IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イルミナ インコーポレイテッドの特許一覧

特許7389121器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法
<>
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図1
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図2
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図3
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図4
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図5
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図6
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図7
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図8
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図9
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図10
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図11
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図12
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図13
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図14
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図15
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図16
  • 特許-器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-20
(45)【発行日】2023-11-29
(54)【発明の名称】器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法
(51)【国際特許分類】
   G01N 25/18 20060101AFI20231121BHJP
【FI】
G01N25/18 E
G01N25/18 C
【請求項の数】 20
(21)【出願番号】P 2021537730
(86)(22)【出願日】2020-07-24
(65)【公表番号】
(43)【公表日】2022-10-17
(86)【国際出願番号】 US2020043376
(87)【国際公開番号】W WO2021034445
(87)【国際公開日】2021-02-25
【審査請求日】2023-07-07
(31)【優先権主張番号】62/887,901
(32)【優先日】2019-08-16
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】2023792
(32)【優先日】2019-09-06
(33)【優先権主張国・地域又は機関】NL
【早期審査対象出願】
(73)【特許権者】
【識別番号】500358711
【氏名又は名称】イルミナ インコーポレイテッド
(74)【代理人】
【識別番号】100106518
【弁理士】
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100132263
【弁理士】
【氏名又は名称】江間 晴彦
(72)【発明者】
【氏名】バウアー,ダブリュー クレイグ
【審査官】野田 華代
(56)【参考文献】
【文献】特開2019-132760(JP,A)
【文献】特開昭60-004870(JP,A)
【文献】特開2005-345385(JP,A)
【文献】特開2022-101744(JP,A)
【文献】中国特許出願公開第115308515(CN,A)
【文献】国際公開第2018/150648(WO,A1)
【文献】米国特許出願公開第2021/0109047(US,A1)
【文献】米国特許出願公開第2005/0002435(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 25/00-25/72
(57)【特許請求の範囲】
【請求項1】
既知の消耗品を試験対象の器具の熱構成要素に接触させることであって、前記消耗品と熱構成要素とが熱境界面を形成し、
所定の質問周波数に基づいて、周期的正弦波入力を使用して前記熱構成要素を駆動することと、
前記周期的正弦波入力を使用して前記熱構成要素を駆動することに応答する、熱センサからの複数の温度出力を測定することであって、前記熱センサは、前記熱構成要素の温度を検出するように配置および構成され、
前記複数の温度出力に、前記周期的正弦波入力と同相の基準信号を乗算して、結果として得られる直流(DC)信号成分を計算し、同相成分Xを判定することと、
前記複数の温度出力に、90°位相シフト基準信号を乗算して、結果として得られるDC信号成分を計算し、直交位相ずれ成分Yを判定することと、
tan-1(Y/X)又はatan2(X,Y)に基づいて、前記周期的正弦波入力に応答する位相オフセットを計算することと、
較正された抵抗位相オフセット式、及び計算された前記位相オフセットを使用して、熱境界面の熱抵抗値を判定することと、
判定された前記熱抵抗値を所定の熱抵抗閾値と比較することと、を含む、方法。
【請求項2】
判定された前記熱抵抗値が、前記所定の熱抵抗閾値を上回り、前記方法は、判定された前記熱抵抗値が前記所定の熱抵抗閾値を上回っていることに基づいて、前記熱構成要素が前記熱境界面の表面に欠陥を有すると判定することを更に含む、請求項1に記載の方法。
【請求項3】
判定された前記熱抵抗値が、前記所定の熱抵抗閾値を下回り、前記方法は、判定された前記熱抵抗値が前記所定の熱抵抗閾値を下回っていることに基づいて、前記熱構成要素が許容可能であると判定することを更に含む、請求項1に記載の方法。
【請求項4】
前記熱構成要素が、熱電冷却機を含む、請求項1に記載の方法。
【請求項5】
前記消耗品が、フローセルを含む、請求項1に記載の方法。
【請求項6】
前記所定の質問周波数が、前記既知の消耗品、及び前記器具の前記熱構成要素について推定されたRCコーナー値に基づいて判定される、請求項1に記載の方法。
【請求項7】
試験対象の消耗品を器具の既知の熱構成要素に接触させることであって、前記消耗品と熱構成要素とが熱境界面を形成し、
所定の質問周波数に基づいて、周期的正弦波入力を使用して前記熱構成要素を駆動することと、
前記周期的正弦波入力を使用して前記熱構成要素を駆動することに応答する、熱センサからの複数の温度出力を測定することであって、前記熱センサは、前記熱構成要素の温度を検出するように配置および構成され、
前記複数の温度出力に、前記周期的正弦波入力と同相の基準信号を乗算して、結果として得られる直流(DC)信号成分を計算し、同相成分Xを判定することと、
前記複数の温度出力に、90°位相シフト基準信号を乗算して、結果として得られるDC信号成分を計算し、直交位相ずれ成分Yを判定することと、
tan-1(Y/X)又はatan2(X,Y)に基づいて、前記周期的正弦波入力に応答する位相オフセットを計算することと、
較正された抵抗位相オフセット式、及び計算された前記位相オフセットを使用して、熱境界面の熱抵抗値を判定することと、
判定された前記熱抵抗値を所定の熱抵抗閾値と比較することと、を含む、方法。
【請求項8】
判定された前記熱抵抗値が、前記所定の熱抵抗閾値を上回り、前記方法は、判定された前記熱抵抗値が前記所定の熱抵抗閾値を上回っていることに基づいて、前記消耗品が前記熱境界面に欠陥を有すると判定することを更に含む、請求項7に記載の方法。
【請求項9】
判定された前記熱抵抗値が、前記所定の熱抵抗閾値を下回り、前記方法は、判定された前記熱抵抗値が前記所定の熱抵抗閾値を下回っていることに基づいて、前記消耗品が許容可能であると判定することを更に含む、請求項7に記載の方法。
【請求項10】
前記熱構成要素が、熱電冷却機を含む、請求項7に記載の方法。
【請求項11】
前記消耗品が、フローセルを含む、請求項7に記載の方法。
【請求項12】
前記所定の質問周波数が、前記消耗品、及び前記器具の前記既知の熱構成要素について推定されたRCコーナー値に基づいて判定される、請求項7に記載の方法。
【請求項13】
消耗品を器具の熱構成要素に接触させることであって、前記消耗品と熱構成要素とが熱境界面を形成し、
所定の質問周波数に基づいて、周期的正弦波入力を使用して前記熱構成要素を駆動することと、
前記周期的正弦波入力を使用して前記熱構成要素を駆動することに応答する、熱センサからの複数の温度出力を測定することであって、前記熱センサは、前記熱構成要素の温度を検出するように配置および構成され、
前記複数の温度出力に、前記周期的正弦波入力と同相の基準信号を乗算して、結果として得られる直流(DC)信号成分を計算し、同相成分Xを判定することと、
前記複数の温度出力に、90°位相シフト基準信号を乗算して、結果として得られるDC信号成分を計算し、直交位相ずれ成分Yを判定することと、
tan-1(Y/X)又はatan2(X,Y)に基づいて、前記周期的正弦波入力に応答する位相オフセットを計算することと、
較正された抵抗位相オフセット式、及び計算された前記位相オフセットを使用して、熱境界面の熱抵抗値を判定することと、
判定された前記熱抵抗値を第1の所定の熱抵抗閾値と比較することと、
判定された前記熱抵抗値を第2の所定の熱抵抗閾値と比較することと、
判定された前記熱抵抗値と、前記第1及び第2の所定の熱抵抗閾値との前記比較に基づいて、前記熱境界面の特性を判定することと、を含む、方法。
【請求項14】
判定された前記熱抵抗値が、前記第1の所定の熱抵抗閾値を下回り、前記方法は、判定された前記熱抵抗値が前記第1の所定の熱抵抗閾値を下回っていることに基づいて、前記熱境界面が許容可能であると判定することを更に含む、請求項13に記載の方法。
【請求項15】
判定された前記熱抵抗値が、前記第2の所定の熱抵抗閾値を上回り、前記方法は、判定された前記熱抵抗値が前記第2の所定の熱抵抗閾値を上回っていることに基づいて、前記消耗品が前記器具内に挿入されていないと判定することを更に含む、請求項13に記載の方法。
【請求項16】
判定された前記熱抵抗値が、前記第2の所定の熱抵抗閾値を下回り、かつ前記第1の所定の熱抵抗閾値を上回っており、前記方法は、判定された前記熱抵抗値が前記第2の所定の熱抵抗閾値を下回り、かつ前記第1の所定の熱抵抗閾値を上回っていることに基づいて、欠陥又はごみが前記熱境界面に存在すると判定することを更に含む、請求項13に記載の方法。
【請求項17】
前記熱構成要素が、熱電冷却機を含む、請求項13に記載の方法。
【請求項18】
前記消耗品が、合成による配列決定のために使用されるフローセルを含む、請求項13に記載の方法。
【請求項19】
前記所定の質問周波数が、前記消耗品、及び前記器具の前記熱構成要素について推定されたRCコーナー値に基づいて判定される、請求項13に記載の方法。
