(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-21
(45)【発行日】2023-11-30
(54)【発明の名称】基板処理装置及び基板処理方法
(51)【国際特許分類】
H01L 21/3065 20060101AFI20231122BHJP
【FI】
H01L21/302 101L
H01L21/302 101B
(21)【出願番号】P 2022028553
(22)【出願日】2022-02-25
【審査請求日】2022-02-25
(31)【優先権主張番号】10-2021-0027367
(32)【優先日】2021-03-02
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】518162784
【氏名又は名称】セメス カンパニー,リミテッド
(74)【代理人】
【識別番号】100114775
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100208580
【氏名又は名称】三好 玲奈
(74)【代理人】
【識別番号】100191086
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】パク,ジュン フン
(72)【発明者】
【氏名】キム,ユン サン
(72)【発明者】
【氏名】ジオン,ミン スン
(72)【発明者】
【氏名】チョ,ソン-チェオン
(72)【発明者】
【氏名】チョイ,スン ミン
(72)【発明者】
【氏名】ホン,ジン ヒー
【審査官】加藤 芳健
(56)【参考文献】
【文献】特開平01-225127(JP,A)
【文献】特開平08-222532(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H01L 21/31
C23C 16/50
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
基板処理装置であって
内部に処理空間を有するチャンバと、
前記処理空間内に配置され、基板を支持する支持ユニットと、
前記処理空間に供給された工程ガスからプラズマを発生させるプラズマ生成ユニットを含むが、
前記プラズマ生成ユニットは、
第1電極と、及び
前記第1電極と対向されるように配置される第2電極を含んで、
前記第2電極は電磁気波が透過可能な材質で提供され、
前記第2電極は前記支持ユニット上に配置された基板上に反応ガスを供給するように貫通ホールが形成されたシャワーヘッドタイプで提供されることを特徴とする基板処理装置。
【請求項2】
前記基板を加熱する加熱ユニットをさらに含むことを特徴とする請求項1に記載の基板処理装置。
【請求項3】
前記加熱ユニットは、
熱輻射(thermal radiation)を利用した加熱装置を含むことを特徴とする請求項2に記載の基板処理装置。
【請求項4】
前記加熱装置は、
IR lamp、Flash lamp、Laser、Microwaveのうちで何れか一つであることを特徴とする請求項3に記載の基板処理装置。
【請求項5】
前記第2電極は、
前記チャンバの上部壁に提供され、
前記加熱ユニットは前記チャンバの上部壁上に提供され、
前記上部壁は電磁気波が透過可能な材質で提供されることを特徴とする請求項3に記載の基板処理装置。
【請求項6】
前記第2電極は、
ITO(Indium Tin Oxide)、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metal nanowire、PEDOT-PSSのうちで何れか一つでなされることを特徴とする請求項1に記載の基板処理装置。
【請求項7】
プラズマ反応工程がなされるチャンバと、
前記チャンバ内の下部側に提供され、基板が安着される、そして、第1電極を含む支持ユニットと、
前記チャンバの上部側に提供されて前記チャンバ内にプラズマ反応工程がなされるように電界を形成するための第2電極と、及び
前記第2電極と前記第1電極との間に電界を発生させるために前記第2電極と前記第1電極のうちで少なくとも一つにRF電圧を印加するために電圧供給手段を含むが、
前記第2電極は電磁気波が透過可能な材質で提供され、
前記第2電極は前記支持ユニット上に配置された基板上に反応ガスを供給するように貫通ホールが形成されたシャワーヘッドタイプで提供される基板処理装置。
【請求項8】
前記基板を加熱する加熱ユニットをさらに含むことを特徴とする請求項7に記載の基板処理装置。
【請求項9】
前記加熱ユニットは、
