IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンの特許一覧

特許7390711個体およびコホートの薬理学的表現型予測プラットフォーム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-24
(45)【発行日】2023-12-04
(54)【発明の名称】個体およびコホートの薬理学的表現型予測プラットフォーム
(51)【国際特許分類】
   G16H 20/10 20180101AFI20231127BHJP
   G01N 33/48 20060101ALI20231127BHJP
   G01N 33/68 20060101ALI20231127BHJP
   G16H 50/20 20180101ALI20231127BHJP
   G16H 70/60 20180101ALI20231127BHJP
【FI】
G16H20/10
G01N33/48 Z
G01N33/68
G16H50/20
G16H70/60
【請求項の数】 25
(21)【出願番号】P 2019562325
(86)(22)【出願日】2018-05-11
(65)【公表番号】
(43)【公表日】2020-07-09
(86)【国際出願番号】 US2018032179
(87)【国際公開番号】W WO2018209161
(87)【国際公開日】2018-11-15
【審査請求日】2021-03-26
【審判番号】
【審判請求日】2023-03-01
(31)【優先権主張番号】62/633,355
(32)【優先日】2018-02-21
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/505,422
(32)【優先日】2017-05-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511000957
【氏名又は名称】ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン
【氏名又は名称原語表記】THE REGENTS OF THE UNIVERSITY OF MICHIGAN
(74)【代理人】
【識別番号】100120031
【弁理士】
【氏名又は名称】宮嶋 学
(74)【代理人】
【識別番号】100120617
【弁理士】
【氏名又は名称】浅野 真理
(74)【代理人】
【識別番号】100126099
【弁理士】
【氏名又は名称】反町 洋
(72)【発明者】
【氏名】ブライアン、ディー.アティ
(72)【発明者】
【氏名】アリ、アリン-フォイヤー
(72)【発明者】
【氏名】ジェラルド、エイ.ヒギンス
(72)【発明者】
【氏名】ジェームズ、エス.バーンズ
(72)【発明者】
【氏名】アレクサンドル、カリーニン
(72)【発明者】
【氏名】ブライアン、パウルス
(72)【発明者】
【氏名】アレックス、エイド
(72)【発明者】
【氏名】ナラーティップ、リアマルーン
【合議体】
【審判長】渡邊 聡
【審判官】佐藤 智康
【審判官】緑川 隆
(56)【参考文献】
【文献】特表2017-502365(JP,A)
【文献】特表2008-523844(JP,A)
【文献】米国特許出願公開第2002/0077756(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00-80/00
(57)【特許請求の範囲】
【請求項1】
統計モデリングおよび機械学習技術を使用して薬理学的表現型を特定するためのコンピュータ実施方法であって、前記方法が、前記方法を実行するようにプログラムされた1つ以上のプロセッサによって実行され、
1つ以上のプロセッサにおいて、複数の第1の患者の各々について、
前記第1の患者の、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータ、またはメタボロミクスデータの1つ以上を含む生物学的特徴を示すパンオミックスデータ、
有害な文化的な外傷的事象、小児期の外傷的事象、急性の外傷的事象、もしくは慢性の外傷的事象、または有害な条件に起因する慢性ストレスに関連する危険因子を示すソシオミックスデータ、
一定期間中の1つ以上の事例により収集された、前記第1の患者が遭遇した曝露を含む前記第1の患者の経験を示す環境データ、および
1つ以上の薬物に対する応答、前記第1の患者が物質乱用を経験しているかどうか、または前記第1の患者の1つ以上の慢性疾患、のうちの少なくとも1つを示す、表現型データ、を含む、訓練データのセットを取得することと、
前記訓練データのセットに基づいて、薬理学的表現型を判定するための統計モデルを前記1つ以上のプロセッサによって生成することと、
一定期間にわたって収集された第2の患者のパンオミックスデータ、ならびにソシオミックスデータおよび環境データのセットを、前記1つ以上のプロセッサにおいて受信することと、
前記1つ以上のプロセッサによって、前記統計モデルに前記第2の患者の前記パンオミックスデータ、ならびに前記ソシオミックスデータおよび環境データを適用して、前記第2の患者の1つ以上の薬理学的表現型を判定することと、
前記1つ以上のプロセッサによって、医療提供者に表示するための前記第2の患者の前記1つ以上の薬理学的表現型の提供をすることであって、ここで、前記医療提供者が、前記薬理学的表現型に従って、前記第2の患者に治療コースを推奨する、前記提供をすることと、
を含む、方法。
【請求項2】
前記ソシオミックスデータおよび環境データが、経時的に収集された前記第1の患者の経験を示し、少なくとも2つの時点から収集された前記第1の患者の病歴を示す臨床データ、前記第1の患者の人口統計学的データ、前記第1の患者の社会経済的データ、または前記第1の患者に処方された各薬物を示す多薬療法データ、のうちの少なくとも1つを含む、請求項1に記載の方法。
【請求項3】
前記第2の患者の前記1つ以上の薬理学的表現型が、前記第2の患者による1つ以上の薬物に対する予測される応答、1つ以上の疾病のリスク、前記1つ以上の薬物に対する薬物有害事象もしくは薬物有害反応、または物質乱用の可能性、のうちの少なくとも1つを含む、請求項1に記載の方法。
【請求項4】
前記1つ以上の薬理学的表現型が、前記第2の患者による1つ以上の薬物に対する予測される応答を含み、
前記第2の患者について診断されたある種類の疾患の指標を、前記1つ以上のプロセッサにおいて受信することと、
前記1つ以上のプロセッサによって、前記統計モデルに前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データを適用して、前記第2の患者について診断された前記種類の疾患を治療するための複数の薬物に対する前記第2の患者による前記予測される応答を判定することと、
前記1つ以上のプロセッサによって、前記複数の薬物の各々についての前記予測される応答に基づいて、前記第2の患者を治療するための前記複数の薬物のうちの1つを特定することと、
前記1つ以上のプロセッサによって、前記第2の患者について診断された前記種類の疾患に対する最適な治療コースを指示するために、前記医療提供者に前記特定された薬物の指標を提供することと、をさらに含む、請求項1に記載の方法。
【請求項5】
前記予測される応答に基づいて、前記第2の患者を治療するための前記複数の薬物のうちの1つを特定することが、
前記複数の薬物の各々について、
前記1つ以上のプロセッサによって、前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データに基づいて、前記第2の患者に対する前記薬物の有効性を判定することと、
前記1つ以上のプロセッサによって、前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データに基づいて、前記第2の患者に対する1つ以上の予想される薬物有害反応を判定することと、
前記1つ以上のプロセッサによって、前記有効性および前記1つ以上の予想される薬物有害反応を組み合わせて、前記第2の患者に対する前記薬物の総合的価値を判定することと、
前記1つ以上のプロセッサによって、前記第2の患者に対する最も高い総合的価値を有する、前記複数の薬物のうちの前記薬物を特定することと、を含む、請求項4に記載の方法。
【請求項6】
前記1つ以上の薬理学的表現型が、物質乱用の可能性を含み、
前記1つ以上のプロセッサによって、前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データを前記統計モデルに適用して、前記第2の患者が閾値可能性を超える物質乱用の可能性を有すると判定することと、
前記1つ以上のプロセッサによって、早期介入のために前記医療提供者に表示するために、前記第2の患者が物質乱用問題に苦しむと予想される指標を提供することと、をさらに含む、請求項1に記載の方法。
【請求項7】
医療提供者に表示するための前記第2の患者の前記1つ以上の薬理学的表現型を提供することが、
前記1つ以上のプロセッサによって、前記第2の患者による1つ以上の薬物の各々に対する予測される応答、1つ以上の疾病のリスク、または物質乱用の可能性、のうちの少なくとも1つを含む、前記第2の患者のリスク解析の表示を生成すること、を含む、請求項1に記載の方法。
【請求項8】
閾値期間後に、前記1つ以上のプロセッサによって、1つ以上の薬物に対する応答、前記第2の患者が物質乱用を経験しているかどうか、または前記第2の患者の1つ以上の慢性疾患のうちの少なくとも1つを示す、前記第2の患者の表現型データを受信することと、
前記1つ以上のプロセッサによって、前記第2の患者の前記パンオミックスデータ、前記ソシオミックスデータおよび環境データ、ならびに前記表現型データを知識ベースに格納することと、
前記1つ以上のプロセッサによって、前記訓練データのセットを更新して、前記知識ベースからのデータを含めることと、をさらに含む、請求項1に記載の方法。
【請求項9】
パンオミックスデータが、ゲノムデータ、エピゲノムデータ、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータ、またはメタボロミクスデータのうちの少なくとも1つを含む、請求項1に記載の方法。
【請求項10】
前記統計モデルが、1つ以上の機械学習技術を使用して生成される、請求項1に記載の方法。
【請求項11】
薬理学的表現型を判定するための前記統計モデルを生成することが、
前記薬理学的表現型のセットと相関する複数の一塩基多型(SNP)を特定することと、
前記複数のSNPにリンクされる追加のSNPを特定するために、前記複数のSNPのSNPデータベースとの比較をすることであって、ここで、前記複数のSNPおよび追加のSNPが、許容候補バリアントのセットに含まれる、前記比較をすることと、
バイオインフォマティクス解析を実行して、調節機能、バリアント依存性、前記許容候補バリアントに対する標的遺伝子の関係の存在、または前記許容候補バリアントがマイナー対立遺伝子頻度を有する非同義コードバリアントであるかどうか、のうちの少なくとも1つに基づいて、前記許容候補バリアントのセットを中間候補バリアントのサブセットにフィルタリングすることと、
前記中間候補バリアントのサブセットを順位付けることと、
閾値順位を上回って順位付けられる前記サブセットのうちの中間候補バリアントを判定して、前記薬理学的表現型のセットとの因果関係があるSNP、前記SNPに関連付けられた遺伝子、または前記SNPに関連付けられた経路を特定することと、を含む、薬理学的表現型のセットに対応するパンオミックスデータを特定することを含む、請求項1~10のいずれか一項に記載の方法。
【請求項12】
ワルファリン表現型のセットに対応するパンオミックスデータが特定され、前記ワルファリン表現型のセットとの因果関係がある前記特定された遺伝子または経路が、ワルファリン応答経路を含む、請求項11に記載の方法。
【請求項13】
前記ワルファリン応答経路が、補体因子H関連5(CFHR5)遺伝子、フィブリノゲンα鎖(FGA)遺伝子、フラビン含有モノオキシゲナーゼ5(FMO5)遺伝子、ヒスチジンリッチ糖タンパク質(HRG)遺伝子、キニノーゲン1(KNG1)遺伝子、surfeit 4(SURF4)遺伝子、α1-3-N-アセチルガラクトサミニルトランスフェラーゼおよびα1-3-ガラクトシルトランスフェラーゼ(ABO)遺伝子、リゾチーム(LYZ)遺伝子、ポリコーム群リングフィンガー3(PCGF3)遺伝子、セリンプロテアーゼ8(PRSS8)遺伝子、一過性受容器電位カチオンチャネルサブファミリーCメンバー4関連タンパク質(TRPC4AP)遺伝子、溶質輸送体ファミリー44メンバー2(SLC44A2)遺伝子、スフィンゴシンキナーゼ1(SPHK1)遺伝子、またはユビキチン特異的ペプチダーゼ7(USP7)遺伝子、のうちの1つ以上を含む、請求項12に記載の方法。
【請求項14】
前記ワルファリン表現型のセットが、凝固、出血、凝血、血栓症、または大量出血、のうちの1つ以上を含む、請求項12または請求項13に記載の方法。
【請求項15】
前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データを前記統計モデルに適用して、前記第2の患者の1つ以上の薬理学的表現型を判定することが、前記第2の患者の前記パンオミックスデータを前記ワルファリン応答経路内の遺伝子またはSNPと比較して、前記第2の患者の1つ以上のワルファリン表現型を判定することを含む、請求項12~14のいずれか一項に記載の方法。
【請求項16】
統計モデリングおよび機械学習技術を使用して薬理学的表現型を特定するためのコンピューティングデバイスであって、
通信網と、
1つ以上のプロセッサと、
非一時的コンピュータ可読メモリであって、前記1つ以上のプロセッサに結合されており、かつその上に命令を格納しており、前記命令が、前記1つ以上のプロセッサによって実行される場合、前記コンピューティングデバイスに、
複数の第1の患者の各々について、
前記第1の患者の、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータ、またはメタボロミクスデータの1つ以上を含む生物学的特徴を示すパンオミックスデータ、
一定期間中の1つ以上の事例により収集された、前記第1の患者が遭遇した曝露を含む前記第1の患者の経験を示すソシオミックスデータおよび環境データ、ならびに、
1つ以上の薬物に対する応答、前記第1の患者が物質乱用を経験しているかどうか、または前記第1の患者の1つ以上の慢性疾患、のうちの少なくとも1つを示す表現型データ、を含む、訓練データのセットを取得することと、
前記訓練データのセットに基づいて薬理学的表現型を判定するための統計モデルを生成することと、
一定期間にわたって収集された第2の患者のパンオミックスデータ、ならびにソシオミックスデータおよび環境データのセットを受信することと、
前記統計モデルに前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データを適用して、前記第2の患者の1つ以上の薬理学的表現型を判定することと、
前記通信網を介して、医療提供者に表示するための前記第2の患者の前記1つ以上の薬理学的表現型を提供することと、を行わせ、前記医療提供者は、前記薬理学的表現型に従って前記第2の患者に治療コースを推奨する、非一時的コンピュータ可読メモリと、を備える、コンピューティングデバイス。
【請求項17】
前記ソシオミックスデータおよび環境データが、経時的に収集された前記第1の患者の経験を示し、少なくとも2つの時点から収集された前記第1の患者の病歴を示す臨床データ、前記第1の患者の人口統計学的データ、前記第1の患者の社会経済的データ、または前記第1の患者に処方された各薬物を示す多薬療法データ、のうちの少なくとも1つを含む、請求項16に記載のコンピューティングデバイス。
【請求項18】
前記第2の患者の前記1つ以上の薬理学的表現型が、前記第2の患者の1つ以上の薬物に対する予測される応答、1つ以上の疾病のリスク、前記1つ以上の薬物に対する薬物有害事象もしくは薬物有害反応、または物質乱用の可能性、のうちの少なくとも1つを含む、請求項16に記載のコンピューティングデバイス。
【請求項19】
前記1つ以上の薬理学的表現型が、前記第2の患者の1つ以上の薬物に対する予測される応答を含み、前記命令が、前記コンピューティングデバイスに、
前記第2の患者について診断された疾患の種類の指標を受信することと、
前記統計モデルに前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データを適用して、前記第2の患者について診断された前記種類の疾患を治療するための複数の薬物に対する前記第2の患者の前記予測される応答を判定することと、
前記複数の薬物の各々についての前記予測される応答に基づいて、前記第2の患者を治療するための前記複数の薬物のうちの1つを特定することと、
前記第2の患者について診断された前記種類の疾患の最適な治療コースを指示するために、前記医療提供者に前記特定された薬物の指標を提供することと、をさらに行わせる、請求項16に記載のコンピューティングデバイス。
【請求項20】
前記予測される応答に基づいて前記第2の患者を治療するための前記複数の薬物のうちの1つを特定するために、前記命令が、前記コンピューティングデバイスに、
前記複数の薬物の各々について、
前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データに基づいて前記第2の患者に対する前記薬物の有効性を判定することと、
前記第2の患者について前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データに基づいて、前記第2の患者に対する1つ以上の予想される薬物有害反応を判定することと、
前記有効性および前記1つ以上の予想される薬物有害反応を組み合わせて、前記第2の患者に対する前記薬物の総合的価値を判定することと、
前記複数の薬物から前記第2の患者に対する最も高い総合的価値を有する前記薬物を特定することと、を行わせる、請求項19に記載のコンピューティングデバイス。
【請求項21】
前記1つ以上の薬理学的表現型が、ストレス関連障害、神経精神障害、不安障害、疼痛、物質乱用、心機能障害、または胃腸障害の可能性を含み、前記命令が、前記コンピューティングデバイスに、
前記統計モデルに前記第2の患者の前記パンオミックスデータならびに前記ソシオミックスデータおよび環境データを適用して、前記第2の患者が、閾値可能性を超える、ストレス関連障害、神経精神障害、不安障害、疼痛、物質乱用、心機能障害または胃腸障害の可能性を有すると判定することと、
早期介入のために医療提供者に表示する前記第2の患者がストレス関連障害、神経精神障害、不安障害、疼痛、物質乱用、心機能障害、または胃腸障害に苦しむと予想される指標を提供することと、を行わせる、請求項16に記載のコンピューティングデバイス。
【請求項22】
医療提供者に表示する前記第2の患者の前記1つ以上の薬理学的表現型を提供するために、前記命令が、前記コンピューティングデバイスに、
前記第2の患者の1つ以上の薬物の各々に対する予測される応答、1つ以上の疾病のリスク、または物質乱用の可能性、のうちの少なくとも1つを含む、前記第2の患者のリスク解析の表示を生成することを行わせる、請求項16に記載のコンピューティングデバイス。
【請求項23】
前記命令が、前記コンピューティングデバイスに、
閾値期間後に、1つ以上の薬物に対する応答、前記第2の患者が物質乱用を経験しているかどうか、または前記第2の患者の1つ以上の慢性疾患、のうちの少なくとも1つを示す、第2の患者の表現型データを受信することと、
前記第2の患者の前記パンオミックスデータ、前記ソシオミックスデータおよび環境データ、ならびに前記表現型データ、を知識ベースに格納することと、
前記訓練データのセットを更新して、前記知識ベースからのデータを含めることと、をさらに行わせる、請求項16に記載のコンピューティングデバイス。
【請求項24】
パンオミックスデータが、ゲノムデータ、エピゲノムデータ、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータ、またはメタボロミクスデータ、のうちの少なくとも1つを含む、請求項16に記載のコンピューティングデバイス。
【請求項25】
前記統計モデルが、1つ以上の機械学習技術を使用して生成される、請求項16に記載のコンピューティングデバイス。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、(1)2017年5月12日に出願された、「Individual and Cohort Pharmacological Phenotype Prediction Platform」という名称の米国仮出願番号第62/505,422号、および(2)2018年2月21日に出願された、「Individual and Cohort Pharmacological Phenotype Prediction Platform」という名称の米国仮出願番号第62/633,355号の優先権および出願日の利益を主張し、これらの各々の全ての開示内容は参照により本明細書に明示的に組み込まれる。
【技術分野】
【0002】
本出願は、患者の薬理学的表現型および、より具体的には、患者および層化した患者コホートの薬物応答表現型を、それらの生物学的、祖先的、人口統計学的、臨床的、社会学的、および環境的特徴に基づいて予測するために機械学習および統計的手法を利用するための方法およびシステムに関する。
【背景技術】
【0003】
今日、一部の患者の薬物応答を、患者のコードゲノムに基づいて予測することができる。特定の遺伝的形質を薬物への特定の応答に対応づけることができ、ある患者についてその患者の予測される応答に基づいて薬物を選択することができる。
【0004】
しかしながら、非コードゲノムバリアントが、患者の薬物応答、有害な薬物応答、および疾患リスクなどの形質の大多数の遺伝的相違を説明する。また、エピゲノム調節の研究およびゲノムワイド関連解析(GWAS)の収束は、幅広い一連の医学専門分野および薬理学的研究設定において、エピゲノム変化がヒトおよび動物における疾患リスク、薬物応答および有害な薬物応答の指標であり得ることも示している。さらに、疾患に関連する表現型の多様性は、以前は遺伝的相違に帰されていたクロマチン状態の差によって決定され得る。
【0005】
現在のシステムは、患者の薬理学的表現型を予測するためにクロマチン状態、ゲノム調節エレメント、エピゲノミクス、プロテオミクス、メタボロミクス、またはトランスクリプトミクスを利用しない。また現在のシステムは、薬理学的表現型を判定するために、遺伝的形質を変化させ得る環境的および社会学的特徴を考慮に入れない。さらに、このようなシステムは、当該システムを訓練して経時的な生物学的特徴および/または当該生物学的特徴に対応する薬理学的表現型の変化に適応させるために機械学習技術を利用しない。
【0006】
したがって、患者のゲノミクス、エピゲノミクス、クロマチン状態、プロテオミクス、メタボロミクス、トランスクリプトミクスなどを含むパンオミックス的特徴ならびに社会学的および環境的特徴に基づいて、薬理学的応答、疾患リスク、物質乱用、または他の薬理学的表現型を含む薬理学的表現型をほぼリアルタイムで正確に予測するシステムに対する必要性が存在する。
【発明の概要】
【0007】
患者の薬理学的表現型を予測するために、薬理学的表現型予測システムを、様々な機械学習技術を使用して訓練することができる。より具体的には、上記薬理学的表現型予測システムを訓練して、患者のパンオミックスデータ、社会学データ、および環境データを分析して、様々な薬物に対する当該患者の応答、当該患者の物質乱用の可能性、様々な疾病のリスク、または当該患者の任意の他の薬理学的表現型を予測することができる。薬理学的表現型予測システムは、一群の患者(本明細書において「訓練患者」とも称される)のパンオミックスデータ、社会学データ、および環境データ(本明細書において「訓練データ」とも称される)を得ることによって訓練することができる。
【0008】
いくつかの実施形態では、患者の社会学データおよび環境データをいくつかの時点で取得して、患者の経験の詳細な説明を取得することができる。訓練患者の各々について、上記薬理学的表現型予測システムは、例えば、当該患者に物質乱用問題があるかどうか、当該患者の慢性疾病、当該患者に処方されている様々な薬物に対する当該患者の応答などの訓練データとして、当該患者の薬理学的表現型を得ることができる。上記訓練データは、様々な薬物に対する患者の応答、当該患者の物質乱用の可能性、様々な疾病のリスク、または当該患者の任意の他の薬理学的表現型を予測するために使用することができる統計モデルを生成するために、様々な機械学習技術を使用して分析され得る。例えば、統計モデルは、遺伝子調節ネットワークおよび遺伝子発現に対する環境的影響のネットワーク解析の組み合わせに基づいて生成されるニューラルネットワークであってもよい。
【0009】
訓練期間後、上記薬理学的表現型予測システムは、薬理学的表現型が知られていない患者(例えば、当該患者は双極性障害のためのリチウムをまだ処方されておらず、したがって、リチウムに対する当該患者の応答は未知である)についていくつかの時点で収集されたパンオミックスデータ、社会学データ、および環境データを受信し得る。上記パンオミックスデータ、社会学データ、および環境データは、上記患者の薬理学的表現型を予測するために統計モデルに適用され得、当該薬理学的表現型は医療提供者のクライアントデバイスに表示され得る。
【0010】
例えば、上記薬理学的表現型予測システムは、特定の薬物について、上記患者が薬物有害反応を有する可能性を判定することができる。さらに、上記薬理学的表現型予測システムは、上記患者について、上記薬物の予測される有効性または適切な投与量の指標を生成することができる。いくつかの実施形態では、上記患者が薬物有害反応を有する上記可能性は閾値可能性と比較され得、上記予測される有効性は閾値有効性と比較され得る。上記可能性が上記閾値可能性を超え、上記予測される有効性が上記閾値有効性未満であり、かつ/または薬物有害反応の可能性および予測される有効性の組み合わせが閾値を超える場合、上記薬物の上記可能性および/または上記有効性の指標は、上記医療提供者に提供され得る。結果として、上記医療提供者は、投与量を変更してもよく、上記薬物を患者に処方しなくてもよく、または患者により高い有効性の代替薬物を提案してもよい。
【0011】
このように、本発明の薬理学的表現型予測システムは、特定の疾患に該当する患者に最適な薬物を特定することができる。例えば、特定の疾患について、上記薬理学的表現型予測システムは、当該患者に対する最大限の予測される有効性、ならびに最小限の薬物有害反応の可能性および/または重症度を有する、当該疾患を治療するように設計されたいくつかの薬物のうちの1つを選択することができる。本実施形態は、有利には、医療提供者が患者に推奨および処方する最適な薬物を正確かつ効率的に特定するのを可能にする。さらに、本実施形態は、有利には、パンオミックスデータ、社会学データ、および環境データを組み込んで統計モデルを生成することによる、経時的に変化し得る患者の生物学的特徴の網羅的なバイオインフォマティクス解析を含む。この網羅的なバイオインフォマティクス解析は、患者の固有形質に基づいて薬理学的表現型を予測するだけでなく、経時的に常に変化しており、遺伝的形質の発現を変化させ得る、社会学的および環境的形質をも組み込んだより正確な予測システムを可能にする。
