IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ミツバの特許一覧

<>
  • 特許-電源回路、電源供給方法 図1
  • 特許-電源回路、電源供給方法 図2
  • 特許-電源回路、電源供給方法 図3
  • 特許-電源回路、電源供給方法 図4
  • 特許-電源回路、電源供給方法 図5
  • 特許-電源回路、電源供給方法 図6
  • 特許-電源回路、電源供給方法 図7
  • 特許-電源回路、電源供給方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-21
(45)【発行日】2023-11-30
(54)【発明の名称】電源回路、電源供給方法
(51)【国際特許分類】
   H02P 6/00 20160101AFI20231122BHJP
   H02P 29/024 20160101ALI20231122BHJP
【FI】
H02P6/00
H02P29/024
【請求項の数】 2
(21)【出願番号】P 2020064300
(22)【出願日】2020-03-31
(65)【公開番号】P2021164286
(43)【公開日】2021-10-11
【審査請求日】2022-09-26
(73)【特許権者】
【識別番号】000144027
【氏名又は名称】株式会社ミツバ
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100126664
【弁理士】
【氏名又は名称】鈴木 慎吾
(74)【代理人】
【識別番号】100196689
【弁理士】
【氏名又は名称】鎌田 康一郎
(72)【発明者】
【氏名】橋本 量太
(72)【発明者】
【氏名】廣田 憲
(72)【発明者】
【氏名】阿久津 智一
(72)【発明者】
【氏名】細谷 義勝
【審査官】佐藤 彰洋
(56)【参考文献】
【文献】特開2019-103185(JP,A)
【文献】国際公開第2014/106894(WO,A1)
【文献】特開平08-275392(JP,A)
【文献】特開2011-182492(JP,A)
【文献】特開2012-139021(JP,A)
【文献】特開2004-135389(JP,A)
【文献】特開2017-189023(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 6/00
H02P 29/024
(57)【特許請求の範囲】
【請求項1】
ブラシレスモーターに接続されるブリッジ回路と、
前記ブラシレスモーターに電力を供給するバッテリーと、
前記バッテリーから前記ブリッジ回路に供給される電流を平滑化する平滑用コンデンサと
に接続され、前記ブラシレスモーターに電力を供給する電源回路であって、
前記バッテリーと前記ブリッジ回路との間に設けられる半導体スイッチと、
前記バッテリーから平滑用コンデンサに対するプリチャージ中の電圧が基準電圧値に到達すると、前記プリチャージを終了させ、前記バッテリーから前記ブリッジ回路に対して電圧を供給するように半導体スイッチを切り替えるパワー電源供給部と、
前記パワー電源供給部によって前記半導体スイッチに供給される電圧の立ち上がりを緩和する立ち上がり緩和回路と、
前記ブラシレスモーターの各相の端子電圧を検出する端子電圧監視部と、
前記検出された端子電圧と、前記平滑用コンデンサにプリチャージされる電圧との関係に基づいて、故障が生じているか否かを判定する判定部と、を有し、
パワー電源供給部は、前記故障が生じていると判定された場合に、前記ブリッジ回路に対する電圧の供給を行わない
ことを特徴とする電源回路。
【請求項2】
ブラシレスモーターに接続されるブリッジ回路と、
前記ブラシレスモーターに電力を供給するバッテリーと、
前記バッテリーから前記ブリッジ回路に供給される電流を平滑化する平滑用コンデンサとに接続され、前記ブラシレスモーターに電力を供給する電源装置における電源供給方法であって、
前記バッテリーと前記ブリッジ回路との間に半導体スイッチを設け、
前記バッテリーから平滑用コンデンサに対するプリチャージ中の電圧が基準電圧値に到達すると、前記プリチャージを終了させ、バッテリーから前記ブリッジ回路に対して電圧を供給するように半導体スイッチを切り替え、
立ち上がり緩和回路によって前記半導体スイッチに供給される電圧の立ち上がりを緩和し、
前記ブラシレスモーターの各相の端子電圧を検出し、
前記検出された端子電圧と、前記平滑用コンデンサにプリチャージされる電圧との関係に基づいて、故障が生じているか否かを判定し、
前記故障が生じていると判定された場合に、前記ブリッジ回路に対する電圧の供給を行わない
電源供給方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電源回路、電源供給方法に関する。
【背景技術】
【0002】
小型なブラシレスモーターでの車輪駆動装置の電源スイッチとして、リレー(コンタクター)が用いられた電源供給装置がある。また、このような電源供給装置には、三相ブリッジ回路と、三相ブリッジ回路に流れる電流のリップルを吸収するコンデンサ(キャパシタ)が接続される。このような電源供給装置では、電源投入時において、このコンデンサへの突入電流が流れるため、配慮が必要である。