【請求項20】
請求項13に記載の方法を器具に実行させる命令を含むコンピュータプログラムが格納された、コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願)
本出願は、2019年8月16日に出願された「Method for Measuring Thermal Resistance at Interface between Consumable and Thermocycler」と題する米国仮特許出願第62/887,901号に対して優先権を主張し、それは、その全体が参照により本明細書に組み込まれる。本出願はまた、2019年9月6日に出願された「Method for Measuring Thermal Resistance at Interface between Consumable and Thermocycler」と題するオランダ王国特許出願第2023792号に対して優先権を主張し、それは、その全体が参照により本明細書に組み込まれる。
【背景技術】
【0002】
様々な生化学的な手順は、支持表面の上で、又は指定された反応チャンバの内部で、非常に多くの制御された反応を実施することを伴う。制御された反応を行って、生体試料を分析するか、又は後続の分析のために生体試料を調製することができる。制御された反応の最中、又はそれらの間で、反応チャンバ及び/又はその中の成分は、熱的に制御されて、異なる反応を実施し、かつ/又は反応の速度を改善することができる。分析により、反応内で関与する化学物質の特性を特定又は明確にすることができる。例えば、配列ベースのサイクル配列決定アッセイ(例えば、合成による配列決定(sequencing-by-synthesis、SBS))では、デオキシリボ核酸(deoxyribonucleic acid、DNA)特徴の高密度配列(例えば、鋳型核酸)は、酵素操作の繰り返しサイクルを通じて配列決定される。各サイクルの後、画像を捕捉し、続いて、他の画像を用いて分析して、DNA特徴の配列を判定することができる。別の生化学的なアッセイでは、特定可能なラベル(例えば、蛍光標識)を有する未知の分析物が、配列内に所定のアドレスを有する既知のプローブの配列に曝露されることができる。プローブと未知の分析物との間に生じる化学反応を観察することは、分析物の特性を特定又は明確にするのに役立ち得る。
【発明の概要】
【0003】
以下は、本開示のある特定の実施形態の概要を提供する。この概要は、広範囲の概説ではなく、本発明のキー若しくは不可欠な態様若しくは要素を特定すること、又はその範囲を描写することを意図するものではない。
【0004】
例えば、フローセルなどの消耗品と、例えば、熱電冷却機(TEC)(例えば、ペルチエ駆動熱システム)などの器具又はその熱構成要素との間の境界面における熱抵抗を測定するための装置、システム、及び方法が、本明細書に記載されている。記載されている方法はまた、消耗品フローセルに対する境界面の熱抵抗を判定するための過渡的な応答試験と呼ばれる場合もある。開示される方法の実施態様は、TECなどの熱構成要素への周期的正弦波駆動入力を使用して、熱構成要素自体の熱応答を測定する。本明細書に提供されるいくつかの例は、TECに関して説明され得るが、そのような熱構成要素は、単なる例に過ぎず、本明細書に記載されている方法は、例えば、抵抗性ヒータ及び熱ブロックなどの他の熱構成要素に適用可能であり得る。この方法の利点としては、(i)TECへの電力入力を段階的に変化させないことによって、TECが受ける熱応力を低減すること、(ii)複数サイクルのデータを獲得するために必要とされる時間を低減すること、(iii)試験のための励起レベルを比較的低くすることを可能にしながら、非常に高い感度を達成するための位相感知検出技術を可能にすること、及び(iv)消耗品上に熱センサを必要とせずに、消耗品への熱接触を想定すること、を挙げることができる。周期的駆動入力への熱構成要素の熱応答は、周波数依存性であり得る。TECなどの熱構成要素の具体的な挙動は、電気等価回路を用いるSimulation Program with Integrated Circuit Emphasis(SPICE)ソフトウェアでモデル化することができる。開示される方法を使用して、熱的に制御されるフローセルなどの構成要素と、TECなどの熱構成要素との間の不完全な又は低減された熱境界面を特定することができる。例えば、本明細書に開示される方法を使用して、完全には係合していなかったばねなどの、器具のTECを有するフローセルの適切な装填を伴う様々な問題を特定することができ、これらの問題は、1つ以上の熱的に制御された反応の性能に影響を及ぼし得る。開示される方法は、自動化された現場診断及び予備試験として採用されて、汚れた若しくは汚染された消耗品又は器具熱構成要素を特定することができる。この方法はまた、熱構成要素を試験するための品質管理プロセスとして、消耗品を試験するための品質管理プロセスとして、及び/又は消耗品を器具に装填する間に試験するための診断プロセスとして、使用することもできる。
【0005】
ある実施態様は、器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法に関し、この方法は、既知の消耗品を試験対象の器具の熱構成要素に接触させることと、所定の質問周波数に基づいて、周期的正弦波入力を使用して、熱構成要素を駆動することと、周期的正弦波入力を使用して熱構成要素を駆動することに応答する、熱センサからの複数の温度出力を測定することと、複数の温度出力に、周期的正弦波入力と同相の基準信号を乗算して、結果として得られる直流(direct current、DC)信号成分を計算し、同相成分Xを判定することと、複数の温度出力に、90°位相シフト基準信号を乗算して、結果として得られるDC信号成分を計算し、直交位相ずれ成分Yを判定することと、tan-1(Y/X)又はatan2(X,Y)に基づいて、周期的正弦波入力に応答する位相オフセットを計算することと、較正された抵抗位相オフセット式、及び計算された位相オフセットを使用して、熱境界面の抵抗値を判定することと、判定された抵抗値を所定の抵抗閾値と比較することと、を含む。この方法は、熱構成要素を試験するための品質管理プロセスとして使用することができる。
【0006】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、判定された抵抗値は、所定の抵抗閾値を上回り、この方法は、判定された抵抗値が所定の抵抗閾値を上回っていることに基づいて、熱構成要素が熱境界面の表面に欠陥を有すると判定することを更に含む。
【0007】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、判定された抵抗値は、所定の抵抗閾値を下回り、この方法は、判定された抵抗値が所定の抵抗閾値を下回っていることに基づいて、熱構成要素が許容可能であると判定することを更に含む。
【0008】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、熱構成要素は、熱電冷却機を含む。
【0009】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、消耗品は、フローセルを含む。
【0010】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、所定の質問周波数は、既知の消耗品、及び器具の熱構成要素について推定されたRCコーナー値に基づいて判定される。
【0011】
ある実施態様は、器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法に関し、この方法は、試験対象の消耗品を器具の既知の熱構成要素に接触させることと、所定の質問周波数に基づいて、周期的正弦波入力を使用して、熱構成要素を駆動することと、周期的正弦波入力を使用して熱構成要素を駆動することに応答する、熱センサからの複数の温度出力を測定することと、複数の温度出力に、周期的正弦波入力と同相の基準信号を乗算して、結果として得られるDC信号成分を計算し、同相成分Xを判定することと、複数の温度出力に、90°位相シフト基準信号を乗算して、結果して得られるDC信号成分を計算し、直交位相ずれ成分Yを判定することと、tan-1(Y/X)又はatan2(X,Y)に基づいて、周期的正弦波入力に応答する位相オフセットを計算することと、較正された抵抗位相オフセット式、及び計算された位相オフセットを使用して、熱境界面の抵抗値を判定することと、判定された抵抗値を所定の抵抗閾値と比較することと、を含む。この方法は、消耗品を試験するための品質管理プロセスとして使用することができる。
【0012】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、判定された抵抗値は、所定の抵抗閾値を上回り、この方法は、判定された抵抗値が所定の抵抗閾値を上回っていることに基づいて、消耗品が熱境界面の表面に欠陥を有すると判定することを更に含む。
【0013】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、判定された抵抗値は、所定の抵抗閾値を下回り、その方法は、判定された抵抗値が所定の抵抗閾値を下回っていることに基づいて、消耗品が許容可能であると判定することを更に含む。
【0014】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、熱構成要素は、熱電冷却機を含む。
【0015】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、消耗品は、フローセルを含む。
【0016】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、所定の質問周波数は、消耗品、及び既知の器具の熱構成要素について推定されたRCコーナー値に基づいて判定される。
【0017】
ある実施態様は、器具の熱構成要素と、消耗品との間の熱抵抗を測定するための方法に関し、この方法は、消耗品を器具の熱構成要素に接触させることと、所定の質問周波数に基づいて、周期的正弦波入力を使用して、熱構成要素を駆動することと、周期的正弦波入力を使用して熱構成要素を駆動することに応答する、熱センサからの複数の温度出力を測定することと、複数の温度出力に、周期的正弦波入力と同相の基準信号を乗算して、結果として得られるDC信号成分を計算し、同相成分Xを判定することと、複数の温度出力に、90°位相シフト基準信号を乗算して、結果として得られるDC信号成分を計算し、直交位相ずれ成分Yを判定することと、tan-1(Y/X)又はatan2(X,Y)に基づいて、周期的正弦波入力に応答する位相オフセットを計算することと、較正された抵抗位相オフセット式、及び計算された位相オフセットを使用して、熱境界面の抵抗値を判定することと、判定された抵抗値を第1の所定の抵抗閾値と比較することと、判定された抵抗値を第2の所定の抵抗閾値と比較することと、判定された抵抗値と、第1及び第2の所定の抵抗閾値との比較に基づいて、熱境界面の特性を判定することと、を含む。この方法は、消耗品を器具に装填する間に試験するための診断プロセスとして使用することができる。
【0018】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、判定された抵抗値は、第1の所定の抵抗閾値を下回り、この方法は、判定された抵抗値が第1の所定の抵抗閾値を下回っていることに基づいて、熱境界面の表面が許容可能であると判定することを更に含む。