【0012】
さらに、疾患リスクおよび薬物有害反応の可能性を正確に予測する統計モデルを生成することによって、医療提供者は、患者が疾患の症状を示すか、または、物質乱用問題または他の疾患症状に苦しみ始める前に、これらの問題に先回りして対処することができる。
【0013】
一実施形態では、統計モデリングおよび機械学習技術を使用して薬理学的表現型を特定するためのコンピュータ実施方法が提供される。当該方法は、複数の第1の患者の各々について、当該第1の患者の生物学的特徴を示すパンオミックスデータ、経時的に収集される当該第1の患者の経験の存在を示すソシオミックス(sociomic)データおよび環境データ、ならびに、1つ以上の薬物に対する応答、当該第1の患者が薬物有害反応または物質乱用を経験しているかどうか、または当該第1の患者の1つ以上の慢性疾患のうちの少なくとも1つを示す表現型データを含む訓練データのセットを得ることを含む。本発明の方法は、訓練データセットに基づいて薬理学的表現型を判定するための統計モデルを生成することと、一定期間にわたって収集された第2の患者のパンオミックスデータならびにソシオミックスデータおよび環境データのセットを受信することと、当該統計モデルに第2の患者の当該パンオミックスデータならびに当該ソシオミックスデータおよび環境データを適用して当該第2の患者の1つ以上の薬理学的表現型を判定することと、および医療提供者に表示するための当該第2の患者の1つ以上の薬理学的表現型を提供することであって、当該医療提供者が当該1つ以上の薬理学的表現型に従って当該第2の患者に治療コースを推奨することと、をさらに含む。
【0014】
別の実施形態では、統計モデリングおよび機械学習技術を使用して薬理学的表現型を特定するためのコンピューティングデバイスが提供される。上記コンピューティングデバイスは、通信網、1つ以上のプロセッサ、ならびに当該1つ以上のプロセッサに結合された非一時的コンピュータ可読メモリおよびその格納命令を含む。上記1つ以上のプロセッサによって実行される場合、上記命令は上記システムに、複数の第1の患者の各々についての当該第1の患者の生物学的特徴を示すパンオミックスデータ、経時的に収集された当該第1の患者の経験の存在を示すソシオミックス(sociomic)データおよび環境データ、ならびに、1つ以上の薬物に対する応答、当該第1の患者が薬物有害反応または物質乱用を経験しているかどうか、または当該第1の患者の1つ以上の慢性疾患のうちの少なくとも1つを示す表現型データを含む訓練データセットを取得させる。上記命令は、上記システムにさらに、訓練データセットに基づいて薬理学的表現型を判定するための統計モデルを生成させること、一定期間にわたって収集された第2の患者のパンオミックスデータならびにソシオミックスデータおよび環境データのセットを受信させること、当該統計モデルに第2の患者の当該パンオミックスデータならびに当該ソシオミックスデータおよび環境データを適用して当該第2の患者の1つ以上の薬理学的表現型を判定させること、医療提供者に表示するための当該第2の患者の1つ以上の薬理学的表現型を通信網を介して提供させることを行わせ、ここで、当該医療提供者は当該1つ以上の薬理学的表現型に従って当該第2の患者に治療コースを推奨する。
【図面の簡単な説明】
【0015】
図1A】は、例示的な薬理学的表現型予測システムが本明細書中に記載される実施形態に従って動作することができるコンピュータネットワークおよびシステムのブロック図を示す。
図1B】は、本明細書中に記載される実施形態に従って図1Aのシステムにおいて動作することができる例示的な薬理学的表現型評価サーバのブロック図である。
図1C】は、本明細書中に記載される実施形態に従って図1Aのシステムにおいて動作することができる例示的なクライアントデバイスのブロック図である。
図2】は、本明細書中に記載される実施形態による薬理学的表現型予測システムに提供され得る例示的なパンオミックスデータ、社会学データ、および環境データを示す。
図3】は、本明細書中に記載される実施形態による薬理学的表現型予測システムによって実行されるプロセスの詳細図を示す。
図4A】は、本明細書中に記載される実施形態による特定の薬理学的表現型に関連する許容候補バリアントのバイオインフォマティクス解析の例示的描写およびヒトゲノムにおける転写の例示的な空間的階層を示す模式図を表す。
図4B】は、本明細書中に記載される実施形態に従って機械学習技術を使用して特定の薬理学的表現型に対応するパンオミックスデータを特定するための例示的な方法を示すブロック図である。
図4C】は、本明細書中に記載される実施形態による、患者の例示的な遺伝子調節ネットワークを示す。
図4D】は、本明細書中に記載される実施形態による、機械学習技術を使用して特定の薬理学的表現型に対応するパンオミックスデータを特定するための別の例示的な方法を示すブロック図である。
図4E】は、ワルファリンに対する表現型に対応するパンオミックスデータを特定する場合に、図4Dに記載されている方法の各段階で特定される一塩基多型(SNP)を示すブロック図である。
図4F】は、本明細書中に記載される実施形態による例示的なワルファリン応答経路を示す。
図4G】は、本明細書中に記載される実施形態による例示的なリチウム応答経路を示す。
図5】は、患者の生体試料からパンオミックスデータを生成するための例示的プロセスを示すブロック図である。
図6】は、本明細書中に記載される実施形態による薬理学的表現型予測システムによって判定される患者の薬理学的表現型と共に、経時的に収集される例示的なパンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを含む、患者の例示的なタイムラインを示す。
図7】は、本明細書中に記載される実施形態による、機械学習技術を使用して薬理学的表現型を特定するための例示的な方法を示すフローチャートを示す。
【発明を実施するための形態】
【0016】
以下の文章は多数の異なる実施形態の詳細な説明を記載しているが、本明細書の法的範囲は本開示の最後に記載される特許請求の範囲の文言によって定義されると理解すべきである。詳細な説明は、単に例示的なものとして解釈されるべきであり、全ての可能な実施形態を説明することは、不可能ではないとしても非現実的であるため、全ての可能な実施形態を説明するものではない。多くの代替的な実施形態が、現在の技術または本特許の出願日後に開発された技術のいずれかを使用して実施され得るが、これらは、依然として特許請求の範囲内に収まるであろう。
【0017】
用語が、「本明細書に使用される、「______」という用語は、本明細書では...を意味するように定義される」という文または同様の文を使用して本特許内で明白に定義されない限り、明示的または暗示的のいずれかにおいて、その明白または通常の意味を越えて、その用語の意味を限定する意図は存在せず、かかる用語が本特許のいずれの節(特許請求の範囲の言葉以外)でなされたいずれの記述に基づいた範囲内に限定されるように解釈されるべきではないこともまた理解されるべきである。本特許の最後の特許請求の範囲内に記載された任意の用語が単一の意味と矛盾しない様式で本特許内で言及される場合、それは、読み手を混乱させないために単に明瞭化のためになされており、このような特許請求の範囲の用語が、暗示またはその他の方法によって、その単一の意味に限定されることを意図するものではない。最後に、特許請求の範囲の要素が、任意の構成の詳説なしに、「手段(means)」という語および機能を列記することによって定義されていない限り、いかなる特許請求の範囲の要素の範囲も、合衆国法典第35巻第112条第6項の適用に基づいて解釈されることを意図しない。
【0018】
したがって、本明細書で使用する場合、「医療提供者」という用語は、医療または保健サービスの任意の提供者を指し得る。例えば、医療提供者は、医師、臨床医、正看護婦、医療助手、保険業者、薬剤師、病院、臨床施設、薬剤技師、製薬会社、研究者、他の医療組織、または患者などに医療品および薬剤を処方することを許可された医療専門家であり得る。
【0019】
本明細書で使用する場合、「患者」という用語は、任意のヒトもしくは他の生物、またはこれらの組み合わせを指し得、それらの健康、寿命、または他の医学的成果が、臨床的もしくは研究的関心、調査、または試みの目的である。
【0020】
さらに、本明細書で使用する場合、「パンオミックス」という用語は、細胞内での生物学的機能の相互作用および人体内での他の機能の相互作用に関連した様々な分子生物学技術を指し得る。例えば、パンオミックスは、ゲノミクス、エピゲノミクス、クロマチン状態、トランスクリプトミクス、プロテオミクス、メタボロミクス、生物学的なネットワークおよびシステムのモデルなどを含み得る。パンオミックスデータは、様々な時点ならびに特定の組織および細胞系譜に特異的であってもよく、そのため、パンオミックスデータコレクションは、これらの特徴に関連しており、また患者の関心対象の表現型に関連する複数の組織、系譜および時点について収集および使用されてもよい。患者のパンオミックスは、例えば、薬物に対する薬理学的応答、疾患リスク、併存症、物質乱用問題などの複数の表現型のバイオマーカーに関係があってもよい。パンオミックスデータは、特定の一連の医学的判断を目的に個々の時点で生成および収集されてもよく、また個々の患者について過去の時点で以前に収集されたパンオミックスデータの記録全体から収集されてもよい。
【0021】
本明細書で使用する場合、「薬理学的表現型」という用語は、ヒトおよび他の生物の臨床ケア、臨床ケアの管理および財政、ならびに薬学的研究および他の医学的研究ならびに生物医学的研究の文脈における、治療、患者の寿命および転帰、生活の質などに関係し得る任意の認識可能な表現型を指し得る。かかる表現型としては、薬物(ADME)の吸収、分布、代謝および排泄の速度および特性の全ての表現型を含む薬物動態学的(PK)および薬力学的表現型(PD)、ならびに有効性に関連した薬物に対する応答、薬物の治療的投与量、半減期、血漿レベル、クリアランス率など、ならびに薬物有害事象、薬物有害応答、および薬物有害事象または薬物有害応答の対応する重症度、臓器損傷、物質乱用、ならびに依存症およびその可能性、ならびに体重およびその変化、気分および行動の変化および障害が挙げられる。かかる表現型は、薬物の組み合わせに対する有益および有害な反応、薬物の遺伝子、社会学的および環境的因子、食事因子などとの相互作用をも含み得る。かかる表現型は、薬理学的または非薬理学的治療計画へのアドヒアランスをも含み得る。かかる表現型は、患者が疾患の特定の症状および寿命、臨床スコアおよびパラメータ、検査結果、医療費および他の表現型のような患者の転帰を経験するかどうかにかかわらない、特定の疾患または併存疾患、疾患の転帰および予後になる患者の傾向などの医学的な表現型をも含み得る。
【0022】
さらに、本明細書で使用する場合、「ファーマコフェノミクス」という用語は、機械学習により可能となる、層化した患者コホートおよび集団のデータセットと照合した遺伝子データ、エピジェネティクスデータ、パンオミックスデータ、ファーマコメタボロミクスデータ、ソシオミックスデータ、電子健康記録(EHR)データおよび他の患者データを統合することに基づく個々の患者の薬理学的表現型を指し得る。
【0023】
本明細書で使用する場合、「正確な患者表現型」は、変化する患者の表現型データを組み込むために定期的に更新され得る、的確かつ正確な臨床判断患者の治療プロファイルを提供するためのファーマコフェノミクスデータの統合的解析を指し得る。
【0024】
本明細書で使用する場合、「表現型遷移」という用語は、疾患進行、社会学的および環境的因子、ならびに/または最初の、継続中の、または変更された薬理学的および非薬理学的治療の結果(基本的には患者の臨床的進行の縦断的な記録)の関数としての、経時的に繰り返されるか、または間欠的な臨床患者表現型の断続的な変化を指し得る。
【0025】
さらに、本明細書で使用する場合、「疾患素因」という用語は、直接的な遺伝に伴うか、または継世代エピジェネティクス修飾による危険因子を指し得る。
【0026】
本明細書で使用する場合、「ソシオミックス的危険因子」は、自己または他人に有害な行動に関連する社会学的および文化的な臨床危険因子;有害な文化的環境、経済状況および共同体の生活状況;小児期および/または青年期のネグレクトおよび虐待(逆境的小児期体験(ACE)と称される);性的、物理的および心理的虐待に関連する成人期の心的外傷;他の急性または慢性の外傷的事象(例えば、軍事紛争、犯罪、衝突、疾病、家族の死);有害な条件に起因するストレスの増加または慢性ストレス;年齢に関連する健康、孤立または認知的状況を指し得る。
【0027】
本明細書で使用する場合、「疾患診断」は、治療法の決定を導く、可能性の高い診断または確定診断を指し得る。本明細書で使用する場合、「治療選択」は、患者の症状を軽減、中和または改善するための薬理学的および/または非薬理学的治療法(複数可)を指し得る。
【0028】
また本明細書で使用する場合、「最初の治療応答」という用語は、最初の数週間から数ヶ月以内の薬理学的治療に起因する安定した状態、応答の欠如、臨床応答の改善または有害事象(AE)を指し得、投与量の調整または補助的薬物を伴い得る。期間は、一般に6ヵ月以内、最長1年である。
【0029】
本明細書で使用する場合、「断続的な応答」という用語は、生体試料、例えば、しかしこれらに限定されないが、血液、尿、汗(例えば、コルチゾール)、匂いにより、または遠隔検査、送信機または他の能動的または受動的データ収集方法により測定される、薬理学的有害反応、薬物-薬物相互作用、薬物投与の変更、新たな併存症または再発性の併存症、心的外傷、ストレス、および他のソシオミックス的因子に起因する、治療に対する患者の応答の断続的な変化を指し得る。
【0030】
本明細書で使用する場合、「環境」という用語は、ヒトまたは他の動物もしくは生物の外部にあるか、または当該ヒトまたは他の生物の外部から生じ、1つ以上の個々の時点で、または一定期間にわたって現在または過去(当該ヒトまたは他の生物の前の生物学的世代を含む)に生じ、当該ヒトまたは他の生物の物理的、生物学的、化学的、生理学的、医学的、心理学的、または精神医学的特性に測定可能な、識別可能な、または他の顕著な様式で影響を及ぼすかまたは改変し得る、任意の物体、物質、放射物、条件、経験、コミュニケーションまたは情報を指す。かかる条件としては、上記ヒトまたは他の生物が曝される食物、栄養補助物質、ミネラル、水および他の液体、衣類、公衆衛生および他の物品、ならびにサービスの種類、量、質、存在/非存在、タイミングまたは他の特徴、ならびに現在または過去における、皮膚経由か、または摂取、吸入、挿管、仮定もしくは、他の手段によってかを問わない、化学物質、大気中の物質および生物体への曝露が含まれ得る。かかる条件としては、温度、騒音、光、電磁放射線および/または粒子放射線、振動、機械的衝撃または機械的圧力、薬物、ならびに医療処置および移植片が含まれ得る。かかる条件としては、職業上の特性、職務およびレクリエーション用物質をも含み得る。かかる条件は、毒素、毒物、微生物、ウイルスおよび他の作用物質への曝露、ならびに物理的衝撃、裂傷、挫傷、穿刺および振盪などの医学的に有害な事象をも含み得る。
【0031】
かかる条件としては、逆境的小児期体験(ACE)、ならびにストレス、心的外傷、虐待、貧困および他の経済状況、食糧不安および飢餓、監禁、対人間葛藤、暴力および他の経験などの社会的因子をも含み得る。かかる条件としては、両親、子供、兄弟、および他の家族ならびに知人の有無(かかる関係の種類、質および期間を含む)をも含み得る。かかる条件としては、教育、ならびに専門的経験および技能、礼拝および宗教教育、ならびに社会的会合および相互作用をも含み得る。かかる条件としては、ソシオミックス的危険因子、ならびにタトゥー、インプラント、ピアス穴あけおよび苦行を含む身体改造をも含み得る。
【0032】
本明細書で使用する場合、「同時性の薬理ゲノミクス的物質曝露」という用語は、一方向の、同時性の、薬物動態学的または薬力学的な薬物-環境相互作用である環境要素のサブタイプを指し得る。かかる相互作用は、例えば、解析時点での新たな、または継続中の曝露について、環境要因が、個別に薬物の代謝に関連する特定の酵素の活性を≧20%誘発するかまたは阻害するか、または薬物の作用を≧20%変化させることを示す文書化された相互作用が存在する場合、臨床的に有意であるとみなされ得る。かかる相互作用は、食物からハーブ/ビタミンサプリメント、意図的および非意図的な有毒性の曝露の範囲に及ぶ曝露形態を含み得る。かかる相互作用の可能性は、数値スケールで評価され得る。
【0033】
簡単のために、この説明の全体を通して、統計モデルを生成するための訓練データとして使用されるデータを有する患者は、本明細書において「訓練患者」と称され得、薬理学的表現型を予測するために統計モデルに適用されるデータを有する患者は、本明細書において「現行患者」と称され得る。しかしながら、これは単に説明を簡単にするためである。「現行患者」からのデータは、訓練データに追加され得、訓練データは、統計モデルを最新に保つために、継続的または定期的に更新され得る。さらに、訓練患者は、薬理学的表現型を予測するための統計モデルに適用されるデータをも有し得る。
【0034】
さらに、この説明の全体を通して、現行患者は、それらがある種の薬理学的表現型を有するかどうか不明の場合、患者と記載され得、訓練患者は、薬理学的表現型が既知である場合、患者と記載され得る。より具体的には、現行患者の薬理学的表現型は、未知であり、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データと訓練患者の以前または現在判定された薬理学的表現型との関係を使用して予測される。したがって、訓練患者は、既知の以前または現在判定された薬理学的表現型を有する。現行患者は、未知の薬理学的表現型を有する。しかしながら、いくつかの実施形態では、訓練患者は、薬理学的表現型予測システムを訓練するために使用されるいくつかの既知の薬理学的表現型を有すると共に、他の未知の薬理学的表現型を有し得る。さらに、現行患者は、薬理学的表現型予測システムによって予測される未知の薬理学的表現型を有すると共に、いくつかの既知の以前または現在判定された薬理学的表現型を有し得る。
【0035】
一般的に述べると、パンオミックス的、ソシオミックス的、フィジオミクス的、および環境的特徴に基づいて薬理学的表現型を特定するための技術は、1つまたはいくつかのクライアントデバイス、1つまたはいくつかのネットワークサーバ、またはこれらのデバイスの組み合わせを含むシステムで実施され得る。しかしながら、明確にするため、下記の例は、薬理学的表現型評価サーバが訓練データセットを取得する実施形態に主に重点を置く。いくつかの実施形態では、訓練データは、クライアントデバイスから取得され得る。例えば、医療提供者は、(例えば、唾液、口腔粘膜検体、汗、皮膚試料、生検材料、血液試料、尿、便、汗、リンパ液、骨髄、毛髪、匂いなどから)患者のパンオミックスを評価するための生体試料を取得して、生体試料を解析することによって取得された検査結果を薬理学的表現型評価サーバに提供し得る。
【0036】
患者の生体試料からパンオミックスデータを生成するための例示的なプロセス500を、図5に示す。上記プロセスは、分析検査室または他の好適な組織により実行され得る。ブロック502において、患者の生体試料は、保健医療提供者によって取得され、分析のために分析検査室に送られる。生体試料は、患者の唾液、汗、皮膚、血液、尿、便、汗、リンパ液、骨髄、毛髪、頬細胞、匂いなどを含み得る。次いで、細胞は、ブロック504において生体試料から抽出され、ブロック506において人工多能性幹細胞(iPSC)などの幹細胞に初期化される。次いで、iPSCは、ブロック508において種々の組織(例えば神経細胞、心筋細胞など)に分化され、ブロック510においてパンオミックスデータを取得するために分析される。パンオミックスデータは、ゲノムデータ、エピゲノムデータ、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータ、メタボロミクスデータおよび/または生物学的ネットワークを含み得る。図4A~4Cに関して以下に詳細に説明するように、SNP、遺伝子およびゲノム領域は、特定の薬理学的表現型に関連して特定され得る。患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが特定の薬理学的表現型または薬理学的表現型のセット(例えば、バルプロ酸に対する応答を示す薬理学的表現型)に関して解析される場合、iPSCは、薬理学的表現型の特定のセットに関連した特定されたSNP、遺伝子およびゲノム領域について解析され得る。さらに一般的にいえば、どのパンオミックスデータを分析するかの選択は、患者の検査にて薬理学的表現型のセットに関連するとして特定されたパンオミックスデータに基づき得る。
【0037】
より具体的には、細胞は、転写因子または「初期化因子」の導入によってiPSCに、または他の作用物質の導入によって所与の細胞種に初期化される。例えば、転写因子のOct4、Sox2、cMycおよびKlf4を含む山中因子は、細胞をiPSCに初期化するために使用され得る。次いで、iPSCは、種々の組織、例えば、神経細胞、脂肪細胞、心筋細胞、膵β細胞などに分化され得る。iPSCが分化した後、分化したiPSCは、例えば、DNAメチル化解析、DNaseフットプリントアッセイ、フィルター結合アッセイなどのエピゲノム情報を特定するための様々なアッセイ法を使用して分析され得る。実質的に、薬理学的表現型予測システムは仮想生検を実行し、分化したiPSCは少なくともある程度それらの対応する組織の表現型およびエピゲノム特性を呈する。
【0038】
上記の実施形態では、細胞は、患者の生体試料から抽出され、幹細胞に初期化され、種々の組織に分化され、パンオミックスデータを取得するために分析される(分化した初期化細胞のアッセイ)。代替的に、いくつかの実施形態では、患者の生体試料は、細胞を抽出せずに分析される(無細胞アッセイ)。他の実施形態では、細胞は、患者の生体試料から抽出され、初期化または分化されずに分析される(初代細胞のアッセイ)。更なる他の実施形態では、細胞は、iPSCに初期化され、分化されずに分析される(初期化された幹細胞のアッセイ)。例えば、iPSCは、幹細胞オミクスを取得するために分化されずに分析され得る。これらは単に患者の生体試料からパンオミックスデータを生成するためのいくつかの例示的なプロセスであるが、アッセイはそのプロセス内の任意の適切な段階で実行され得、パンオミックスデータは任意の適切な方法で生成され得る。
【0039】
また医療提供者は、生命徴候、睡眠周期、概日リズムなどを含む生理学的尺度を取得してもよい。さらに、医療提供者は、例えば、酢酸、乳酸などの代謝の産物である代謝産物および薬物のファーマコメタボローム代謝産物を含むファーマコメタボロームに関連したデータを取得してもよい。例えば、代謝産物は、検査室で患者の生体試料に対して実行されるスペクトロメトリまたはスペクトロスコピーによって特定されてもよく、結果は、患者の代謝プロファイルとして医療提供者に提供され得る。次いで、代謝プロファイルは、代謝疾患サインを特定し、薬物応答を変化させ得る化合物を特定し、代謝産物の変化物を特定し、当該代謝産物の変化物を既知の代謝および生物学的経路などに位置づけるために使用され得る。
【0040】
いくつかの実施形態では、薬理学的表現型予測システムは、複数の薬物および薬物代謝産物の存在または不存在および/または定量的レベルの系統的評価を含むファーマコメタボロミクスデータを利用し得る。かかる情報は、全血、クエン酸塩添加血、血液スポット、他の組織および液体などから収集され得る。薬理学的表現型予測システムは、EHRシステムまたは他のデータベース、および/または現在の治療または薬理学的表現型予測について問合せされたデータ内に先在するファーマコメタボロミクスデータの1つ以上の例を利用し得る。データは、処方されている薬物、処方されていない薬物、一般用医薬品、違法薬物などのいずれについても収集され得る。薬物および代謝産物の濃度は、質量分析、ならびに他の方式のスペクトロスコピーおよびスペクトロメトリ、ならびに/または核磁気共鳴、抗体および親和性試験などを含む技術により測定され得る。実施形態において、かかる情報は、薬物乱用または適応外使用を検出するため、処方されている薬物のコンプライアンスを評価するため、患者によって使用されたかまたは他の診療所で処方された、他の処方された薬物または他の一般用医薬品を検出するため、患者の代謝ステータスおよび他の目的などを測定するため、および処方、中断、および薬物の代用、ならびに投与量および投与計画の変更、投与様式、モニタリング、検査、診断、専門医の照会、追加の診断、他の治療などを含む治療勧告をするために使用され得る。
【0041】
他の実施形態では、生理学的尺度は、患者のクライアントコンピューティングデバイス、フィットネストラッカー、または定量化された自己報告/受動的報告方法により取得され得る。他の例では、医療提供者は、患者の人口統計、病歴、社会経済状況、法的処罰歴、睡眠周期、概日リズムなどに関する質問を含む患者調査を取得してもよく、患者調査の結果を薬理学的表現型評価サーバに提供してもよい。訓練データを、EMRサーバにある電子医療記録(EMR)から、および/またはいくつかの薬局から患者の薬局データを集める多薬療法サーバにある多薬療法データから取得され得る。いくつかの実施形態では、訓練データを、いくつかのサーバ(例えば、EMRサーバ、多薬療法サーバなど)、ならびに医療提供者および患者のクライアントデバイスを含む供給源の組み合わせから取得してもよい。例えば、特定の患者の訓練データを、患者の個人歴データ(例えば、患者の職業、居住地など)を、例えば、ヒトエクスポソームプロジェクトにおけるようなこれらの特徴に関する幅広い縦断的データと相互参照することによって取得してもよい。
【0042】
訓練患者のパンオミックスデータを含む訓練データを、それらの薬理学的表現型が既知の場合に、薬理学的表現型評価サーバに提供することに加えて、薬理学的表現型評価サーバは、薬理学的表現型評価サーバを訓練するために使用され得る、ベースラインオミクスレベル、オミクス分布に関するコンソーシアムオミクスデータ、または任意の他の好適なパンオミックスデータに関連する訓練データも取得する。
【0043】
いかなる場合も、訓練データのサブセットは、訓練データのサブセットが対応する訓練患者に関連してもよい。さらに、薬理学的表現型評価サーバは、例えば、人口統計に基づいて訓練患者および対応する訓練データのサブセットをコホートに割り当て得る。次いで、薬理学的表現型評価サーバは、患者の薬理学的表現型を予測するための統計モデルを生成するために訓練データを使用して訓練され得る。様々な機械学習技術を、薬理学的表現型評価サーバを訓練するために使用してもよい。