例えば、突入電流を防止するために、予め抵抗器などを介してプリチャージを行うモータ制御装置もある(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2001-065437号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、リレーを用いた電源供給装置においては、以下の懸念がある。
1)電源投入時、突入電流が流れると、バッテリー側の過電流保護が働き、モータ側に給電されず、その結果、動作しない恐れがある。
【0005】
2)電源投入時、突入電流がリレーを介して流れると、その電流が大きいためリレーの接点が溶着してしまう恐れがある。そのため、プリチャージ抵抗をリレーに対して並列に設けることで、突入電流を低減する構成もある。しかし、プリチャージ抵抗をリレー接点に対して並列に設けられると、不要な電流がプリチャージ抵抗を介して流れてしまうため、バッテリーの電力が消費されてしまう。その結果、バッテリー上がりとなる可能性がある。また、プリチャージ抵抗に電流が流れることで熱が発生するため、この熱を抑えようとすると、プリチャージ抵抗が大型化してしまう。また、このプリチャージ回路を追加する方法では、プリチャージを行ってから各機器が起動するため、機器起動時間が長びく問題がある。
【0006】
3)モータに過負荷が生じると、バッテリーから供給される電流が大きくなり、その一方でバッテリーの内部抵抗も影響し、バッテリーの電圧が低下する。その際、リレーがオフになり、その後バッテリーの電圧が復帰し、再度リレーがオンになるが、モータの過負荷のため再度リレーがオフになることを繰り返す、いわゆるチャタリングが発生する。また、使用電圧を変える場合、リレー感動電圧が合わなくなり、リレー設計変更が必要となってしまう。例えば、バッテリーが24Vの場合に用いられるリレーとバッテリーが12Vの場合に用いられるリレーとでは、コイル仕様(感動電圧、復帰電圧)が異なるため、機器側の調整が必要となり、設計における難点となる。
上記のように制約があるため、プリチャージ抵抗とリレーとを用いる方法は、モータ駆動装置には必ずしも適さない場合がある。
【0007】
本発明は、このような事情に鑑みてなされたもので、その目的は、大きなプリチャージ抵抗を用いることなく、起動時間が長引くことを抑制しつつ、突入電流を低減することができる電源回路、電源供給方法を提供することにある。
【課題を解決するための手段】
【0008】
上述した課題を解決するために、本発明の一態様は、ブラシレスモーターに接続されるブリッジ回路と、前記ブレシレスモーターに電力を供給するバッテリーと、前記バッテリーから前記ブリッジ回路に供給される電流を平滑化する平滑用コンデンサとに接続され、前記ブラシレスモーターに電力を供給する電源回路であって、前記バッテリーと前記ブリッジ回路との間に設けられる半導体スイッチと、前記バッテリーから平滑用コンデンサに対するプリチャージ中の電圧が基準電圧値に到達すると、前記プリチャージを終了させ、前記バッテリーから前記ブリッジ回路に対して電圧を供給するように半導体スイッチを切り替えるパワー電源供給部と、前記パワー電源供給部によって前記半導体スイッチに供給される電圧の立ち上がりを緩和する立ち上がり緩和回路と、前記ブラシレスモーターの各相の端子電圧を検出する端子電圧監視部と、前記検出された端子電圧と、前記平滑用コンデンサにプリチャージされる電圧との関係に基づいて、故障が生じているか否かを判定する判定部と、を有し、パワー電源供給部は、前記故障が生じていると判定された場合に、前記ブリッジ回路に対する電圧の供給を行わないことを特徴とする電源回路である。
【0009】
上述した課題を解決するために、本発明の一態様は、ブラシレスモーターに接続されるブリッジ回路と、前記ブレシレスモーターに電力を供給するバッテリーと、前記バッテリーから前記ブリッジ回路に供給される電流を平滑化する平滑用コンデンサとに接続され、前記ブラシレスモーターに電力を供給する電源装置における電源供給方法であって、前記バッテリーと前記ブリッジ回路との間に半導体スイッチを設け、前記バッテリーから平滑用コンデンサに対するプリチャージ中の電圧が基準電圧値に到達すると、前記プリチャージを終了させ、バッテリーから前記ブリッジ回路に対して電圧を供給するように半導体スイッチを切り替え、立ち上がり緩和回路によって前記半導体スイッチに供給される電圧の立ち上がりを緩和し、前記ブラシレスモーターの各相の端子電圧を検出し、前記検出された端子電圧と、前記平滑用コンデンサにプリチャージされる電圧との関係に基づいて、故障が生じているか否かを判定し、前記故障が生じていると判定された場合に、前記ブリッジ回路に対する電圧の供給を行わない電源供給方法である。
【発明の効果】
【0010】
以上説明したように、この発明によれば、大きなプリチャージ抵抗を用いることなく、起動時間が長引くことを抑制しつつ、突入電流を低減することができる。
【図面の簡単な説明】
【0011】
図1】この発明の一実施形態によるモータ駆動システム1の構成を示す概略ブロック図である。
図2】モータ駆動システム1のタイミングチャートである。
図3】時刻t6の前後におけるバッテリー電圧及び平滑用コンデンサの電圧の波形の一部を拡大した図である。
図4】下段FETが故障している場合における波形図である。
図5】上段FETが故障している場合における波形図である。
図6】U相に断線が生じている場合における波形図である。
図7】V相に断線が生じている場合における波形図である。
図8】W相に断線が生じている場合における波形図である。
【発明を実施するための形態】