【0019】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、判定された抵抗値は、第2の所定の抵抗閾値を上回り、その方法は、判定された抵抗値が第2の所定の抵抗閾値を上回っていることに基づいての消耗品が器具内に挿入されていないと判定することを更に含む。
【0020】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、判定された抵抗値は、第2の所定の抵抗閾値を下回り、かつ第1の所定の抵抗閾値を上回っており、この方法は、判定された抵抗値が第2の所定の抵抗閾値を下回り、かつ第1の所定の抵抗閾値を上回っていることに基づいて、欠陥又はごみが熱境界面の表面に存在すると判定することを更に含む。
【0021】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、熱構成要素は、熱電冷却機を含む。
【0022】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、消耗品は、合成による配列決定のために使用されるフローセルを含む。
【0023】
上記の実施態様のうちのいずれか1つ以上に関する変形例が存在し、所定の質問周波数は、消耗品、及び既知の器具の熱構成要素について推定されたRCコーナー値に基づいて判定される。
【0024】
ある実施態様は、上記の実施態様のいずれかの方法を器具に実行させる命令を含むコンピュータプログラムを格納したコンピュータ可読媒体に関する。
【0025】
前述の概念、及び以下に更に詳細に説明される追加の概念の全ての組み合わせ(そのような概念が相互に矛盾しないと仮定して)は、本明細書に開示される主題の一部であるものとして想定されることを理解されたい。具体的には、本開示の最後に掲載されている特許請求の範囲の主題の全ての組み合わせは、本明細書に開示される主題の一部であるものとして想定される。
【図面の簡単な説明】
【0026】
1つ以上の実施態様の詳細は、添付図面、及び以下の説明に記述されている。他の特徴、態様、及び利点は、本明細書、図面、及び特許請求の範囲から明らかになるであろう。
【0027】
図1】器具の熱構成要素(例えば、TEC)と、消耗品(例えば、フローセル)との間の位置関係を例示し、この開示された方法が位置関係の品質及び保全性を確立及び維持することについて関する、アセンブリの正面斜視図を示す。
【0028】
図2図1のアセンブリの側面図を示し、そこでは、熱センサが、器具内に見える。
【0029】
図3図2のアセンブリを示し、そこでは、汚染物質が、器具の熱構成要素と、消耗品との間の位置関係を阻害している。
【0030】
図4】TECフローセルシステムの電気等価モデルを表す概略図を示す。
【0031】
図5】高速測定を生成し、RCのコーナー周波数付近にある測定可能な信号を出力するための周波数の特定を容易にするボード線図を示し、ここで、x軸は、周期的励起周波数を表し、y軸は、大きさ/位相を表す。
【0032】
図6】記載される方法で使用するためのTEC駆動信号及び熱応答駆動信号を例示するグラフを示す。
【0033】
図7】熱抵抗に対する位相シフトの変換を示す一連のグラフを示す。
【0034】
図8】使用される0.3Hzの励起周波数、及び試験対象TECシステム内の構成要素の特定の熱質量に固有の応答曲線を示すグラフを示す。
【0035】
図9】記載される試験方法で使用するための較正プロセスのフロー図を示す。
【0036】
図10】熱構成要素を試験するための品質管理(quality control、QC)プロセスのフロー図を示す。
【0037】
図11】消耗品を試験するためのQCプロセスのフロー図を示す。
【0038】
図12】消耗品を器具に装填する間に試験するための診断プロセスのフロー図を示す。
【0039】
図13】記載される試験方法を使用して測定再現性を実証する表を示す。
【0040】
図14】器具のばらつきを例示する表を示す。
【0041】
図15】消耗品のばらつきを例示する表を示す。
【0042】
図16】熱境界面と干渉する例示的なごみを示す説明図、及びこの干渉に起因する、45%を上回る熱抵抗(R)の増加を示す表を含む。
【0043】
図17】熱抵抗に基づく、フローセルの傾斜上昇時間の例を例示するグラフを示す。
【発明を実施するための形態】
【0044】
場合によっては、合成による配列決定などのプロセスで使用される、フローセルなどの消耗品の温度制御は、消耗品が、消耗品が器具内で接触する、TECの熱ブロックなどの、熱構成要素に対して既知のオフセットに到達するという前提に依存する可能性がある。最初に、そのオフセットは、工場で較正することができる。しかしながら、消耗品と、TECの熱ブロックとの間の接触が、ごみの介入などの、工場較正中とは異なる場合、これにより、定常状態の温度誤差が生じる可能性がある。そのような誤差は、周囲の温度に対するTECの熱ブロックの温度で大きさを拡大縮小することができる。比較的低い温度では、定常状態のオフセット誤差は、所定の誤差値以内にあり得る。しかしながら、このような誤差は、熱的誤差経費のかなりの部分を表し得る。
【0045】
器具の熱構成要素と、消耗品との間の境界面における熱抵抗の差はまた、消耗品が所望の温度に到達する期間の差を生じさせる場合がある。TECの熱ブロックの質量が器具の消耗品の質量よりも著しく大きい実施態様では、定常状態を達成するための期間は、TECの熱ブロックの質量を加熱及び冷却する際に伴う期間によって支配され得る。追加的に、熱的作用が許容されるこの期間が十分長い期間である場合、TECの熱ブロックの背後にある消耗品の熱遅延のばらつきは、無視できるか、又は気づかない場合がある。
【0046】
しかしながら、より急速な熱傾斜(すなわち、第1の温度から第2の温度への移行時間を短縮すること)を達成するために、TECの熱ブロックの質量は、それが実質的に消耗品の質量以下であるように、低減され得る。加えて、TECのいくつかの熱エンジンはまた、非常に高い熱ポンピング能力を有することもできる。その結果、TECのそのようなより低い質量熱ブロックは、温度を非常に高速に傾斜させることができ、消耗品温度が熱伝達に基づいて追従することになる速度は、熱境界面の品質に依存するであろう。更に、ユーザエラーにより、消耗品が器具内に不適切に装填されることが引き起こされた場合、TECの熱ブロックは、熱境界面品質が検出されない場合に、急速に損傷を引き起こす可能性がある(例えば、数秒以内)温度に急速に到達し得る。したがって、TECなどの器具の熱構成要素と、フローセルなどの熱的に制御された構成要素との間の熱境界面の品質を測定するためのシステム及び方法が、本明細書に記載されている。
【0047】
消耗品がTECの熱ブロックと接触していることを確認し、かつ/又は消耗品と熱ブロックとの間の熱境界面の品質を判定するために、熱ブロックは、加熱又は冷却され得る。熱ブロックが、熱をポンピングするときに温度を変化させる速度は、熱ブロックと消耗品との間の熱抵抗、並びに消耗品及び熱ブロックの相対的な熱静電容量に依存する。この相対的な熱静電容量が既知であるとき、熱ブロックが熱をポンピングするときに温度を変化させる速度の測定を使用して、熱ブロックと消耗品との間の熱抵抗を判定することができる。
【0048】
そのようなシステムを特徴付けるための1つの技術は、ステップ応答であり、この場合、システムが、段階的な変化を伴って励起され、その応答は、時間領域で測定される。この時間領域応答は、時定数tau(τ)によって特徴付けることができる。TECなどの実際のペルチエ駆動熱システムでそのような試験を実施することは、いくつかの要因によって複雑であり得る。例えば、TECによってポンピングされる熱は、TECにわたる温度差(ΔT)、及びTEC自体の抵抗に依存し、それによって、既知の入力ステップ高さの印加を複雑にする。加えて、TECの熱エンジンがTECの熱ブロックの温度を変化させるための時間は、TECのゼロでない質量に起因してゼロとすることができず、周囲温度又はヒートシンク温度、熱ブロックの開始温度、及びTEC電気抵抗とともに変化し得、したがって、真のステップ関数の実装が困難であり得、かつ/又は周囲の条件の任意の変化に対して再計算を必要とし得る。更に、TECへの段階的な電力入力は、TECに機械的、熱的、又は電気的応力を与える場合があり、繰り返し実施されたときに、TECの寿命の低減を引き起こし得る。
【0049】
したがって、本開示は、消耗品と、器具の熱構成要素との間の境界面における熱抵抗を測定するための方法を提供し、この方法は、熱構成要素への機械的、熱的、及び/又は電気的応力を低減することができ、低減された時間帯にいくつかのデータ点を獲得することができ、TECに加えられる励起レベルを比較的低くすることを許容しながら熱境界面における抵抗の高い感度検出を達成することができ、かつ/又はより少ない入力を利用して、熱構成要素の内部温度計、又は熱構成要素の温度を検出するための外部熱センサの較正又は使用を必要とすることなく、その応答の時間領域構成要素を使用することによって、熱境界面における抵抗を判定することができる。
【0050】
本発明の様々な実施態様が、図を参照して、ここで説明される。参照数字が、詳細な説明全体にわたって使用され、様々な要素及び構造体を指す。以下の詳細な説明は、例示を目的に多くの具体例を包含するが、当業者ならば、以下の細部に対する多くの変形例及び代替例が本発明の範囲内に存在することを認識するであろう。したがって、本発明の以下の実施形態は、特許請求される発明に対していかなる一般性を失うことなく、かつ発明についての制限を課すことなく、記載される。
【0051】
例えば、フローセルなどの消耗品と、例えば、TEC又はヒータなどの器具の構成要素との間の境界面における熱抵抗を測定するための装置、システム、及び方法が、本明細書に記載される。また、消耗品フローセルに対する境界面熱抵抗を判定するための過度応答試験も、本明細書に記載される。
【0052】
図を参照すると、図1図3は、TECなどの器具の熱構成要素、及び消耗品熱アセンブリ100の様々な説明図を提供する。器具の熱構成要素のみが示されているが、器具は、カートリッジ境界面、流体工学管理構成要素、分析計算処理エンジンなどの追加の構成要素を含むことができる。図1において、この図は、簡易化した方法で、上部に装填された消耗品を有するTEC、キャリアプレート112の上部に配置され得るフローセル110を示しており、キャリアプレートは、TEC114の上部に置かれ得、TECは、ヒートシンク120の上部に配置され得る。いくつかの実施態様では、キャリアプレート112及びフローセル110は、フローセルカートリッジ122の一部を形成し得、TEC114及びヒートシンク120は、ベース器具内にTECアセンブリ123として組み合わせることができる。他の実施態様では、キャリアプレート112、TEC114、及びヒートシンク120は、ベース器具内にTECアセンブリ123として組み合わせることができる。また更なる実施態様では、追加のキャリアプレート(図示せず)又は他の介在構成要素が、本明細書に示される構成要素のうちの1つ以上の間に提供され得る。例えば、キャリアプレート112とフローセル110との間、キャリアプレート112とTEC114との間、及び/又はTEC114とヒートシンク120との間に熱伝導性接着剤を利用して、構成要素間の熱伝導を改善及び/又は支援しながら、前述の構成要素のうちの1つ以上を一緒に接着することができる(例えば、熱伝導性接着剤を適用して、熱伝導を低減させ得る1つ以上の構成要素の任意の欠陥を充填することができる)。
【0053】