【0044】
薬理学的表現型評価サーバが訓練された後、現行患者について、彼の/彼女の薬理学的表現型が未知の場合、いくつかの時点で収集され得るパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが受信され得る。いくつかの実施形態では、薬理学的表現型評価サーバは、各疾病を治療するための最適な薬物を特定するために現行患者が罹患していている疾病または障害の指標を取得し得る。これは、ストレス関連障害、例えば、心的外傷後ストレス障害(PTSD)、うつ病、自殺傾向、概日リズム調節障害、物質乱用障害、恐怖症、ストレス潰瘍、急性ストレス障害、Oxford Handbook of Psychiatryに含まれるストレス関連障害などを含み得る。現行患者が罹患している疾病または障害は、双極性障害、統合失調症、自閉症スペクトラム障害および注意欠陥多動性障害(ADHD)をも含み得る。さらに、これは、全般性不安障害および不安うつ病、ならびに非精神病の併存疾患、例えば、過敏性腸症候群(IBS)、炎症性腸疾患(IBD)、クローン病、胃炎、胃十二指腸潰瘍および胃食道逆流症(GERD)を含み得る。さらに、現行患者が罹患している疾病または障害は、心臓病学的疾患、線維筋痛、慢性疲労症候群などを含み得る。これらの疾病または障害についての薬理学的表現型は、それぞれの疾病または障害を治療するために使用される現在および将来の薬物および/または他の方法のいずれかに関連するものを含み得る。
【0045】
次いで、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは、患者の1つまたはいくつかの薬理学的表現型を予測するために、例えば、様々な機械学習技術を使用して解析され得る。薬理学的表現型の指標は、医療提供者が薬理学的表現型に従って適切な治療コースを再検討および決定するために医療提供者のクライアントデバイスに送信され得る。薬理学的表現型は、臨床の場において、ならびに医薬品開発および保険適用のための調査の場において、予測され得る。研究の場では、治験薬に関連する薬理学的表現型は、研究プログラムにおいて候補患者コホートについて予測され得る。患者は、治験薬に関連するそれらの予測された薬理学的表現型に従って、実験的治療のために選択され得る。
【0046】
図1Aに関して、例示的な薬理学的表現型予測システム100は、様々な機械学習技術を使用して、患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データにより、患者の薬理学的表現型(正確な患者表現型)を予測する。薬理学的表現型予測システム100は、訓練データに含まれるパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データと薬理学的表現型との間の関係を特定するために解析され得る、訓練患者のコホートの訓練データを取得し得る。次いで、薬理学的表現型予測システム100は、解析に基づいて薬理学的表現型を予測するための統計モデルを生成し得る。患者の薬理学的表現型が未知の場合(例えば、当該患者は双極性障害のためのリチウムをまだ処方されておらず、したがって、リチウムに対する当該患者の応答は未知である)、薬理学的表現型予測システム100は、当該患者についてパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを取得し、当該パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを統計モデルに適用して当該患者の薬理学的表現型を予測し得る。例えば、薬理学的表現型予測システム100は、患者が特定の薬物に対する有害反応を有する可能性を予測し得、薬物などの有効性または適切な投与量を予測し得る。薬理学的表現型予測システム100は、臨床の場において診療判断支援(CDSS)を実行して患者について正確な患者表現型を予測し得る。さらに、薬理学的表現型予測システム100は薬学的研究を実行して、開発中のまたは認可された薬物に対する応答が良好または不良な患者、および副作用がより少ないかまたはない患者を特定するためのコンパニオン診断検査を開発し得る。さらに、薬理学的表現型予測システム100は、実験的治療に関連して、臨床研究場面において研究者が現行患者に処方する治験薬および/または投与量を推奨するために使用され得る。
【0047】
薬理学的表現型予測システム100は、下記で述べるように、ネットワーク130経由で通信可能に接続され得る薬理学的表現型評価サーバ102および複数のクライアントデバイス106~116を含む。一実施形態では、薬理学的表現型評価サーバ102およびクライアントデバイス106~116は、WiFiネットワーク、ブルートゥースネットワーク、3G、4G、ロングタームエボリューション(LTE)、5Gなどのセルラーネットワーク、インターネットなどを含む任意の好適なローカルまたはワイドエリアネットワーク(複数可)であり得る通信網130を介して無線信号120により通信し得る。一部の例では、クライアントデバイス106~116は、無線ルータ、無線リピータ、携帯電話通信プロバイダーのベーストランシーバ基地局などであり得る中間無線または有線デバイス118を介して、通信網130と通信し得る。一例として、クライアントデバイス106~116は、タブレット型コンピュータ106、スマートウォッチ107、ネットワーク対応携帯電話108、Google Glass(商標)またはFitbit(登録商標)109などのウェアラブルコンピューティングデバイス、パーソナル携帯情報機器(PDA)110、本明細書において「モバイルデバイス」とも称されるモバイルデバイススマートフォン112、ラップトップコンピュータ114、デスクトップコンピュータ116、ウェアラブルバイオセンサー、携帯メディアプレーヤ(図示せず)、ファブレット、有線または無線のRF(無線周波数)通信のために構成された任意のデバイスなどを含み得る。さらに、患者のパンオミックスデータ、臨床データ、人口統計学的データ、多薬療法データ、ソシオミックスデータ、フィジオミクスデータまたは他の環境データを記録する任意の他の好適なクライアントデバイスが、薬理学的表現型評価サーバ102と通信してもよい。
【0048】
いくつかの実施形態では、患者は、例えば、患者の人口統計、病歴、社会経済状況、法的処罰歴、睡眠周期、概日リズムなどに関する質問を含む患者調査に対する回答などのデータをデスクトップコンピュータ116に入力してもよい。他の実施形態では、医療提供者がデータを入力してもよい。
【0049】
クライアントデバイス106~116の各々は、患者のパンオミックスデータ、臨床データ、人口統計学的データ、多薬療法データ、ソシオミックスデータ、フィジオミクスデータまたは他の環境データを送信するために薬理学的表現型評価サーバ102と対話し得る。いくつかの実施形態では、ソシオミックスデータ、フィジオミクスデータ、および環境データは、経時的な患者の社会学的状況および環境の変化(例えば、失業者から就業者、独身から既婚者など)を特定するために定期的(例えば、毎月、3カ月ごと、6カ月ごとなど)に収集され得る。またいくつかの実施形態では、患者のソシオミックスデータ、フィジオミクスデータ、および環境データのうちの少なくとも一部は、医療提供者のクライアントデバイス106~116により医療提供者によって記録されてもよく、患者のクライアントデバイス106~116を介した自己報告でもよい。
【0050】
クライアントデバイス106~116の各々は、現行患者について予測された薬理学的表現型の1つまたはいくつかの指標を受信するために薬理学的表現型評価サーバ102と対話し得る。指標は、現行患者に処方する現行患者が最も高い予測された応答(例えば、有効性と、最小限の薬物有害反応および当該反応の重症度との最も優れた組み合わせ)を有する薬物の推奨を含み得る。指標は、現行患者の様々な疾病のリスク例えば、疾病に罹患する確率、分類別リスク(例えば、低リスク、中リスク、または高リスク)などをも含み得る。さらに、指標は、数値的可能性または分類別可能性(例えば、低可能性、中程度の可能性、高可能性)などの物質乱用の可能性の指標を含み得る。
【0051】
例示的な実施態様では、薬理学的表現型評価サーバ102は、クラウドベースサーバ、アプリケーションサーバ、ウェブサーバなどであってもよく、メモリ150、メモリ150と結合されたマイクロプロセッサなどの1つ以上のプロセッサ(CPU)142、ネットワークインターフェースユニット144、および、例えば、キーボードまたはタッチスクリーンであり得る入出力モジュール148を含む。
【0052】
薬理学的表現型評価サーバ102は、コンソーシアム-オミクス/環境的/フィジオミクス/人口統計/薬局情報データベース154に、通信可能に接続され得る。コンソーシアム-オミクス/環境的/フィジオミクス/人口統計/薬局情報データベース154は、訓練患者のパンオミックスデータ、全ゲノムベースの民族データ、臨床データ、人口統計学的データ、多薬療法データ、ソシオミックスデータ、フィジオミクスデータまたは他の環境データを含む訓練データ、および薬理学的表現型を判定するための統計モデルを格納し得る。コンソーシアム-オミクス/環境/フィジオミクス/人口統計/薬局情報データベース154は、コンソーシアムおよび学術的なオミクスデータベース、ならびに(例えば)RxNorm、FDAのブラックボックスラベルなどの薬物-薬物相互作用、薬物-遺伝子相互作用などを含む薬局データベースをも含み得る。いくつかの実施形態では、薬理学的表現型評価サーバ102は、薬理学的表現型を判定するために、コンソーシアム-オミクス/環境/フィジオミクス/人口統計/薬局情報データベース154から各訓練患者について患者情報を検索し得る。
【0053】
メモリ150は、有形の不揮発性メモリであってもよく、ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、フラッシュメモリ、他のタイプの持続性メモリなどを含む任意の種類の好適なメモリモジュールを含んでもよい。例えば、メモリ150は、例えば、最新のスマートフォンオペレーティングシステムなどの任意の種類の好適なオペレーティングシステムであり得るオペレーティングシステム(OS)152用のプロセッサ142により実行可能な命令を格納し得る。例えば、メモリ150は、訓練モジュール160および表現型評価モジュール162を含み得る機械学習エンジン146用のプロセッサ142上で実行可能な命令を格納し得る。薬理学的表現型評価サーバ102は、図1Bを参照して以下でより詳細に記載される。いくつかの実施形態では、機械学習エンジン146は、クライアントデバイス106~116、薬理学的表現型評価サーバ102、または薬理学的表現型評価サーバ102およびクライアントデバイス106~116の組み合わせのうちの1つ以上の一部であってもよい。
【0054】
いかなる場合も、機械学習エンジン146は、クライアントデバイス106~116から電子データを受信し得る。例えば、機械学習エンジン146は、パンオミックスデータ、臨床データ、人口統計学的データ、多薬療法データ、ソシオミックスデータ、フィジオミクスデータまたは他の環境データなどを受信することによって訓練データセットを取得し得る。さらに、機械学習エンジン146は、例えば、訓練患者が罹患している慢性疾患、以前に訓練患者に処方された薬物に対する応答、訓練患者の各々が物質乱用問題に苦しんでいるかどうかなどの訓練患者の薬理学的表現型に関連した表現型データを受信することによって訓練データセットを取得し得る。
【0055】
結果として、訓練モジュール160は、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを特定の薬理学的表現型、例えば、物質乱用、慢性疾患の特定の種類、特定の薬物に対する薬物有害反応、特定の薬物の有効性レベルなどに分類し得る。次いで、訓練モジュール160は、分類されたパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを解析して、各薬理学的表現型の統計モデルを生成し得る。例えば、第1の統計モデルは、現行患者が物質乱用問題を経験する可能性を判定するために生成され得、第2の統計モデルは、1種類の疾病に罹患するリスクを判定するために生成され得、第3の統計モデルは、別の種類の疾病に罹患するリスクを判定するために生成され得、第4の統計モデルは、特定の薬物に対する陰性応答の可能性を判定するために生成され得る、などである。いくつかの実施形態では、各統計モデルは、各薬理学的表現型を予測するための総合的統計モデルを生成するために任意の好適な方法で組み合わされ得る。いかなる場合も、訓練データセットは、回帰アルゴリズム(例えば、最小2乗回帰、直線回帰、ロジスティック回帰、段階的回帰、多変量適応型回帰スプライン、局所推定散布図平滑化など)、インスタンスベースアルゴリズム(例えば、k近傍法、学習ベクトル量子化、自己組織化マップ、局所重み付き学習など)、正則化アルゴリズム(例えば、リッジ回帰、最小絶対収縮と選択演算子、弾性ネット、最小角回帰など)、決定木アルゴリズム(例えば、分類木と回帰木、ID3(iterative dichotomizer)、C4.5、C5、カイ二乗自動相互作用検出、決定株、M5、条件付き決定木など)、クラスタリングアルゴリズム(例えば、k-平均法、k-中央値法、期待値最大化、階層的クラスタリング、スペクトルクラスタリング、ミーンシフト、DBSCAN(density-based spatial clustering of applications with noise)、OPTICS(ordering points to identify the clustering structure)など)、相関ルール学習アルゴリズム(例えば、アプリオリアルゴリズム、Eclatアルゴリズムなど)、ベイズのアルゴリズム(例えば、ナイーブベイズ、ガウシアンナイーブベイズ、多項式ナイーブベイズ、AODE(averaged one-dependence estimators)、ベイズ信頼ネットワーク、ベイズネットワークなど)、人工ニューラルネットワーク(例えば、パーセプトロン、ホップフィールドネットワーク、放射基底関数ネットワークなど)、深層学習アルゴリズム(例えば、多層パーセプトロン、深層ボルツマンマシン、ディープビリーフネットワーク、畳み込みニューラルネットワーク、積層オートエンコーダ、敵対的生成ネットワークなど)、次元削減アルゴリズム(例えば、主成分分析、主成分回帰、部分的最小二乗回帰、サモンマッピング、多次元的尺度構成法、射影追跡、線形判別分析、混合判別分析、二次判別分析、フレキシブル判別分析、因子分析、独立成分分析、非負値行列因子分解、t分布型確率的近傍埋め込み法など)、アンサンブルアルゴリズム(例えば、ブースティング、ブートストラップアグリゲーティング、アダブースト、スタック汎化、勾配ブースティングマシン、勾配ブースティング回帰木、ランダム決定フォレストなど)、強化学習(例えば、時間差学習、Q学習、学習オートマタ、SARSA(State-Action-Reward-State-Action)など)、サポートベクトルマシン、混合モデル、進化アルゴリズム、確率的グラフィカルモデルなどを含むがこれらに限定されない様々な機械学習技術を使用して解析され得る。
【0056】
テスト段階において、訓練モジュール160は、テスト患者のテストパンオミックスデータ、テストソシオミックスデータ、テストフィジオミクスデータおよびテスト環境データを統計モデルと比較してテスト患者が特定の薬理学的表現型を有する可能性を判定し得る。
【0057】
訓練モジュール160が所定の閾値数より頻繁に正確な判定をする場合、統計モデルは表現型評価モジュール162に提供され得る。他方、訓練モジュール160が所定の閾値数より頻繁に正確な判定をしない場合、訓練モジュール160は更なる訓練のために訓練データを取得し続け得る。
【0058】
表現型評価モジュール162は、統計モデル、ならびに一定期間(例えば、1月、3ヵ月、6ヵ月、1年など)にわたって収集され得る現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データのセットを取得し得る。例えば、現行患者の生体試料(例えば、血液試料、唾液、生検材料、骨髄、毛髪など)は、現行患者のゲノムデータ、エピゲノムデータ、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータおよび/またはメタボロミクスデータを取得するために検査室で解析され得る。次いで、パンオミックスデータは、表現型評価モジュール162に提供され得る。さらに、患者の臨床データが、EMRサーバまたは医療提供者のクライアントデバイス106~116から提供され得る。多薬療法データは、多薬療法サーバから、またはいくつかの薬局サーバから提供され得、人口統計学的データ、ソシオミックスデータ、フィジオミクスデータ、および他の環境データは、医療提供者のクライアントデバイス106~116、または現行患者のクライアントデバイス106~116から提供され得る。
【0059】
次いで、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは、訓練モジュール160によって生成される統計モデルに適用され得る。解析に基づいて、表現型評価モジュール162は、例えば、物質乱用の可能性、様々な疾病の可能性、様々な薬物に対する予測された応答の総合的評価などの現行患者がある種の薬理学的表現型を有する可能性、または現行患者がある種の薬理学的表現型を有することを示す他の半定量的および定量的尺度を判定し得る。表現型評価モジュール162は、医療提供者が再検討するために上記可能性をユーザーインターフェースに表示させ得る。各可能性は、確率(例えば、0.6)、百分率(例えば、80パーセント)、カテゴリセット(例えば、「高い」、「中程度」、または「低い」)からのカテゴリ、および/または任意の他の好適な様式として表現され得る。
【0060】
薬理学的表現型評価サーバ102は、ネットワーク130を介してクライアントデバイス106~116と通信し得る。デジタルネットワーク130は、固有ネットワーク、安全な公衆インターネット、仮想専用ネットワーク、および/または、例えば、専用のアクセス回線、普通の電話回線、衛星リンク、これらの組み合わせなどのいくつかの他タイプのネットワークでもよい。デジタルネットワーク130がインターネットを含む場合、データ通信はデジタルネットワーク130を通じてインターネット通信プロトコルにより行われ得る。
【0061】
図1Bを参照すると、薬理学的表現型評価サーバ102は、コントローラ224を含み得る。コントローラ224は、プログラムメモリ226、マイクロコントローラもしくはマイクロプロセッサ(MP)228、ランダムアクセスメモリ(RAM)230、および/または入出力(I/O)回路234を含んでもよく、これらの全ては、アドレス/データバス232を介して相互接続され得る。またいくつかの実施形態では、コントローラ224は、データベース239もしくは他のデータストレージ機構(例えば、1つ以上のハードディスクドライブ、光ストレージドライブ、ソリッドステートストレージデバイスなど)を含み得るか、またはこれらに通信可能に接続され得る。データベース239は、患者情報、訓練データ、リスク解析テンプレート、ウェブページテンプレート、および/またはウェブページ、ならびに、ネットワーク130を通じてユーザと対話するのに必要な他のデータなどのデータを含み得る。データベース239は、図1Aを参照して上記のコンソーシアム-オミクス/環境的/フィジオミクス/人口統計/薬局情報データベース154および/または図3を参照して後述するデータソース325a~d(例えば、生物医学的訓練セット325a、薬理学データベース325b、環境データ325c、および粒度325dでセグメント化したデータ)と同様のデータを含み得る。
【0062】
図1Bは1つのみのマイクロプロセッサ228を表すが、コントローラ224は複数のマイクロプロセッサ228を含み得ることが理解されよう。同様に、コントローラ224のメモリは、複数のRAM230および/または複数のプログラムメモリ226を含み得る。図1Bは、I/O回路234を単一ブロックとして表すが、I/O回路234は多数の異なる種類のI/O回路を含み得る。コントローラ224は、例えば、半導体メモリ、磁気的に読み取り可能なメモリおよび/または光学的に読み取り可能なメモリとしてRAM(複数可)230および/またはプログラムメモリ226を実施し得る。
【0063】
図1Bに示すように、プログラムメモリ226および/またはRAM230は、マイクロプロセッサ228により実行するための様々なアプリケーションを格納し得る。例えば、ユーザーインターフェースアプリケーション236は、ユーザーインターフェースを薬理学的表現型評価サーバ102に提供し得、これにより、ユーザーインターフェースは、例えば、システム管理者が設定をするか、トラブルへの対応をするかまたは、サーバの動作の様々な側面をテストするのを可能にし得る。サーバアプリケーション238は、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データのセットを受信し、現行患者が薬理学的表現型を有することを示す可能性または他の半定量的および定量的尺度を判定し、当該可能性の指標を医療提供者のクライアントデバイス106~116に送信するために動作し得る。サーバアプリケーション238は、単一のモジュール238であってもよく、訓練モジュール160および表現型評価モジュール162などの複数のモジュール238A、238Bであってもよい。
【0064】
サーバアプリケーション238は、2つのモジュール、238Aおよび238Bを含むものとして図1Bに描写されているが、サーバアプリケーション238は、薬理学的表現型評価サーバ102の実施に関連するタスクを達成する任意の数のモジュールを含み得る。さらに、1つのみの薬理学的表現型評価サーバ102が図1Bに描写されているが、複数の薬理学的表現型評価サーバ102が、サーバ負荷を分散する、異なるウェブページを供給するなどのために提供され得ることが理解されよう。これらの複数の薬理学的表現型評価サーバ102は、ウェブサーバ、企業固有サーバ(例えばApple(登録商標)サーバなど)、小売業用ネットワーク上または固有ネットワーク上に配置されているサーバなどを含み得る。
【0065】
次に図1Cを参照すると、ラップトップコンピュータ114(または任意のクライアントデバイス106~116)は、ディスプレイ240、通信ユニット258、ユーザ入力デバイス(図示せず)、および薬理学的表現型評価サーバ102のようにコントローラ242を含み得る。コントローラ224と同様に、コントローラ242がプログラムメモリ246、マイクロコントローラもしくはマイクロプロセッサ(MP)248(ランダムアクセスメモリ(RAM)250)、および/または入出力(I/O)回路254を含み得、これらの全ては、アドレス/データバス252を介して相互接続され得る。プログラムメモリ246は、オペレーティングシステム260、データストレージ262、複数のソフトウェアアプリケーション264、および/または複数のソフトウェアルーチン268を含み得る。オペレーティングシステム260は、例えば、Microsoft Windows(登録商標)、OS X(登録商標)、Linux(登録商標)、Unix(登録商標)などを含み得る。データストレージ262は、患者情報、複数のアプリケーション264のためのアプリケーションデータ、複数のルーチン268のためのルーチンデータ、および/またはデジタルネットワーク130を通じて薬理学的表現型評価サーバ102と対話するのに必要な他のデータなどのデータを含み得る。またいくつかの実施形態では、コントローラ242は、ラップトップコンピュータ114内に存在する他のデータストレージ機構(例えば、1つ以上のハードディスクドライブ、光ストレージドライブ、ソリッドステートストレージデバイスなど)を含む得るか、またはこれらに通信可能に接続され得る。
【0066】
通信ユニット258は、例えば、無線電話ネットワーク(例えば、GSM、CDMA、LTEなど)、WiFiネットワーク(802.11規格)、WiMAXネットワーク、ブルートゥースネットワークなどの任意の好適な無線通信プロトコルネットワークを介して薬理学的表現型評価サーバ102と通信し得る。ユーザ入力デバイス(図示せず)としては、ラップトップコンピュータ114のディスプレイ240に表示される「ソフト」キーボード、有線または無線接続を介して通信する外部ハードウェアキーボード(例えば、Bluetoothキーボード)、外部マウス、音声入力を受信するためのマイクロフォン、または任意の他の好適なユーザ入力デバイスが含まれ得る。コントローラ224に関して述べたように、図1Cは、1つのみのマイクロプロセッサ248を描写するが、コントローラ242は複数のマイクロプロセッサ248を含み得ることを理解されたい。同様に、コントローラ242のメモリは、複数のRAM250および/または複数のプログラムメモリ246を含み得る。図1Cは、I/O回路254を単一のブロックとして描写するが、I/O回路254は多数の異なる種類のI/O回路を含み得る。コントローラ242は、例えば、半導体メモリ、磁気的に読み取り可能なメモリおよび/または光学的に読み取り可能なメモリとしてRAM(複数可)250および/またはプログラムメモリ246を実施し得る。
【0067】
1つ以上のプロセッサ248は、プログラムメモリ246に存在する複数のソフトウェアアプリケーション264のうちの任意の1つ以上および/または複数のソフトウェアルーチン268のうちの任意の1つ以上だけでなく他のソフトウェアアプリケーションを実行するように適合および構成され得る。複数のアプリケーション264のうちの1つは、ラップトップコンピュータ114での情報の受信、ラップトップコンピュータ114での情報の表示、および/またはラップトップコンピュータ114からの情報の送信に関連する様々なタスクを実行するための一連の機械可読な命令として実施され得るクライアントアプリケーション266であり得る。
【0068】
複数のアプリケーション264のうちの1つは、薬理学的表現型評価サーバ102からのウェブページ情報を受信、解釈、および/または表示すると共に医療提供者などのユーザからの入力も受信するための一連の機械可読な命令として実施され得る、ネイティブアプリケーションおよび/またはAppleのSafari(登録商標)、Google Chrome(商標)、Microsoft Internet Explorer(登録商標)、およびMozilla Firefox(登録商標)などのウェブブラウザ270であり得る。複数のアプリケーションのうちの別のアプリケーションは、薬理学的表現型評価サーバ102からウェブページ情報を受信、解釈、および/または表示するための一連の機械可読な命令として実施され得る埋め込みウェブブラウザ276を含み得る。
【0069】