熱輻射(thermal radiation)を利用した加熱装置を含むことを特徴とする請求項8に記載の基板処理装置。
【請求項10】
前記加熱装置は、
IR lamp、Flash lamp、Laser、Microwaveのうちで何れか一つであることを特徴とする請求項9に記載の基板処理装置。
【請求項11】
前記第2電極は、
前記チャンバの上部壁に提供され、
前記加熱ユニットは前記チャンバの上部壁上に提供されることを特徴とする請求項
9に記載の基板処理装置。
【請求項12】
前記上部壁は電磁気波が透過可能な材質で提供されることを特徴とする請求項11に記載の基板処理装置。
【請求項13】
前記第2電極は、
ITO(Indium Tin Oxide)、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metal nanowire、PEDOT-PSSのうちで何れか一つでなされることを特徴とする請求項11に記載の基板処理装置。
【請求項14】
プラズマ処理空間を提供する、そして、透明なウィンドウを有する上部壁を含むチャンバと、
前記プラズマ処理空間の下部側に提供され、静電気を利用して基板を固定させながら下部電極の役割を遂行する静電チャック(Electrostatic Chuck)と、
前記ウィンドウの下に前記静電チャックと見合わせるように配置され、前記静電チャック上に配置された基板上に反応ガスを供給するように貫通ホールが形成される第2電極
の役割を遂行するシャワーヘッドと、
前記ウィンドウの上に前記シャワーヘッドと向かい合うように配置され、前記基板を加熱するための光エネルギーを提供する加熱ユニットを含むが、
前記シャワーヘッドは
前記加熱ユニットから提供される電磁気波が透過可能な材質で提供されることを特徴とする基板処理装置。
【請求項15】
前記シャワーヘッドは、
ITO(Indium Tin Oxide)、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metal nanowire、PEDOT-PSSのうちで何れか一つでなされることを特徴とする請求項14に記載の基板処理装置。
【請求項16】
前記加熱ユニットは、
IR lamp、Flash lamp、Laser、Microwaveのうちで何れか一つであることを特徴とする請求項14に記載の基板処理装置。
【請求項17】
前記第2電極と前記
下部電極との間に電界を発生させるために前記第2電極と前記
下部電極のうちで少なくとも一つにRF電圧を印加するために電圧供給手段をさらに含むことを特徴とする請求項14に記載の基板処理装置。
【請求項18】
工程チャンバの処理空間に供給された工程ガスからプラズマを発生させる第2電極と第1電極を有する基板処理方法であって、
工程チャンバの上部壁に位置した加熱ユニットから放出される電磁気波は電磁気波が透過可能な材質でなされる前記上部壁と前記第2電極を通過して基板を加熱させ、
前記第2電極は、工程チャンバ内の下部側に提供される支持ユニット上に配置された基板上に反応ガスを供給するように貫通ホールが形成されたシャワーヘッドタイプで提供される基板処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板処理装置及びプラズマを利用した基板処理方法に関するものである。
【背景技術】
【0002】
半導体素子を製造するために、基板をフォトリソグラフィー、蝕刻、アッシング、イオン注入、薄膜蒸着、そして洗浄など多様な工程を遂行して基板上に所望のパターンを形成する。この中蝕刻工程は、基板上に形成された膜のうちで選択された加熱領域を除去する工程で湿式蝕刻と乾式蝕刻が使用される。
【0003】
この中乾式蝕刻のためにプラズマを利用した蝕刻装置が使用される。一般に、プラズマを形成するためにはチャンバの内部空間に電磁気場を形成し、電磁気場はチャンバ内に提供された工程がスをプラズマ状態で励起させる。
【0004】
プラズマはイオンや電子、ラジカル等でなされたイオン化されたガス状態を言う。プラズマは非常に高い温度や、強い電界あるいは、高周波電子系(RF Electromagnetic Fields)によって生成される。半導体素子製造工程はプラズマを使って蝕刻工程を遂行する。
【0005】
このようなプラズマを利用した基板処理装置で基板の温度を昇温させる方法は、基板が置かれる基板支持部材の加熱手段(熱線)を利用して基板の温度を昇温させている。
【0006】