【0012】
以下、本発明の一実施形態によるモータ駆動システム1について図面を参照して説明する。図1は、この発明の一実施形態によるモータ駆動システム1の構成を示す概略ブロック図である。
【0013】
《モータ駆動システム》
モータ駆動システム1は、バッテリーBAT、電源装置10、三相ブリッジ回路20、平滑用コンデンサ30、モータ40を含むとともに、その他必要な機能を有する。
このモータ駆動システム1は、車両に搭載される。車両は、たとえば、二輪車または四輪車である。
【0014】
《バッテリーBAT》
バッテリーBATは、モータ駆動システム1の各部に電源を供給する。
バッテリーBATが出力する電圧は、24Vである場合について説明するが、12Vであってもよい。
【0015】
《電源装置10》
電源装置10は、バッテリーBATから得られる電力をモータ40に供給する。
電源装置10は、イグニッションスイッチ部11、制御系電源回路12、プリチャージ回路13、チャージポンプ電源起動回路14、モータ端子監視部15、第1CPU(Central Processing Unit)16、チャージポンプ回路17、第2CPU18、パワー電源供給回路19を含む。
【0016】
《イグニッションスイッチ部11》
イグニッションスイッチ部11は、車両のエンジンを起動するスイッチであり、オンしたときにエンジン起動信号を制御系電源回路12、第1CPU16等に出力する。
【0017】
《制御系電源回路12》
制御系電源回路12は、エンジン起動信号が入力されることに応じて、第1CPU16、第2CPU18、プリチャージ回路13、チャージポンプ電源起動回路14等に電源を供給する。
【0018】
《プリチャージ回路13》
プリチャージ回路13は、第1CPU16からプリチャージ起動信号が入力されると、平滑用コンデンサ30にプリチャージを行う。また、プリチャージ回路13は、プリチャージ終了信号が第1CPU16から入力されると、プリチャージを停止(終了)する。
【0019】
《チャージポンプ電源起動回路14》
チャージポンプ電源起動回路14は、プリチャージ起動信号が第1CPU16からプリチャージ回路13に供給されると、プリチャージ起動信号に同期してONになり、チャージポンプ回路17に昇圧開始を指示する。
【0020】
《モータ端子監視部15》
モータ端子監視部15は、モータ40の各相(U相、V相、W相)の端子電圧を検出し、検出結果を第1CPU16に出力する。モータ端子監視部15のu相検出端子は、スイッチング素子M3とスイッチング素子M6とU相巻線40uとの接続点に接続され、v相検出端子は、スイッチング素子M2とスイッチング素子M5とV相巻線40vとの接続点に接続され、w相検出端子は、スイッチング素子M1とスイッチング素子M4とW相巻線40wとの接続点に接続される。
【0021】
《第1CPU16》
第1CPU16は、モータ端子監視部15の検出結果を取得し、検出結果に応じて、第2CPU18を起動をするか否かを制御する。
第1CPU16は、バッテリーが接続されると起動し、プリジャージ回路にプリチャージ起動信号を出力することで、プリチャージを開始させる。
第1CPU16は、モータ端子監視部15から得られる端子電圧を参照し、プリチャージ電圧が所定の電圧まで到達したか否かを判定し、所定の電圧に到達したと判定した場合に、プリチャージ終了信号をプリチャージ回路13に出力する。これにより、プリチャージを停止させる。
第1CPU16は、平滑用コンデンサ30の電圧を監視する機能を有しており、平滑用コンデンサに対するプリチャージ中の電圧が基準電圧値(プリチャージ目標電圧とも称する)に到達すると第2CPU18に対してCPUパワー電源起動信号を出力する。この基準電圧値は、プリチャージが行われる前の電圧から平滑用コンデンサ30が満充電となるまでの間のいずれかの電圧であればよく、例えば、満充電の半分程度の電圧が用いることができる。
また、第1CPU16は、モータ端子監視部15によって検出された端子電圧と、平滑用コンデンサ30にプリチャージされる電圧との関係に基づいて、故障が生じているか否かを判定する。
第1CPU16は、チャージポンプ回路を起動させる。
【0022】
《チャージポンプ回路17》
チャージポンプ回路17は、バッテリーBATから供給される電圧を昇圧し、昇圧した電圧をパワー電源供給回路19に供給する。ここで、パワー電源供給回路19には、2つのFET(FieldEffectiveTransistor;電界効果トランジスタ)のスイッチが設けられている。この2つのFETがいずれもn型チャネルのFETであっても、チャージポンプ回路17が昇圧してFETに電圧を供給することができるため、24Vまたは12Vのバッテリーを電源とする場合であっても、バッテリー電圧よりも高い電圧を2つのFETに印加することで、これらFETをオンにすることができる。
例えば、一般に、車両に用いられるバッテリーの電圧は、24Vまたは12Vであり、そのままの電圧では、第1スイッチ191と第2スイッチ192を介して電源を供給すると、バッテリー電圧よりも低い電圧が三相ブリッジ回路20側に出力されることがある。そのため、パワー電源供給回路19から出力される電圧が所定の電圧となるように、チャージポンプ回路17によって予め昇圧した上で、パワー電源供給部190に電源を供給する。
【0023】
《第2CPU18》
第2CPU18は、第1CPU16からCPUパワー電源起動信号が出力されると、パワー電源供給部190に対してCPUパワー電源起動信号を出力する。