複数のルーチンのうちの1つは、現行患者がある種の薬理学的表現型を有する可能性を取得し、当該可能性および/または現行患者を治療するための推奨の指標をディスプレイ240上に表示するリスク解析表示ルーチン272を含み得る。複数のルーチンのうちの別のルーチンは、現行患者のソシオミックスデータ、フィジオミクスデータ、および環境データを医療提供者から取得し、受信したソシオミックスデータ、フィジオミクスデータ、および環境データを現行患者について以前に格納されたソシオミックスデータ、フィジオミクスデータ、および環境データ(例えば、以前の訪問で収集された環境データ)と共に薬理学的表現型評価サーバ102に送信するデータ入力ルーチン274を含み得る。
【0070】
好ましくは、ユーザは、クライアントデバイス、例えば、クライアントデバイス106~116のうちの1つからクライアントアプリケーション266を起動して薬理学的表現型評価サーバ102と通信して薬理学的表現型予測システム100を実行し得る。さらに、ユーザは、任意の他の好適なユーザーインターフェースアプリケーション(例えば、ネイティブアプリケーションもしくはウェブブラウザ270、または複数のソフトウェアアプリケーション264のうちの任意の他の1つ)を起動またはインスタンス化して薬理学的表現型評価サーバ102にアクセスして薬理学的表現型予測システム100を具現化し得る。
【0071】
上記のように、図1Aに示す薬理学的表現型評価サーバ102は、機械学習エンジン146用のプロセッサ142で実行可能な命令を格納し得るメモリ150を含み得る。機械学習エンジン146は、訓練モジュール160および表現型評価モジュール162を含み得る。
【0072】
図2は、臨床または研究の場において薬理学的表現型を予測する薬理学的表現型予測システム100に提供され得るパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを示す。パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、以下の4つのカテゴリに分けられる:個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302、エクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、構造化または非構造化電子健康記録(EHR)、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308。しかしながら、これは単に説明を簡単にするためである。エクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308は、ソシオミックスデータ、フィジオミクスデータ、および環境データ、ならびに個体/コホートおよび集団のパンオミックスの一部として含まれ得、ファーマコメタボロミクス302は、パンオミックスデータの一部として含まれ得る。さらに、個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302、エクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308は、任意の他の好適な方法で分類および/または組織化され得る。
【0073】
いかなる場合も、個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302は、ゲノミクス、エピゲノミクス、クロマチン状態、トランスクリプトミクス、プロテオミクス、メタボロミクス、生物学的なネットワークおよびシステムのモデルなどを含み得、これらの各々は、ゲノムから抽出され得るか、または少なくともゲノムに関連し得る。個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302は、組織内の個々の分子実体の様々な薬理学的表現型への化学マッピングをも含み得る。個々の分子実体は、例えば、酢酸、乳酸などの代謝の産物である代謝産物、および薬物のファーマコメタボローム代謝産物であり得る。
【0074】
エクスポソーム304は、例えば、患者の住居の場所、住居の種類、住居のサイズ、住居の質、患者の職場の場所、患者の住居から職場までの距離を含む患者の労働環境、患者が職場および/または住居でどのように扱われているかなどの患者の環境を示す情報を含み得る。エクスポソーム304は、気候的因子、生活様式因子(例えば、タバコ、アルコール)、食事、物理的活性、汚染物質、放射線、感染症、教育などを含む、患者によって経験される任意の他の環境曝露をも含み得る。
【0075】
ソシオミックス、人口統計、およびストレス/心的外傷306は、例えば、性、家系、年齢、収入、婚姻の状態、教育レベル、言語などの人口統計学的データを含み得る。ソシオミックス、人口統計およびストレス/心的外傷306には、他の世帯データ、文化的状態、概日データ、年齢に関連する健康、孤立または認知的状況、経済状態、ならびに共同体の生活状況なども含まれ得る。さらに、ソシオミックス、人口統計、およびストレス/心的外傷306には、心的外傷、家庭内暴力、法的処罰歴、または任意の他のストレスもしくは虐待因子が含まれ得る。いくつかの実施形態では、小児期の間のストレスおよび虐待因子は、異なる種類の虐待、ネグレクト、および苦難の多い小児期の他の尺度を測定する逆境的小児期体験(ACE)スコアによって定量化され得る。これには、物理的、感情的および性的な虐待、物理的および感情的なネグレクト、自宅内での精神病、自宅内での家庭内暴力、離婚、自宅内での物質乱用、親族の投獄などが含まれ得る。
【0076】
さらに、医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308には、心的外傷、家庭内暴力、法的処罰歴、または任意の他のストレスもしくは虐待因子が含まれ得る。いくつかの実施形態では、小児期の間のストレスおよび虐待因子は、異なる種類の虐待、ネグレクト、および苦難の多い小児期の他の尺度を測定する逆境的小児期体験(ACE)スコアによって定量化され得る。これには、物理的、感情的および性的な虐待、物理的および感情的なネグレクト、自宅内での精神病、自宅内での家庭内暴力、離婚、自宅内での物質乱用、親族の投獄などが含まれ得る。医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308には、臨床データ、多薬療法データ、および生理学的特徴、例えば、遺伝子およびタンパク質に関連する人体の機能が含まれ得る。さらに、医学的成果データには、特定の患者または患者コホートの薬理学的表現型が含まれ得る。さらに、医学的成果データには、薬物または治療の有効性、薬物有害事象または薬物有害応答、安定した状態、応答の欠如、臨床応答の改善などを示す情報が含まれ得る。
【0077】
訓練患者のコホートの個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302、エクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308は、薬理学的表現型を予測するための統計モデルを生成するために薬理学的表現型予測システム100に訓練データとして提供され得る。さらに、個体のパンオミックスおよびファーマコメタボロミクス302、エクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスおよび虐待因子ならびに心的外傷、ならびに医学的成果データ308、またはこれらの一部は、現行患者の薬理学的表現型または正確な患者表現型を予測するために現行患者から取得されて統計モデルに適用され得る。
【0078】
図3は、薬理学的表現型予測システム100によって実行されるプロセスの詳細図320を示す。図2に示すように、薬理学的表現型予測システム100は、個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302、エクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308を、訓練患者のコホートから訓練データとして取得して機械学習エンジン146を訓練する。いくつかの実施形態では、個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302、ならびにそれらのそれぞれの薬理学的表現型との相関は、以下に詳細に説明するようにGWAS、候補遺伝子関連解析および/または他の機械学習法から取得され得る。また訓練データは、生物医学的訓練セット325a、薬理学データベース325b、環境データ325c、および粒度325dでセグメント化したデータを含むいくつかのデータソース325a~dから取得されてもよい。
【0079】
生物医学的訓練セット325aは、図2を参照して上記のパンオミックスおよびファーマコメタボロミクス302、ならびに医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308に類似した、パンオミックス、ファーマコメタボロミクス、医学的フィジオミクス、EHR、検査値、医学的成果、ならびにストレスならびに虐待因子および心的外傷を含む。薬理学データベース325bは、薬局記録、薬物データベース、薬物-薬物相互作用、薬物-遺伝子相互作用などを含む。さらに、ソシオミックスデータおよび環境データ325cは、図2を参照して上記のエクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306と類似した、ソシオミックス、人口統計、およびエクスポソームを含む。粒度でセグメント化されたデータ325dは、生物医学的訓練セット325a、薬理学データベース325b、および環境データ325cからのデータのいずれかを個々の患者、患者コホートまたは患者集団に対応するものとして特定し得る。
【0080】
次いで、機械学習エンジン146は、訓練患者のコホートまたは集団のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データ、ならびに表現型データを利用して機械学習技術を使用して薬理学的表現型を予測するための統計モデルを生成し得る。いくつかの実施形態では、機械学習エンジン146は、パンオミックスデータと薬理学的表現型との関係を解析して、特定の薬理学的表現型と最も高度に関連する一塩基多型(SNP)、遺伝子およびゲノム領域を特定し得る。これは、図4Bおよび4Dを参照して以下でより詳細に記載される。
【0081】
さらに、機械学習エンジン146は、特定されたSNP、遺伝子、およびゲノム領域の少なくとも一部または任意の好適な組み合わせを有する訓練患者のコホートまたは集団を、コホートまたは集団内の各訓練患者の表現型データに基づいて、特定の薬理学的表現型を有するか、または有しないものとして分類し得る。機械学習エンジン146は、各分類に対応する訓練患者のコホートまたは集団のソシオミックスデータ、フィジオミクスデータ、および環境データをさらに解析して統計モデルを生成し得る。例えば、機械学習エンジン146は、各分類のソシオミックスデータ、フィジオミクスデータ、および環境データに対する統計的測定を実行して特定の薬理学的表現型を有する訓練患者のサブセットおよび特定の薬理学的表現型を有しない訓練患者のサブセットのソシオミックスデータ、フィジオミクスデータ、および環境データを区別し得る。機械学習エンジン146は、分類および回帰などの教師あり学習アルゴリズムを使用して訓練され得る。機械学習エンジン146は、次元削減およびクラスタリングなどの教師なし学習アルゴリズムを使用して訓練され得る。
【0082】
いかなる場合も、機械学習エンジン146は、現行患者または現行患者のコホートが特定の薬理学的表現型を有するかどうか不明の場合、現行患者または現行患者のコホートからのパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを含む入力330を受信し得る。上記入力は、個体の前述したパンオミックスおよびファーマコメタボロミクス302、エクスポソーム304、ソシオミックス人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、構造化または非構造化EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データ308のいずれかを含み得る。例えば、個々の現行患者について、上記入力には、個人データ、オミクス検査、個人のフィジオミクス、EHRデータ、薬物病歴および環境データが含まれ得る。現行患者のコホートについて、上記入力には、個人データ、コホートのパンオミックス、フィジオミクス、EHRデータ、薬歴および環境データが含まれ得る。
【0083】
現行患者または現行患者のコホートのパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、現行患者または現行患者のコホートの薬理学的表現型を予測するために機械学習エンジン146に含まれる統計モデルに適用され得る。例えば、機械学習エンジン146は、ワルファリンに対する陰性応答の可能性を予測してもよい。付加的にまたは代替的に、機械学習エンジン146は、現行患者へのワルファリンの有害作用を差し引いた、現行患者の血栓症の治療に対するワルファリンの有効性を示す応答スコアを生成し得る。
【0084】
可能性、応答スコア、または他の半定量的もしくは定量的尺度は、現行患者に処方する薬物および/または投与量を医療提供者に推奨するために薬理学的表現型予測システム100内の薬理学的表現型診療判断支援エンジン335によって解析され得る。いくつかの実施形態では、特定の医療適用に対して使用可能な薬物の各々について応答スコアが順位付けられてもよく、薬理学的表現型診療判断支援エンジン335は、現行患者に処方するための最も順位が高い薬物を医療提供者に推奨してもよい。また、特定の薬物の投与量が順位付けされてもよい。他の例では、現行患者について1つの薬物選択肢に対する陰性応答の可能性が閾値スコアを越える場合、薬理ゲノミクス診療判断支援エンジン335は、特定の医療適用について異なる薬物を推奨し得る。さらに、薬理学的表現型診療判断支援エンジン335は、推奨された薬物を環境データおよび/または医療記録に含まれる現行患者の多薬療法データと比較し得る。現行患者が推奨された薬物に禁忌を示す薬物を服用している場合、薬理学的表現型診療判断支援エンジン335は、次の最も高い応答スコアを有する薬物または閾値可能性を超える陰性応答の可能性を有しない別の薬物を推奨し得る。他の実施形態では、薬理学的表現型が物質乱用の可能性である場合、薬理ゲノミクス診療判断支援エンジン335は、早期介入を推奨し得、薬理学的表現型が疾患リスクである場合、薬理学的表現型診療判断支援エンジン335は、先回りして問題に対処するために検診および/または治療コースを推奨し得る。他の実施形態では、薬理学的表現型が上記以外である場合、薬理学的表現型診療判断支援エンジン335は、他の治療、有益なアッセイ、または他の行動方針を推奨し得る。
【0085】
また、薬理学的表現型の可能性、応答スコア、または他の半定量的もしくは定量的尺度は、種々の容量の薬学的研究340において使用されてもよい。例えば、薬物を開発している研究者は、このような方法を使用して開発中のまたは認可された薬物に対する応答が良好または不良な患者、および副作用がより少ないかまたはない患者を特定するためのコンパニオン診断検査を開発し得る。さらに、推定上の薬物として使用する複数の分子実体をスクリーニングまたは比較している研究者、およびこれらの薬物を使用した分子実験の比較データを所有している研究者は、開発プロセスにおいてどの実体を開発または優先するかを決める手段としてこれらの方法を使用して、集団についてありそうな効果および有害事象の予測評価を実行し得る。さらに、これらの方法は、実験的治療に関連して、臨床研究場面において研究者が現行患者に処方する治験薬および/または投与量を推奨するために使用され得る。最後に、これらの方法は、組み込まれたCDSS環境外で実施される薬理ゲノミクス検査の明示的な構成またはモデル生成において使用され得る。
【0086】
薬理学的表現型診療判断支援エンジン335または薬学的研究ツール340によって提供される予測された薬理学的表現型および/または推奨は、フィードバックループにおいてデータソース325a~dに提供され得る。次いで、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データ、ならびに表現型データは、機械学習エンジン146をさらに訓練し、その後他の現行患者に使用するために訓練データとして使用される。このようにして、機械学習エンジン146は常に統計モデルを更新して、ソシオミックスデータ、フィジオミクスデータ、環境データ、およびパンオミックスデータの少なくともリアルタイムに近い表現を反映し得る。
【0087】
図4Aは、4Dのヌクレオームにおける多数の異なるパンオミックスモダリティの生物学的文脈および相互作用の例示的描写、ならびにこの文脈におけるパンオミックスデータのバイオインフォマティクス解析の例を示す。描示450は、核のクロマチンに閉ざされた領域に位置する染色体を示す。ユークロマチンは、DNアーゼ1高感受性および活性なゲノム調節エレメント、例えば、プロモーターのH3K4me3およびH3K27ac、ならびにエンハンサーのH3K4me1およびH3K27acの特徴であるヒストンマークの特定の組み合わせを特徴とする。エンハンサーは、近位の、かつ/または空間的に局在する(例えば、Hi-CもしくはChIA-PETデータ、またはゲノム構造マッピングまたは組み合わせのクロマチン捕捉により)配列であり、かつ/または単独で、もしくは組み合わされて当該エンハンサーに機能的に接続され得る(例えば、分子的QTL接続により)、その標的遺伝子(複数可)の転写を増加または減少させ得る。ヘテロクロマチンは、染色体テリトリーの内部、および核の辺縁部、核ラミナおよび核小体の近くに局在し、それ自身の抑制的なクロマチンマークのパターンおよびDNA結合タンパク質ならびに空間的圧縮およびリンカーヒストンを特徴とする。最近の研究により、殆どの場合CpGがメチル化される他の組織とは対照的に、脳ではDNA配列CACがメチル化の一般的な部位であることが証明された。さらに、脳では、エピゲノム情報の明白な要素を保有する反応種である5-ヒドロキシメチルシトシン(5hmC)が、比較的よく見られる。対照的に、末梢ではメチルシトシン(hmC)がよく見られる。
【0088】
また図4Aは、クロマチン構造キャプチャー法によって始めて測定された転写機構の例示的な空間的階層460を表す模式図も示す。空間的階層460は、転写調節のマルチスケールの階層を示すHi-Cのマッピング462を含む。この描示では、ゲノムの一部(X軸上)とゲノムの他の一部(Y軸上)との間の空間的相互作用の正規化された頻度を、色のグラデーションによって表現してクロマチン構築の二次元マップを生成している。
【0089】
このマップは、DNA配列の固定長を表す「ビン(bin)」もしくは切断部位の増加を示すビンまたはこれらの集まり、または、例えば、遺伝子、クロマチン状態の部分、ループドメイン、クロマチンドメイン、TADなどの機能要素により生成され得る。接触は、距離、全体の接触傾向および他の要素について種々の正規化方法で閾値処理によって識別され得る。例えば、配列長で固定されないビンの場合、したがって、一対のビンによって表現される四角のゲノム領域が可変のサイズおよび形状のものであり得る場合、固定されたビンに依存する伝統的方法の代用となる正規化方法が考案され得る。距離の関数としての接触の密度は、この四角のゲノム領域にマッピングされた接触の期待値を生成するために、ビンの対の矩形領域にわたって積分され得る積分可能関数にフィッティングされ得る。この期待値は、ローカルまたはゲノムワイドベースでの距離(調整された方法)における豊富なおよび枯渇したクロマチン接触のコレクションを生成するために、例えば、Benjaminiの偽陽性率が適用され得るポアソン分布p値などの統計的検定によって、この四角のゲノム領域に対応づけられた未加工のまたは正規化されたリードカウントと比較されることができる。これは、ゲノムバリアントの標的遺伝子の検出および接触のゲノムワイド解析を含む種々の解析のために実施され得る。
【0090】
空間的階層460は、核の描出464およびHi-Cのマッピング462に示される核内の転写のトポロジーも含む。描出464に示すように、染色体は、核質の利用可能な容量の大部分をテリトリー(CT)として満たしており、それぞれユークロマチンおよびヘテロクロマチンから構成される限局したAおよびB区画を含む。活性な遺伝子は、CTの辺縁部に位置する傾向があり、CTの間の染色体間ルーピングは、エンハンサー-プロモーターおよびプロモーター-プロモーターのトランスの空間的相互作用のサブセットのための基礎を提供する。CTのAおよびBクロマチン区画は、約1Mbの平均長の直鎖状配列内にトポロジカル関連ドメイン(TAD)を含む。TADは、最初のスケーリングがフラクタル小球モデルと一致する場合、Hi-Cなどのクロマチン構造キャプチャー法を使用して最初に特徴づけられ得るが、TAD内のエンハンサー-プロモーターループの高解像度研究、CCCTC結合タンパク質(CTCF)およびコヒーシン(RAD21)を含むTAD境界タンパク質の形成、およびダイレクトイメージングは、TAD形成のループ押し出しモデルを支持する。頻繁に相互作用する調節エレメント(FIRE)を含む転写単位の特徴には、16番染色体に位置するGRIN2A遺伝子の介在配列内に位置する例が含まれる。
【0091】
図4Aにて説明したような、エピゲノムの追跡および/またはバイオインフォマティクス解析は、遺伝子、SNP、およびゲノム領域と薬理学的表現型との間の関連を特定するために機械学習法により使用され得る。例えば、エピゲノムの追跡および/またはバイオインフォマティクス解析は、図4Cに示すように遺伝子調節ネットワークを生成するために使用され得る。上記のように、訓練モジュール160は、各薬理学的表現型について統計モデルを生成し得る。図4Bは、機械学習技術を使用して特定の薬理学的表現型に対応するパンオミックスデータを特定するための例示的な方法400を示すブロック図である。方法400は、薬理学的表現型評価サーバ102で実行され得る。いくつかの実施形態では、方法400は、非一時的コンピュータ可読メモリに格納される命令のセットに実施され、薬理学的表現型評価サーバ102の1つ以上のプロセッサにおいて実行可能であり得る。例えば、方法400は、図1Aの機械学習エンジン146内の訓練モジュール160によって実行され得る。
【0092】
ブロック402において、ゲノムのいくつかの非コードまたはコードSNP、遺伝子およびゲノム領域のうちの各々について、SNPと薬物応答、薬物有害応答、薬物有害事象、投与量、疾患リスクなど(例えば、うつ病に罹患している患者のケタミンに対する応答)であり得る特定の薬理学的表現型との間の関係を判定するために、統計的検定が(例えば、GWASまたは候補遺伝子関連解析により)実行される。統計的検定がSNPと特定の薬理学的表現型との間の有意な関係を示す場合(例えば、帰無仮説を使用して閾値確率未満のp値を有する)、SNPは、特定の薬理学的表現型と相関すると判定される。いくつかの実施形態では、SNPは、図4Aに示すようにバイオインフォマティクス解析に基づいて特定され得る。
【0093】
次いで、ブロック404において、どのSNPが互いから独立しているかを特定するために、連鎖不平衡解析が特定の薬理学的表現型と相関するSNPに対して実行される。例えば、SNPのセットが全て同一の薬理学的表現型と相関し、密接な連鎖非平衡(例えば、LD>0.9)にある場合、SNPのセットが関連付けされ得、そのため、セットのSNPのうちどれが薬理学的表現型との相関を引き起こしているSNPであるかは不明である。連鎖不平衡解析は、薬理学的表現型との相関の原因であり得るSNP(エフェクターSNP)の各々を特定するために実行され得る。より具体的には、連鎖不平衡解析は、SNP(最初のSNP)をSNPデータベース(例えば、1000人ゲノムプロジェクトからのもの)と比較して最初のSNPに関連付けられるSNPを発見するために実行され得る。いくつかの実施形態では、GWASまたは候補遺伝子関連解析から人種集団が特定され得、特定された人種集団に対応するSNPのデータベースからSNPと共に連鎖非平衡係数が取り出され得る。次いで、薬理学的表現型評価サーバ102は、GWASまたは他の候補関連解析からの特定の薬理学的表現型と相関する最初のSNPと密接な連鎖非平衡にある全てのSNPについて許容候補バリアント(ブロック406)のセットを生成し得る。
【0094】
さらに、許容候補バリアント(406)のセットには、研究(ブロック420)により薬理学的表現型について関連性が既知であるかまたは疑われる遺伝子の領域内SNP、遺伝子の領域内を標的とする分子QTL、および研究(ブロック422)により薬理学的表現型について関連性が既知であるかまたは疑われるゲノム領域またはゲノムネットワークに内在するSNPを含み得る。いかなる場合も、許容候補バリアントを中間候補バリアント(ブロック410)のサブセットにフィルタリングするために、許容候補バリアント(ブロック406)はバイオインフォマティクス解析を受けてもよく、次いで、中間候補バリアントのサブセットは(例えば、評価システムにより)順位付けられてもよい(ブロック412)。次いで、中間候補バリアントのサブセット内の、研究により薬理学的表現型について関連性が既知であるかまたは疑われる最高順位のSNP、遺伝子およびゲノム領域(例えば、閾値順位を超えて順位付けられたか、または閾値スコアを超えるスコアを有する)は、特定の薬理学的表現型との因果関係があると推定されるSNP、遺伝子およびゲノム領域として特定され得る(ブロック414)。例えば、SNP、遺伝子、およびゲノム領域は、薬物応答、薬物有害応答、薬物有害事象、疾患リスク、投与量、併存症、物質乱用、薬物-遺伝子相互作用、薬物-薬物相互作用、多薬療法相互作用などに関連し得る。
【0095】
より具体的には、許容候補バリアントの一部を除外して中間候補バリアントのサブセットを生成するために(ブロック410)、許容候補バリアント周囲のゲノム領域が調節機能について評価されて(ブロック408a)、それらの配列前後関係(例えば、対立遺伝子)が調節機能に影響を与えるかどうか(バリアント依存性)(ブロック408b)が判定され、それらの標的遺伝子(ブロック408c)が判定される。
【0096】
許容候補バリアントが機能的かどうか評価するために、バイオインフォマティクス解析が使用され、DNアーゼI高感受性によって示されるように許容候補バリアントがオープンクロマチンに位置するかどうかが判定され得る。このバイオインフォマティクス解析の例示的描写450を、図4Aに示す。
【0097】