いくつかの実施態様では、熱センサ(例えば、温度計)116が、図2図3に示すように、動作中にTEC114の温度を検出するために、TEC114内に装填され得る。熱境界面118は、キャリアプレート112がTEC114の上面に接触する場所に生じ、この熱境界面は、新しいフローセル110がTEC114に嵌合されるたびに、変化し得る。熱境界面118の品質は、フローセル110の熱制御に影響を及ぼし得る。TEC114の上面は、消耗品熱アセンブリ100のユーザにとっては視認不可能であり得る。例えば、フローセル110を搬送するカートリッジ(図示せず)、及び/又はフローセル110自体がベース器具に挿入されると、フローセル110、及びフローセル110がフローセル110の熱制御のために境界面接触するTECアセンブリ123は、ベース器具のハウジングの内側にあり得、視界から隠れて見えない場合がある。ベース器具のハウジングは、汚染物質がその中のプロセスに影響を及ぼすことを制限又は低減することができる。しかしながら、キャリアプレート112の表面113が埃、汚れ、液体などのごみから免れることを確実にすることは、表面113を視覚的に検査するためにハウジング及び/又は器具の部分を分解せずに行うことは困難であり得る。
【0054】
DNA配列決定に使用されるフローセル110などの消耗品を使用するいくつかの実施態様の場合、並びにTEC114、及び/又は熱構成要素を含むアセンブリなどの、器具若しくはその中の熱構成要素の中で若しくはそれらとともに使用する他の目的の場合に、フローセルカートリッジ122のフローセル110及び/又はキャリアプレート112がTECアセンブリ123との十分又は許容可能な熱接触を作り出したか否かに関する判定が行われる。図2は、キャリアプレート112の上部に配置されたフローセル110を示す図1のアセンブリの側面図を示し、キャリアプレートは、TEC114の上部に置かれており、TECは、ヒートシンク120の上部に配置されている。いくつかの実施態様では、温度計又は他の熱センサは、フローセル110内及び/又はフローセルキャリアプレート112上に含まれない場合がある。熱センサを含むことにより、複雑さ、及び/又は追加の他の技術的実装問題を追加する可能性がある。更に、使い捨て消耗品の場合、熱センサの追加により、コストを増やし、信頼性を低減させ、かつ/又は消耗品に対する未知の追加事項をもたらし得る。
【0055】
しかしながら、敏感な温度制御に依存して所望の化学反応に適応する可能性がある化学的、医学的、及び/又はバイオテクノロジーの消耗品の場合、消耗品との熱境界面の品質を判定することは、消耗品内の信頼性及び再現性のある反応を確実にするために有用であり得る。場合によっては、熱境界面は、消耗品がユーザエラー又は器具装填エラーのいずれかによって不適切に装填された場合、完全に不存在になり得る。
【0056】
フローセル110などの消耗品の不適切な挿入、及び/又は器具内の消耗品の不適切な装填に加えて、フローセル110及び/又はキャリアプレート112と、TECアセンブリ122、又は境界面のTECアセンブリ側面の摩耗など、キャリアプレート112上の摩耗などの熱構成要素との間の熱境界面118において生じる汚染もまた、消耗品と、器具の熱構成要素との間の熱接触及び熱伝達を阻害する場合がある。図3は、キャリアプレート112の上部に配置されたフローセル110を示す図2のアセンブリを示しており、キャリアプレートは、TEC114の上部に置かれており、TECは、ヒートシンク120の上部に配置されている。図3において、汚れ、埃、脱水反応物質、ごみなどの汚染物質130が、消耗品と器具との間の熱境界面118を阻害している。したがって、熱は、2つの品物の間で適切には伝達しない可能性がある。本明細書に記載されているように、そのような阻害は、TEC114の熱センサ116の応答速度で、注意深く制御された駆動入力に検出され得る。
【0057】
開示される方法は、器具の構成要素(例えば、TEC114)内部に又はそれに近接して位置する熱センサ(例えば、熱センサ116)を使用して、器具と消耗品との間の境界面(例えば、熱境界面(118))における熱抵抗を判定するために、熱が器具の構成要素から消耗品(例えば、フローセルカートリッジ122)に流れる速度を検出する。この方法は、消耗品の温度のいかなる測定も必要とせず、この方法を使用して、試料及び試薬をフローセル110中に分配する前に、熱接触の品質を検証し、それによって、汚染された境界面に起因する無駄なリソース、ユーザエラーからの不適切な嵌合、又はハードウェアの誤動作を防止することができる。また、本方法を使用して、工場器具品質管理中に、境界面に関係する品質問題を特定することもできる。同様に、本方法を使用して、TEC114、フローセル122などの構成要素内に存在している製造欠陥を特定することができ、又は製造内の欠陥が熱境界面118における熱抵抗に悪影響を及ぼし得る他の構成要素は、意図しない熱静電容量をこれらの構成要素に追加し得るか、若しくはTEC114の両端を短絡させる有害な熱を生成し得る。
【0058】
いくつかの実施態様では、本方法は、周期的正弦波入力を用いてTEC114を駆動することと、正弦波入力に対する、TEC114内の熱センサ116の周期的熱応答を測定することと、正弦波入力の周波数における熱応答信号の成分を分離して駆動信号に対するその中の位相シフトを判定することと、位相シフト(遅延)を使用してTEC114とフローセルカートリッジ(122)との間の熱境界面118の熱抵抗を計算することと、を含む。この方法は、速やかに完了することができる。単なる例として、約10回の励起サイクルが、0.3Hzで30秒以内に収集することができる。代替的に、より少ない励起サイクルにより、より短い期間内で収集することができる。
【0059】
周期的正弦波入力を用いてTEC114(又は器具の別の熱構成要素)を駆動する場合、本方法のいくつかの実施態様では、TEC駆動電子機器内に位置するファームウェアは、周期的な駆動信号を開始する。これが起こると、TEC114は、室温で安定して保持され、低い入力電力(例えば、低い振幅駆動)が利用される。好適な駆動周波数が、電気等価回路のSPICEモデルからボード線図を生成し、有用な応答特性の線図を分析することによって、選択することができる。SPICEは、汎用の、オープンソースであるアナログ電子回路シミュレータであり、回路設計の整合性を分析し、回路挙動を予測するために集積回路及びボードレベル設計において使用される。駆動周波数は、熱システムのRCコーナー周波数に基づくことができる。RCコーナー周波数は、抵抗値のわずかな変化に対して、位相オフセットの勾配又は変化が最も大きくなる周波数を提供する。すなわち、熱システムのRCコーナー周波数又はその付近の周波数を選択することは、熱境界面118における抵抗のわずかな変化に基づいて、より高い感度を提供することができる。
【0060】
図4は、電気的な概略図400を示し、TECフローセルシステムの電気等価モデルを表す。概略図400において、I1(402)は、TEC114によってポンピングされた交番している熱である。この周期的入力の振幅は、TEC114の潜在能力に基づいて推定される。しかしながら、選択された測定項目(位相遅延)は、駆動振幅とは無関係である。TEC(404)は、TEC114温度が統合化した熱センサ116を用いて測定されるノードであり、統合化した熱センサは、熱回路に対して最小限の熱抵抗を与えるように、C_TEC_Ceramic(406)と非常に密接な接触で配置され得る。C_TEC_Ceramic(406)は、TEC上部セラミック(開示された実施態様に関する)、又はより総称として、消耗品と熱エンジン(TEC素子)との間の全ての質量の熱静電容量である。C_TEC_Ceramic(406)は、構成要素(複数可)の幾何学的形状、及び材料の熱容量に基づいて、最初の原理から計算される。Interface_Res(408)は、TEC114と消耗品(例えば、フローセルカートリッジ122)との間の熱抵抗であり、開示される方法によって判定される値である。Interface_Res(408)は、初期の観測に基づいた推定でモデル化され、この初期の推定に近い範囲で変化して、位相遅延がこの値にどのように依存するかを判定する。Consumable(410)は、消耗品(例えば、フローセルカートリッジ122)の温度を表すノードであり、熱センサ(複数可)で装備された消耗品を使用してモデル性能を検証するために使用することができるモデルの出力である。C_Consumable(412)は、消耗品(例えば、フローセルカートリッジ122)の熱静電容量であり、その幾何学的形状及び材料熱容量によって判定されるものである。Consumable_Convec/Conduc(414)は、対流及び伝導損失に起因する消耗品(例えば、フローセルカートリッジ122)の周囲に対する熱抵抗である。
【0061】
Consumable_Convec/Conduc(414)は、幾何学的形状、空気流仮定、及び温度仮定に基づいて推定することができ、推定は、システムの動作条件を見積もるように設計された測定値を用いて検証することができる。推定値があるレベルの不確実性を保持する場合、この値は、潜在的な動作範囲にわたって変化して、熱センサ116の応答への影響を判定し、質問周波数において無視することができる影響を及ぼし得る。Ambient(416)は、周囲温度を表す。電気等価モデルにおいて、これは、熱的な接地であり、他の全ての温度は、周囲に対して相対的である。C_Heatsink(418)は、幾何学的形状及び材料熱容量からの計算によって判定されるような熱エンジンヒートシンク(例えば、ヒートシンク120)の熱静電容量である。HS_Therm_Res(420)は、対流に起因する、周囲に対するヒートシンク(例えば、ヒートシンク120)の熱抵抗である。HS_Therm_Res(420)は、システム内の既知の条件に基づいて推定され、実験的に検証され、モデル内で変更されて、質問周波数における関心信号への無視することができる影響を実証する。
【0062】
図5は、高速測定を生成するための周波数の特定を容易にするボード線図を示し、RCのコーナー周波数付近にある測定可能な信号を出力する。図5において、TEC114の熱センサ116の予測応答500が、グラフ上にプロットされ、ここで、x軸502は、周期的励起周波数を表し、y軸504は、大きさ/位相を表す。実線512は、様々な周波数において駆動され、減衰のdBで測定された(直流(DC)励起に対して)ときの、TEC114の熱センサ116の応答の大きさを表す。点線514は、様々な周波数において駆動され、度で測定されたときの、駆動信号の背後の熱センサ116の位相遅延を表す。RCコーナー付近の質問周波数は、516において示されている。
【0063】
オンボード熱センサ116を使用して、正弦波入力に対してTEC114の周期的熱応答を測定するために、本方法のいくつかの実施態様では、TEC駆動電子機器内に位置するファームウェアが、熱応答信号を記録する。図6に示すように、熱応答信号は、全体的に駆動周波数におけるものではないが、追加の低周波数及び高周波数構成要素(例えば、熱ドリフト及び電子ノイズ)を提示している。図6は、記載される方法で使用するためのTEC駆動信号及び熱応答駆動信号の例を例示するグラフを示す。図6において、駆動及び熱応答600が、グラフ上にプロットされており、ここで、x軸602は時間を表し、左側y軸604は、TEC114駆動信号レベルを表し、右側y軸606は、熱センサ116の信号レベルを表す。駆動信号620は、TEC114駆動レベルの時間形跡である。TEC熱センサ信号630は、示された駆動信号620で駆動され、同時にTEC114が消耗品(例えば、フローセルカートリッジ122)に接触している間の、TEC114内の熱センサ116の実際の応答である。開示される方法を使用して、駆動信号と同じ周波数であるこの信号の成分を分離し、その位相シフトを判定する。