しかし、熱線を利用した基板加熱方式は基板を昇温させるのに長い間の時間が必要となって、基板全体を均一に加熱するのに困難がある。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、プラズマを利用した基板処理工程で基板を早く加熱させることができる基板処理装置及び方法を提供することを一目的とする。
【0009】
本発明は、熱源交替及び基板の温度制御が容易な基板処理装置及び方法を提供することを一目的とする。
【0010】
本発明が解決しようとする課題が上述した課題らで限定されるものではなくて、言及されない課題らは本明細書及び添付された図面から本発明の属する技術分野で通常の知識を有した者に明確に理解されることができるであろう。
【課題を解決するための手段】
【0011】
本発明の一側面によれば、内部に処理空間を有するチャンバと、前記処理空間内に配置され、基板を支持する支持ユニットと、前記処理空間に供給された工程ガスからプラズマを発生させるプラズマ生成ユニットを含むが、前記プラズマ生成ユニットは第1電極と、及び前記第1電極と対向されるように配置される第2電極を含んで、前記第2電極は電磁気波が透過可能な材質で提供される基板処理装置が提供されることができる。
【0012】
また、前記基板を加熱する加熱ユニットをさらに含むことができる。
【0013】
また、前記加熱ユニットは熱輻射(thermal radiation)を利用した加熱装置を含むことができる。
【0014】
また、前記加熱装置はIR lamp、Flash lamp、Laser、Microwaveのうちで何れか一つであることができる。
【0015】
また、前記第2電極は前記チャンバの上部壁に提供され、前記加熱ユニットは前記チャンバの上部壁上に提供され、前記上部壁は電磁気波が透過可能な材質で提供されることができる。
【0016】
また、前記第2電極は前記支持ユニット上に配置された基板上に反応ガスを供給するように貫通ホールが形成されたシャワーヘッドタイプで提供されることができる。
【0017】
また、前記第2電極はITO(Indium Tin Oxide)、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metal nanowire、PEDOT-PSSのうちで何れか一つであることができる。
【0018】
本発明の他の側面によれば、プラズマ反応工程がなされるチャンバと、前記チャンバ内の下部側に提供され、基板が安着される、そして第1電極を含む支持ユニットと、前記チャンバの上部側に提供されて前記チャンバ内にプラズマ反応工程がなされるように電界を形成するための第2電極と、及び前記第2電極と前記第1電極との間に電界を発生させるために前記第2電極と前記第1電極のうちで少なくとも一つにRF電圧を印加するために電圧供給手段を含むが、前記第2電極は電磁気波が透過可能な材質で提供される基板処理装置が提供されることができる。
【0019】
また、前記基板を加熱する加熱ユニットをさらに含むことができる。
【0020】
また、前記加熱ユニットは熱輻射(thermal radiation)を利用した加熱装置を含むことができる。
【0021】
また、前記加熱装置はIR lamp、Flash lamp、Laser、Microwaveのうちで何れか一つであることができる。
【0022】
また、前記第2電極は前記チャンバの上部壁に提供され、前記加熱ユニットは前記チャンバの上部壁上に提供されることができる。
【0023】
また、前記上部壁は電磁気波が透過可能な材質で提供されることができる。
【0024】
また、前記第2電極はITO(Indium Tin Oxide)、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metal nanowire、PEDOT-PSSのうちで何れか一つであることができる。
【0025】
また、前記第2電極は前記支持ユニット上に配置された基板上に反応ガスを供給するように貫通ホールが形成されたシャワーヘッドタイプで提供されることができる。
【0026】
本発明のまた他の側面によれば、プラズマ処理空間を提供する、そして透明なウィンドウを有する上部壁を含むチャンバと、前記プラズマ処理空間の下部側に提供され、静電気を利用して基板を固定させながら下部電極の役割を遂行する静電チャック(Electrostatic Chuck)と、前記ウィンドウの下に前記静電チャックと見合わせるように配置され、前記静電チャック上に配置された基板上に反応ガスを供給するように貫通ホールが形成される第2電極役割を遂行するシャワーヘッドと、前記ウィンドウの上に前記シャワーヘッドと向かい合うように配置され、前記基板を加熱するための光エネルギーを提供する加熱ユニットを含むが、前記シャワーヘッドは前記加熱ユニットから提供される電磁気波が透過可能な材質で提供される基板処理装置が提供されることができる。