バリアント依存性は、サポートベクトルマシン(SVM)などの様々な機械学習技術を使用して判定され得る。例えば、SVMは、k-mer、ギャップありのk-mer、または他のDNA配列の局所的な配列特徴を分類するための超平面を生成するために、許容候補バリアントと共に使用され得る。SVMは、ゲノムの近くの部分の状態を変化させるSNPの特定のアレルの傾向を測定するために使用され得る。これは、SVMを訓練するために使用された組織または細胞株における特定のエピゲノムの追跡(オミクスモダリティ)に対するSNPの重要性のレベルを示し得る。付加的にまたは代替的に、バリアント依存性は、転写因子の結合を変化させるSNPを位置特異的重み行列(PWM)またはこの目的のための他のアルゴリズムを使用して特定することによって判定され得る。
【0098】
また、許容候補バリアントの標的遺伝子は、様々なバイオインフォマティクスおよび機械学習技術を使用して判定され得る。標的遺伝子は、許容候補バリアントと遺伝子発現および/または遺伝子座のオミクス状態との間の関連性を特定するために量的形質遺伝子座(QTL)マッピングを使用して特定され得る。シスeQTL、トランスeQTL、dsQTL、esQTL、hQTL、haQTL、eQTL、meQTL、pQTL、rQTLなどのための生物学的方法およびデータセット、ならびにソフトウェア解析マッピングシステムが利用され得る。許容候補バリアントは、同一染色体上の遺伝子発現を調節し得る(シス調節エレメント)か、または異なる染色体上の発現遺伝子を調節し得る(トランス調節エレメント)。しかしながら、マッピングシステムは、スペアサンプリングおよび偽の関連を有し得る。したがって、疎なデータを補間するために機械学習技術を使用して追加の補正が実行される。
【0099】
機能的な許容候補バリアントが近くの遺伝子にわたって制御調節を維持するかどうか判定するために、バイオインフォマティクス解析は、許容候補バリアントが低メチル化されているかどうか、許容候補バリアントが転写開始点を示すヒストンマークに関連するかどうか、および/または許容候補バリアントがエンハンサーRNA、プロモーターRNAまたは他のRNAに影響を与えるかどうかを判定し得る。
【0100】
許容候補バリアントとそれらが調節する遺伝子との間の長距離相互作用を判定する方法には、Hi-C、クロマチン構造キャプチャー法、ChIA-PET、クロマチン免疫沈降配列決定(ChIP-seq)およびQTL解析が含まれ得る。かかる方法は、許容候補バリアントの標的遺伝子を判定するために使用され得る。情報はQTLデータにマージされ得、更なる接触が行列の高密度化方法による情報密度の増加または他の様々な機械学習技術を使用して検出されるか、またはシミュレートされ得る。
【0101】
いかなる場合も、各許容候補バリアントは、特定の薬理学的表現型について、その調節機能(ブロック408a)、バリアント依存性(ブロック408b)および標的遺伝子(ブロック408c)に従ってスコア化され、かつ/または順位付けられ得る。閾値スコアを超えてスコア化され、かつ/または閾値順位または他のスコア化もしくは順位付け基準を上回って順位付けされる許容候補バリアントが、中間候補バリアント(ブロック410)のサブセットに含まれ得る。
【0102】
次いで、中間候補バリアント(ブロック410)のサブセットは、機械学習技術を使用して互いに対してスコア化され、かつ/または順位付けられる。例えば、中間候補バリアントのサブセットは、中間候補バリアントはグラフ内の節点で表され、2つの中間候補バリアントの関係が、辺によって表される2部グラフ解析の対象となり得る。中間候補バリアントは、互いに素な集合に分けられ得、ここで、互いに素な集合のメンバーは、いずれも互いとの関係を有しない。いくつかの実施形態では、2つの中間候補バリアント間の特定の関係の相対的強度は、特定の重みを割り当てられ得る。次いで、各中間候補バリアントは、当該中間候補バリアントが、他方の互いに素な集合の他の中間候補バリアントと有する関係の数に従ってスコア化され得る。いくつかの実施形態では、各中間候補バリアントは、当該中間候補バリアントが他の中間候補バリアントと有する各関係に割り当てられた重みの合計に従ってスコア化される。
【0103】
いかなる場合も、中間候補バリアントのサブセット内の最高順位のSNP、遺伝子およびゲノム領域(例えば、閾値順位を超えて順位付けられたか、または閾値スコアを超えるスコアを有する)は、特定の薬理学的表現型と相関するSNP、遺伝子およびゲノム領域として特定され得る(ブロック414)。次いで、特定の薬理学的表現型について特定されたSNP、遺伝子、およびゲノム領域は、現行患者が特定の薬理学的表現型を有するかどうか予測する場合に現行患者について分析され得る。
【0104】
方法400および800がサーバ102を使用して実行される場合、および他の実施形態では、機密データ、専有データ、または貴重なデータは、暗号化および/もしくは安全な実行技術の使用、ならびに/または追加の安全対策の対象となっているリモートコンピューティングデバイスの使用によって保護され得る。かかるデータには、HIPAAまたは他の守秘義務および規制条項の対象となる患者データ、患者またはクライアントの秘匿特権の対象となるデータ、事業体の専有データ、または他のかかるデータが含まれ得る。かかるデータは、伝送のために暗号化され、解析のために解読され、ハッシュ、楕円曲線または他の尺度などの数学的変換の使用によって、匿名化または暗号化された状態で解析され得る。このような解析において、使用は、Trusted Execution Technologies、Trusted Platform Modules、および他の同様かつ類似の技術によりなされ得る。使用は、個人健康情報(PHI)を省略または隠したデータの表示によりなされ得、特に、かかる使用は、報告および診断情報の準備および医療関係者への配布においてなされ得る。
【0105】
図4Cは、例示的な遺伝子調節ネットワーク470または薬理学的表現型を示す遺伝子およびSNPを含むゲノム領域を示す。例示的な遺伝子調節ネットワーク470は、図4Bを参照して上記のような方法400を使用して特定されてもよく、かつ/またはGWASまたは候補遺伝子関連解析により特定されてもよい。遺伝子調節ネットワーク470は、中枢神経系または人体内の任意の他の好適な系内にあり得る。
【0106】
いかなる場合も、遺伝子調節ネットワーク470は、遺伝子BCDEF(参照番号472)、DEFGH(参照番号474)、ABCF(参照番号476)、IJKLM(参照番号478)、MNOP(参照番号480)、LMNOP(参照番号482)、PQRS(参照番号484)、HIJKLM(参照番号486)、XYZ(参照番号488)、CDEFG(参照番号490)およびABCDEF(参照番号492)を含む。
【0107】
遺伝子調節ネットワーク470は、患者の特定のコホートにおいて薬物X応答に有意に関連し、転写に関連するものを含む、介在配列、プロモーター、および遺伝子間領域内に位置するいくつかの非コードSNPを含む。例えば、1番染色体のBCDEF遺伝子472に見いだされるSNP2は、薬物X応答および疾患リスクを示す。他の例では、SNP2との密接な連鎖非平衡(例えば、LD>0.8)を有するSNP3も、1番染色体のBCDEF遺伝子472に見いだされ、薬物Xに関連する薬物有害応答を示す。遺伝子調節ネットワーク470は、エンハンサー-プロモーターおよびプロモーター-プロモーターのトランスの空間的相互作用のサブセットの基礎を提供する染色体間相互作用も含む。例えば、6番染色体内の遺伝子HIJKLM(参照番号486)と相互作用する1番染色体内の遺伝子PQRS(参照番号484)のエンハンサー領域内に見いだされるSNP15は、薬物Xに関連する薬物有害応答を示す。一部の筋書きでは、遺伝子調節ネットワーク470内の1つ以上のバリアント、遺伝子またはエンハンサーは、性染色体上に位置し得る。
【0108】
遺伝子調節ネットワーク470内の相互接続している遺伝子を、片方向または両方向矢印を使用した図4Cに示す(例えば、遺伝子IJKLM(参照番号478)および遺伝子LMNOP(参照番号482))。各接続は、レジェンド494にさらに記載され得る数値的または分類別係数(例えば、P、C、V、T)を含み得る。いくつかの実施形態では、数値的または分類別係数は、相互接続している遺伝子(例えば、活性化、転座、発現、阻害など)の関係を示す。
【0109】
例示的な遺伝子調節ネットワーク470は、薬理学的表現型予測システム100を訓練するためにGWAS、候補遺伝子関連解析、および/または訓練患者から取得され得るパンオミックスデータの単に1つの例にすぎない。追加の遺伝子調節ネットワークが、追加のまたは代替的ゲノムデータ、エピゲノムデータ、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータ、またはメタボロミクスデータと共に取得され得る。
【0110】
図4Bを参照して記載の方法400に加えて、図4Dは、機械学習技術を使用して特定の薬理学的表現型に対応するパンオミックスデータを特定するための別の例示的な方法800を示す。方法800は、薬理学的表現型評価サーバ102で実行され得る。いくつかの実施形態では、方法800は、非一時的コンピュータ可読メモリに格納される命令のセットに実施され、薬理学的表現型評価サーバ102の1つ以上のプロセッサにおいて実行可能であり得る。例えば、方法800は、図1Aの機械学習エンジン146内の訓練モジュール160によって実行され得る。
【0111】
方法800において、許容候補バリアント(ブロック810)は、上記の図4Bの方法400におけるのと同様の方法で特定される。より具体的には、ブロック802および804において、ゲノムのいくつかの非コードまたはコードSNP、遺伝子およびゲノム領域のうちの各々について、SNPと薬物応答、薬物有害応答、薬物有害事象、投与量、疾患リスクなど(例えば、ワルファリンに対する応答)であり得る特定の薬理学的表現型との間の関係を判定するために、統計的検定が(例えば、GWASまたは候補遺伝子関連解析により)実行される。統計的検定がSNPと特定の薬理学的表現型との間の有意な関係を示す場合(例えば、帰無仮説を使用して閾値確率未満のp値を有する)、SNPは、特定の薬理学的表現型と相関すると判定される。次いで、ブロック806において、連鎖不平衡解析が特定の薬理学的表現型、他のSNPと相関するSNPに対して実行されてどのSNPが相関するSNPとの連鎖非平衡にあるかが特定される。連鎖不平衡解析は、SNP(最初のSNP)をSNPデータベース(例えば、1000人ゲノムプロジェクトからのもの)と比較して最初のSNPに関連付けられるSNPを発見するために実行され得る。いくつかの実施形態では、GWASまたは候補遺伝子関連解析に使用された集団から人種集団が特定され得、一致した集団に関するデータを使用して有意な連鎖非平衡係数を有するSNPが、特定された人種集団のSNPデータベースにおいて発見され得る。また、研究により薬理学的表現型について関連性が既知であるかまたは疑われる遺伝子の領域内SNPが、特定され得る(ブロック808)。
【0112】
次いで、許容候補バリアントを中間候補バリアント(ブロック814)のサブセットにフィルタリングするために、許容候補バリアント(ブロック810)はバイオインフォマティクス解析を受け得る。図4Bの方法400は、許容候補バリアントをそれらのステータスに基づいて推定上の発現調節バリアントとしてフィルタリングする(例えば、調節機能、その調節機能のバリアントアレルへの依存性、および特定可能な標的遺伝子関係の存在に従って)。方法800において、許容候補バリアントは発現調節バリアント(ブロック812a~812c)またはコードバリアント(ブロック812d)に基づいてフィルタリングされて、中間候補バリアント(814)のサブセットが生成される。コードバリアントに基づいてフィルタリングするために、方法800により、許容候補バリアントが有意なマイナー対立遺伝子頻度(例えば、少なくとも0.01のマイナー対立遺伝子頻度)を有する非同義コードバリアントであるかどうか判定する。
【0113】
より具体的には、各許容候補バリアントは、その発現調節バリアントに基づいて(例えば、特定の薬理学的表現型についてのその調節機能(ブロック812a)、バリアント依存性(ブロック812b)、および標的遺伝子(ブロック812c)に従って)スコア化され、かつ/または順位付けられ得る。閾値発現調節バリアントスコアを超えてスコア化され、かつ/または閾値発現調節バリアント順位または他のスコア化もしくは順位付け基準を上回って順位付けされる許容候補バリアントが、中間候補バリアント(ブロック814)のサブセットに含まれ得る。さらに、各許容候補バリアントは、そのコードバリアントに基づいてスコア化され、かつ/または順位付けられ得る(例えば、それが特定の薬理学的表現型について有意なマイナー対立遺伝子頻度を有する非同義コードバリアントであるかどうかに従って)。閾値コードバリアントスコアを超えてスコア化され、かつ/または閾値コードバリアント順位または他のスコア化もしくは順位付け基準を上回って順位付けされる許容候補バリアントが、中間候補バリアント(ブロック814)のサブセットに含まれ得る。
【0114】
次いで、ブロック816において中間候補バリアントは、標的遺伝子に関連付けられ、関連性のある組織において発現されるもの(例えば、遺伝子型-組織発現(GTEx)データに基づいて)は、Ingenuity(登録商標) Pathway Analysisを使用した経路マッピングおよび遺伝子セット濃縮などの経路解析の対象となる。有意かつ関連する経路に関連する遺伝子セットが特定され、それらに影響を与える調節性のコードバリアントが候補バリアントとして特定される(ブロック818)。
【0115】
ワルファリン表現型のセットに対する図4Dの方法の例示的な適用を、図4Eを参照して記載する。ワルファリンは、心臓病および凝固コントロールの必要性を伴う他の場面における静脈血栓塞栓症の予防および治療に使用される抗凝固剤である。投与必要量は患者間で10倍ほど異なり、最近は他の抗凝固剤が利用可能であるにもかかわらず、ワルファリンは依然として一般に処方される。したがって、上記の方法は、ワルファリンに対する患者の応答を予測して、ワルファリンと別の抗凝固剤のどちらを投与するのか、および投与する投与量を判定するために利用され得る。
【0116】
図4Eは、ワルファリン表現型に対応するパンオミックスデータを特定するために、図4Dに記載の方法800の各段階で特定される一塩基多型(SNP)を表すブロック図850を示す。
【0117】
ワルファリン表現型のセットについて関連および候補遺伝子を特定するために、23個のGWASを、ワルファリン応答および他のワルファリンの薬理学的表現型、静脈血栓塞栓症リスク、ならびに健常な患者におけるベースライン抗凝固タンパク質レベルに関して使用する。入力データは、ヨーロッパ、東アジア、南アジア、アフリカ、およびアメリカのコホートを含む世界中の集団から使用される。この例では、ワルファリン表現型には、いくつかの表現型クラス、例えば、ワルファリン応答、ADE、および疾患/背景が含まれる。ワルファリン応答クラスには、以下のワルファリン表現型が含まれる:ワルファリン維持投与量。ADEクラスには、以下のワルファリン表現型が含まれる:止血因子および血液学的表現型、出血凝固の最終段階の表現型、ならびにトロンビン生成能表現型。疾患/バックグラウンドクラスには、以下のワルファリン表現型が含まれる:.静脈血栓塞栓症、血栓塞栓症、血栓、血栓症、凝固、ブリーディング、C4b結合タンパク質レベル、活性化部分トロンボプラスチン時間、抗凝固剤レベル、第XI因子、プロトロンビン時間、血小板血栓形成。これらの23個のGWASに加えて23個の追加のバリアントに基づいて、合計204個のSNPが、関連および候補遺伝子のインプットとして特定される(ブロック852)。
【0118】
次いで、連鎖不平衡解析が204個のSNP対して実行され、204個のSNPのうちの領域内SNPも特定され、合計4492個のSNPが許容候補バリアントとして特定される(ブロック854)。次いで、発現調節バリアントワークフローが、4492個のSNPに適用されて57個の遺伝子における合計186個のSNPを得る(ブロック856)。図4Dに示すブロック814の遺伝子発現検査を、186個のSNPに適用されて30個の遺伝子における合計66個のSNPがもたらされる。またさらに、コードバリアントワークフローが、4492個のSNPに適用されて少なくとも0.01のマイナー対立遺伝子頻度を有する合計37個のSNPを得る(ブロック858)。また、図4Dに示すブロック814の遺伝子発現検査を、37個のSNPに適用されて17個の遺伝子における合計22個のSNPがもたらされる。結果として、発現調節バリアントワークフローおよびコードバリアントワークフローのアウトプットは合わせて41個の遺伝子における87個のSNPである(ブロック860)。最後に、87個のSNPが経路解析の対象となり、31個の遺伝子における74個のSNPを有する単一の経路が特定される(ブロック862)。
【0119】
この経路は、ワルファリン応答経路と称され得、肝臓、小腸および血管系において発現される遺伝子を含む。図4Fは、ワルファリン表現型を示す遺伝子およびSNPを含む例示的なワルファリン応答経路870を示す。例示的なワルファリン応答経路870は、図4Dを参照して上記のような方法800を使用して特定され得る。いかなる場合も、ワルファリン応答経路には、以下の遺伝子が含まれる:アルド-ケト還元酵素ファミリー1メンバーC3(AKR1C3)、チトクロームP450ファミリー2サブファミリーCメンバー19(CYP2C19)、チトクロームP450ファミリー2サブファミリーCメンバー8(CYP2C8)、チトクロームP450ファミリー2サブファミリーCメンバー9(CYP2C9)、チトクロームP450ファミリー4サブファミリーFメンバー2(CYP4F2)、凝固第V因子(F5)、凝固第VII因子(F7)、凝固第X因子(F10)、凝固第XI因子(F11)、フィブリノゲンγ鎖(FGG)、オロソムコイド1(ORM1)、セリンプロテアーゼ53(PRSS53)、ビタミンKエポキシド還元酵素複合体サブユニット1(VKORC1)、シンタキシン4(STX4)、凝固第XIII因子A鎖(F13A1)、プロテインC受容体(PROCR)、フォンビルブラント因子(VWF)、補体因子H関連5(CFHR5)、フィブリノゲンα鎖(FGA)、フラビン含有モノオキシゲナーゼ5(FMO5)、ヒスチジンリッチ糖タンパク質(HRG)、キニノーゲン1(KNG1)、surfeit 4(SURF4)、α1-3-N-アセチルガラクトサミニルトランスフェラーゼおよびα1-3-ガラクトシルトランスフェラーゼ(ABO)、リゾチーム(LYZ)、ポリコーム群リングフィンガー3(PCGF3)、セリンプロテアーゼ8(PRSS8)、一過性受容器電位カチオンチャネルサブファミリーCメンバー4関連タンパク質(TRPC4AP)、溶質輸送体ファミリー44メンバー2(SLC44A2)、スフィンゴシンキナーゼ1(SPHK1)、ならびにユビキチン特異的ペプチダーゼ7(USP7)。
【0120】
31個の遺伝子に含まれる74個のSNP(図示せず)は、以下の通りである:AKR1C3遺伝子(肝臓で発現される)に含まれるrs12775913(調節性SNP)、rs346803(調節性SNP)、rs346797(調節性SNP)、rs762635(調節性SNP)およびrs76896860(調節性SNP);CYP2C19遺伝子(肝臓で発現される)に含まれるrs3758581(コードSNP);CYP2C8遺伝子(肝臓で発現される)に含まれるrs10509681(コードSNP)およびrs11572080(コードSNP);CYP2C9遺伝子(肝臓で発現される)に含まれるrs1057910(コードSNP)、rs1799853(コードSNP)およびrs7900194(コードSNP);CYP4F2遺伝子(肝臓で発現される)に含まれるrs2108622(コードSNP);F5遺伝子(肝臓で発現される)に含まれるrs6009(調節性SNP)、rs11441998(調節性SNP)、rs2026045(調節性SNP)、rs34580812(調節性SNP)、rs749767(調節性SNP)、rs9378928(調節性SNP)およびrs7937890(調節性SNP);F7遺伝子(肝臓で発現される)に含まれるrs7552487(調節性SNP)、rs6681619(調節性SNP)、rs8102532(調節性SNP)、rs491098(コードSNP)およびrs6046(コードSNP);F10遺伝子(肝臓で発現される)に含まれるrs11150596(調節性SNP)およびrs11150596(調節性SNP);F11遺伝子(肝臓で発現される)に含まれるrs2165743(調節性SNP)およびrs11252944(調節性SNP);FGG遺伝子(肝臓で発現される)に含まれるrs8050894(調節性SNP);ORM1遺伝子に含まれるrs10982156(調節性SNP);PRSS53遺伝子(肝臓で発現される)に含まれるrs7199949(コードSNP);VKORC1遺伝子(肝臓で発現される)に含まれるrs2884737(調節性SNP)、rs9934438(調節性SNP)、rs897984(調節性SNP)およびrs17708472(調節性SNP);STX4遺伝子(小腸で発現される)に含まれるrs35675346(調節性SNP)およびrs33988698(調節性SNP);F13A1遺伝子(血管系で発現される)に含まれるrs5985(コードSNP);PROCR遺伝子(血管系で発現される)に含まれるrs867186(コードSNP);VWF遺伝子(血管系で発現される)に含まれるrs75648520(調節性SNP)、rs55734215(調節性SNP)、rs12244584(調節性SNP)およびrs1063856(コードSNP);CFHR5遺伝子(肝臓で発現される)に含まれるrs674302(調節性SNP);FGA遺伝子(肝臓で発現される)に含まれるrs12928852(調節性SNP)およびrs6050(コードSNP);FMO5遺伝子(肝臓で発現される)に含まれるrs8060857(調節性SNP)およびrs7475662(調節性SNP);HRG遺伝子(肝臓で発現される)に含まれるrs9898(コードSNP);KNG1遺伝子(肝臓で発現される)に含まれるrs710446(コードSNP);SURF4遺伝子(肝臓で発現される)に含まれるrs11577661(調節性SNP);ABO遺伝子(小腸で発現される)に含まれるrs11427024(調節性SNP)、rs6684766(調節性SNP)、rs2303222(調節性SNP)、rs1088838(調節性SNP)、rs13130318(調節性SNP)およびrs12951513(調節性SNP);LYZ遺伝子(小腸で発現される)に含まれるrs8118005(調節性SNP);PCGF3遺伝子(小腸で発現される)に含まれるrs76649221(調節性SNP)、rs9332511(調節性SNP)およびrs6588133(調節性SNP);PRSS8遺伝子(小腸で発現される)に含まれるrs11281612(調節性SNP);TRPC4AP遺伝子(小腸で発現される)に含まれるrs11589005(調節性SNP)、rs8062719(調節性SNP)、rs889555(調節性SNP)、rs36101491(調節性SNP)、rs7426380(調節性SNP)、rs6579208(調節性SNP)、rs77420750(調節性SNP)およびrs73905041(コードSNP);SLC44A2遺伝子(血管系で発現される)に含まれるrs3211770(調節性SNP)、rs3211770(調節性SNP)、rs3087969(コードSNP)およびrs2288904(コードSNP);SPHK1遺伝子(血管系で発現される)に含まれるrs683790(調節性SNP)およびrs346803(コードSNP);ならびにUSP7遺伝子(血管系で発現される)に含まれるrs201033241(コードSNP)。
【0121】
ワルファリンに加えて、図4Bおよび4Dに記載の方法は、リチウム表現型のセットおよび任意の他の薬理学的表現型に適用され得る。図4Bおよび4Dに記載の方法をリチウム表現型に適用することによって、12個の遺伝子における78個のSNPを用いてリチウム応答経路が特定される。リチウム応答経路には、以下の遺伝子が含まれる:アンキリン3(ANK3)、アリール炭化水素受容体核内輸送体様(ARNTL)、カルシウム電位開口型チャネル補助サブユニットγ2(CACNG2)、カルシウム電位開口型チャネルサブユニットα1C(CACNA1C)、サイクリン依存性キナーゼ阻害因子1A(CDKN1A)、cAMP応答配列結合タンパク質1(CREB1)、イオンチャネル型グルタミン酸受容体AMPA型サブユニット1(GRIA2)、グリコーゲン合成酵素キナーゼ3β(GSK3B)、核内受容体サブファミリー1グループDメンバー1(NR1D1)、溶質輸送体ファミリー1メンバー2(SLC1A2)、5-ヒドロキシトリプタミン受容体1A(HTR1A)、およびTRAF2およびNCK相互作用キナーゼ(TNIK)。12個の遺伝子に含まれる78個のSNPは、以下の通りである:ANK3遺伝子に含まれるrs2185502、rs10821792、rs1938540、rs3808943、rs61847646、rs75314561、rs61846516、rs10994397、rs10994318、rs61847579、rs12412727、rs10994308、rs4948418、rs4948412、rs4948413、rs4948416、rs10821745、rs10994336、rs10994360、rs9633532、rs1938526、rs10994322、およびrs10994321;ARNTL遺伝子に含まれるrs10766075、rs7938308、rs10832017、rs4603287、rs7934154、rs12361893、rs4414197、rs4757140、rs4757141、rs61882122、rs11022755、rs11022754、rs1481892、rs1481891、rs4353253、rs4756764、rs2403662、rs4237700、rs10832018、rs12290622、rs7928655、rs34148132、rs4146388、rs4146387、rs7949336、rs4757139、rs7107287、およびrs1351525;CACNG2遺伝子に含まれるrs2284017およびrs2284016;CACNA1C遺伝子に含まれるrs2007044およびrs1016388;CDKN1A遺伝子に含まれるrs3176336、rs3176333、rs3176334、rs3176320、rs4135240、rs2395655およびrs733590;CREB1遺伝子に含まれるrs10932201;GRIA2遺伝子に含まれるrs78957301;GSK3B遺伝子に含まれるrs334558;NR1D1遺伝子に含まれるrs2314339;SLC1A2遺伝子に含まれるrs3794088、rs3794087、rs4354668、rs12418812、rs1923294、rs5791047、rs111885243、rs752949、およびrs16927292;HTR1A遺伝子に含まれるrs6449693およびrs878567;ならびにTNIK遺伝子に含まれるrs7372276。