【0064】
正弦波入力の周波数(ω)にある熱応答信号の成分を分離し、駆動信号に対するその位相シフトを判定するために、本方法のいくつかの実施態様では、応答信号は、時間領域で基準信号によって乗算される。その結果のDC成分は、同相信号の振幅、Ainである。応答信号はまた、時間領域で、90°位相シフト基準によって乗算され得る。その結果のDC成分は、直交(位相ずれ)信号の振幅、Aである。これらの信号のDC成分は、正弦波への最小二乗法フィッティングを使用して得ることができる。DC成分はまた、非常に多くのサイクルにわたって信号を積分することによっても得ることができる。この積分は、ロックイン増幅器などのアナログ回路を用いて、又はマイクロプロセッサを用いてなど、デジタル的に実施することができる。応答信号の位相は、tan-1(A/Ain)又はatan2(Ain,Aq)である。DC成分Ain、及びAは、周期的振幅Aに対して小さい。
【0065】
熱センサ116の応答の位相シフトを判定するためのいくつかの代替方法には、駆動信号及び応答信号のピークを探索するためのピーク探索アルゴリズムを使用して、ピーク間の平均遅延を計算することが含まれる。熱センサ116の応答の位相シフトを判定するためのいくつかの他の代替方法には、駆動信号に対して、かつ応答信号に対して正弦波をフィッティングすること、及び最も良好なフィッティング関数の位相を使用して位相シフトを確立することが含まれる。熱センサ116の応答の位相シフトを判定するためのいくつかの他の代替方法には、応答信号に同相及び直交基準信号を乗算するロックイン技術を使用すること、ただし、(i)離散フーリエ変換及びデジタルローパスフィルタを使用すること、又は(ii)整数番号のサイクルにわたって合成信号を平均化すること、によってこれらの信号のDC成分を探索することが含まれる。
【0066】
位相シフト(遅延)を使用して、TEC114と消耗品(例えば、フローセルカートリッジ122)との間の境界面118の熱抵抗を計算するために、本方法のいくつかの実施態様では、熱抵抗は、図4に示したものなどの電気等価回路を用いて熱システムをモデル化すること、及び特定の質問駆動周波数における直列抵抗値のための曲線フィッティングを生成することによって、推定することができる。抵抗(R)が変化するにつれて、応答の位相も変化する。前述のモデルは、特定の質問駆動周波数における抵抗(R)に対する位相(φ)の関係を生成する。0.2~0.5K/Wの抵抗範囲にわたって図4でモデル化された熱システムに対するそのような、抵抗(R)に対する位相(φ)の関係の例は、結果として、R=-0.00002237φ-0.003708φ-0.2163φ-4.208の曲線フィッティングを得る(図7及び図8を参照)。図7は、熱抵抗が増加するにつれて、特定の質問駆動周波数における位相シフトを示す一連のグラフを含む。図8は、使用される0.3Hzの励起周波数を使用するある実施態様、及び図4のモデル化された電気等価回路TECシステムの構成要素の特定の熱質量に固有である応答曲線を示すグラフを提供する。
【0067】
図7において、グラフ700は、選択された質問周波数において測定されたときに、Interface_Res408(図4に示されている)が増加するにつれて、絶対位相遅延が増加することを示す3つのボード線図710、720、730を示す。ボード線図710において、実線712は、様々な周波数702で駆動されたときに、y軸704に沿って(DC励起に対する)減衰をdBで測定された、熱センサ116の応答の大きさを表し、点線714は、様々な周波数702で駆動されたときに、y軸706に沿って度で測定された、駆動信号の背後の熱センサ116の位相遅延を表し、点716は、質問周波数における点線714の位相遅延を表す。
【0068】
図7のボード線図720において、Interface_Res408などの境界面118における抵抗は、増加している。したがって、実線722は、様々な周波数702で駆動されたときに、y軸704に沿って(DC励起に対する)減衰をdBで測定された、熱センサ116の応答の大きさを表し、点線724は、様々な周波数702で駆動されたときに、y軸706に沿って度で測定された、駆動信号の背後の熱センサ116の位相遅延を表し、点726は、境界面118におけるこの増加した抵抗に対する、質問周波数における点線724の位相遅延を表す。示されるように、絶対位相遅延(すなわち、点716及び点726が存在するy軸値)は、抵抗がy軸708に沿って同じ質問周波数で更に-90度シフトすることによって増加するにつれて、増加する。
【0069】
図7のボード線図730において、Interface_Res408などの境界面における抵抗は、更に増加している。したがって、実線732は、様々な周波数702において駆動されたときに、y軸704に沿って(DC励起に対する)減衰をdBで測定された、熱センサ116の応答の大きさを表し、点線734は、様々な周波数702で駆動されたときに、y軸706に沿って度で測定された、駆動信号の背後の熱センサ116の位相遅延を表し、点736は、境界面118におけるこの更に増加した抵抗に対する、質問周波数における点線734の位相遅延を表す。示されるように、絶対位相遅延(すなわち、点716、点726、及び点736が存在するy軸値)は、抵抗がy軸708に沿って同じ質問周波数で更に-90度シフトすることによって増加するにつれて、増加する。
【0070】
図8において、グラフ800が、質問周波数における予測された温度位相遅延を様々な境界面抵抗とともに示す。温度計位相遅延(黒点810、812、816、818、820、822、824、826、及び828)が、様々な熱境界面118抵抗についての、質問周波数における熱モデルによって予測され、これらのデータ点に対する三次多項式フィッティング(点線830)を使用して、質問周波数で駆動されたときの、60°~90°の範囲の任意の位相遅延を提示する同様の実世界回路における熱抵抗を推測することができる。
【0071】
以下に説明するように、様々な実施態様において、記載される方法は、較正プロセス、熱構成要素(例えば、TECアセンブリ123)を試験するための品質管理(QC)プロセス、消耗品(例えば、フローセルカートリッジ122)を試験するためのQCプロセス、及び器具への消耗品装填中に試験するための診断プロセスを含むことができる。
【0072】
図9は、較正プロセス900のフロー図を示しており、このフロー図は、ブロック902において、消耗品構成要素(例えば、フローセルカートリッジ122)及び熱構成要素(例えば、TECアセンブリ123)のための熱回路モデルを判定することと、ブロック904において、消耗品構成要素及び熱構成要素のための既知の熱静電容量、並びに熱回路モデルに基づいて、RCコーナー値付近の質問周波数を推定することと、ブロック906において、推定された質問周波数を使用して複数の抵抗値のための複数位相オフセットデータ点を生成することと、ブロック908において、複数の抵抗値に対する複数の位相オフセットを曲線フィッティングすることと、を含む。
【0073】
消耗品構成要素及び熱構成要素のための熱回路モデルを判定すること、すなわち、ブロック902は、熱システムの各構成要素についての熱静電容量及び/又は熱抵抗成分のうちの1つ以上を有する電気等価回路を生成することを含むことができ、抵抗成分は、境界面(例えば、熱境界面118)における熱抵抗を示す。本明細書に記載されている実施態様では、消耗品構成要素及び熱構成要素は、図4に示されるような熱静電容量を有するものとして、各々モデル化される。いくつかの実施態様では、消耗品構成要素の熱静電容量は、製造メーカーからのデータからか、又は(材料比熱容量(J/g-K単位)x材料質量)若しくは(材料容積熱容量(J/cc-K単位)x材料容積)によって熱静電容量を計算することなどの試験を介するかのいずれかで、判定されてもよい。同様に、消耗品構成要素の熱静電容量は、製造メーカーからのデータからか、又は一般に既知の熱量が試料に追加されたときの、温度増加の測定に伴う熱量測定技術を用いて熱静電容量を測定することなどの試験を介するかのいずれかで、判定することができる。いくつかの実施態様では、いくつかのモデル化された構成要素は、他の構成要素と比較したときに、無視することができる値を有する可能性があり、その結果、それらのモデル化された構成要素は、モデル化されたシステムから実質的に取り除かれるものと想定することができる。
【0074】
ブロック904において、熱システムの電気等価回路が判定されると、RCコーナー値付近の質問周波数の推定が、消耗品構成要素及び熱構成要素の既知の熱静電容量、並びに熱回路モデルに基づいて、実施することができる。すなわち、境界面抵抗以外の電気等価回路の全ての構成要素は、製造メーカー又は試験のいずれかからのデータから判定され得、熱回路は、SPICEモデリングを使用するなどして、モデル化又はシミュレートすることができる。
【0075】
本明細書に記載されている実施態様では、図4の電気等価回路を使用して、図5に示すボード線図を生成し、異なる駆動周波数(Hz単位)における、512のシステム応答及び位相応答(度単位)の大きさを示す。応答出力の大きさは、正確な駆動振幅がモデル内で使用される場合、C若しくはKのいずれかで示してもよく、又は駆動振幅未満の減衰のdBであってもよい。図5に示すように、位相応答曲線514のボード線図は、TEC自体の時定数(すなわち、周囲に対する対流損失と組み合わされたその熱静電容量)に起因する初期位相降下を示しており、熱が環境にどのくらい迅速に(又はゆっくりと)伝達され得るかの説明図である。質問周波数が、ボード線図に基づいて、勾配の最も大きい周波数として推定することができ、周波数は、熱システムの電気等価回路のRCコーナーに対応する。図5に示すように、RCコーナーは、およそ0.3Hzとして推定することができる。いくつかの実施態様では、質問周波数の推定は、モデルを最適化又は収束させるための抵抗値を通じて繰り返して、RCコーナー及び対応する質問周波数を判定することを含むことができる。
【0076】
ブロック906において、質問周波数が推定、又は別様に判定されると、複数の位相オフセットデータ点が、推定質問周波数を使用して、複数の抵抗値のために生成することができる。すなわち、境界面抵抗の複数の抵抗値が、モデルに入力されて、図7に示すものなどの複数の対応するモデル化されたシステム応答を判定することができる。示されるように、各抵抗値における位相応答は、点716、726、736によって示すように、境界面の熱抵抗値が増加するにつれて負の方に増加する。複数の位相オフセットデータ点は、モデルの複数の対応する抵抗値に対してプロットすることができ、曲線フィッティング、すなわちブロック908が、複数の抵抗値に対する複数の位相オフセットに対して実施されて、抵抗モデル式に対する位相を生成することができる。
【0077】
プロセス900を使用して熱構成要素(例えば、TECアセンブリ123)の抵抗モデルに対する位相を生成することができるが、図10は、熱構成要素を試験するために、QCプロセス1000の抵抗モデルに対する位相を利用するある実施態様のフロー図を示す。ブロック1002において、TEC114自体又はTECアセンブリ123などの熱構成要素を試験するためのQCプロセス1000は、既知の消耗品を試験対象の器具の熱構成要素に接触させることを含むことができる。既知の消耗品は、フローセル110、キャリアプレート112、フローセルアセンブリ123、又は既知の許容可能な境界面抵抗を有する他の消耗品構成要素などの予め試験された消耗品構成要素であってもよい。
