(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-24
(45)【発行日】2023-12-04
(54)【発明の名称】静電容量型センサおよび隔膜真空計並びに静電容量型センサの製造方法
(51)【国際特許分類】
G01L 9/12 20060101AFI20231127BHJP
【FI】
G01L9/12
(21)【出願番号】P 2019130156
(22)【出願日】2019-07-12
【審査請求日】2022-06-21
【前置審査】
(73)【特許権者】
【識別番号】000006666
【氏名又は名称】アズビル株式会社
(74)【代理人】
【識別番号】110001461
【氏名又は名称】弁理士法人きさ特許商標事務所
(72)【発明者】
【氏名】吉川 康秀
(72)【発明者】
【氏名】小原 圭輔
(72)【発明者】
【氏名】市原 純
【審査官】公文代 康祐
(56)【参考文献】
【文献】特開2007-078648(JP,A)
【文献】特開2005-331328(JP,A)
【文献】米国特許出願公開第2013/0118265(US,A1)
【文献】特開昭61-065114(JP,A)
【文献】特開昭61-140834(JP,A)
【文献】特開平02-078912(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01L 7/00-23/32
G01L 27/00-27/02
G01L 1/14
G01P 15/125
(57)【特許請求の範囲】
【請求項1】
計測する物理量に応じて位置が変わるセンサダイアフラムとともに変位する可動電極と、前記可動電極に対向して設けられた固定電極とを組にした電極部を、検出用および参照用として複数有するセンサ素子と、
前記検出用の前記電極部
および前記参照用の前記電極部の少なくとも一方の静電容量を調整する容量調整器と
を備え
、
前記容量調整器は、前記物理量がゼロであるときの、前記検出用の前記電極部および前記参照用の前記電極部をそれぞれ通過した交流信号の差分が、設定した電位となるように、前記静電容量を調整する静電容量型センサ。
【請求項2】
前記容量調整器は、前記電極部に直流電圧を印加して、前記可動電極と前記固定電極との間にクーロン力を発生させ、前記センサダイアフラムを撓ませて電極間距離を調整する請求項1
に記載の静電容量型センサ。
【請求項3】
前記容量調整器は、前記電極部に送る信号に、前記直流電圧を重畳させて印加する請求項
2に記載の静電容量型センサ。
【請求項4】
前記センサ素子は、直流電圧印加用の前記電極部をさらに有し、
前記容量調整器は、前記直流電圧印加用の前記電極部に、前記直流電圧を印加する請求項
3に記載の静電容量型センサ。
【請求項5】
前記検出用の前記電極部および前記参照用の前記電極部を通過した信号を増幅する電荷増幅器と、
前記信号を検波する整流回路を有する検波回路器と、
前記検波回路器からの前記信号を平滑する平滑器と
をさらに備える請求項1~請求項
4のいずれか一項に記載の静電容量型センサ。
【請求項6】
請求項1~請求項
5のいずれか一項に記載の静電容量型センサを備える隔膜真空計。
【請求項7】
計測する物理量に応じて位置が変わるセンサダイアフラムとともに変位する可動電極と、前記可動電極に対向して設けられた固定電極とを組にした電極部を、検出用および参照用として複数有するセンサ素子を備える静電容量型センサの製造方法であって、
前記物理量がゼロであるときの、前記電極部に直流電圧を印加して、前記可動電極と前記固定電極との間にクーロン力を発生させ、前記センサダイアフラムを撓ませて電極間距離を調整し、前記検出用の前記電極部の静電容量を変化させる容量変化工程と、
前記容量変化工程を繰り返し、前記検出用の前記電極部および前記参照用の前記電極部をそれぞれ通過した交流信号の差分が、設定した電位となるような、前記直流電圧を決定する電圧決定工程と
を有する静電容量型センサの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被計測対象の物理量を静電容量に変換し、物理量の検出を行う静電容量型センサおよび隔膜真空計並びに静電容量型センサの製造方法に関するものである。
【背景技術】
【0002】