【0027】
また、前記シャワーヘッドはITO(Indium Tin Oxide)、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metalnanowire、PEDOT-PSSのうちで何れか一つであることができる。
【0028】
また、前記加熱ユニットはIR lamp、Flash lamp、Laser、Microwaveのうちで何れか一つであることができる。
【0029】
また、前記第2電極と前記第1電極との間に電界を発生させるために前記第2電極と前記第1電極のうちで少なくとも一つにRF電圧を印加するために電圧供給手段をさらに含むことができる。
【0030】
本発明のまた他の側面によれば、工程チャンバの処理空間に供給された工程ガスからプラズマを発生させる第2電極と第1電極を有する基板処理方法において、工程チャンバの上部壁に位置した加熱ユニットから放出される電磁気波は電磁気波が透過可能な材質でなされる前記上部壁と前記第2電極を通過して基板を加熱させる基板処理方法を提供することができる。
【発明の効果】
【0031】
本発明の実施例によれば、熱輻射を利用して基板を速く加熱させることができる。
本発明の実施例によれば、熱源交替及び基板の温度制御が容易である。
本発明の効果が上述した効果らに限定されるものではなくて、言及されない効果らは本明細書及び添付された図面から本発明が属する技術分野で通常の知識を有した者に明確に理解されることができるであろう。
【図面の簡単な説明】
【0032】
【
図1】本発明の一実施例による基板処理装置を見せてくれる図面である。
【
図2】本発明のまた他の実施例による基板処理装置を見せてくれる図面である。
【
図3】
図2に示された加熱ユニットを説明するための図面である。
【発明を実施するための形態】
【0033】
本発明の実施例はさまざまな形態で変形されることができるし、本発明の範囲が下で敍述する実施例によって限定されることで解釈されてはいけない。本実施例は当業界で平均的な知識を有した者に本発明をより完全に説明するために提供されるものである。したがって、図面での構成要素の形状などはより明確な説明を強調するために誇張されたものである。
【0034】
本発明の実施例ではプラズマを利用して基板を蝕刻する基板処理装置に対して説明する。しかし、本発明の技術的特徴はこれに限定されないし、プラズマを利用して基板(W)を処理する多様な種類の装置に適用されることができる。しかし、本発明はこれに限定されないで、その上部に置かれた基板をプラズマ処理する多様な種類の装置に適用可能である。
【0035】
また、本発明の実施例では支持ユニットで静電チャックを例に挙げて説明する。しかし、本発明はこれに限定されないで、支持ユニットは機械的クランピングによって基板を支持するか、または真空によって基板を支持することができる。
【0036】
図1は、本発明の一実施例による基板処理装置を見せてくれる図面である。
【0037】
図1を参照すれば、基板処理装置10は工程チャンバ100、支持ユニット200、プラズマ生成ユニット400、そして、加熱ユニット500を含むことができる。基板処理装置はプラズマを利用して基板(W)を処理する。
【0038】
工程チャンバ100は内部に工程遂行のための空間を有する。工程チャンバ100の内部のうちでの下領域には支持ユニット200が位置する。支持ユニット200には基板が置かれる。
【0039】
プラズマ生成ユニット400は工程チャンバ100内で支持ユニット200の上部領域に泊まる工程ガスからプラズマを発生させる。プラズマ生成ユニット400は第1電極420、第2電極440、そして、高周波電源460を含むことができる。第1電極420と第2電極440はお互いに上下方向に対向されるように提供されることができる。第2電極440は支持ユニット200に提供されることができる。すなわち、支持ユニット200は電極で機能することができる。
【0040】
第1電極420は電磁気波が透過可能な材質で提供されることができる。もうちょっと具体的に、第1電極420は加熱ユニット500から提供される光エネルギーが通過することができる透明電極であることができる。一例で、第1電極420は酸化インジウムと酸化スズでなされたITO(Indium Tin Oxide)物質で形成された透明電極であることができる。また、他の例で、第1電極としては、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metal nanowire、PEDOT-PSSのうちで何れか一つであることができる。