【0078】
ブロック1004において、この例のQCプロセス1000は、所定の質問周波数に基づいて、周期的正弦波入力を使用して熱構成要素を駆動することを更に含む。周期的正弦波入力を使用して熱構成要素を駆動することには、較正プロセス900中に推定された質問周波数で正弦波入力を出力するための信号発生器を使用することが含まれ得る。他の実施態様では、他の質問周波数を使用することができる。
【0079】
ブロック1006において、この例のQCプロセス1000は、周期的正弦波入力を使用して、熱構成要素を駆動することに応答する熱センサ(例えば、熱センサ118)からの複数の温度出力を測定することを更に含む。いくつかの実施態様では、温度出力は、ログファイル又はデータ表に記録され得、かつ/又はプロセス1000中に所定の回数だけ定期的に登録され得る。
【0080】
ブロック1008において、複数の温度出力は、周期的正弦波入力と同相の基準信号によって乗算され得、結果として得られるDC信号成分が計算されて、同相成分Xを判定することができる。基準信号は、質問周波数と同じ周波数を有する任意の信号であってもよく、例えば、周期的正弦波入力自体が含まれる。結果として得られるDC信号は、基準信号で乗算され、結果として得られる温度出力の正弦波曲線フィッティングに基づいて計算されて、同相成分Xであるオフセットを判定することができる。他の実施態様では、温度出力は、所定の期間にわたって平均化されて、平均オフセットを同相成分Xとして判定することができる。
【0081】
ブロック1010において、複数の温度出力はまた、90°位相シフト基準信号によって乗算され得、結果として得られたDC信号成分が計算されて、直交位相ずれ成分Yを判定することができる。基準信号は、90°位相シフトされている質問周波数と同じである周波数を有する任意の信号であってもよく、例えば、周期的正弦波入力自体の90°位相シフト基準信号が含まれる。結果として得られるDC信号は、基準信号によって乗算され、結果として得られる温度出力の正弦波曲線フィッティングに基づいて計算されて、位相のずれた成分Yであるオフセットを判定することができる。他の実施態様では、基準信号で乗算され、結果として得られる温度出力は、所定の期間にわたって平均化されて、平均オフセットを位相のずれた成分Yとして判定することができる。
【0082】
ブロック1012において、周期的正弦波入力に応答する位相オフセットは、tan-1(Y/X)又はatan2(X、Y)に基づいて計算することができ、ここで、Yは、位相のずれた成分であり、Xは、同相成分である。次いで、ブロック1014において、位相オフセットを使用して、較正された抵抗位相オフセット式、及び計算された位相オフセットを使用して熱境界面の対応する抵抗値を計算又は判定することができ、例えば、較正された抵抗位相オフセット式は、較正プロセス900によって決定される。ブロック1014において、いくつかの実施態様では、抵抗値の判定は、省略されてもよく、QCプロセス1000は、ブロック1016、1018、1020の所定の位相オフセット閾値と比較されるときに、位相オフセット値を直接利用することができ、それらのブロックについては、以下に更に詳細に説明される。
【0083】
ブロック1016において、判定された抵抗値を使用すると、この例のQCプロセス1000は、判定された抵抗値を所定の抵抗閾値と比較することを更に含む。所定の抵抗閾値は、熱構成要素内に欠陥があるという理由で、試験対象の構成要素と既知の消耗品との間に不十分な熱伝達が生じる場所の抵抗値として設定することができる。所定の抵抗閾値は、図14に示された値などの、いくつかの熱構成要素及び消耗品の試験に基づいて、実験的に判定することができる。場合によっては、所定の抵抗閾値は、誤差マージンを含み、これは、例えば、図14を参照して説明される特定の配列内の0.45K/Wの値などの、熱構成要素のばらつきを考慮することができる。また、ブロック1014において、いくつかの実施態様では、較正された抵抗位相オフセット式、及び計算された位相オフセットを使用して熱境界面の対応する抵抗値を判定することは、1016の位相オフセット閾値と比較される位相オフセットを直接使用することによって、省略することができる。
【0084】
ブロック1018において、この例のQCプロセス1000は、判定された抵抗値が所定の抵抗閾値を上回っていることに基づいて、熱構成要素が熱境界面表面(例えば、境界面表面118)に欠陥を有すると判定することを更に含むことができる。熱境界面における欠陥は、埃、汚れ、乾燥剤、及び/若しくはTEC114自体内の欠陥などの熱構成要素内の欠陥、TEC114の表面内の欠陥、又は任意の他の欠陥であってもよい。いくつかの実施態様では、QCプロセス1000は、自動式品質管理システムが熱構成要素を移動させるか、又は別様に欠陥を有するものとしてその熱構成要素にフラグを立てることができるように、熱構成要素が欠陥を有することを指定するフラグを設定することを更に含むことができる。ブロック1018において、他の実施態様では、明かりを点灯することができ(例えば、熱構成要素が欠陥を有することをユーザに知らせる赤色のランプを点灯し得る)、ポップアップインジケータを起動することができ、かつ/又は熱構成要素が欠陥を有するという判定に応答する別のプロセスを起動することができる。ブロック1018において、いくつかの実施態様では、熱構成要素が熱境界面の表面に欠陥を有すると判定することは、判定された抵抗値が所定の抵抗閾値と等しいか、又はそれを上回っていることに基づくことができる。
【0085】
ブロック1020において、判定された抵抗値が所定の抵抗閾値を上回らない(又はその抵抗閾値に等しい)場合、この例のQCプロセス1000は、判定された抵抗値が所定の抵抗閾値を下回っていることに基づいて、熱構成要素が許容可能であると判定する。ブロック1020において、熱構成要素が許容可能であるという判定に応答して、この例のQCプロセス1000は、自動式品質管理システムが熱構成要素を移動させるか、又は別様にQCプロセス1000を合格するものとしてその熱構成要素にフラグを立てることができるように、熱構成要素が許容可能であることを指定するフラグを設定することを更に含むことができる。ブロック1020において、他の実施態様では、明かりを点灯することができ(例えば、熱構成要素が許容可能であることをユーザに知らせる緑色のランプを点灯し得る)、ポップアップインジケータを起動することができ、かつ/又は熱構成要素が許容可能であるという判定に応答する別のプロセスを起動することができる。ブロック1020において、いくつかの実施態様では、熱構成要素が許容可能であると判定することは、判定された抵抗値が所定の抵抗閾値と等しいか、又はそれを下回っていることに基づくことができる。
【0086】
図11は、消耗品を試験するためのQCプロセス1100の抵抗モデルに位相を利用するある実施態様のフロー図を示す。QCプロセス1100を使用して、フローセル110、キャリアプレート112、フローセルアセンブリ123、又は既知の許容可能な境界面抵抗を有する他の消耗品構成要素などの消耗品を試験することができる。ブロック1102において、QCプロセス1100は、試験対象の消耗品を器具の既知の熱構成要素に接触させることを含むことができる。既知の熱構成要素は、TEC114、TECアセンブリ123、又は既知の許容可能な境界面抵抗を有する他の熱構成要素などの予め試験された熱構成要素であってもよい。
【0087】
ブロック1104において、この例のQCプロセス1100は、所定の質問周波数に基づいて、周期的正弦波入力を使用して熱構成要素を駆動することを含む。周期的正弦波入力を使用して熱構成要素を駆動することには、較正プロセス900中に推定された質問周波数で正弦波入力を出力するための信号発生器を使用することが含まれ得る。他の実施態様では、他の質問周波数を使用することができる。
【0088】
ブロック1106において、この例のQCプロセス1100は、周期的正弦波入力を使用して熱構成要素を駆動することに応答する熱センサ(例えば、熱センサ118)からの複数の温度出力を測定することを更に含む。いくつかの実施態様では、温度出力は、ログファイル若しくはデータ表に記録され得、かつ/又はプロセス1100中に所定の回数だけ定期的に登録され得る。ブロック1108において、複数の温度出力は、周期的正弦波入力と同相の基準信号によって乗算され得、結果として得られるDC信号成分が計算されて、同相成分Xを判定することができる。基準信号は、質問周波数と同じ周波数を有する任意の信号であってもよく、例えば、周期的正弦波入力自体が含まれる。結果として得られるDC信号は、基準信号で乗算されて得られる温度出力の正弦波曲線フィッティングに基づいて計算されて、同相成分Xであるオフセットを判定することができる。他の実施態様では、温度出力は、所定の期間にわたって平均化されて、平均オフセットを同相成分Xとして判定することができる。
【0089】
ブロック1110において、複数の温度出力はまた、90°位相シフト基準信号によっても乗算され得、結果得られるDC信号成分が計算されて、直交位相ずれ成分Yを判定することができる。基準信号は、90°位相シフトされている質問周波数と同じである周波数を有する任意の信号であってもよく、例えば、周期的正弦波入力自体の90°位相シフト基準信号が含まれる。結果として得られるDC信号は、基準信号で乗算されて結果として得られる温度出力の正弦波曲線フィッティングに基づいて計算されて、位相のずれた成分Yであるオフセットを判定することができる。他の実施態様では、基準信号で乗算されて結果として得られる温度出力は、所定の期間にわたって平均化されて、平均オフセットを位相のずれた成分Yとして判定することができる。
【0090】
ブロック1112において、周期的正弦波入力に応答する位相オフセットは、tan-1(Y/X)又はatan2(X、Y)に基づいて計算することができ、ここで、Yは、位相のずれた成分であり、Xは、同相成分である。次いで、ブロック1114において、位相オフセットを使用して、較正された抵抗位相オフセット式、及び計算された位相オフセットを使用して、熱境界面(例えば、熱境界面118)の対応する抵抗値を計算又は判定することができ、例えば、較正された抵抗位相オフセット式は、較正プロセス900によって決定される。ブロック1114において、いくつかの実施態様では、抵抗値の判定は、省略されてもよく、QCプロセス1100は、ブロック1116、1118、1120の所定の位相オフセット閾値と比較されるときに、位相オフセット値を直接利用することができ、それらのブロックについては、以下に更に詳細に説明される。
【0091】
ブロック1116において、判定された抵抗値を使用すると、この例のQCプロセス1100は、判定された抵抗値を所定の抵抗閾値と比較することを更に含む。所定の抵抗閾値は、消耗品内に欠陥があるという理由で試験対象の消耗品と既知の熱構成要素との間に不十分な熱伝達が生じる場所の抵抗値として設定することができる。所定の抵抗閾値は、図15に示される値などの、いくつかの熱構成要素及び消耗品の試験に基づいて、実験的に判定することができる。場合によっては、所定の抵抗閾値は、誤差マージンを含み、これは、例えば、図15を参照して説明する特定の消耗品構成の0.45K/W又は0.375K/Wの値などの、熱構成要素のばらつきを考慮することができる。
【0092】