【0122】
上記のリチウム応答経路890を、図4Gに示す。リチウムは、精神疾病/障害を治療するために使用される精神病薬である。上記の方法は、リチウムに対する患者の応答を予測して、リチウムと別の精神病薬のどちらを投与するのか、および投与する投与量を判定するために利用され得る。いかなる場合も、例示的なリチウム応答経路890は、図4Bおよび4Dに記載の方法400、800を使用することにより特定され得る。リチウム応答経路890における遺伝子の各々は、前頭葉、島、側頭皮質、前帯状皮質、扁桃体、海馬、前尾状核、視床、運動皮質、紡錘状皮質、黒質、小脳、および視床下部を含む脳の一部において発現される。
【0123】
いくつかの実施形態では、薬理学的表現型予測システム100は、現行患者が特定の薬理学的表現型を有するかどうか判定するために現行患者における特定されたSNP、遺伝子、およびゲノム領域の存在を調べ得る。例えば、特定されたSNP、遺伝子、およびゲノム領域は、TBIを治療するためのバルプロ酸に対する陰性応答を示し得る。現行患者がTBIを有する場合、例えば、図5に関して上記したようなパンオミックスデータを生成するためのプロセス500を使用して現行患者の生体試料が提供され、特定されたSNP、遺伝子、およびゲノム領域の存在について解析され得る。現行患者がバルプロ酸に対する陰性応答を示す特定されたSNP、遺伝子、およびゲノム領域のうちの少なくとも一部を有する場合、現行患者は、バルプロ酸を投与されない。他の実施形態では、特定されたSNP、遺伝子、およびゲノム領域は、どの組み合わせがバルプロ酸に対する陰性応答を示すか判定するために任意の好適な方法でスコア化されて、組み合わされ、かつ/または重み付けされる。次いで、現行患者がバルプロ酸に対する陰性応答を示す組み合わせを有するかどうか判定するために、スコア化または重み付けシステムが現行患者の生体試料におけるSNP、遺伝子、およびゲノム領域に適用される。
【0124】
いかなる場合も、薬理学的表現型予測システム100は、特定の薬理学的表現型を示す特定されたSNP、遺伝子、およびゲノム領域を薬理学的表現型についてのパンオミックスデータとして提供し得る。機械学習エンジン146は、特定されたSNP、遺伝子、およびゲノム領域のうちの少なくとも一部を有する訓練患者について、パンオミックスデータをソシオミックスデータ、フィジオミクスデータ、および環境データと共に、当該訓練患者の表現型データに加えて取得し得る。このようにして、機械学習エンジン146は、特定の薬理学的表現型(例えば、うつ病を治療するためケタミンに対する陰性応答)を示す特定されたSNP、遺伝子、およびゲノム領域を有する訓練患者を特定の薬理学的表現型を有するかまたは薬理学的表現型を有しないものとして分類し得る。次いで、ソシオミックスデータ、フィジオミクスデータ、および環境データを使用して特定されたSNP、遺伝子、およびゲノム領域を有し、特定の薬理学的表現型を有する訓練患者を特定されたSNP、遺伝子、およびゲノム領域を有し、特定の薬理学的表現型を有しない訓練患者と区別し得る。
【0125】
例えば、機械学習技術が決定木である場合、各々が現行患者のデータの検定を表すいくつかの節点を含む決定木が生成され得る。節点は、各々が検定もしくは他の測定の成果または観察可能/記録可能なステータスを表す分岐(例えば、「Yes」分岐および「No」分岐)によって接続され得、ここで、分岐は重み付けされ得、葉節点は現行患者における薬理学的表現型の存在を示し得る。他の実施形態では、葉節点は、例えば、重み付けされた分岐を集計または集約することによって定まる薬理学的表現型の可能性を示すか、または葉節点は、現行患者が薬理学的表現型を有するかどうか判定するために閾値と比較され得るスコアを示し得る。いかなる場合も、決定木は、木の最上部に近い節点が、例えば、特定されたSNP、遺伝子、およびゲノム領域によって示されるような現行患者のパンオミックスデータの検定を表すように生成され得る。現行患者が特定の薬理学的表現型(例えば、うつ病を治療するためケタミンに対する陰性応答)を示す特定されたSNP、遺伝子、およびゲノム領域の好適な組み合わせを有する場合には、決定木は、現行患者のソシオミックスデータ、フィジオミクスデータ、および環境データの検定を表すいくつかの節点に分岐する。
【0126】
別の例において、機械学習技術がSVMである場合、薬理学的表現型評価サーバ102は、各訓練患者について、ソシオミックスデータ、フィジオミクスデータ、および環境データ、訓練患者の特定の薬理学的表現型を示す特定されたSNP、遺伝子、およびゲノム領域、ならびに訓練ベクトルとして訓練患者が特定の薬理学的表現型(例えば、うつ病を治療するためケタミンに対する陰性応答)を有するか否かの指標を取得する。SVMは、訓練ベクトルの各々を取得し、薬理学的表現型を有する訓練患者に対応する訓練ベクトルの第1のサブセットおよび薬理学的表現型を有しない訓練患者に対応する訓練ベクトルの第2のサブセットを分離する超平面を生成することによって現行患者が特定の薬理学的表現型を有するか否かを判定するための統計モデルを生成する。
【0127】
環境データ、フィジオミクスデータ、およびソシオミックスデータは、特定の薬理学的表現型を示す特定されたSNP、遺伝子、およびゲノム領域を有する訓練患者または訓練患者のコホートについて取得され得る。より具体的には、訓練モジュール160は、例えばクライアントデバイス106~116および/または1つまたはいくつかのサーバ(例えば、EMRサーバ、多薬療法サーバなど)から、いくつかの訓練患者のパンオミックスデータおよびソシオミックスデータ、フィジオミクスデータ、および環境データを含み得る訓練データセットを、当該訓練患者の薬理学的表現型が既知であり(例えば、以前または現在判定された)、さらに訓練データに提供されている場合、取得し得る。環境データ、フィジオミクスデータ、およびソシオミックスデータには、臨床データ、人口統計学的データ、多薬療法データ、社会経済的データ、教育データ、物質乱用データ、食事および運動データ、法的処罰データ、概日データ、世帯データ、または患者の社会学的状況または環境条件を示す任意の他の好適なデータが含まれ得る。
【0128】
例示的な筋書きでは、訓練患者のパンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは、第1の期間(例えば、1年)にわたって収集される。患者は訓練患者であってもよいが、薬理学的表現型予測システム100の結果は、当該患者のパンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データに基づいて判定されてもよい。上記のように、薬理学的表現型予測システム100を訓練するために使用される訓練データを有する訓練患者は、訓練患者の未知の薬理学的表現型を予測するための現行患者になってもよい。この例では、パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは、1年目の1月~12月から収集され得る。パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは単一の訓練患者のものであり得るが、パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは、訓練患者のコホートについて収集され得る。例えば、パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは、各々が疾病Yを治療するため薬物Xに対する陰性応答を示す特定されたSNP、遺伝子、およびゲノム領域を有する訓練患者のコホートについて収集され得る。
【0129】
パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データには、図2に示すように、個体/コホートおよび集団のパンオミックスおよびファーマコメタボロミクス302、エクスポソーム304、ソシオミックス、人口統計、およびストレス/心的外傷306、ならびに医学的フィジオミクス、EHR、臨床検査値、ストレス、ならびに虐待因子および心的外傷、ならびに医学的成果データ308が含まれ得る。しかしながら、これらは、薬理学的表現型評価サーバ102を訓練するために訓練患者から取得され得る、パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データのいくつかの例にすぎない。訓練患者の睡眠および他の繰り返しされる生活様式の時間的パターンを示す概日データなどの追加のソシオミックスデータ、フィジオミクスデータ、および環境データも含まれ得る。
【0130】
パンオミックスデータおよびファーマコメタボロミクスデータは、訓練患者の生体試料の薬理ゲノミクスアッセイの結果であり得る。1年目のエクスポソームデータには、1年目の8月における訓練患者の雇用状況および住居の場所が含まれ得る。
【0131】
医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データは、1年目の1月~12月からの訓練患者の法的処罰経験を示し得る。
【0132】
医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データには、訓練患者に処方されている薬物およびそれらがいつ処方されるかを含む多薬療法データも含まれ得る。例えば、訓練患者は、1年目の3月に疾病1を治療するための薬物A、疾病2を治療するための薬物B、および疾病3を治療するための薬物C、ならびに1年目の8月に疾病4を治療するための薬物Dを処方されている。また訓練患者は、1年目の8月に薬物Cを漸減している。さらに、医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データには、訓練患者が診断された疾病などの訓練患者の薬理学的表現型を示す表現型データを含まれ得る。例えば、訓練患者は、1年目の1月に疾病1~3と診断される。
【0133】
さらに、上記データには、薬物の有効性および/または有害作用を記載している情報などの追加の表現型データが含まれ得る。例えば、訓練患者は、薬物Cの副作用を経験し得、したがって、訓練患者はこれらの副作用を経験した後に薬物Cを漸減し得る。訓練患者は、薬物Cを服用することに対する陽性応答を経験し得、これにより、薬物Cは訓練患者に対する当該薬物の有効性を示し得る。
【0134】
ソシオミックスおよび人口統計データは、訓練患者の家庭状況を示し得る。例えば、ソシオミックスおよび人口統計データは、1年目の1月での訓練患者の婚姻の状態および子供の数を示し得る。ソシオミックスおよび人口統計データは、1年目の1月~12月の訓練患者の収入金額を示し得る。ソシオミックスおよび人口統計データは、関連する疾患および併存症を発症した、および発症していない家族、ならびにそれらの治療応答および他の薬理学的表現型に関する入手可能な情報を示し得る。
【0135】
この例示的な筋書きでは、パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データには、2年目の1月~12月に収集された訓練患者からのデータも含まれ得る。2年目では、パンオミックスおよびファーマコメタボロミクスデータには、3月に取得される訓練患者のプロテオミクスおよびトランスクリプトミクス、ならびに8月に取得される薬理ゲノミクスアッセイの結果が含まれる。
【0136】
2年目のパンオミックスおよびファーマコメタボロミクスデータには、薬物Bの有毒な代謝産物の存在を示す、2年目の3月での訓練患者の入院患者代謝パネルの結果が含まれ得る。パンオミックスおよびファーマコメタボロミクスデータには、薬物Eの標準的な血中濃度を示す、2年目の8月での、訓練患者の別の入院患者代謝パネルの結果が含まれ得る。
【0137】
2年目の医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データは、訓練患者に実施される様々な精神衛生、物質乱用、ならびにストレスおよび心的外傷アンケートの結果を示す。
【0138】
また2年目の医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データは、訓練患者が2月に薬物Cに対する陰性応答を経験し、その後に薬物Cの服用をやめることを示す。訓練患者は、その代わりに2年目の3月に薬物Fおよび8月に薬物Eを処方される。次いで、訓練患者は、薬物EおよびFの服用に対する陽性応答を経験し、このことは訓練患者に対する当該薬物の有効性を示し得る。
【0139】
また、訓練患者のパンオミックスおよびファーマコメタボロミクスデータによって示される薬物Bの有毒な代謝産物の存在の検出に対応して、訓練患者は、2年目の3月に薬物Bの服用をやめる。医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データは、訓練患者の疾病1の診断が2年目の4月にコントロールされ、薬物Aの投与量が減少されられることをさらに示す。また2年目のソシオミックスおよび人口統計データは、2年目の1月~12月について訓練患者の収入金額を示す。
【0140】
1および2年目のパンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データに含まれる情報は、薬理学的表現型評価サーバ102を訓練して統計モデルを生成するために使用され得る。同様の情報が、統計モデルを生成するために訓練患者のコホートまたは集団を含むいくつかの訓練患者(例えば、十、何百、数千)についてパンオミックスデータと共に収集され得る。このような統計モデルの生成において、重要な特徴が特定され得、この限定された情報のセットを使用するモデルが、現行患者の表現型が限られた情報のセットを用いて予測されるのを可能にするために生成され得る。
【0141】
例えば、パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データは、各々が疾病Yを治療するため薬物Xに対する陰性応答を示す特定されたSNP、遺伝子、およびゲノム領域を有する訓練患者のコホートについて取得され得る。訓練モジュール160は、パンオミックスのデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データの第1のサブセット(例えば、疾病Yを治療するため薬物Xに対する陰性応答を示す訓練患者のコホートの特定されたSNP、遺伝子、およびゲノム領域)を薬物Xに対する陰性応答を有する訓練患者に対応するものとして分類し得、パンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データの第2のサブセットを薬物Xに対する陰性応答を有しない訓練患者に対応するものとして分類し得る。いくつかの実施形態では、訓練モジュール160は、各分類(薬物Xに対する陰性応答を有する訓練患者および薬物Xに陰性応答を有しない訓練患者)のパンオミックスデータ、フェノミクスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データのサブセットに対する統計的測定を実行し得る。例えば、訓練モジュール160は、各分類、平均的なACEスコアなどに対応する訓練患者の平均的な収入を判定し得る。
【0142】
次いで、訓練モジュール160は、各分類についての統計的測定に基づいて現行患者が疾病Yを治療するため薬物Xに対する陰性応答を有するかどうか予測するために、統計モデル(例えば、決定木、ニューラルネットワーク、超平面、線形または非線形回帰係数など)を生成し得る。例えば、統計モデルは、各節点が疾病Yを治療するため薬物Xに対する陰性応答を示す特定されたSNP、遺伝子、およびゲノム領域に関連するパンオミックスデータに対する検定を表す、分岐によって接続されるいくつかの節点を有する決定木であり得る。分岐は、異なるSNP、遺伝子、およびゲノム領域について重みまたはスコアを含み得、現行患者が閾値を超える集約された重みまたはスコアを有する場合、このことは、現行患者が薬物Xに対する陰性応答を示すSNP、遺伝子、およびゲノム領域の組み合わせを有することを示し得る。
【0143】
決定木は、各節点がソシオミックスデータ、フィジオミクスデータ、および環境データに対する検定を表す分岐によって接続されるいくつかの節点をさらに含み得る。第1の節点は、現行患者が1年につき>20,000ドルの収入があるかどうか検定し、第1の節点は、現行患者のACEスコアが>5であるかどうかを検定する第2の節点への「Yes」分岐によって接続され、第2の節点は、現行患者が家庭内暴力を経験しているかどうかを検定する第3の節点への「Yes」分岐によって接続され、第3の節点は、「No」分岐によって現行患者が薬物Xに対する陰性応答を有するかどうか予測する葉節点へと接続される。葉分岐は、それぞれの節点での各検定の結果および/または対応する分岐に割り当てられた重みに基づいて判定され得る、現行患者が薬物Xに対する陰性応答を有する可能性を示し得る。いくつかの実施形態では、葉分岐は、それぞれの節点での各検定の成果および/または対応する分岐に割り当てられる重みに基づいて判定され得る、薬物Xに対する応答スコアを示し得る。応答スコアは、患者対する薬物の有害作用を差し引いた、対応する疾病を治療することに関する薬物の有効性を示し得る。
【0144】
この例示的な筋書きに記載されているように、いくつかの訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、現行患者の薬理学的表現型を予測するための統計モデルを生成するために当該訓練患者の薬理学的表現型の指標(例えば、訓練患者が診断される疾病、薬物に対する応答、物質乱用問題)と共に組み合わされ得る。いくつかの実施形態では、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、遺伝子、転写因子、タンパク質、代謝産物、クロマチン状態、環境と患者の薬理学的表現型との間の関係を判定するためにGWASなどの以前の研究からのパンオミックスデータおよび/またはゲノムデータと組み合わされ得る。
【0145】
いかなる場合も、各訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、統計モデルを生成するために組み合わされ得る。いくつかの実施形態では、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、特定の疾病と診断された(または特定の疾病と診断されていない)訓練患者に対応するものとして分類されるか、物質乱用問題に苦しんでいる(または物質乱用問題に苦しんでいない)訓練患者に対応するものとして分類されるか、薬物への特定の応答を有する訓練患者に対応するものとして分類されるか、または任意の他の好適な方法で分類され得る。一部の筋書きでは、同一の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、異なる期間における複数の薬理学的表現型にセグメント化され得る。例えば、訓練患者のパンオミックスデータは、当該訓練患者のソシオミックスデータ、フィジオミクスデータ、および環境データが変化する度に経時的に変更され得、第1の期間において当該訓練患者は、1つの精神病に罹患し得るが、第2の期間において当該訓練患者は、別の精神病に罹患し得る。
【0146】
またいくつかの実施形態では、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、人口統計に従って分類され得る。例えば、ヨーロッパ系の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、1つのコホートに割り当てられ得、一方で中国系の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、別のコホートに割り当てられ得る。他の例では、25~35歳の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、1つのコホートに割り当てられ得、一方で35~45歳の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、別のコホートに割り当てられ得る。
【0147】
かかる実施形態では、訓練モジュール160は、各薬理学的表現型についておよび/または各コホート(例えば、人口統計に基づいて分けられる)について異なる統計モデルを生成し得る。例えば、第1の統計モデルは、現行患者が物質乱用問題を経験する可能性を判定するために生成され得、第2の統計モデルは、1つの種類の疾病のリスクを判定するために生成され得、第3の統計モデルは、別の種類の疾病のリスクを判定するために生成され得、第4の統計モデルは、特定の薬物に対する陰性応答の可能性を判定するために生成され得るなどである。他の実施形態において、訓練モジュール160は、現行患者が薬理学的表現型のうちのいずれかを有する可能性を判定するための単一の統計モデルを生成し得るか、または現行患者が任意の数の薬理学的表現型を有する可能性を判定するための任意の数の統計モデルを生成し得る。
【0148】
一旦、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが様々なコホートおよび/または薬理学的表現型に対応するサブセットに分類されると、特定の薬理学的表現型についてのパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、統計モデルを生成するために解析され得る。統計モデルは、ニューラルネットワーク、深層学習、決定木、サポートベクトルマシン、または前述の機械学習法のうちのいずれかを使用して生成され得る。例えば、ヨーロッパ系の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが解析されて、XYZ遺伝子に見いだされるSNP2、失業、暴力犯罪歴を有する訓練患者と統合失調症の罹患の間に高い相関があると判定され得る。したがって、XYZ遺伝子に見いだされるSNP2、失業、および暴力犯罪歴を有するヨーロッパ系の患者は、統合失調症のリスクが高くてもよい。
【0149】
機械学習技術がニューラルネットワークまたは深層学習である場合、訓練モジュール160は入力節点、中間または「隠れた」節点、辺および出力節点を有するグラフを生成し得る。節点は、パンオミックスの、ソシオミックスデータ、フィジオミクスデータ、または環境データに対して実行される検定または関数を表し得、辺は節点間の接続を表し得る。いくつかの実施形態では、出力節点は、薬理学的表現型の指標または薬理学的表現型の可能性を含み得る。いくつかの実施形態では、辺は、薬理学的表現型の判定する際の前の節点についての検定または関数の強度に従って重み付けされ得る。
【0150】
したがって、より大きな重みを有する前の節点に対するパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、または環境データの種類は、より小さな重みを有する前の節点に対するパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、または環境データの種類よりも薬理学的表現型の判定により重要であり得る。最も重要なパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、または環境データを特定することによって、訓練モジュール160は、最も重要でなく、誤りを導く、かつ/またはランダムなノイズであり得るパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、または環境データを統計モデルから除去し得る。さらに、薬理学的表現型に対して最も重要なパンオミックスデータ(閾値を上回ってパンオミックスデータを順位付け、重み付け、またはスコア化することによって判定される)は、患者の生体試料についてアッセイするパンオミックスデータの種類の選択を可能にするために使用され得る。
【0151】
例えば、ニューラルネットワークは、各々がいくつかの隠れ節点に接続されている、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを表す4つの入力節点を含み得る。次いで、隠れ節点は、現行患者が双極性障害に罹患する可能性を示す出力節点に接続される。接続は、割り当てられた重み有し得、隠れ節点は、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データに対して実行される検定または関数を含み得る。いくつかの実施形態では、検定または関数は、訓練データまたはGWASなどの以前の研究によって定まる分布であり得る。例えば、特定のSNPを有し、収入分布の第98百分位数内にいる患者は、同一のSNPを有し、収入分布の第10百分位数内にいる患者よりも疾病Yの可能性がより低くてもよい。
【0152】
いくつかの実施形態では、隠れ節点は、各々が、現行患者が異なる疾病に罹患する可能性、現行患者が物質乱用問題を有する可能性、および/または特定の薬物に対する現行患者についての可能性または応答スコアを示す、いくつかの出力節点に接続され得る。この例では、4つの入力節点には、患者の家系、患者の現在の収入および/またはその前年にわたる患者の収入の変化、患者のLMNOP遺伝子におけるSNP13の存在、ならびに患者の不健康な睡眠パターンが含まれ得る。
【0153】
いくつかの実施形態では、4つの入力節点の各々は、患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、または環境データに数値を割り当て得、検定または関数が、隠れ節点において数値に適用され得る。次いで、検定または関数の結果は、例えば、リチウムに対する応答スコアを判定するために重み付けおよび/または集計され得る。応答スコアは、患者対する薬物の有害作用を差し引いた、対応する疾病を治療することに関する薬物の有効性を示し得る。この例において、リチウムに対する応答スコアが高く(例えば、100中80)、患者が双極性障害を治療するためにリチウムを服用した場合に陽性に応答すること示してもよい。したがって、医療提供者はリチウムを処方して、患者の双極性障害を治療し得る。いくつかの実施形態では、双極性障害を治療するためのリチウムに対する応答スコアは、双極性障害を治療するための他の処方薬物に対する応答スコアと比較され得る。次いで、薬物はそれらのそれぞれの応答スコアに従って順位付けられ得、医療提供者に対して患者に最高順位の薬物を処方するように推奨され得る。しかしながら、これは、表現型を判定するための統計モデルの入力および得られた出力の単に1つの例にすぎない。他の例において、任意の数の入力節点が、患者の数種類のパンオミックスデータ、ソシオミックスデータおよび環境データを含み得る。さらに、任意の数の出力節点が、異なる疾病に罹患する可能性またはリスク、物質乱用問題の可能性、併存症の可能性などを判定し得る。
【0154】
追加の訓練データが収集される度に、重み、節点および/または接続が調整され得る。このようにして、統計モデルは、常にまたは定期的に更新されて、ソシオミックスデータ、フィジオミクスデータ、環境データ、およびパンオミックスデータの少なくともリアルタイムに近い表現を反映し得る。
