の侵入を極力抑制しながら、かつ、微弱な蛍光波長のうち実効ある有効蛍光波長を効率よく取り込み可能である。
【0099】
また、バンドカットフィルタ111,112,113,114は、吸収型カットフィルタにより構成され、透過禁止帯域として、励起光のピーク強度に対応する波長と、励起光の強度がピークの1/e2以下になる波長とを含み、かつ、励起光に基づいて発生した蛍光の波長帯の一部を含むか、または蛍光の波長帯の全てを含まない波長である。これにより、励起光の透過を確実に遮断でき、蛍光を透過させることができる。つまり、励起光の侵入を極力抑制しながら、かつ、微弱な蛍光波長のうち実効ある有効蛍光波長を効率よく取り込み可能である。
【0100】
以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。
【0101】
例えば、上述した実施の形態では、バンドカットフィルタは、励起光を反射することで励起光の透過を遮断する反射型のバンドカットフィルタを例示して説明したが、励起光を吸収することで励起光の透過を遮断する吸収型のバンドカットフィルタを用いた場合でも、本開示は同様に適用可能である。
【0102】
なお、本出願は、2018年9月28日出願の日本特許出願(特願2018-185223)に基づくものであり、その内容は本出願の中に参照として援用される。
【産業上の利用可能性】
【0103】
本開示は、1枚の励起光カットフィルタを用いた簡素な構造で、蛍光の撮像に不要な励起光の通過を効果的に低減し、撮像光学系の光学長の短縮化を実現した上で蛍光画像の画質の劣化を抑制する内視鏡として有用である。
【符号の説明】
【0104】
15 内視鏡
25 硬性部
33 イメージセンサ
53 先端フランジ
55 第1の撮像光学系
56 第2の撮像光学系
57 第3の撮像光学系
58 第4の撮像光学系
111、112、113、114 バンドカットフィルタ
AP1 絞り
CG1 対物カバーガラス
FG1 平板ガラス
L1 平凸レンズ
L2 両凸レンズ
L2f 凸平レンズ
L2b 平凸レンズ
L20 レンズ
L21 凸平レンズ
L22 平凹レンズ
SG2 センサ用ガラス