【0041】
第1電極420は工程チャンバ100の上部壁110に提供される透明なウィンドウ120下に位置されることができる。
【0042】
一例によれば、第1電極420は接地429されて、第2電極440には高周波電源460が連結されることができる。選択的に第1電極420に高周波電源460が連結されて第2電極440が接地されることができる。また、選択的に第1電極420及び第2電極440すべてに高周波電源460が連結されることができる。
【0043】
加熱ユニット500は透明なウィンドウ120上部に第1電極420と対向されるように配置されることができる。加熱ユニット500は熱輻射を利用した加熱装置であることができる。一例で、加熱ユニットはIRランプらを含むことができる。また他の例で、加熱ユニットはFlashlamp、Laser、Microwaveのような熱源のうちで何れか一つであることができる。加熱ユニット500は光エネルギーを放出し、光エネルギーはウィンドウ120と第1電極420を通過して基板(W)に提供されることができる。よって、基板は光エネルギーによって早く加熱(昇温)されることができる。
【0044】
本実施例で加熱ユニット500は工程チャンバ外部に配置されていることで図示したが、これに限定されるものではない。また、加熱ユニット500は基板を基準で基板の下に配置されることができるし、この場合第2電極が透明電極に変更されることができる。
【0045】
前述した構成を有する基板処理装置10でプラズマ処理工程が進行される時、加熱ユニット500によって基板が早く昇温されることがある。このように、第1電極420を透明電極(光エネルギーのような電磁気波が透過可能な材質)で提供することで、工程チャンバ100外部に基板加熱のための加熱ユニット500の配置が可能である。そして、加熱ユニット500が工程チャンバ100外部に提供されることで、加熱ユニット500の維持補修(ランプ交替、出力容量変更など)が容易で、プラズマによる損傷を防止することができる。
【0046】
図2は、本発明の他の実施例による基板処理装置10aを見せてくれる図面である。
【0047】
図2を参照すれば、基板処理装置10aは工程チャンバ100a、支持ユニット200a、ガス供給ユニット300a、プラズマ生成ユニット400a、そして、加熱ユニット500aを含むことができる。基板処理装置はプラズマを利用して基板(W)を処理する。
【0048】
工程チャンバ100aは内部に工程遂行のための空間を有する。工程チャンバ100aの底面には排気ホール103が形成される。排気ホール103はポンプ122が装着された排気ライン121と連結される。工程過程で発生した反応副産物及び工程チャンバ100a内部に泊まるガスは排気ライン121を通じて排気ホール103に排気される。よって、工程チャンバ100aの外部に排出されることができる。また、排気過程によって工程チャンバ100aの内部空間は所定圧力で減圧される。一例で、排気ホール103は後述するライナーユニット130の貫通ホール158と直接通じる位置に提供されることができる。
【0049】
工程チャンバ100aの側壁には開口104が形成される。開口104は工程チャンバ100a内部で基板が出入りする通路で機能する。開口104はドアアセンブリー(図示せず)によって開閉される。一例によれば、ドアアセンブリー(図示せず)は外側ドア、内側ドア、そして、連結板を有する。外側ドアは工程チャンバの外壁に提供される。内側ドアは工程チャンバの内壁に提供される。外側ドアと内側ドアは連結板によってお互いに固定結合される。連結板は開口を通じて工程チャンバの内側から外側まで延長されるように提供される。ドア駆動機は外側ドアを上下方向に移動させる。ドア駆動機は油空圧シリンダーやモーターを含むことができる。
【0050】
工程チャンバ100aの内部のうちでの下領域には支持ユニット200aが位置する。支持ユニット200aは静電気力によって基板(W)を支持する。これと他に支持ユニット200aは機械的クランピングなどのような多様な方式で基板(W)を支持することができる。
【0051】
支持ユニット200aは支持板210、リングアセンブリー260、そして、ガス供給ライン部270を含むことができる。支持板210には基板(W)が置かれる。支持板210はベース220と静電チャック240を有する。静電チャック240は静電気力によって基板(W)をその上面に支持する。静電チャック240はベース220上に固定結合される。