【0155】
いくつかの実施形態では、患者を特定の薬理学的表現型を有するかまたは有しないものとして分類するためのコホートまたは人口統計学的マーカーを特定するために機械学習技術が使用され得る。上記の例のように、隠れ節点に含まれる検定または関数は、それぞれ、特定の薬理学的表現型を有する、および有しない訓練患者の第1および第2のサブセットのソシオミックスデータ、フィジオミクスデータ、および環境データに対して統計的測定を実行することによって開発され得る。薬理学的表現型を有する訓練患者と薬理学的表現型を有しない訓練患者とを区別するための訓練患者のソシオミックスデータ、フィジオミクスデータ、および環境データに含まれる最も有意な変数を特定するために統計的測定を使用してもよい。このように、隠れ節点に含まれる検定または関数は、必ずしも先験的に既知であるというわけではない。
【0156】
統計モデルが上記のような機械学習技術(例えば、ニューラルネットワーク、深層学習、決定木、サポートベクトルマシンなど)を使用して生成された後、訓練モジュール160は、テスト患者の薬理学的表現型と共にテスト患者からのテストパンオミックスデータ、テストソシオミックスデータ、テストフィジオミクスデータ、およびテスト環境データを使用して統計モデルをテストし得る。テスト患者は、彼の/彼女の薬理学的表現型が既知の患者であり得る。しかしながら、テストを目的として、訓練モジュール160は、テスト患者が様々な薬理学的表現型を有する可能性を、テスト患者のテストパンオミックスデータ、テストソシオミックスデータ、テストフィジオミクスデータ、およびテスト環境データを機械学習技術を使用して生成された統計モデルと比較することによって判定し得る。
【0157】
例えば、訓練モジュール160は、テスト患者のテストパンオミックスデータ、テストソシオミックスデータ、テストフィジオミクスデータおよびテスト環境データを使用してニューラルネットワークの節点を走査する。訓練モジュール160が特定の薬理学的表現型についての可能性または応答スコアを示す結果節点に到達する場合、可能性または応答スコアが既知のテスト患者の薬理学的表現型と比較され得る。
【0158】
いくつかの実施形態では、テスト患者が特定の薬理学的表現型(例えば、疾病Y)を有する可能性が0.5を超え、既知のテスト患者の薬理学的表現型が、彼女が疾病Yに罹患したことである場合、判定は正しいとみなされ得る。他の例では、テスト患者が有害な副作用なしに強い応答を有した薬物に対する応答スコアが最も高い場合、判定は正しいとみなされ得る。他の実施形態では、既知のテスト患者の薬理学的表現型が彼女が特定の薬理学的表現型を有することである場合、可能性は、0.7または判定された可能性が正しいとみなされるためのいくつかの他の所定の閾値を超えていなければならない場合がある。
【0159】
さらに、いくつかの実施形態では、訓練モジュール160が所定の閾値時間量より正しい場合、統計モデルは表現型評価モジュール162に提出され得る。他方で、訓練モジュール160が閾値量より正しくない場合、訓練モジュール160は更なる訓練のためにトレーニングデータセットを取得し続け得る。
【0160】
一旦、統計モデルがその精度を確認するために適切にテストされると、表現型評価モジュール162は、統計モデルを取得し得る。表現型評価モジュール162は、統計モデルに基づいて現行患者が様々な薬理学的表現型を有す可能性を判定し得る。表現型評価モジュール162は、現行患者がある種の薬理学的表現型を有するかどうか不明の場合、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを取得し得る。ソシオミックスデータ、フィジオミクスデータ、および環境データは、前述の例示的な筋書きに記載されているように、いくつかの時点で収集され得、訓練患者について収集されたソシオミックスデータおよび環境データに類似し得る。
【0161】
より具体的には、ソシオミックスデータ、フィジオミクスデータ、および環境データには、現行患者が診断された疾病を含む現行患者の病歴、臨床検査の結果、および患者に実行された処置などの臨床データ、現行患者の家族歴などが含まれ得る。ソシオミックスデータ、フィジオミクスデータ、および環境データには、例えば、特定の期間わたって現行患者に処方された薬物の各々、各処方の期間、再調剤数、現行患者が時間通りに各薬物を補充していたかどうかなどの多薬療法データをも含まれ得る。さらに、ソシオミックスデータ、フィジオミクスデータ、および環境データには、例えば、現行患者の家系または民族性、現行患者の年齢、現行患者の体重、現行患者の性、現行患者の住居の場所などの人口統計学的データが含まれ得る。さらに、ソシオミックスデータ、フィジオミクスデータ、および環境データには、現行患者の収入金額および/または収入源、教育データ(例えば、高校卒業証書、GED、学士、修士など)などの現行患者の社会経済的データ、および現行患者がどれくらい運動しているか、現行患者の食習慣、特定の期間にわたる体重増加または体重減少の量を示す食事および運動データなどが含まれ得る。さらに他で、ソシオミックスデータ、フィジオミクスデータ、および環境データには、現行患者の婚姻の状態、子供の数、および現在現行患者と共に住んでいる家族などの世帯データ、現行患者の前科および現行患者が虐待または他の犯罪の被害者であったかどうかを示す法的処罰データ、現行患者が物質乱用問題に苦しんでいるかまたは苦しんでいたかどうかを示す物質乱用データ、ならびに現行患者の睡眠パターンを示す概日データが含まれ得る。
【0162】
ソシオミックスデータ、フィジオミクスデータ、および環境データに加えて、表現型評価モジュール162は、現行患者のパンオミックスデータを取得し得る。パンオミックスデータは、図4Cに示すようにパンオミックスデータと類似し得る。より具体的には、パンオミックスデータには、遺伝的形質を示すゲノムデータ、遺伝子発現を示すエピゲノムデータ、DNA転写を示すトランスクリプトームデータ、ゲノムによって発現されるタンパク質を示すプロテオミクスデータ、ゲノムのクロマチン状態を示すクロモソミックスデータ、および/またはゲノムにおける代謝産物を示すメタボロミクスデータが含まれる。
【0163】
次いで、表現型評価モジュール162は、統計モデルに現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを適用して、現行患者が様々な薬理学的表現型を有する可能性を判定し得る。いくつかの統計モデルが生成される場合、表現型評価モジュール162は、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを統計モデルの各々に適用して、例えば、現行患者が疾病Yを罹患し、物質乱用問題を有し、併存症を経験する可能性を判定し得る。
【0164】
いくつかの実施形態では、医療提供者は、特定の薬物に対する現行患者の予測される応答などの特定の種類の薬理学的表現型のリクエスト、または特定の疾病を治療するのに最適な薬物のリクエストを提供し得る。したがって、表現型評価モジュール162は、医療提供者のリクエストに応じるために生成される統計モデルまたは統計モデルのうちの一部を適用し得る。次いで、医療提供者は、特定の疾病を治療するのに最適な薬物および投与量の指標を薬理学的表現型評価サーバ102から受信し得る。
【0165】
他の実施形態では、薬理学的表現型評価サーバ102は、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを統計モデルに適用していくつかの薬理学的表現型の各々について可能性または応答スコアを判定することによって、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを評価し得る。次いで、薬理学的表現型評価サーバ102は、現行患者の医療提供者が再検討するためのリスク解析ディスプレイを生成し得る。
【0166】
リスク解析ディスプレイは、例えば、患者の名前、生年月日、住所などの患者の個人情報の指標を含み得る。また、リスク解析ディスプレイは、確率(例えば、0.6)、百分率(例えば、80パーセント)、カテゴリセット(例えば、「高リスク」、「中リスク」、または「低リスク」)からのカテゴリとして、または任意の他の好適な方法で表示され得る様々な薬理学的表現型の可能性または他の半定量的および定量的尺度の各々の指標を含み得る。さらに、リスク解析ディスプレイは、数値的(例えば、100中75)、カテゴリ別(例えば、「強い応答」、「弱い応答」など)であり得るか、または任意の他の好適な方法で表示され得る薬物に対する応答スコアの指標を含み得る。さらに、可能性または応答スコアの各々は、対応する薬理学的表現型(例えば、疾病Yの高リスク)の説明と共に表示され得る。かかる危険因子およびレベルは、統計モデルの内部の仕組みにおいて定量的または半定量的形式で格納および処理され得るが、ケア提供者および患者への出力のために定性的用語に変換され得る。
【0167】
いくつかの実施形態では、薬理学的表現型評価サーバ102は、薬理学的表現型の可能性を可能性閾値(例えば、0.5)と比較し得、薬理学的表現型の可能性が可能性閾値を超える場合、薬理学的表現型をリスク解析ディスプレイに含め得る。例えば、現行患者について高リスクである疾病だけがリスク解析ディスプレイに含まれ得る。他の例では、現行患者について物質乱用問題の可能性が可能性閾値を超える場合、リスク解析ディスプレイは、現行患者が物質乱用問題に苦しむ可能性がある指標を含み得る。このようにして、医療提供者は、現行患者に早期介入を推奨するかまたは提供する。またいくつかの実施形態では、特定の疾病に対応する薬物の各々に対する応答スコアは、(例えば、最高から最低まで)順位付けられ得る。薬物および対応する応答スコアは、リスク解析ディスプレイ上に順位付けられた順で提供され得る。他の実施形態では、特定の疾病について最も順位が高い薬物だけが、リスク解析ディスプレイで含まれ得る。
【0168】
患者に処方するように医療提供者への推奨として、特定の疾病について最も順位が高い薬物または薬物(および/もしくは他の治療法)を示すことに加えて、リスク解析ディスプレイは、現行患者について薬物の推奨される投与量を含み得る。また、リスク解析ディスプレイは、現行患者の薬剤に対する応答の修飾をもたらし得る任意のソシオミックス、フィジオミクス、環境、または人口統計学的情報(例えば、食事、運動、曝露における変化など)を含み得る。さらに、リスク解析ディスプレイは、彼の/彼女の多薬療法データまたは他の方法に従って投与量を変更すること、薬物を変更すること、または現行患者が受けている治療コースをなくすことによって現行患者の現在の治療法を変更することの推奨を含み得る。例えば、推奨される薬物が現行患者の多薬療法データの薬物のうちの1つまたはいくつかを冗長にし得る場合、リスク解析ディスプレイは、それらの薬物の服用を止めることの推奨を含み得る。
【0169】
いくつかの実施形態では、患者が最も順位が高い薬物に禁忌を示す薬物を服用している場合、薬理学的表現型評価サーバ102は、より低い応答スコア(または他の薬物に特異的な特性)を有するが、現在の治療法とのより高い互換性(または他の多薬療法特性)を有する薬物を推奨し得る。例えば、薬理学的表現型評価サーバ102は、現行患者の多薬療法データを取得し、多薬療法データ内の薬物を推奨される薬物と比較して禁忌についてチェックし得る。現行患者に処方されている薬物のうちのいずれかに禁忌を有しない最も順位が高い薬物が、リスク解析ディスプレイに含まれ得る。
【0170】
薬理学的表現型は、臨床の場に加えて医薬品開発および保険適用のための調査の場において、予測され得る。研究の場では、新規の、実験的、または転用される薬物に関連する薬理学的表現型は、研究プログラムにおいて候補患者コホートについて予測され得る。患者は、治験薬に関連するそれらの予測された薬理学的表現型に従って、実験的治療のために選択され得る。
【0171】
さらに、現行患者の薬理学的表現型が明らかとなる(例えば、現行患者は閾値時間量(1年などの)後に特定の薬理学的表現型を有する)場合、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データ、ならびに表現型データが訓練データに加えられ得、それに応じて統計モデルが更新され得る。
【0172】
図6は、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データ、ならびに表現型データが経時的に収集される、現行患者についての例示的なタイムライン600を示す。次いで、薬理学的表現型予測システム100は、統計モデルにより現行患者の収集されたデータを解析して、現行患者の薬理学的表現型を予測し得る。より具体的には、例示的なタイムライン600において、現行患者の診断、治療および転帰602が収集される。また現行患者の医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷604が、現行患者のソシオミックスおよび人口統計608、パンオミックスおよびファーマコメタボロミクス610、およびエクスポソームデータ612と同様に収集される。さらに、現行患者の表現型データ606(現行患者の医学的成果602を示し得る)も収集される。
【0173】
上記のように、薬理学的表現型予測システム100は、臨床治療および/または薬学的または他の生物医学的研究の場における臨床医のための診療判断支援モジュール614および研究者のための診療判断支援モジュール616を含み得る。
【0174】
臨床医のための診療判断支援モジュール614において、統計モデルは、個々の訓練患者または訓練患者のコホート/集団からの訓練データに基づいて、上記のような同様の方法で生成される。現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データ、ならびに表現型データ(例えば、診断、治療、および転帰602、医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷604、表現型データ606、ソシオミックスおよび人口統計608、パンオミックスおよびファーマコメタボロミクス610、ならびにエクスポソームデータ612)は、現行患者の薬理学的表現型を予測するために統計モデルに適用される。薬理学的表現型には、疾患リスクまたは症状、薬物の推奨、薬物有害応答スコア、総合的な薬物応答スコアなどが含まれ得る。しかしながら、これらは、単に薬理学的表現型の少数の例にすぎない。追加のまたは代替的な薬理学的表現型が、全体にわたって記載される。
【0175】
研究者のための診療判断支援モジュール616において、統計モデルは、個々の患者または患者のコホート/集団からの訓練データに基づいて上記のような同様の方法で生成される。患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データ、ならびに表現型データは、統計モデルに適用されて、訓練患者のコホートと特定の薬理学的表現型、薬理/ファーマコメタボロミクス結果、正確な表現型解析結果、バイオマーカーなどの関係を説明するGWAS解析結果を特定する。
【0176】
タイムライン600内の第1の時点において、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、現行患者から収集される。患者の表現型状態は、この時点で陰性622である。次いで、第2の時点において現行患者は、疾病の症状を経験し始め、後に入院し、さらに陰性の表現型状態624をもたらす。入院の結果としての処置に対する患者の応答626を含むこの情報の全ては、臨床医のための診療判断支援モジュール614に提供される。次いで、臨床医のための診療判断支援モジュール614は、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データに基づいて現行患者について薬理学的表現型を判定し、例えば、現行患者について最も高い予測された応答を有する治療選択628を提供する。結果として、現行患者の表現型状態は、陰性622、624から陽性630に遷移し、後の時点では陽性632のままである。
【0177】
図7は、機械学習技術を使用して薬理学的表現型を判定するための例示的な方法700を表すフローチャートを示す。方法700は、薬理学的表現型評価サーバ102で実行され得る。いくつかの実施形態では、方法700は、非一時的コンピュータ可読メモリに格納される命令のセットに実施され、薬理学的表現型評価サーバ102の1つ以上のプロセッサにおいて実行可能であり得る。例えば、方法700は、図1Aの機械学習エンジン146内の訓練モジュール160および表現型評価モジュール162によって実行され得る。
【0178】
ブロック702において、訓練モジュール160は、訓練患者が薬理学的表現型を有するかどうかが既知の場合(例えば、現在または以前に判定された薬理学的表現型をする)、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを含む訓練データセットを取得し得る。環境データ、フィジオミクスデータ、およびソシオミックスデータには、臨床データ、人口統計学的データ、多薬療法データ、社会経済的データ、教育データ、物質乱用データ、食事および運動データ、法的処罰データ、概日データ、世帯データ、または患者の環境を示す任意の他の好適なデータが含まれ得る。パンオミックスデータには、遺伝的形質を示すゲノムデータ、遺伝子発現を示すエピゲノムデータ、DNA転写を示すトランスクリプトームデータ、ゲノムによって発現されるタンパク質を示すプロテオミクスデータ、ゲノムのクロマチン状態を示すクロモソミックスデータ、および/またはゲノムにおける代謝産物を示すメタボロミクスデータが含まれる。上記のように、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、いくつかの時点(例えば、3年の期間にわたって)で取得され得る。
【0179】
ソシオミックスデータ、フィジオミクスデータ、および環境データは、EMRサーバにある電子医療記録(EMR)から、および/またはいくつかの薬局から患者の薬局データを集める多薬療法サーバにある多薬療法データから取得され得る。さらに、ソシオミックスデータ、フィジオミクスデータ、および環境データは、訓練患者の医療提供者から取得されてもよく、または訓練患者からの自己報告でもよい。いくつかの実施形態では、訓練データは、いくつかのサーバ(例えば、EMRサーバ、多薬療法サーバなど)および、医療提供者および患者のクライアントデバイス106~116を含む供給源の組み合わせから取得され得る。
【0180】
パンオミックスデータは、医療提供者のクライアントデバイス106~116から取得され得る。例えば、医療提供者は、患者のパンオミックスを測定ために生体試料を(例えば、唾液、生検材料、血液試料、骨髄、毛髪、汗、匂いなどから)取得し、生体試料を解析することによって取得された検査結果を薬理学的表現型評価サーバ102に提供し得る。他の実施形態では、パンオミックスデータは、生体試料を解析する検査室から直接取得され得る。さらなる他の実施形態では、パンオミックスデータは、訓練患者のコホートと特定の薬理学的表現型の間の関係を説明するGWASまたは候補遺伝子関連解析から取得され得る。
【0181】
また訓練モジュール160は、例えば、訓練患者が罹患している慢性疾患、以前に訓練患者に処方された薬物に対する薬理学的応答、訓練患者の各々が物質乱用問題に苦しんでいるかどうかなどの訓練患者の薬理学的表現型に関連した表現型データを取得し得る。
【0182】
次いで、訓練モジュール160は、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データに関連する、訓練患者の薬理学的表現型に従って、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データを分類し得る(ブロック704)。薬理学的表現型には、訓練患者のうちの少なくとも一部が診断されている疾病、物質乱用問題、様々な薬物に対する薬理学的応答、併存症などが含まれ得る。一部の筋書きでは、同一の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、異なる期間における複数の薬理学的表現型にセグメント化され得る。例えば、訓練患者のパンオミックスデータは、当該訓練患者の環境データが変化する度に経時的に変更され得、第1の期間において当該訓練患者は、1つの精神病に罹患し得るが、第2の期間において当該訓練患者は、別の精神病または併存疾病に罹患し得る。
【0183】
またいくつかの実施形態では、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データは、人口統計に従って分類され得る。例えば、ヨーロッパ系の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、1つのコホートに割り当てられ得、一方で中国系の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、別のコホートに割り当てられ得る。他の例では、25~35歳の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、1つのコホートに割り当てられ得、一方で35~45歳の訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、別のコホートに割り当てられ得る。
【0184】
次いで、訓練患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データ、ならびにそれらのそれぞれの薬理学的表現型が、様々な機械学習技術を使用して解析されて、現行患者が様々な薬理学的表現型を有することを示す可能性または他の半定量的および定量的尺度を判定するための統計モデルが生成され得る(ブロック706)。統計モデルは、応答スコア、投与量、または現行患者が様々な薬物に対して有する予測される応答の任意の他の好適な指標を判定するために使用され得る。
【0185】
例えば、図4Bを参照して上記のように、訓練患者のコホートと特定の薬理学的表現型との間の関係を示すGWASまたは候補遺伝子関連解析からの統計的検定が、様々な機械学習技術を使用して解析されて、研究において特定されたバリアントおよび/または特定されたバリアントとの密接な連鎖を有するバリアントをスコア化および/または順位付けされる。最高順位のバリアントが、特定の薬理学的表現型と相関するか、または強く関連するSNP、遺伝子、およびゲノム領域として特定され得る。
【0186】
例えば、ワルファリン表現型について、肝臓、小腸、および血管系で発現される31個の遺伝子における74個のSNPを含む(図4Fに示すような)ワルファリン応答経路が、特定され得る。ワルファリン応答経路には、以下の遺伝子が含まれる:AKR1C3(肝臓で発現される)、CYP2C19(肝臓で発現される)、CYP2C8(肝臓で発現される)、CYP2C9(肝臓で発現される)、CYP4F2(肝臓で発現される)、F5(肝臓で発現される)、F7(肝臓で発現される)、F10(肝臓で発現される)、F11(肝臓で発現される)、FGG(肝臓で発現される)、ORM1(肝臓で発現される)、PRSS53(肝臓で発現される)、VKORC1(肝臓で発現される)、STX4(小腸で発現される)、F13A1(血管系で発現される)、PROCR(血管系で発現される)、VWF(血管系で発現される)、CFHR5(肝臓で発現される)、FGA(肝臓で発現される)、FMO5(肝臓で発現される)、HRG(肝臓で発現される)、KNG1(肝臓で発現される)、SURF4(肝臓で発現される)、ABO(小腸で発現される)、LYZ(小腸で発現される)、PCGF3(小腸で発現される)、PRSS8(小腸で発現される)、TRPC4AP(小腸で発現される)、SLC44A2(血管系で発現される)、SPHK1(血管系で発現される)、およびUSP7(血管系で発現される)。31個の遺伝子に含まれる74個のSNPは、以下の通りである:AKR1C3遺伝子に含まれるrs12775913(調節性SNP)、rs346803(調節性SNP)、rs346797(調節性SNP)、rs762635(調節性SNP)およびrs76896860(調節性SNP);CYP2C19遺伝子に含まれるrs3758581(コードSNP);CYP2C8遺伝子に含まれるrs10509681(コードSNP)およびrs11572080(コードSNP);CYP2C9遺伝子に含まれるrs1057910(コードSNP)、rs1799853(コードSNP)およびrs7900194(コードSNP);CYP4F2遺伝子に含まれるrs2108622(コードSNP);F5遺伝子に含まれるrs6009(調節性SNP)、rs11441998(調節性SNP)、rs2026045(調節性SNP)、rs34580812(調節性SNP)、rs749767(調節性SNP)、rs9378928(調節性SNP)およびrs7937890(調節性SNP);F7遺伝子に含まれるrs7552487(調節性SNP)、rs6681619(調節性SNP)、rs8102532(調節性SNP)、rs491098(コードSNP)およびrs6046(コードSNP);F10遺伝子に含まれるrs11150596(調節性SNP)およびrs11150596(調節性SNP);F11遺伝子に含まれるrs2165743(調節性SNP)およびrs11252944(調節性SNP);FGG遺伝子に含まれるrs8050894(調節性SNP);ORM1遺伝子に含まれるrs10982156(調節性SNP);PRSS53遺伝子に含まれるrs7199949(コードSNP);VKORC1遺伝子に含まれるrs2884737(調節性SNP)、rs9934438(調節性SNP)、rs897984(調節性SNP)およびrs17708472(調節性SNP);STX4遺伝子に含まれるrs35675346(調節性SNP)およびrs33988698(調節性SNP);F13A1遺伝子に含まれるrs5985(コードSNP);PROCR遺伝子に含まれるrs867186(コードSNP);VWF遺伝子に含まれるrs75648520(調節性SNP)、rs55734215(調節性SNP)、rs12244584(調節性SNP)およびrs1063856(コードSNP);CFHR5遺伝子に含まれるrs674302(調節性SNP);FGA遺伝子に含まれるrs12928852(調節性SNP)およびrs6050(コードSNP);FMO5遺伝子に含まれるrs8060857(調節性SNP)およびrs7475662(調節性SNP);HRG遺伝子に含まれるrs9898(コードSNP);KNG1遺伝子に含まれるrs710446(コードSNP);SURF4遺伝子に含まれるrs11577661(調節性SNP);ABO遺伝子に含まれるrs11427024(調節性SNP)、rs6684766(調節性SNP)、rs2303222(調節性SNP)、rs1088838(調節性SNP)、rs13130318(調節性SNP)およびrs12951513(調節性SNP);LYZ遺伝子に含まれるrs8118005(調節性SNP);PCGF3遺伝子に含まれるrs76649221(調節性SNP)、rs9332511(調節性SNP)およびrs6588133(調節性SNP);PRSS8遺伝子に含まれるrs11281612(調節性SNP);TRPC4AP遺伝子に含まれるrs11589005(調節性SNP)、rs8062719(調節性SNP)、rs889555(調節性SNP)、rs36101491(調節性SNP)、rs7426380(調節性SNP)、rs6579208(調節性SNP)、rs77420750(調節性SNP)およびrs73905041(コードSNP);SLC44A2遺伝子に含まれるrs3211770(調節性SNP)、rs3211770(調節性SNP)、rs3087969(コードSNP)およびrs2288904(コードSNP);SPHK1遺伝子に含まれるrs683790(調節性SNP)およびrs346803(コードSNP);および、USP7遺伝子に含まれるrs201033241(コードSNP)。