ブロック1118において、この例のQCプロセス1100は、判定された抵抗値が所定の抵抗閾値を上回っていることに基づいて、消耗品が熱境界面(例えば、境界面118)に欠陥を有すると判定することを更に含むことができる。熱境界面における欠陥は、埃、汚れ、乾燥剤などの任意の欠陥、及び/若しくは消耗品の基材内の欠陥などの消耗品自体の内の欠陥、消耗品の接着結合内の欠陥、又は任意の他の欠陥であってもよい。いくつかの実施態様では、QCプロセス1100は、自動式品質管理システムが消耗品を移動させるか、又は別様に欠陥を有するものとして消耗品にフラグを立てることができるように、消耗品が欠陥を有することを指定するフラグを設定することを更に含むことができる。ブロック1118において、他の実施態様では、明かりを点灯することができ(例えば、消耗品が欠陥を有することをユーザに知らせる赤色のランプを点灯し得る)、ポップアップインジケータを起動することができ、かつ/又は消耗品が欠陥を有するという判定に応答する別のプロセスを起動することができる。ブロック1118において、いくつかの実施態様では、判定された抵抗値が所定の抵抗閾値を上回っていることに応答して、消耗品が熱境界面に欠陥を有すると判定することは、判定された抵抗値が所定の抵抗閾値と等しいか。又はそれを上回っていることに基づくことができる。
【0093】
ブロック1120において、判定された抵抗値が所定の抵抗閾値を上回らない(又はその抵抗閾値に等しい)場合、この例のQCプロセス1100は、判定された抵抗値が所定の抵抗閾値を下回っていることに基づいて、消耗品が許容可能であると判定する。消耗品が許容可能であるという判定に応答して、プロセス1100は、自動式品質管理システムが消耗品を移動させるか、又は別様にQCプロセス1100を合格するものとしてその消耗品にフラグを立てることができるように、消耗品が許容可能であることを指定するフラグを設定することを更に含むことができる。ブロック1120において、他の実施態様では、明かりを点灯することができ(例えば、消耗品が許容可能であることをユーザに知らせる緑色のランプを点灯し得る)、ポップアップインジケータを起動することができ、かつ/又は消耗品が許容可能であるという判定に応答する別のプロセスを起動することができる。ブロック1120において、いくつかの実施態様では、消耗品が許容可能であると判定することは、判定された抵抗値が所定の抵抗閾値と等しいか、又はそれを下回っていることに基づくことができる。
【0094】
図12は、QCを目的に消耗品を器具に装填することを試験するための診断プロセス1200のフロー図を示す。いくつかの実施態様では、そのような器具は、消耗品と、器具の構成要素との間の熱境界面(例えば、熱境界面118)の目視検査を不明瞭にし得る筐体又は他の構成要素を含み得る。例えば、TEC114又はTECアセンブリ123の上面は、器具のユーザには視認不可能であり得る。フローセルカートリッジ122などの消耗品、及び/又はフローセル110自体が器具の中に挿入されるときに、消耗品が熱制御のために境界面で接続するTEC112又はTEC123アセンブリなどの消耗品及び対応する熱構成要素は、器具のハウジングの内側にあり得、視界から隠れて見えない場合がある。器具のハウジングは、一般に、汚染物質がその中でプロセスに影響を及ぼすのを制限又は低減することができる。しかしながら、消耗品と熱構成要素との間の熱境界面に埃、汚れ、液体などのごみがないことを確実にすることについて、熱境界面を目視で検査するために器具のハウジング及び/又は各部分を分解せずに行うことは、困難であり得る。したがって、この例の診断プロセス1200は、事前に実施する品質管理点検の一部として器具によって実装され得、消耗品が器具の中に装填され、消耗品と器具との間の熱境界面が、熱構成要素による消耗品の十分な熱制御が達成可能であるように、許容可能な低い熱抵抗を有すると判定することができる。
【0095】
ブロック1202において、いくつかの実施態様では、診断プロセス1200は、最初に、消耗品を器具の熱構成要素に接触させることを含むことができる。上述したように、熱構成要素は、TEC114、TECアセンブリ123、又は器具が製造されたときに既知の許容可能な境界面抵抗を有する他の熱構成要素などの予め試験された熱構成要素であってもよい。いくつかの実施態様では、消耗品を熱構成要素に接触させることは、ユーザがフローセルカートリッジ123及び/又はフローセル1120を器具の中に挿入すること、並びに器具が自動式プロセスを実施してフローセルカートリッジ123及び/又はフローセル110を熱構成要素とともに関与させることを含むことができる。
【0096】
ブロック1204において、この例の診断プロセス1200は、所定の質問周波数に基づいて、周期的正弦波入力を使用して熱構成要素を駆動することを更に含む。周期的正弦波入力を使用して熱構成要素を駆動することには、較正プロセス900中に推定された質問周波数で正弦波入力を出力するための信号発生器を使用することが含まれ得る。他の実施態様では、他の質問周波数を使用することができる。いくつかの実施態様では、周期的正弦波入力のデータは、器具のメモリ又は記憶装置内に格納することができる。
【0097】
ブロック1206において、この例の診断プロセス1200は、周期的正弦波入力を使用して熱構成要素を駆動することに応答する熱センサ(例えば、熱センサ118)からの複数の温度出力を測定することを更に含む。いくつかの実施態様では、温度出力は、ログファイル若しくはデータ表に記録され得、かつ/又はプロセス1200中に所定の回数だけ定期的に登録され得る。ブロック1208において、複数の温度出力は、周期的正弦波入力と同相の基準信号によって乗算され得、結果として得られるDC信号成分が計算されて、同相成分Xを判定することができる。基準信号は、質問周波数と同じ周波数を有する任意の信号であってもよく、例えば、周期的正弦波入力自体が含まれる。結果として得られるDC信号は、基準信号で乗算されて結果として得られる温度出力の正弦波曲線フィッティングに基づいて計算されて、同相成分Xであるオフセットを判定することができる。他の実施態様では、温度出力は、所定の期間にわたって平均化されて、平均オフセットを同相成分Xとして判定することができる。
【0098】
ブロック1210において、複数の温度出力はまた、90°位相シフト基準信号によって乗算され得、結果として得られるDC信号成分が計算されて、直交位相ずれ成分Yを判定することができる。基準信号は、90°位相シフトされている質問周波数と同じ周波数を有する任意の信号であってもよく、例えば、周期的正弦波入力自体の90°位相シフト基準信号が含まれる。結果として得られるDC信号は、基準信号で乗算されて結果として得られる温度出力の正弦波曲線フィッティングに基づいて計算されて、位相のずれた成分Yであるオフセットを判定することができる。他の実施態様では、基準信号で乗算されて結果として得られる温度出力は、所定の期間にわたって平均化されて、平均オフセットを位相のずれた成分Yとして判定することができる。
【0099】
ブロック1212において、周期的正弦波入力に応答する位相オフセットは、tan-1(Y/X)又はatan2(X、Y)に基づいて計算することができ、ここで、Yは、位相のずれた成分であり、Xは、同相成分である。次いで、ブロック1214において、位相オフセットを使用して、較正された抵抗位相オフセット式、及び計算された位相オフセットを使用して熱境界面(例えば、熱境界面118)の対応する抵抗値を計算又は判定することができ、例えば、較正された抵抗位相オフセット式は、較正プロセス900によって決定される。較正された抵抗位相オフセット式は、器具のメモリ又は記憶装置に格納されている一群の器具のための単一の式であってもよい。他の実施態様では、較正された抵抗位相オフセット式は、器具に固有のものであってもよく、器具の製造及び/又は最終的な較正の間に計算されてもよい。ブロック1214において、いくつかの実施態様では、抵抗値の判定は、省略されてもよく、診断プロセス1200は、ブロック1216、1218、1220、1222の所定の位相オフセット閾値と比較されるときに、位相オフセット値を直接利用することができ、それらのブロックについては、以下に更に詳細に説明される。
【0100】
ブロック1216において、判定された抵抗値を使用すると、この例の診断プロセス1200は、判定された抵抗値を第1の所定の抵抗閾値及び第2の所定の抵抗閾値と比較することを更に含む。第1の所定の抵抗閾値は、消耗品と熱構成要素との間の熱境界面に欠陥又はごみがあるという理由で、消耗品と、器具の熱構成要素との間に不十分な熱伝達が生じる場所の抵抗値として設定することができる。第1の所定の抵抗閾値は、図13図16に示した値などの、いくつかの熱構成要素及び消耗品の試験に基づいて、実験的に判定することができる。
【0101】
場合によっては、診断プロセス1200で利用される第1の所定の抵抗閾値は、熱構成要素及び/又は消耗品のばらつきを考慮するための誤差マージンを含むことができる。第2の所定の抵抗閾値は、消耗品が器具中に装填されていないか、又は熱構成要素と消耗品との間の熱境界面が高い抵抗を有するかのいずれかの理由により、熱構成要素と消耗品との間に最小限の熱伝達が生じるか、又は全く熱伝達が生じない十分高い値の抵抗値として設定することができる。第2の所定の抵抗閾値は、消耗品が何も装填されていない場合の図13に示した値などの、いくつかの器具の試験に基づいて実験的に判定することができ、その抵抗値は、例えば、装填され、かつ特定の被試験器具に対して許容可能な熱境界面を有する消耗品の平均値0.359454と比較される1.313K/Wである。場合によっては、第2の所定の抵抗閾値は、熱構成要素及び/又は消耗品のばらつきを考慮する誤差マージンを含むことができる。
【0102】
判定された抵抗値の、第1の所定の抵抗閾値及び第2の所定の抵抗閾値との比較に基づいて、この実施態様における診断プロセス1200は進行しながら、ブロック1218において、消耗品が器具内に適切に挿入されていないかどうかを判定するか、ブロック1220において、熱境界面における欠陥又はごみが器具の動作に影響を及ぼし得るかどうかを判定するか、又はブロック1222において、熱境界面における抵抗が許容可能であるかどうかを判定して、器具の更なるプロセスを続行する。
【0103】
ブロック1218において、診断プロセス1200は、判定された抵抗値が第2の所定の抵抗閾値を上回っていることに基づいて、消耗品が器具内に適切に挿入されていないと判定することができる。ブロック1218において、診断プロセス1200が、消耗品が器具内に適切に挿入されていないと判定した場合、診断プロセス1200は、消耗品が装填されていないことを知らせて器具の動作を停止するか、又は別様に消耗品が適切に装填されていないことをユーザに知らせるフラグを設定することを更に含むことができる。ブロック1218において、他の実施態様では、明かりを点灯することができ(例えば、消耗品が適切に装填されていないことをユーザに知らせる赤色のランプを点灯し得る)、ポップアップインジケータを起動することができ、かつ/又は消耗品が適切に装填されていないという判定に応答する別のプロセスを起動することができる。ブロック1218において、いくつかの実施態様では、消耗品が適切に挿入されていないと判定することは、判定された抵抗値が第2の所定の抵抗閾値と等しいか、又はそれを上回っていることに基づくことができる。
【0104】