【0024】
《パワー電源供給回路19》
パワー電源供給回路19は、パワー電源供給部190、第1スイッチ191、第2スイッチ192、ゲート信号入力端子193、抵抗194、逆接続防止用ダイオード195、立ち上がり緩和回路196、を含む。
パワー電源供給回路19は、内部に設けられた半導体スイッチ(第1スイッチ191と第2スイッチ192)のオンにすることで、モータ40に対する電源を投入する。
【0025】
パワー電源供給部190は、平滑用コンデンサ30に対するプリチャージ中の電圧が基準電圧値に到達するとバッテリーBATからブリッジ回路に対して電圧を供給するように半導体スイッチ(第1スイッチ191と第2スイッチ192)をオンに切り替える。
パワー電源供給部190は、第1CPU16の判定結果において故障が生じていると判定された場合に、半導体スイッチ(第1スイッチ191と第2スイッチ192)をオフにし、三相ブリッジ回路20に対して電源の供給を行わない。
【0026】
第1スイッチ191と第2スイッチ192は、それぞれ半導体のスイッチング素子が用いられる。ここでは、第1スイッチ191と第2スイッチ192は、それぞれFETを用いることができる。また、この実施形態では、第1スイッチ191と第2スイッチ192は、n型チャネルのFETが用いられている。
第1スイッチ191と第2スイッチ192は、直列に接続され、バッテリーBATと三相ブリッジ回路20との間に接続される。
第1スイッチ191は、ドレインがパワー電源供給部190の第1端子に接続され、ゲートが抵抗194の他方の端子と逆接続防止用ダイオード195のアノードに接続され、ソースが第2スイッチ192のソースに接続される。
第2スイッチ192は、ソースが第1スイッチ191のソースに接続され、ゲートが抵抗194の他方の端子と逆接続防止用ダイオード195のアノードに接続され、ドレインが三相ブリッジ回路20に接続される。
【0027】
ゲート信号入力端子193は、第2CPU18から出力されるゲート信号が入力される。
抵抗194は、一方の端子がパワー電源供給部190の第2端子に接続され、他方の端子が第1スイッチ191のゲートと第2スイッチ192のゲートに接続される。
【0028】
逆接続防止用ダイオード195は、バッテリーBATが逆接続された場合に発生する異常電流を防止する。逆接続とは、バッテリーBATのプラス端子とマイナス端子が、電源装置10に対して逆の極性で接続されることである。
仮に、バッテリーBATが電源装置10に対して逆の極性で接続された場合には、逆接続防止用ダイオード195は、コンデンサ198を介して第1スイッチ191と第2スイッチ192側に電流が流れてしまうことを防止する。また、ここでは第2スイッチ192は、図示しないボディダイオードを有しているため、バッテリーBATが逆の極性で接続され三相ブリッジ回路20側から電圧が印加されたとしても、このボディダイオードによって電流が流れてしまうことを防止することができる。また、第1スイッチ191は、図示しないボディダイオードを有しているため、オフの状態において、ドレイン側に電圧が印加されたとしても、ゲート信号が入力されていない場合には、電流を流さないようにすることができる。
【0029】
立ち上がり緩和回路196は、パワー電源供給部190によって半導体スイッチ(第1スイッチ191と第2スイッチ192)に供給される電圧の立ち上がりを緩和する。
【0030】
立ち上がり緩和回路196は、抵抗197と、コンデンサ198と、を含む。
抵抗197は、一方の端子がパワー電源供給部190の第3端子に接続され、他方の端子がコンデンサ198の第1端子と逆接続防止用ダイオード195のカソードに接続される。
コンデンサ198は、一方の端子が抵抗197と逆接続防止用ダイオード195のカソードとの間の接続点に接続され、他方の端子がグラウンドに接続されている。
【0031】
《三相ブリッジ回路20》
三相ブリッジ回路20は、モータ40に接続され、モータ40に相電流を供給する。
三相ブリッジ回路20は、3相ブリッジ接続された6つのスイッチング素子M1、M2,M3、M4、M5及びM6を備える。以下、説明の簡単のため、スイッチング素子M1、M2,M3、M4、M5及びM6がn型チャネルのFETであると仮定する。なお、スイッチング素子M1、M2,M3、M4、M5及びM6は必ずしもn型チャネルのFETでなくてもよい。スイッチング素子M1、M2,M3、M4、M5及びM6は、例えば、IGBT(Insulated gate bipolar transistor)やBJT(bipolar junction transistor)であってもよい。
【0032】
スイッチング素子M1とM4とは、互いに直列接続されており、一のスイッチングレグを構成する。スイッチング素子M1は、上アームのスイッチング素子(以下、「上アームスイッチング素子」という。)である。一方、スイッチング素子M4は、下アームのスイッチング素子(以下、「下アームスイッチング素子」という。)である。
【0033】
スイッチング素子M1は、ドレインが第2スイッチ192のソースに接続され、ソースがスイッチング素子M4のドレインに接続される。スイッチング素子M4のソースは、抵抗を介してグラウンドに接続される。スイッチング素子M1及びM4の各ゲートは、第1CPU16に接続されている。また、スイッチング素子M1のソースとスイッチング素子M4のドレインとの接続点である中性点はW相巻線40wの一端に接続される。