従来より、静電容量(キャパシタンス)の変化を利用して、物理量の検出および計測を行う静電容量型センサがある。静電容量型センサは、たとえば、圧力センサなどに利用される。静電容量型センサが圧力センサとなって、隔膜真空計などに利用される場合、センサ素子は、可動電極を有するセンサダイアフラム(隔膜)を有し、物理量の大きさに基づくセンサダイアフラムの変位を信号に変換することを検出原理とする。センサダイアフラムは、被計測媒体の圧力を受けて撓み、位置が変位する。センサダイアフラムは、受ける圧力に応じて撓む。圧力センサは、センサダイアフラムに対向し、可動電極と対になって電極部を構成する固定電極を有している。圧力によるセンサダイアフラムの変位により、電極間距離が変位することで、電極における静電容量が変化する。このため、静電容量から被計測媒体の圧力を検出することができる。このような圧力センサは、ガス種依存性が少ないことから、半導体設備を始め、工業用途において使用されることが多い。
【0003】
ここで、静電容量型センサのセンサ素子において、物理量である圧力を検出するための検出側電極部と参照側電極部とを有し、2つの電極部における静電容量に基づく電位差により、検出精度を高める静電容量型センサがある(たとえば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
そして、圧力の検出をするときには、センサ素子に、正弦波(たとえば、センサ駆動周波数f、振幅A)の交流電圧を、信号として印加する。センサ素子を流れる電流は、電荷増幅回路によって増幅され、物理量の大きさに対応した信号となる。この信号は、検波回路により検波(整流)される。検波された信号は、さらに、ローパスフィルタで平滑され、直流信号が得られる。直流信号は、たとえば、AD変換器によってデジタル信号に変換される。
【0006】
ここで、AD変換器には、信号として入力可能な電圧範囲がある。そこで、電圧範囲を超えないように、信号の増幅率であるゲインが設定される。このとき、センサ素子などにおいて生じるばらつきを考慮してゲインを設定する必要がある。たとえば、静電容量型センサのセンサ素子において、製造において生じる製造ばらつきなどの関係で、検出側電極部と参照側電極部との間には、容量のばらつきが生じる。ばらつきが大きいと、電圧範囲を超える可能性がある。たとえば、信号が電圧範囲を超えることがないようにすると、ゲインを小さく設定せざるを得なくなる。ゲインが低くなると、S/N比が低くなる。
【0007】
本発明は、このような課題を解決するため、信号のゲインの改善をはかることができる静電容量型センサおよび隔膜真空計並びに静電容量型センサの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
このような目的を達成するために、本発明の静電容量型センサは、計測する物理量に応じて位置が変わるセンサダイアフラムとともに変位する可動電極と、可動電極に対向して設けられた固定電極とを組にした電極部を、検出用および参照用として複数有するセンサ素子と、検出用の電極部および参照用の電極部の少なくとも一方の静電容量を調整する容量調整器とを備え、容量調整器は、物理量がゼロであるときの、検出用の電極部および参照用の電極部をそれぞれ通過した交流信号の差分が、設定した電位となるように、静電容量を調整するものである。
【発明の効果】
【0009】
本発明によれば、容量調整器は、検出用の電極部および参照用の電極部の少なくとも一方の静電容量を調整するようにしたので、各電極部における静電容量のばらつきを吸収し、信号のゲインを大きくすることができ、S/N比を高くすることができる。
【図面の簡単な説明】
【0010】
【
図1】実施の形態1に係る静電容量型センサを有する隔膜真空計の外観を示す図である。
【
図2】実施の形態1に係るセンサ部の要部の構成を示す図である。
【
図3】実施の形態1に係る静電容量型センサの回路部を中心とする構成を示す図である。
【
図4】実施の形態2に係るセンサ部の要部の構成を示す図である。
【発明を実施するための形態】
【0011】
以下、実施の形態に係る静電容量型センサなどについて、図面などを参照しながら説明する。各図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では、各構成部材の大きさの関係が、実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に、構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。そして、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
【0012】
実施の形態1.