【0052】
リングアセンブリー260はリング形状で提供される。リングアセンブリー260は支持板210の周りを囲むように提供される。一例で、リングアセンブリー260は静電チャック240の周りを囲むように提供される。リングアセンブリー260は基板(W)の縁領域を支持する。一例によれば、リングアセンブリー260はフォーカスリング262と絶縁リング264を有する。フォーカスリング262は静電チャック240を囲むように提供されてプラズマを基板(W)に集中させる。絶縁リング264はフォーカスリング262を囲むように提供される。選択的にリングアセンブリー260はプラズマによって静電チャック240の側面が損傷されることを防止するようにフォーカスリング262の周りに密着されるように提供されるエッジリング(図示せず)を含むことができる。前述したところと異なりリングアセンブリー260の構造は多様に変更されることができる。
【0053】
ガス供給ライン部270はガス供給源272とガス供給ライン274を含む。ガス供給ライン274はリングアセンブリー260と支持板210との間に提供される。ガス供給ライン274はリングアセンブリー260の上面または支持板210の縁領域に残留する異物を除去するようにガスを供給する。一例で、ガスは窒素ガス(N2)であることがある。選択的に、他のガスまたは洗浄剤を供給することができる。ガス供給ライン274は支持板210内部でフォーカスリング262と静電チャック240との間に連結されるように形成されることができる。これと異なり、ガス供給ライン274はフォーカスリング262内部で提供され、フォーカスリング262と静電チャック240との間に連結されるように折曲される構造であることがある。
【0054】
一例によれば、静電チャック240はセラミックス材質で提供され、フォーカスリング262はシリコン材質で提供され、絶縁リング264はクオーツ材質で提供されることができる。静電チャック240またはベース220内には工程進行中に基板(W)を工程温度で維持できるようにする加熱部材282及び冷却部材284が提供されることができる。加熱部材282は熱線で提供されることができる。冷却部材284は冷媒が流れる冷却ラインで提供されることができる。一例によれば、加熱部材282は静電チャック240に提供され、冷却部材284はベース220に提供されることができる。
【0055】
ガス供給ユニット300aは工程チャンバ100a内部で工程がスを供給する。ガス供給ユニット300aはガス保存部310、ガス供給ライン320、そして、ガス流入ポート330を含む。ガス供給ライン320はガス保存部310とガス流入ポート330を連結する。ガス供給ライン320はガス保存部310に保存された工程ガスをガス流入ポート330に供給する。ガス供給ライン320にはその通路を開閉するか、またはその通路を流れる流体の流量を調節するバルブ322が設置されることができる。
【0056】
プラズマ生成ユニット400aは放電空間に泊まる工程ガスからプラズマを発生させる。放電空間は工程チャンバ100a内で支持ユニット200aの上部領域に該当する。プラズマ生成ユニット400は容量結合型プラズマ(capacitive coupled plasma)ソースを有することができる。
【0057】
プラズマ生成ユニット400aは上部電極420、下部電極440、そして高周波電源460を含むことができる。上部電極420と下部電極440はお互いに上下方向に対向されるように提供されることができる。
【0058】
上部電極420は加熱ユニット500aから提供される光エネルギーが通過することができる透明電極であることができる。一例で、上部電極420は酸化インジウムと酸化スズでなされたITO(Indium Tin Oxide)物質で形成された透明電極であることができる。また他の例で、上部電極としては、MnO(Manganese Oxide)、ZnO(Zinc Oxide)、IZO(Indium Zinc Oxide)、FTO、AZO、Graphene、CNT(Carbon Nano Tube)、Metal nanowire、PEDOT-PSSのうちで何れか一つであることができる。
【0059】