【0034】
スイッチング素子M2とM5とは、互いに直列接続されており、一のスイッチングレグを構成する。スイッチング素子M2は、上アームスイッチング素子である。一方、スイッチング素子M5は、下アームスイッチング素子である。
【0035】
スイッチング素子M2は、ドレインが第2スイッチ192のソースに接続され、ソースがスイッチング素子M5のドレインに接続される。スイッチング素子M5のソースは、抵抗を介してグラウンドに接続される。スイッチング素子M2及びM5の各ゲートは、第1CPU16接続されている。また、スイッチング素子M2のソースとスイッチング素子M5のドレインとの接続点である中性点は、V相巻線40vの一端に接続される。
【0036】
スイッチング素子M3とM6とは、互いに直列接続されており、一のスイッチングレグを構成する。スイッチング素子M3は、上アームスイッチング素子である。一方、スイッチング素子M6は、下アームスイッチング素子である。
【0037】
スイッチング素子M3は、ドレインが第2スイッチ192のソースに接続され、ソースがスイッチング素子M6のドレインに接続される。スイッチング素子M6のソースは、抵抗を介してグラウンドに接続される。スイッチング素子M3及びM6の各ゲートは、第1CPU16接続される。また、スイッチング素子M3のソースとスイッチング素子M6のドレインとの接続点である中性点は、U相巻線40uの一端に接続される。
【0038】
《平滑用コンデンサ30》
平滑用コンデンサ30は、一方の端子が第2スイッチ192の第2端子と三相ブリッジ回路20との接続点に接続され、もう一方の端子がグラウンドに接続されている。この平滑用コンデンサ30は、例えば、並列に接続された4つの電解コンデンサ(電解コンデンサ30a、電解コンデンサ30b、電解コンデンサ30c、電解コンデンサ30d)を有する。
この平滑用コンデンサ30は、バッテリーBATからパワー電源供給回路19を介して三相ブリッジ回路20に供給される電流を平滑化することで、リップルを吸収する。
【0039】
《モータ40》
モータ40は、3相(U、V、W)のブラシレスモーターである。具体的には、モータ40は、永久磁石を有するロータと、3相(U、V、W)それぞれに対応するU相巻線40u、V相巻線40v、W相巻線40wがロータの回転方向に順に巻装されているステータとを備えている。各相のU相巻線40u、V相巻線40v、W相巻線40wのそれぞれの一端は、三相ブリッジ回路20に接続され、他端は、互いに接続される。
このモータ40は、例えば、車両に搭載されるブラシレスモーター(車両駆動用、開閉体を開閉させるモータ等)として用いられる。
【0040】
上述の電源装置10においては、フュエールセーフリレーの代わりのバッテリー電源供給用のFETを用いることによって、安全で駆動できる回路を構築した。
【0041】
次に、上述したモータ駆動システム1の動作を説明する。
図2は、モータ駆動システム1のタイミングチャートである。このタイミングチャートにおいては、上段から、バッテリー電圧及び平滑用コンデンサの電圧、バッテリー電流、イグニッションスイッチ部11及びCPUプリチャージ起動信号、U相端子電圧、v相端子電圧、W相端子電圧、第2CPU電源を示す波形である。
《時刻t1》
時刻t1において、バッテリーBATが電源装置10接続されると、電源装置10に対して印加され、第1CPU16が起動する。
第1CPU16が起動した後、モータ端子監視部15は、モータ40のU相、V相、W相の各相の端子電圧の監視を開始する。この時刻t1の時点において、モータ40のU相、V相、W相の各相の端子電圧は、いずれも0V程度である。
【0042】
《時刻t2》
時刻t2において、イグニッションスイッチ部11のイグニッションスイッチがオンにされると、第1CPU16は、イグニッションスイッチ部11がオンにされたことを検出する。
【0043】
《時刻t3》
時刻t3において、第1CPU16は、イグニッションスイッチ部11がオンにされたことを検出すると、CPUプリチャージ起動信号をプリチャージ回路13に出力する。プリチャージ回路13は、プリチャージ起動信号を受けると、平滑用コンデンサ30にプリチャージを開始する。
プリチャージを開始すると、第1CPU16は、平滑用コンデンサ30の電圧を監視し、基準電圧値に到達したか否かを判定する。この時刻t3の直後において、第1CPU16は、平滑用コンデンサ30の電圧が基準電圧値に到達していないと判定し、プリチャージを継続する。
〈平滑用コンデンサ30の電圧〉
プリチャージが行われることで、平滑用コンデンサ30の電圧は、時刻t3から時間が経過することに応じて上昇する。ここでは、時刻t3から時刻t4にかけて、12V程度まで上昇する。
〈相電圧〉
モータ端子監視部15は、継続してU相、V相、W相の各相の端子電圧を監視しており、平滑用コンデンサ30にプリチャージが行われることで、平滑用コンデンサ30の電圧が、0V付近から上昇し始める。
ここでは、U相、V相、W相の各相におけるいずれの端子電圧についても、時刻t3から時刻t4までの間において、充電カーブに応じた電圧が検出される。ここでは、時刻t3から時刻t4にかけて、12V程度まで上昇する。
【0044】
《時刻t4》
時刻t4において、第1CPU16は、監視している平滑用コンデンサ30の電圧が、プリチャージ目標電圧に到達したか否かを判定し、平滑用コンデンサ30の電圧がプリチャージ目標電圧に到達したと判定すると、プリチャージ回路13に対するCPUプリチャージ起動信号の出力を停止する。これにより、プリチャージ回路13は、プリチャージを停止する。ここでは、平滑用コンデンサ30の電圧が半分程度(12V)に到達した段階で、プリチャージが停止される。