ブロック1220において、診断プロセス1200は、熱境界面における欠陥又はごみが、判定された抵抗値が第2の所定の抵抗閾値を下回り、かつ第1の所定の抵抗閾値を上回っていることに基づいて、器具の動作に影響を及ぼすことになると判定することができる。熱境界面における欠陥又はごみは、埃、汚れ、乾燥剤などの任意の欠陥、及び/若しくは消耗品の基材内の欠陥などの消耗品内の欠陥、消耗品の接着結合内の欠陥、若しくは任意の他の欠陥、並びに/又はTEC114自体の内の欠陥などの熱構成要素自体の内の欠陥、TEC114の表面内の欠陥、若しくは任意の他の欠陥であってもよい。
【0105】
ブロック1220において、診断プロセス1200が、熱境界面における欠陥又はごみが器具の動作に影響を及ぼすと判定した場合、診断プロセス1200は、熱境界面においてごみ又は欠陥が存在しないことを知らせて器具の動作を停止するか、及び/又は別様に消耗品と、器具の熱構成要素との間の熱境界面が妨げられていることをユーザに知らせるフラグを設定することができる。ブロック1220において、他の実施態様では、明かりを点灯することができ(例えば、熱境界面を伴うごみ又は欠陥をユーザに知らせる赤色又は黄色のランプを点灯し得る)、ポップアップインジケータを起動することができ、かつ/又は熱境界面における欠陥又はごみの判定に応答する別のプロセスを起動することができる。いくつかの実施態様では、診断プロセス1200は、排出動作を開始して、ユーザが消耗品を洗浄し、熱構成要素をサービスし、かつ/又は不適切な挿入若しくは位置合わせのときに再挿入することができるように、消耗品を排出することができる。ブロック1220において、いくつかの実施態様では、熱境界面における欠陥又はごみが器具の動作に影響を及ぼすことになると判定することは、判定された抵抗値が第1の所定の抵抗閾値と等しいか、又はそれを上回っていることに基づくことができる。
【0106】
ブロック1222において、判定された抵抗値が第1の所定の抵抗閾値を上回らない場合、診断プロセス1200は、熱境界面が許容可能であると判定することができる。熱境界面が許容可能であるという判定に基づいて、診断プロセス1200は、熱境界面が許容可能であり、その結果、器具が動作を続行するか、又は別様に診断プロセスを合格したものとして熱境界面にフラグを立てることができることを知らせるフラグを設定することを更に含むことができる。ブロック1222において、他の実施態様では、明かりを点灯することができ(例えば、熱境界面が許容可能であることをユーザに知らせる緑色のランプを点灯し得る)、ポップアップインジケータを起動することができ、かつ/又は熱境界面が許容可能であるという判定に応答する別のプロセスを起動することができる。いくつかの実施態様では、ブロック1222において、熱境界面が許容可能であると判定することは、判定された抵抗値が第1の所定の抵抗閾値と等しいか、又はそれを下回っていることに基づくことができる。
【0107】
図13は、測定再現性を説明するために記載された技術を使用して繰り返し測定された例を例示する表を示す。データは、測定が境界面抵抗においてわずか数パーセントのばらつきを容易に解決しており、したがって、仕様範囲が予測測定値の約+20%/-0%の狭い範囲である場合、良好な境界面と不良の境界面との間を区別するための許容可能な精度を有することができることを示す。この表はまた、消耗品が装備されていない場合の測定結果の例も列挙している。測定値が、3.6倍超高く、消耗品が欠けていることがこの測定で容易に検出されることを示している。
【0108】
図14は、記載された測定が、同じ消耗品の2つの異なる事例を使用して、いくつかの試作器具にわたってどのように異なる結果を生成するかを例示する表を示す。器具のばらつきは、測定再現性よりも非常に大きく、これは、実際の各部分にわたるばらつきが測定されていることを示している。
【0109】
図15は、記載された測定値が、同じ器具において、いくつかの消耗品にわたって異なる結果をどのように生成するかを例示する表を示す。消耗品のばらつきは、測定再現性よりもわずかに大きい。
【0110】
図16は、TEC114とフローセルキャリアプレート112との間の境界面に理論上現れ得る厚紙汚染物質(円で囲まれている)を示す。記載される測定技術は、汚染物質との境界面抵抗の45%の増加を測定することができ、現実世界の汚染が測定再現性よりも非常に大きく、かつ器具及び消耗品のばらつきよりも大きい測定結果を生成し得ることを実証している。
【0111】
図17は、熱抵抗に基づいて、フローセル122の傾斜上昇時間の例を示すグラフ1300を示しており、熱境界面118に様々な種類の欠陥を有する。そのような欠陥は、熱境界面118での汚染物質130(例えば、汚れ、埃、脱水反応物質、ごみなど)の存在から、TECアセンブリ123に不適切に装填されるフローセルカートリッジ112から、フローセルカートリッジ112若しくはTECアセンブリ123内の製造上の欠陥から、又は他のいくつか条件から、もたらされ得る。しかしながら、この例では、様々なデータ点1332、1334、1336は、汚染物質130が熱境界面118に位置する状態を表し、これに対してデータ点1330は、汚染物質130が熱境界面118に存在しない状態を表す。
【0112】
このグラフ1300において、y軸1302は、フローセル122の傾斜上昇時間を秒単位で表し、これに対して、x軸1304は、本明細書に記載されている方法によって判定されたものとして、熱境界面118における熱抵抗をK/W単位で表している。本明細書で使用されるときに、「傾斜上昇時間」という用語は、TEC114によって駆動されたときに、フローセル110内に配置された熱センサ(図示せず)が所定の開始温度から所定の目標温度に変化するのにかかる時間である。
【0113】
図17において、水平線1310は、閾値傾斜上昇時間値の例を表し、ここで、フローセル122の傾斜上昇時間が、水平線1310によって表される閾値を下回ることが望ましい。言い替えると、水平線1310で表される閾値を超える傾斜上昇時間値は、許容不可能であると見なされ得る。この例では、閾値傾斜上昇時間値は、およそ12秒である。代替的に、閾値傾斜上昇時間値は、およそ9秒~およそ30秒の範囲であってもよい。垂直線1320は、閾値熱抵抗値の例を表し、ここで、熱境界面118における熱抵抗は、垂直線1320によって表される閾値を下回ることが望ましい。言い替えると、垂直線1320によって表される閾値を超える熱抵抗値は、許容不可能であると見なされ得る。この例では、閾値熱抵抗値は、およそ0.66K/Wである。代替的に、閾値熱抵抗値は、およそ0.36K/W~およそ0.91K/Wの範囲であってもよい。
【0114】
図17中のデータ点1330、1332は、熱境界面118が許容可能である状態を示し、すなわち、フローセル122の傾斜上昇時間は、水平線1310によって表される閾値を下回り、熱抵抗値は、垂直線1320によって表される閾値を下回る。上述したように、データ点1330は、汚染物質130が熱境界面118に存在しない状態を表す。データ点1332は、汚染物質130が熱境界面118に存在する状態を表し、更には、そのような汚染物質130は、熱境界面118に対して、水平線1310によって表された閾値を超えてフローセル122の傾斜上昇時間を増加させるか、又は垂直線1320によって表された値を超えて熱抵抗を増加させるのに十分影響を及ぼさない。
【0115】
データ点1334は、熱境界面118が、境界面欠陥に起因して、許容不可能である(又は少なくとも許容可能であるが、望ましくない)状態を示す。データ点1334によって表される状態では、熱境界面118における熱抵抗が、垂直線1320によって表される閾値を許容可能に下回る場合であっても、フローセル122の傾斜上昇時間は、許容不可能に(又は望ましくなく)水平線1310によって表される閾値を超える。いくつかのシナリオでは、データ点1334によって表される状態は、工場品質管理の文脈において許容不可能であると見なされ得るが、しかし、使用中の品質管理において、現場の文脈においては許容可能である(たとえ望ましくない場合でも)と見なされ得る。言い替えると、工場内のデータ点1334に関連付けられた状態を提示する熱境界面118は、排除されてもよく、これに対して、現場内でのデータ点1334に関連付けられた状態を提示する熱境界面118は、許容可能であると見なされ得る(たとえ望ましくない場合でも)。
【0116】
データ点1336は、境界面欠陥が、フローセル122の傾斜上昇時間を許容できないほど高くし、したがって、熱境界面118の熱抵抗値を許容できないほど高くすることに起因して、熱境界面118が許容不可能である状態を示す。
【0117】
前述の説明は、当業者が本明細書に記載されている様々な構成を実践することができるように提供されている。主題技術は、様々な図及び構成を参照して詳細に説明されてきたが、これらは、単に例示の目的のために過ぎず、主題技術の範囲を限定するものとして解釈してはならないことを理解されたい。
【0118】
本明細書で使用されるときに、単数形で列挙され、単語「a」又は「an」が先行した要素及びステップは、そのような排除が明示的に記述されていない限り、複数の当該要素及びステップを除外しないものとして理解されたい。更に、「一実施態様」への言及は、列挙された特徴も組み込む追加の実施態様の存在を排除するものとして解釈されることを意図されるものではない。更に、逆に明示的に記述されていない限り、特定の特性を有する1つの要素又は複数の要素を「備える」又は「有する」実施態様は、それらがその特性を有するか否かにかかわらず、追加の要素を含むことができる。
【0119】
本明細書全体を通して使用される用語「実質的に」及び「約」は、処理のばらつきなどの小さな変動を説明及び説明するために使用される。例えば、それらの用語は、±5%以下を、±2%以下など、±1%以下など、±0.5%以下など、±0.2%以下など、±0.1%以下など、±0.05%以下など、及び/又は0%として指すことができる。
【0120】
主題技術を実装するための他の多くの方法が存在し得る。本明細書に記載されている様々な機能及び要素は、主題技術の範囲から逸脱せずに示されるものとは異なって分割されてもよい。これらの実施態様に対する様々な修正は、当業者にとって容易に明らかであり得、本明細書で定義された包括的な原理は、他の実施態様に適用することができる。したがって、多くの変更及び修正が、当業者によって、主題技術の範囲を逸脱せずに行うことができる。例えば、異なる数の所与のモジュール又はユニットを採用することができるか、異なるタイプ(複数可)の所与のモジュール又はユニットを採用することができるか、所与のモジュール又はユニットを追加することができるか、又は所与のモジュール又はユニットを省略することができる。
【0121】
下線付き及び/又はイタリック体の見出し及び小見出しは、便宜上のみ使用されており、主題技術を限定するものではなく、主題技術の説明の解釈と関連して言及されていない。当業者にとって既知である、又はその後既知になる、本開示全体にわたって説明された様々な実施態様の要素に対する全ての構造的及び機能的等価物は、参照により明示的に組み込まれ、主題技術によって包含されることが意図されている。更に、本明細書に開示されているものは、そのような開示が上記の説明において明示的に記述されているかどうかにかかわらず、公開専用であることは、意図されていない。
【0122】
前述の概念及び更なる概念の全ての組み合わせが、以下でより詳細に考察される(かかる概念が相互に矛盾しないことを提供する)は、本明細書に開示される発明の主題の一部であると考えられることを理解されたい。具体的には、本開示の終わりに現れる特許請求される主題の全ての組み合わせは、本明細書に開示される発明の主題の一部であると考えられる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17