図1は、実施の形態1に係る静電容量型センサを有する隔膜真空計の外観を示す図である。隔膜真空計1は、下部に、後述する静電容量型センサ検出部10のセンサ部100と上部に静電容量型センサ検出部10の回路部200とを有する。センサ部100は、静電容量型センサとなる静電容量型センサ検出部10のうち、実際に物理量の検出を行うセンサ部分である。また、静電容量型センサ検出部10の回路部200は、たとえば、回路基板を有し、センサ部100に送る信号の出力、センサ部100から送られる静電容量に係る信号を物理量の値(測定値)に変換などする処理を行う部分である。ここで、以下においては、特に断らない限り、静電容量型センサ検出部10は、物理量として、被計測媒体の圧力を検出するものとする。
【0013】
図2は、実施の形態1に係るセンサ部の要部の構成を示す図である。実施の形態1において、センサ部100は、静電容量型のセンサ素子となるセンサチップで構成されている。センサ部100は、基台101、センサダイアフラム102、可動センサ電極(第1の電極)104、固定センサ電極(第2の電極)105、可動参照電極106および固定参照電極107を備える。実施の形態1のセンサ部100では、被計測媒体の圧力によりセンサダイアフラム102が圧され、センサダイアフラム102の位置を変化させる。センサダイアフラム102の位置により可動電極と固定電極との間の静電容量が変化する。このため、被計測媒体の圧力が静電容量に変換されることになる。
【0014】
基台101は、受圧部となるセンサダイアフラム102を支える。センサダイアフラム102は、たとえば、サファイア、アルミナセラミックなどの耐熱性および耐食性を有する絶縁体の材料から構成されているものとする。ただし、これに限定するものではない。センサダイアフラム102は、平面視中央に凹部を有する基台101の支持部101aによって支持されている。センサダイアフラム102は、支持部101aの内側の可動領域102aにおいて、変位可能とされている。可動領域102aは、圧力が均等にかかって変位させるため、たとえば、平面視において、円形状になっている。容量室103は、可動領域102aにおけるセンサダイアフラム102と基台101との間の空間である。隔膜真空計1では、容量室103は、真空状態の空間である。
【0015】
可動センサ電極104は、容量室103の内部でセンサダイアフラム102の可動領域102aに形成されている。また、固定センサ電極105は、可動センサ電極104と、容量室103の内部で基台101の上に可動センサ電極104に対向して設置されている。実施の形態1のセンサ部100は、さらに、可動参照電極106および固定参照電極107を備える。可動参照電極106は、容量室103の内部でセンサダイアフラム102の可動領域102aにおいて可動センサ電極104の周囲(センサダイアフラム102の周縁部分)に形成されている。固定参照電極107は、容量室103の内部で固定センサ電極105の周囲の基台101の上に形成されている。可動参照電極106と固定参照電極107とは対向して設置されている。ここで、可動センサ電極104と可動参照電極106とでは、可動センサ電極104の方がよく撓むため、可動参照電極106よりも変位が大きくなる。ここで、可動センサ電極104と固定センサ電極105との組は、後述する検出用の検出側電極部108となる。また、可動参照電極106と固定参照電極107との組は、後述する参照用の参照側電極部109となる。したがって、2つのセンサ信号が出力される。
【0016】
図3は、実施の形態1に係る静電容量型センサの回路部を中心とする構成を示す図である。回路部200は、信号発生装置210、電荷増幅器220、検波回路器230、平滑器240およびAD変換器250を有する。
【0017】
信号発生装置210は、センサ部100に、交流信号となる正弦波の交流電圧を印加する。特に、実施の形態1における信号発生装置210は、信号発生器211および容量調整器212を有する。
【0018】
信号発生器211は、専用のIC回路を備え、所定の発振周波数で発振し、正弦波の交流信号を発生させる。また、容量調整器212は、信号発生器211が発生した信号を変化させて、検出側電極部108の容量を調整する。ここでは、信号発生器211が発生した信号のうち、検出側電極部108に送られる信号に対して、直流電圧の成分を重畳する。このため、検出側電極部108には、交流信号に係る電圧に加え、直流電圧が印加される。ここで、信号発生装置210からの信号は、交流信号の成分が含まれていれば、特に限定するものではない。
【0019】
電荷増幅器220は、センサ部100における静電容量に応じた増幅を行う。電荷増幅器220は、検出側増幅器221Aおよび参照側増幅器221Bの帰還部に、それぞれ検出側コンデンサ222Aおよび参照側コンデンサ222Bが配置されている。検出側増幅器221Aは、センサ部100の検出側電極部108に係る静電容量に応じて増幅した電流を検出信号として出力する。また、参照側増幅器221Bは、センサ部100の参照側電極部109に係る静電容量に応じて増幅した電流を参照信号として出力する。そして、差分増幅器223は、検出信号と参照信号との差分を増幅した差分信号を出力する。
【0020】