【0187】
他の例では、リチウム表現型について、脳で発現される12個の遺伝子における78個のSNPを含むリチウム応答経路が、特定され得る。
【0188】
環境データ、ソシオミックスデータ、フィジオミクスデータ、および表現型データは、SNP、遺伝子、およびゲノム領域の好適な組み合わせを有する訓練患者について取得されて、特定されたSNP、遺伝子、およびゲノム領域を有し、特定の薬理学的表現型を有する訓練患者が、特定されたSNP、遺伝子、およびゲノム領域を有し、特定の薬理学的表現型を有しない訓練患者と区別され得る。
【0189】
回帰アルゴリズム(例えば、最小2乗回帰、直線回帰、ロジスティック回帰、段階的回帰、多変量適応型回帰スプライン、局所推定散布図平滑化など)、インスタンスベースアルゴリズム(例えば、k近傍法、学習ベクトル量子化、自己組織化マップ、局所重み付き学習など)、正則化アルゴリズム(例えば、リッジ回帰、最小絶対収縮と選択演算子、弾性ネット、最小角回帰など)、決定木アルゴリズム(例えば、分類木と回帰木、ID3、C4.5、C5、カイ二乗自動相互作用検出、決定株、M5、条件付き決定木など)、クラスタリングアルゴリズム(例えば、k-平均法、k-中央値法、期待値最大化、階層的クラスタリング、スペクトルクラスタリング、ミーンシフト、DBSCAN、OPTICSなど)、相関ルール学習アルゴリズム(例えば、アプリオリアルゴリズム、Eclatアルゴリズムなど)、ベイズのアルゴリズム(例えば、ナイーブベイズ、ガウシアンナイーブベイズ、多項式ナイーブベイズ、AODE、ベイズ信頼ネットワーク、ベイズネットワークなど)、人工ニューラルネットワーク(例えば、パーセプトロン、ホップフィールドネットワーク、放射基底関数ネットワークなど)、深層学習アルゴリズム(例えば、多層パーセプトロン、深層ボルツマンマシン、ディープビリーフネットワーク、畳み込みニューラルネットワーク、積層オートエンコーダ、敵対的生成ネットワークなど)、次元削減アルゴリズム(例えば、主成分分析、主成分回帰、部分的最小二乗回帰、サモンマッピング、多次元的尺度構成法、射影追跡、線形判別分析、混合判別分析、二次判別分析、フレキシブル判別分析、因子分析、独立成分分析、非負値行列因子分解、t分布型確率的近傍埋め込み法など)、アンサンブルアルゴリズム(例えば、ブースティング、ブートストラップアグリゲーティング、アダブースト、スタック汎化、勾配ブースティングマシン、勾配ブースティング回帰木、ランダム決定フォレストなど)、強化学習(例えば、時間差学習、Q学習、学習オートマタ、SARSA法など)、サポートベクトルマシン、混合モデル、進化アルゴリズム、確率的グラフィカルモデルなどを含むがこれに限定されない機械学習技術を使用して薬理学的表現型を予測するための統計モデルが生成され得る。例えば、統計モデルは、ソシオミックスデータ、フィジオミクスデータ、および環境データ、例えば、各分類に対応する訓練患者に関する平均的な収入、または平均的なACEスコアなどのソシオミックスデータに対して実行される統計的測定に加えて、特定されたSNP、遺伝子、およびゲノム領域に基づいて生成され得る。
【0190】
さらに、訓練モジュール160は、いくつかの薬理学的表現型のためのいくつかの統計モデルを生成し得る。例えば、第1の統計モデルは、現行患者が物質乱用問題を経験する可能性を判定するために生成され得、第2の統計モデルは、1種類の疾病に罹患するリスクを判定するために生成され得、第3の統計モデルは、別の種類の疾病に罹患するリスクを判定するために生成され得、第4の統計モデルは、特定の薬物に対する陰性応答の可能性を判定するために生成され得る、などである。いかなる場合も、各統計モデルは、グラフィカルモデル、決定木、確率分布、または訓練データに基づいて現行患者が薬物に対する特定の薬理学的表現型または応答スコアを有する可能性を判定するための任意の他の好適なモデルであり得る。
【0191】
ブロック708において、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータおよび環境データが、取得され得る。パンオミックスデータは、図5を参照して上記のプロセス500と同様のプロセスを使用して取得され得る。例えば、患者の生体試料は、保健医療提供者によって取得され、解析のために分析検査室に送られ得る。次いで、細胞が生体試料から抽出され、iPSCなどの幹細胞に初期化される。次いで、iPSCは、種々の組織(例えば、神経細胞、心筋細胞など)に分化され、パンオミックスデータを取得するために分析される。パンオミックスデータは、ゲノムデータ、エピゲノムデータ、トランスクリプトームデータ、プロテオミクスデータ、クロモソミックスデータ、メタボロミクスデータおよび/または生物学的ネットワークを含み得る。特に、パンオミックスデータは、患者試料のメタボロミクス測定による患者の現在の薬物の定量的評価を含み得る。
【0192】
ソシオミックスデータ、フィジオミクスデータ、および環境データは、例えば、上述のエクスポソーム、ソシオミックス、および人口統計、ならびに医学的フィジオミクス、EHR、臨床検査値、ストレスならびに虐待因子および心的外傷、ならびに医学的成果データのように、いくつかの時点で収集され得る。例えば、現行患者のソシオミックスデータ、フィジオミクスデータ、および環境データは、現行患者が独身であったこと、そして1年目に結婚し、2年目に離婚したことを示し得る。また、ソシオミックスデータ、フィジオミクスデータ、および環境データは、現行患者が1年目に雇用され、そして2年目に失業したことを示し得る。さらに、ソシオミックスデータ、フィジオミクスデータ、および環境データは、現行患者が1年目において家庭内暴力の被害者であったことを示し得る。縦断的データは、統計モデルに示されるのと同程度の期間にわたって訓練患者の同様の経験と比較され得る。
【0193】
次いで、ブロック710において、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データが統計モデルに適用されて、現行患者の薬理学的表現型が判定される。薬理学的表現型は、現行患者が様々な疾病を有する可能性、または様々な薬物に対する現行患者の予測される応答を示す応答スコアおよび薬物に対して推奨される投与量を含み得る。例えば、統計モデルがニューラルネットワークである場合、表現型評価モジュール162は、可能性または応答スコアを判定するために、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データを使用してニューラルネットワークの節点を走査して様々な出力節点に到着し得る。いくつかの統計モデルが生成される場合、表現型評価モジュール162は、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データを各々の統計モデルに適用して、例えば、双極性障害に罹患する可能性またはリスク、統合失調症に罹患する可能性またはリスク、物質乱用問題を有する可能性、双極性障害を治療するためのリチウムの服用に対する応答スコアなどを判定し得る。
【0194】
例えば、現行患者がワルファリン表現型のうちのいずれかを有するかどうか判定するために、現行患者のパンオミックスデータは、現行患者のパンオミックスデータにおけるワルファリン表現型と相関するワルファリン応答経路の74個のSNPまたは31個の遺伝子のうちのいずれかと同様のSNPおよび遺伝子を特定するために解析され得る。またさらに、現行患者のソシオミックスデータ、フィジオミクスデータ、および環境データが、ワルファリン統計モデルに適用されて、現行患者のワルファリン表現型が判定され得る。ワルファリン統計モデルは、ソシオミックスデータ、フィジオミクスデータ、および環境データに対して実行される統計的測定に加えて、特定された74個のSNP、31個の遺伝子、およびワルファリン応答経路に基づいて生成され得る。
【0195】
他の例では、現行患者がリチウム表現型のうちのいずれかを有するかどうか判定するために、現行患者のパンオミックスデータは、現行患者のパンオミックスデータにおけるリチウム表現型と相関するリチウム応答経路の78個のSNPまたは12個の遺伝子のうちのいずれかと同様のSNPおよび遺伝子を特定するために解析され得る。またさらに、現行患者のソシオミックスデータ、フィジオミクスデータ、および環境データは、リチウム統計モデルに適用されて、現行患者のリチウム表現型が判定され得る。リチウム統計モデルは、ソシオミックスデータ、フィジオミクスデータ、および環境データに対して実行される統計的測定に加えて、特定された78個のSNP、12個の遺伝子、およびリチウム応答経路に基づいて生成され得る。
【0196】
ブロック712において、表現型評価モジュール162は、現行患者の1つ以上の薬理学的表現型の指標を医療提供者のクライアントデバイスのユーザーインターフェース上に表示させ得る。例えば、表現型評価モジュール162は、確率(例えば、0.6)、百分率(例えば、80パーセント)、カテゴリセット(例えば、「高リスク」、「中リスク」、または「低リスク」)からのカテゴリとして、または任意の他の好適な方法で表示され得る、様々な薬理学的表現型の可能性または他の半定量的および定量的尺度の各々の指標を含む、リスク解析ディスプレイを生成し得る。さらに、リスク解析ディスプレイは、数値的(例えば、100中75)、カテゴリ別(例えば、「強い応答」、「弱い応答」など)であり得るか、または任意の他の好適な方法で表示され得る薬物に対する応答スコアの指標を含み得る。可能性または応答スコアの各々は、対応する薬理学的表現型(例えば、疾病Yの高リスク)の説明と共に表示され得る。このようにして、現行患者の医療提供者は、現行患者の薬理学的表現型の指標を考察し、適切な治療計画または治療コースを作成し得る。例えば、医療提供者は、特定の疾病を治療するために、特定の疾病を治療する薬物のうちの最も高い応答スコアを有する薬物を処方し得る。
【0197】
いくつかの実施形態では、薬理学的表現型評価サーバ102は、薬理学的表現型の可能性を可能性閾値(例えば、0.5)と比較し得、薬理学的表現型の可能性が可能性閾値を超える場合、薬理学的表現型をリスク解析ディスプレイに含め得る。例えば、現行患者について高リスクである疾病だけがリスク解析ディスプレイに含まれ得る。他の例では、現行患者について物質乱用問題の可能性が可能性閾値を超える場合、リスク解析ディスプレイは、現行患者が物質乱用問題に苦しむ可能性がある指標を含み得る。このようにして、医療提供者は、現行患者に早期介入を推奨するかまたは提供する。またいくつかの実施形態では、特定の疾病に対応する薬物の各々に対する応答スコアは、(例えば、最高から最低まで)順位付けられ得る。薬物および対応する応答スコアは、リスク解析ディスプレイ上に順位付けられた順で提供され得る。他の実施形態では、特定の疾病について最も順位が高い薬物だけが、リスク解析ディスプレイで含まれ得る。
【0198】
患者に処方するように医療提供者への推奨として、特定の疾病について最も順位が高い薬物を示すことに加えて、リスク解析ディスプレイは、現行患者について薬物の推奨される投与量を含み得る。また、リスク解析ディスプレイは、現行患者の薬剤に対する応答の修飾をもたらし得る任意のソシオミックス、フィジオミクス、環境、または人口統計学的情報(例えば、食事、運動、曝露における変化など)を含み得る。さらに、リスク解析ディスプレイには、現行患者が服用している薬物の量を彼の/彼女の多薬療法データに従って増加または減少させることの推奨を含み得る。例えば、推奨される薬物が現行患者の多薬療法データの薬物のうちの1つまたはいくつかを冗長にし得る場合、リスク解析ディスプレイは、それらの薬物の服用を止めることの推奨を含み得る。かかる推奨には、1つ以上の薬物、それらの組み合わせ、または他の治療手段が含まれ得る。
【0199】
いくつかの実施形態では、最も順位が高い薬物に禁忌を示す薬物を患者が服用している場合、薬理学的表現型評価サーバ102は、次の最も高い応答スコアを有する薬物を推奨し得る。例えば、薬理学的表現型評価サーバ102は、現行患者の多薬療法データを取得し、多薬療法データ内の薬物を推奨される薬物と比較して禁忌についてチェックし得る。現行患者に処方されている薬物のうちのいずれかに禁忌を有しない最も順位が高い薬物が、リスク解析ディスプレイに含まれ得る。
【0200】
ワルファリンに関連する上記の例におけるように、現行患者がワルファリン表現型のうちのいずれかを有するかどうか判定するために、現行患者のパンオミックスデータは、ワルファリン表現型と相関するワルファリン応答経路の74個のSNPまたは31個の遺伝子と比較され得る。次いで、薬理学的表現型評価サーバ102または医療提供者は、比較に基づいてワルファリンまたは別の抗凝固剤のどちらが現行患者に投与されるべきかを判定し得る。また、ワルファリンの推奨される投与量も、判定され得る。例えば、現行患者は、ワルファリンに対する陰性応答と相関するワルファリン応答経路の遺伝子またはSNPを有し得る。結果として、薬理学的表現型評価サーバ102は、別の抗凝固剤を現行患者に投与することを推奨し得る。他の例では、現行患者は、ワルファリン投与量表現型と相関するワルファリン応答経路の遺伝子またはSNPを有し得る。結果として、薬理学的表現型評価サーバ102は、ワルファリン投与量表現型に基づいて現行患者にワルファリンを投与するための推奨される投与量を提供し得る。さらに別の例では、現行患者は、疾患リスクと相関するワルファリン応答経路の遺伝子またはSNPを有し得、ここで、ワルファリンは、凝固、凝血、または血栓症を先回りして防止することができる。いずれにしても、医療提供者は、推奨される投与量で現行患者にワルファリンを投与し得るか、または別の抗凝固剤を投与し得る。
【0201】
リチウムに関連する上記の例におけるように、現行患者がリチウム表現型のうちのいずれかを有するかどうか判定するために、現行患者のパンオミックスデータは、リチウム表現型と相関するリチウム応答経路の78個のSNPまたは12個の遺伝子と比較され得る。次いで、薬理学的表現型評価サーバ102または医療提供者は、比較に基づいてリチウムまたは別の精神病薬のどちらが現行患者に投与されるべきかを判定し得る。また、リチウムの推奨される投与量も、判定され得る。例えば、現行患者は、リチウムに対する陰性応答と相関するリチウム応答経路の遺伝子またはSNPを有し得る。結果として、薬理学的表現型評価サーバ102は、別の精神病薬を現行患者に投与することを推奨し得る。他の例では、現行患者は、リチウム投与量表現型と相関するリチウム応答経路の遺伝子またはSNPを有し得る。結果として、薬理学的表現型評価サーバ102は、リチウム投与量表現型に基づいて現行患者にリチウムを投与するための推奨される投与量を提供し得る。いずれにしても、医療提供者は、推奨される投与量で現行患者にリチウムを投与し得るか、または別の精神病薬を投与し得る。
【0202】
薬理学的表現型は、臨床の場に加えて医薬品開発および保険適用のための調査の場において、予測され得る。研究の場では、治験薬に関連する薬理学的表現型は、研究プログラムにおいて候補患者コホートについて予測され得る。患者は、治験薬に関連するそれらの予測された薬理学的表現型に従って、実験的治療のために選択され得る。
【0203】
さらに、現行患者の薬理学的表現型が明らかとなる(例えば、現行患者は閾値時間量(1年などの)後に薬理学的表現型を有する)場合、現行患者のパンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境データ、ならびに表現型データが訓練データに加えられ得(ブロック714)、それに応じて統計モデルが更新され得る。いくつかの実施形態では、パンオミックスデータ、ソシオミックスデータ、フィジオミクスデータ、および環境的、ならびに表現型データが、図3に記載されるようなデータソース325a~dなどのいくつかのデータソース716に格納される。次いで、訓練モジュール160は、データソース716からデータを検索して、さらにモデルを訓練し得る。
【0204】
本明細書を通して、複数の事例は、単一の事例として記載された構成要素、動作、または構造を実施し得る。1つ以上の方法の個々の動作が別個の動作として例示および記載されたが、個々の動作のうちの1つ以上が同時に実行されてもよく、例示された順序で動作が実行される必要はない。例示的な構成内で別個の構成要素として提示された構造および機能は、組み合わされた構造または構成要素として実施されてもよい。同様に、単一構成要素として提示された構造および機能は、別個の構成要素として実施されてもよい。これらのおよび他の変形、修正、追加、および改善は、本明細書の主題の範囲内にある。
【0205】
さらに、特定の実施形態は、ロジックまたは多数のルーチン、サブルーチン、アプリケーション、もしくは命令を含むものとして本明細書に記載される。これらはソフトウェア(例えば、機械可読な媒体上または伝送信号中にて具現化されるコードなど)またはハードウェアのいずれかを構成し得る。ハードウェアでは、上記ルーチンなどは、特定のオペレーションを実行することができる有形の単位であり、特定の方法で構成もしくは配置され得る。例示的な実施形態では、1つ以上のコンピュータシステム(例えば、スタンドアローン、クライアント、もしくはサーバコンピュータシステム)、またはコンピュータシステムの1つ以上のハードウェアモジュール(例えば、プロセッサまたはプロセッサ群)は、ソフトウェア(例えば、アプリケーションまたはアプリケーションの一部)によって、本明細書に記載の特定のオペレーションを実行するように動作するハードウェアモジュールとして構成され得る。
【0206】
各種の実施形態では、ハードウェアモジュールは、機械的にまたは電子的に実施され得る。例えば、ハードウェアモジュールは、特定のオペレーションを実行するために、恒久的に構成された専用の回路またはロジック(例えば、フィールドプログラマブルゲートアレイ(FPGA)または特定用途向け集積回路(ASIC)などの特殊用途向けのプロセッサなど)を含み得る。またハードウェアモジュールには、特定のオペレーションを実行するため、ソフトウェアによって一時的に構成されるプログラマブルなロジックまたは回路(例えば、汎用プロセッサまたは他のプログラマブルプロセッサ中で実現されるもの)も含み得る。ハードウェアモジュールを機械的に実施するのか、専用かつ恒久的に構成された回路で実施するのか、または一時的に構成された回路中で(例えばソフトウェアにより構成される)実施するのかどうかについては、コストおよび時間を考慮して決定され得ることが理解されよう。
【0207】
したがって、「ハードウェアモジュール」という用語には、本明細書に記載の特定の様式でオペレーションするためまたは特定のオペレーションを実行するために、物理的に構築されたか、恒久的に構成された(例えば、物理的に組み込まれた)か、または一時的に構成された(例えばプログラムされた)、有形の実体が包含されると理解されたい。ハードウェアモジュールが一時的に構成されている(例えば、プログラムされている)ような実施形態を考慮する際には、ハードウェアモジュールの各々は、どの時点においても構成またはインスタンス生成されている必要はない。例えばハードウェアモジュールが、ソフトウェアを使用して構成された汎用プロセッサを含む場合には、当該汎用プロセッサは、異なる時点においてそれぞれ異なるハードウェアモジュールとして構成され得る。したがって、ソフトウェアは、例えば、或る時点では特定のハードウェアモジュールを構成し、別の時点では別のハードウェアモジュールを構成するようにして、プロセッサを構成してもよい。
【0208】
ハードウェアモジュールは、他のハードウェアモジュールと情報のやりとりをすることができる。したがって、ここに記載するハードウェアモジュールは、通信可能に結合しているものとして理解され得る。かかるハードウェアモジュールが同時に存在する場合には、ハードウェアモジュールを接続する(適切な回路およびバスを通じた)信号伝送を介して通信が達成され得る。複数のハードウェアモジュールが異なる時点で構成またはインスタンス化される実施形態では、例えば、複数のハードウェアモジュールがアクセスを有するメモリストラクチャにおける情報の記憶および検索などを介して、かかるハードウェアモジュール間の通信は達成され得る。例えば、或るハードウェアモジュールは、オペレーションを実行し、そのオペレーションの出力を当該ハードウェアモジュールが通信可能に結合しているメモリデバイスに格納し得る。次いで、更なるハードウェアモジュールが後に上記メモリデバイスにアクセスして、格納された出力を検索し、処理し得る。またハードウェアモジュールは、入力または出力デバイスとの通信を開始して、リソース(例えば、情報のコレクション)に対してオペレーションすることができる。
【0209】
本明細書に記載の例示的方法の様々なオペレーションは、少なくとも部分的には、関連するオペレーションを実行するように一時的に(例えば、ソフトウェアにより)構成されたか、または恒久的に構成された1つ以上のプロセッサによって実行され得る。一時的に構成されたか、または恒久的に構成されたかにかかわらず、かかるプロセッサは、1つ以上のオペレーションまたは機能を実行するように動作するプロセッサ実施モジュールを構成し得る。本明細書において言及されるモジュールは、いくつかの例示的実施形態においては、プロセッサ実施モジュールを含み得る。
【0210】
同様に、本明細書に記載の方法またはルーチンは、少なくとも部分的にはプロセッサ実施型であり得る。例えば、或る方法のオペレーションのうちの少なくとも一部は、1つ以上のプロセッサまたはプロセッサ実施ハードウェアモジュールにより実行され得る。オペレーションの一定の性能は、単一のマシン内に存在するのみならず、いくつかのマシンにわたって配備された1つ以上のプロセッサの間で分散され得る。いくつかの実施形態では、1つ以上のプロセッサは、(例えば、家庭環境内の、職場環境内の、またはサーバファームとして)単一の場所に存在し得るが、他の実施形態では、プロセッサは多数の場所にわたって分散され得る。
【0211】
オペレーションの一定の性能は、単一のマシン内に存在するのみならず、いくつかのマシンにわたって配備された1つ以上のプロセッサの間で分散され得る。いくつかの例示的実施形態では、1つ以上のプロセッサまたはプロセッサ実施モジュールは、(例えば、家庭環境内の、職場環境内の、またはサーバファームとして)単一の場所に存在し得る。他の例示的実施形態では、1つ以上のプロセッサまたはプロセッサ実施モジュールは、多数の場所にわたって分散され得る。
【0212】
特に指示しない限り、「processing」(処理する)、「computing」(処理/演算する)、「calculating」(演算する)、「determining」(判定する)、「presenting」(提示する)、「displaying」(表示する)など言葉を使用している本明細書における説明は、1つ以上のメモリ(例えば、揮発性メモリ、不揮発性メモリ、もしくはこれらの組み合わせ)、レジスタ、または情報を受信、格納、送信、もしくは表示する他の機械部品内の物理的(例えば、電子的、磁気的、もしくは光学的)な量として表現されるデータを操作もしくは変換する機械(例えば、コンピュータ)の動作または処理を意味し得る。
【0213】
本明細書に使用される際、「一実施形態」または「実施形態」に対する任意の参照は、実施形態と併せて説明された特定の要素、特徴、構造または特性が、少なくとも1つの実施形態に含められることを意味する。本明細書の様々な場所の「一実施形態において」という語句の出現は、必ずしも全てが同一の実施形態を参照しているとは限らない。
【0214】
いくつかの実施形態は、「結合された」(coupled)および「接続された」(connected)という表現を、それらの活用形と共に使用して記載され得る。例えば、いくつかの実施形態は、「結合された」という語を使用して記載されて、2つ以上の要素が直接に物理的に接触しているか、または電気的に接触していることを示し得る。しかしながら、「結合された」という語はまた、2つ以上の要素が互いに直接には接触してはいないが、それでも互いに協働または相互作用していることも意味し得る。上記実施形態は、この文脈には限定されない。
【0215】
本明細書に使用される際、「備える(comprises、comprising)」、「含む(includes、including)」、「有する(has、having)」という用語、またはそれらの任意の他の変形は、非排他的な包含を網羅することを意図する。例えば、要素のリストを含むプロセス、方法、物品、または装置は、必ずしもそれらの要素のみに限定されるものではなく、明示的に列挙されていないか、またはかかるプロセス、方法、物品もしくは装置に固有の他の要素を含み得る。さらに、正反対に明示的に述べられない限り、「または」は、排他的なまたはではなく、包括的なまたはであることを意味する。例えば、条件AまたはBは、Aが真(または存在)かつBが偽(または存在しない)、Aが偽(または存在しない)かつBが真(または存在する)、ならびにAおよびBの両方が真である(または存在する)のうちのいずれか1つによって満たされる。
【0216】
加えて、「a」または「an」の使用は、本明細書の実施形態の要素および構成要素を説明するために用いられる。これは単に便宜のため、および本明細書の大まかな要旨を付与するために行われるものである。本記載は、1つまたは少なくとも1つを含むように読み取られるべきであり、また単数は、そうでないことが意味されていることが明白でない限り、複数を含む。
【0217】
詳細な説明は、単に例を提供するものとして解釈されるべきであり、全ての可能な実施形態を説明することは、不可能ではないとしても非現実的であるため、全ての可能な実施形態を説明するものではない。現行の技術および本願出願日以降に開発される技術のいずれかを使用して、多数の別の実施形態を実施することができよう。
図1A
図1B
図1C
図2
図3
図4A
図4B
図4C
図4D
図4E
図4F
図4G
図5
図6
図7