ここでは、24V用のバッテリーBATを用いている場合、平滑用コンデンサ30に対して半分程度の充電をしてプリチャージを停止するため、平滑用コンデンサ30の電圧は12V程度であり、U相、V相、W相の各相の端子電圧は12v程度に到達した時点でプリチャージが停止する。プリチャージが停止すると、平滑用コンデンサ30の電圧は、プリチャージが停止した時点の電圧が維持され、U相、V相、W相の各相の端子電圧は、プリチャージが停止した時点の電圧から半分程度の電圧である中間電圧まで低下したあと、維持される。ここでは、モータ40と三相ブリッジ回路20とが正常である場合、U相、V相、W相の各相の端子電圧は、中間電圧として6V程度の電圧が検出される。
【0045】
《時刻t5》
時刻t5において、第1CPU16は、モータ端子監視部15によって検出されたU相、V相、W相の各相の端子電圧を読み出し、各相の電圧が電圧規定値に到達しているか否かを判定する。電圧規定値は、例えば、バッテリーBATの出力可能な電圧(24v)の1/4程度の電圧であり、ここでは5V~6V程度の電圧値が用いられる。
ここでは、U相、V相、W相の各相の端子電圧がいずれも6V程度であるため、第1CPU16は、いずれの相についても電圧規定値に到達していると判定する。
【0046】
《時刻t6》
第1CPU16は、平滑用コンデンサ30の電圧が基準電圧値に到達しており、かつ、U相、V相、W相の各相の端子電圧が、いずれも中間電位(電圧規定値)に到達していると判定すると、正常にプリチャージが終了したと判定し、第2CPU18に対して、CPUパワー電源起動信号を出力する。
【0047】
第2CPU18は、第1CPU16からCPUパワー電源起動信号が入力されることで起動する。第2CPU18は、起動すると、第1スイッチ191と第2スイッチ192をオンにする。すなわち、抵抗194を介して、第1スイッチ191と第2スイッチ192とのそれぞれにゲート信号を供給する。第1スイッチ191と第2スイッチ192は、パワー電源供給部190からゲート信号が入力されることでオンとなる。
【0048】
ここで、図3を用いて、バッテリー電圧及び平滑用コンデンサの電圧についてさらに説明する。図3は、図2における時刻t6の前後におけるバッテリー電圧及び平滑用コンデンサの電圧の波形の一部を拡大した図である。
第1スイッチ191と第2スイッチ192がオンとなる際、パワー電源供給部190から出力されるゲート信号は、抵抗194と逆接続防止用ダイオード195を介して立ち上がり緩和回路196のコンデンサ198に供給され、コンデンサ198に充電される。そのため、パワー電源供給部190から第1スイッチ191と第2スイッチ192とのゲートに対して供給される電圧は、抵抗197とコンデンサ198とによって決まる時定数に応じて、上昇する。そのため、ゲート信号が出力されることで第1スイッチ191と第2スイッチ192とがオンになったとしても、第1スイッチ191と第2スイッチ192を介して平滑用コンデンサ30に供給される電流は、急激に流れるのではなく、ある程度の時間をかけて満充電に到達するように流れる。ここでは、時刻t6においてゲート信号が供給された場合、平滑用コンデンサ30は、直ちに満充電となるのではなく、時刻t6からある程度の時間が経過した時刻t6aにおいて満充電に到達するようにできる。このように、立ち上がり緩和回路196を有することで、平滑用コンデンサ30に流れる電流を緩和することで、突入電流を低減することができる。
【0049】
さらに、ここでは、平滑用コンデンサ30にある程度(半分程度)充電された上で、緩和回路によって緩和されつつ電流が供給される。そのため、第1スイッチ191と第2スイッチ192とがオンになり、平滑用コンデンサ30に対して電流が流れたとしても、平滑用コンデンサ30が満充電となるまでの残りの空き容量が少なくなっているため、大電流が流れないようにすることができ、突入電流を抑制することができる。また、ここでは、平滑用コンデンサ30をプリチャージしている途中(半分程度)の段階で、第1スイッチ191と第2スイッチ192とをオンにするため、平滑用コンデンサ30が満充電になるまでの期間を待つことなく、パワー電源供給回路19から電源を供給することができる。
【0050】
なお、上述した実施形態において、第1スイッチ191と第2スイッチ192とをオンにする場合について説明したが、これらスイッチをオフにする場合、ゲート信号をオフにするとともに、パワー電源供給部190は、コンデンサ198に充電された電圧を抵抗197を介してパワー電源供給部190側に放電させる。これにより、コンデンサ198に蓄積された電荷が放出されるため、次回ゲート信号が印加された場合であっても、平滑用コンデンサ30に突入電流が流れることを防止することができる。
【0051】
《U相、V相、W相のいずれかに故障が発生した場合》
次に、U相、V相、W相のいずれかに故障が発生した場合について説明する。
第1CPU16は、モータ端子監視部15からの検出結果に基づいて、プリチャージの状態が正常ではないと判定された場合には、第2CPU18に対するCPUパワー電源起動信号の出力は行わない。これにより、三相ブリッジ回路20のいずれかのFETがショートしている等の不具合が生じている場合には、その不具合を検出することで、パワー電源供給回路19から三相ブリッジ回路20に対して電源の供給が行われないようにすることができる。