上部電極420は工程チャンバ100aの上部壁110に提供される透明なウィンドウ120下に位置されることができる。透明なウィンドウ120は上部電極と等しく電磁気波が透過可能な材質であることができる。一例で、上部電極420はシャワーヘッド422及びリングアセンブリー424を含むことができる。シャワーヘッド422は静電チャック240と対向されるように位置され、静電チャック240より大きい直径で提供されることができる。シャワーヘッド422及びリングアセンブリー424を含むことができる。シャワーヘッド422は上部電極に提供されることができる。シャワーヘッド422にはガスを噴射するホール422aが形成される。リングアセンブリー424はシャワーヘッド422を囲むように提供される。リングアセンブリー424はシャワーヘッド422に密着されるように提供されることができる。一例によれば、シャワーヘッド422は上部電極に提供されることができる。下部電極440は静電チャック240内に提供されることができる。
【0060】
一例によれば、上部電極420は接地429され、下部電極440には高周波電源460が連結されることができる。選択的に上部電極420に高周波電源460が連結されて下部電極440が接地されることができる。また、選択的に上部電極420及び下部電極440すべてに高周波電源460が連結されることができる。一例によれば、高周波電源460は上部電極420または下部電極440に連続的に電力を印加するか、またはパルスで電力を印加することができる。
【0061】
図3は、
図2に示された加熱ユニットを説明するための図面である。
【0062】
図2及び
図3を参照すれば、加熱ユニット500aは透明なウィンドウ120上部に上部電極420と対向されるように配置されることができる。加熱ユニット500aはハウジング502と、IRランプ510ら、そして、反射カバー520らを含むことができる。IRランプ510らは光エネルギーを放出し、光エネルギーはウィンドウ120と上部電極420を通過して基板(W)に提供されることができる。基板は光エネルギーによって早く加熱(昇温)されることができる。
【0063】
前述した構成を有する基板処理装置10aでのプラズマ処理は、ガス供給ユニット300aが工程ガスを供給すれば、工程チャンバ100a内のシャワーヘッド422を通じて工程ガスが噴射される。この時、工程チャンバ100a内にはプラズマが発生され、プラズマ工程が遂行されることができる。そして、プラズマ処理工程が進行される時、加熱ユニット500aのIRランプ510らによって基板は早く昇温されることがある。このように、上部電極420を透明電極で提供することで、工程チャンバ100a外部に基板加熱のための加熱ユニット500aの配置が可能である。そして、加熱ユニット500aが工程チャンバ100a外部に提供されることで、加熱ユニット500aの維持補修(ランプ交替、出力容量変更など)が容易で、プラズマによる損傷を防止することができる。
【0064】
以上の本実施例では、上部電極がシャワーヘッドタイプの構造を例に挙げて説明したが、これに限定されるものではない。
【0065】
以上では、前記実施例ではプラズマを利用して蝕刻工程を遂行することで説明したが、基板処理工程はこれに限定されないし、プラズマを利用する多様な基板処理工程、例えば、蒸着工程、アッシング工程、そして、洗浄工程などにも適用されることができる。また、本実施例ではプラズマ生成ユニットが、容量結合型プラズマ(capacitive coupled plasma)ソースで提供される構造で説明した。しかし、これと異なり、プラズマ生成ユニットは誘導結合型プラズマ(ICP inductively coupled plasma)で提供されることができる。誘導結合型プラズマはアンテナを含むことができる。また、基板処理装置は追加的にプラズマ境界制限ユニットを含むことができる。プラズマ境界制限ユニットは、一例で、リング形状で提供されることができるし、放電空間を囲むように提供されてプラズマがその外側に抜け出ることを抑制することができる。
【0066】
以上の説明は本発明の技術思想を例示的に説明したことに過ぎないものであり、本発明が属する技術分野で通常の知識を有した者なら本発明の本質的な特性から脱しない範囲で多様な修正及び変形が可能であろう。よって、本発明に開示された実施例らは本発明の技術思想を限定するためではなく説明するためのものであり、このような実施例によって本発明の技術思想の範囲が限定されるものではない。本発明の保護範囲は下の請求範囲によって解釈されなければならないし、それと同等な範囲内にあるすべての技術思想は本発明の権利範囲に含まれることで解釈されなければならないであろう。
【符号の説明】
【0067】
100 工程チャンバ
200 支持ユニット
300 ガス供給ユニット
400 プラズマ発生ユニット
420 第1電極
500 加熱ユニット
510 IRランプ