ここで、不具合としては、三相ブリッジ回路20に不具合が生じる場合と、モータ40に不具合が生じる場合とが挙げられる。
【0052】
〈三相ブリッジ回路20の上段FETまたは下段FETが故障しているとき〉
第1CPU16は、三相ブリッジ回路20の上段FETまたは下段FETが故障している場合には、以下のような状態であることを検出することができる。
【0053】
〈三相ブリッジ回路20の下段FETが故障しているとき〉
図4は、下段FETが故障している場合における波形図である。ここでいう下段FETとは、三相ブリッジ回路20の下アームのスイッチング素子であり、具体的には、スイッチング素子M4、M5、M6である。
下段FETがオン故障している場合には、時刻t3においてプリチャージ回路13を起動したとしても、時刻t4において、モータ端子監視部15は、プリチャージされたにも関わらず電圧が増加しないため、平滑用コンデンサ30の電圧、U相の端子電圧、V相の端子電圧、W相の端子電圧のいずれについても0V付近のままの状態であることを検出する。このような場合、第1CPU16は、不具合が発生していると判定し、第2CPU18に対するCPUパワー電源起動信号の出力は行わない。
なお、図4に示す波形は、u相、v相、w相のいずれの相の下段FETが故障した場合であっても、概ね同様な波形が得られる。
【0054】
〈三相ブリッジ回路20の下段FETが故障しているとき〉
図5は、上段FETが故障している場合における波形図である。
上段FETがオン故障している場合には、モータ端子監視部15は、プリチャージ期間が終了した後(時刻t4の後のプリチャージ停止期間)であっても、電圧が下がらないため中間電位とならず、プリチャージ後の電位が維持されていることを検出する。このような場合、第1CPU16は、正常時とは異なる状態であることを検出し、CPUパワー電源起動信号を出力しない。
なお、図5に示す波形は、u相、v相、w相のいずれの相の上段FETが故障した場合であっても、概ね同様な波形が得られる。
【0055】
〈U相の断線が生じた場合〉
図6は、U相に断線が生じている場合における波形図である。
U相が断線している場合、時刻t3においてプリチャージが開始され、時刻t4においてプリチャージが停止された時点において、U相におけるプリチャージ電圧が発生せず、0V付近となる。V相とW相とが断線せず正常である場合には、プリチャージ電圧がV相とU相とに供給されないため、時刻t3と時刻t4の間のある時刻から中間電位が発生する。そのため、モータ端子監視部15によって検出された電圧に基づいて、第1CPU16は、プリチャージを停止した時点において、プリチャージに応じた電圧規定値まで電圧が到達していない相(ここでは、V相とW相)がある場合に、その相(ここではV相とW相)がいずれであるかに基づいて、U相に断線が発生していると判定し、第2CPU18に対し、CPUパワー電源起動信号を出力しない。
ここでは、コントローラ内部のプリチャージ=プルアップ抵抗がU相端子のみに接続されており、モータコイルを通し、三相FETの寄生ダイオードから電源平滑用コンデンサに電荷がチャージされる。従って、断線するモータ側の電線(相)がいずれであるかを判定することで断線した相を検出することができる。
なお、本実施形態におけるモータ40は、Y結線のモータであり、各相のコイル(U相コイル、V相コイル、W相コイル)のそれぞれの第1端子は、中性点において接続されており、それぞれの第2端子は、ブリッジ回路における各相に対応する所定の端子に接続されている。そのため、U相断線時においては、コントロール側から見ると、U相についてはいずれかの位置において断線していたとしても、U相に接続されたプリチャージ=プルアップ抵抗に流れる電流が現れるため、プリチャージ電圧が検出される。一方、V相とW相については、U相側において、プリチャージ=プルアップ抵抗に対して断線しており、U相接続のプルアップ抵抗の電流が、モータコイルを通しコントロール側のV相端子、W相端子に現れないため、V相とW相の端子電圧は中間電位となる。
【0056】
〈V相の断線が生じた場合〉
図7は、V相に断線が生じている場合における波形図である。
V相が断線している場合、時刻t3においてプリチャージが開始され、時刻t4においてプリチャージが停止された時点において、V相におけるプリチャージ電圧が発生せず、中間電位となる。U相とW相とが断線せず正常である場合には、U相とW相においてプリチャージ電圧が発生する。そのため、モータ端子監視部15によって検出された電圧に基づいて、第1CPU16は、プリチャージを停止した時点において、プリチャージに応じた電圧規定値まで電圧が到達していない相(ここでは、V相のみ)がある場合に、その相(ここではV相)において断線が発生していると判定し、第2CPU18に対し、CPUパワー電源起動信号を出力しない。
【0057】
〈W相の断線が生じた場合〉
図8は、W相に断線が生じている場合における波形図である。
W相が断線している場合、時刻t3においてプリチャージが開始され、時刻t4においてプリチャージが停止された時点において、V相におけるプリチャージ電圧が発生せず、中間電位となる。U相とV相とが断線せず正常である場合には、U相とV相においてプリチャージ電圧が発生する。そのため、モータ端子監視部15によって検出された電圧に基づいて、第1CPU16は、プリチャージを停止した時点において、プリチャージに応じた電圧規定値まで電圧が到達していない相(ここでは、W相のみ)がある場合に、その相(ここではW相)において断線が発生していると判定し、第2CPU18に対し、CPUパワー電源起動信号を出力しない。
【0058】
このように、三相ブリッジ回路20の上段FETまたは下段FETの故障や、U相、V相、W相の少なくともいずれかの相における断線が発生している場合には、フェールセーフでパワー電源供給回路19を駆動させないようにしたので、三相ブリッジ回路20に電源を投入しないようにすることができ、一方で正常な場合には突入電流を低減することができ、汎用的で安全性を向上したモータードライバーを提供することができる。また、故障検知をした際に、モータ40に電流が流れないようにすることができるため、発熱の防止や、ヒューズが溶断してしまうことを防止することができる。
【0059】
上述した実施形態によれば、平滑用コンデンサ30が満充電になるまでプリチャージを行うのではなく、平滑用コンデンサ30の電圧が一定程度(例えば半分程度)まで充電された後に、第1スイッチ191と第2スイッチ192とをオンにするようにした。これにより、平滑用コンデンサ30が満充電になるまで待つことなく、第2スイッチ192とをオンにすることができるため、モータ40を駆動するまでの時間が長引いてしまうことなく、短縮することができる。
また、第1スイッチ191と第2スイッチ192とをオンにすることで、平滑用コンデンサ30の電圧が上がるが、平滑用コンデンサ30にある程度充電してから第1スイッチ191と第2スイッチ192とをオンにすることで、突入電流が生じにくい状態にしたあとで、第1スイッチ191と第2スイッチ192とをオンにすることができ、突入電流が生じることを低減しつつ、電圧を上げることができる。
【0060】
また、ここでは、プリチャージの途中で第1スイッチ191と第2スイッチ192とをオンにしたとしても、立ち上がり緩和回路196のコンデンサ198によってオンの立ち上がりを緩和することができるので、突入電流を低減することができる。
これにより、突入電流を低減することができるため、ヒューズが切断されることを防止することができ、また、バッテリーBATに対しても過剰の負荷がかからないようにすることができる。また、プリチャージによる満充電を待たずに、途中でパワーオンしても良いため、起動時間が長引いてしまうことを防止し、また、起動時間を調整し易いメリットがある。
【0061】
また、上述した実施形態によれば、半導体スイッチと立ち上がり緩和回路とを用いることで、小型であり、バッテリー過電流保護検出に掛からず、正常時ヒューズ溶断もし難くすることができる。
【0062】
また、上述した実施形態によれば、電源スイッチとしてリレーの代わりに半導体スイッチを用いるようにした。これにより、電源スイッチとしてリレーを用いた場合であって、モータに過負荷が生じた場合、バッテリーBATから大電流が流れると、バッテリーBATの内部抵抗も影響してバッテリー電圧が低下することに伴い、リレー駆動電圧も低下することで、リレーがオフになり、その後、リレーがオフになることでモータに供給される電流が遮断され、バッテリー電圧が復帰すると、再度リレーがオンになる、というチャタリングは生じない。すなわち、モータの過負荷が生じてバッテリー電圧が低下したとしても、半導体スイッチを継続的にオンすることができ、チャタリングが発生することを防止することができる。また、バッテリー電圧が低下しても電源オンを保持し、モータ過負荷付近まで通電能力が延ばすことができる。
【0063】
《他の実施形態》
上述の実施形態においては、バッテリーBATが24V用である場合について説明したが、12V用のバッテリーを用いるようにしてもよい。この場合、第1スイッチ191と第2スイッチ192は、バッテリーBATが24Vである場合に比べて、小さな耐圧のFETを用いることができる。
また、従来のようにリレーを用いた電源装置において、異なる電圧のバッテリーに換えようとすると、この電圧に応じたリレーに換える必要があり、そうすると、リレーの感動電圧、復帰電圧等のコイル仕様も変わるため、機器側の調整が生じてしまう。
これに対し、本実施形態によれば、リレーではなく半導体スイッチを用いているため、感動電圧や復帰電圧等の仕様に基づく仕様変更が不要になるため、電圧が異なるバッテリーを用いる場合であっても、機器側の調整が容易である。
【0064】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【符号の説明】
【0065】
1…モータ駆動システム、10…電源装置、11…イグニッションスイッチ部、12…制御系電源回路、13…プリチャージ回路、14…チャージポンプ電源起動回路、15…モータ端子監視部、16…第1CPU、17…チャージポンプ回路、18…第2CPU、19…パワー電源供給回路、20…三相ブリッジ回路、30…平滑用コンデンサ、30a…電解コンデンサ、30b…電解コンデンサ、30c…電解コンデンサ、30d…電解コンデンサ、40…モータ、40u…U相巻線、40v…V相巻線、40w…W相巻線、40W…W相巻線、190…パワー電源供給部、191…第1スイッチ、192…第2スイッチ、193…ゲート信号入力端子、194…抵抗、195…逆接続防止用ダイオード、196…緩和回路、197…抵抗、198…コンデンサ
図1
図2
図3
図4
図5
図6
図7
図8