ノイズ除去部260は、バンドパスフィルタ261A~バンドパスフィルタ261Cを有する。バンドパスフィルタ261A~バンドパスフィルタ261Cは、電荷増幅器220からの検出信号、参照信号および差分信号において、設定された周波数帯域の信号を通過させ、ノイズを除去するフィルタである。また、検波回路器230は、ノイズ除去部260を通過した検出信号、参照信号および差分信号を検波(整流)する。検波回路器230は、整流回路231A~整流回路231Cを有する。また、整流回路231A~整流回路231Cは、バンドパスフィルタ261A~バンドパスフィルタ261Cを通過した信号を半波整流または全波整流する。ここで、整流回路231Aは、差分信号の整流を行う。また、整流回路231Bは、検出信号の整流を行う。そして、整流回路231Cは、参照信号の整流を行う。
【0021】
平滑器240は、ローパスフィルタ(LPF)241A~ローパスフィルタ241Cを有し、検波回路器230において検波された信号を平滑し、平均化した直流信号を、前述したAD変換器250に出力する。ここで、ローパスフィルタ241Aは、差分信号を平滑し、直流信号V1として出力する。また、ローパスフィルタ241Bは、検出信号を平滑し、直流信号V2として出力する。そして、ローパスフィルタ241Cは、参照信号を平滑し、直流信号V3として出力する。
【0022】
AD変換器250は、被計測媒体の圧力を検出して得られるアナログ信号である直流信号を、信号の大きさに基づく数値を表した二値データを含むデジタル信号に変換し、たとえば、コンピュータなど、外部の処理装置に出力する。ここで、特に限定するものではないが、実施の形態1のAD変換器250は、ΔΣ型AD変換器であるとする。ΔΣ型AD変換器は、入力された直流信号に対して、差分および積分による演算を行うことで、高速および高精度の変換を行うことができる変換器である。
【0023】
実施の形態1の隔膜真空計1が有する静電容量型センサ検出部10は、信号発生装置210において、容量調整器212を有するものである。容量調整器212が検出側電極部108に直流電圧の成分を印加することにより、検出側電極部108の可動センサ電極104と固定センサ電極105との間にクーロン力が発生する。可動センサ電極104と固定センサ電極105との間で異符号の電荷が蓄積し、互いに引き合うクーロン力が発生することで、可動センサ電極104と固定センサ電極105との距離が変化する。実施の形態1の容量調整器212は、可動センサ電極104と固定センサ電極105との距離を変化させ、検出側電極部108の静電容量を調整する。
【0024】
ここで、センサ部100において、検出側電極部108における静電容量をCX[pF]とする。また、参照側電極部109における静電容量をCR[pF]とする。容量調整器212は、検出側電極部108の可動センサ電極104と固定センサ電極105との間に、互いに引き合うクーロン力を発生させる。このため、容量調整器212は、電極間距離を狭くし、静電容量が高くなる方向にしか調整することができない。そこで、センサ部100において、製造ばらつきも含め、調整前の静電容量CXと静電容量CRとが、CX<CRの関係が成立するようにしておく。さらに、電荷増幅器220において、検出側コンデンサ222Aの帰還容量をCfx[pF]とする。また、参照側コンデンサ222Bの帰還容量をCfr[pF]とする。さらに、信号の振幅をE・sin(wt)[V]とする。このとき、検出側増幅器221Aからの検出信号VX[V]は、式(1)で表される。また、参照側増幅器221Bからの参照信号VR[V]は、式(2)で表される。ここで、sin(wt)は、-1以上1以下の値となる。
【0025】
VX=E・sin(wt)×CX/Cfx …(1)
VR=E・sin(wt)×CR/Cfr …(2)
【0026】
また、差分増幅器223の増幅率をGainとすると、差分増幅器223の差分信号Vout[V]は、式(3)で表される。sin(wt)は、
【0027】
Vout=(VX-VR)×Gain
=E×sin(wt)×(CX/Cfx-CR/Cfr)×Gain
…(3)
【0028】
前述したように、検出側電極部108と参照側電極部109とにおいて、製造ばらつきなどにより、静電容量がそれぞれ異なる可能性がある。たとえば、圧力が加わっていないゼロ圧力のときの検出側電極部108における静電容量CXが40[pF]であるものとし、参照側電極部109における静電容量CRが50[pF]であるものとする。また、計測可能な最大圧力(以下、FS圧力という)を加えたときの静電容量CXは、41[pF]に増え、参照側電極部109における静電容量CRが、50[pF]のままであるものとする。そして、検出側コンデンサ222Aの帰還容量Cfxが103[pF]であり、参照側コンデンサ222Bの帰還容量Cfrが100[pF]であり、振幅Eが2[V]の場合、ゼロ圧力のときの検出信号VXと参照信号VRとの差分は、振幅が最大となるsin(wt)=1としたときに、-0.223[V]となる。また、FS圧力を加えたときの検出信号VXと参照信号VRとの差分は、-0.204[V]となる。以後、sin(wt)=1であるものとして説明する。
【0029】
差分増幅器223のGainは、AD変換器250の入力電圧範囲の電圧を超えないように設定する必要がある。AD変換器250の入力電圧範囲が±2.5[V]であるとき、電圧範囲を考慮して、ゲインが11倍であるものとして、Gainを11とすると、ゼロ圧力のときの差分信号Voutは、-2.456[V]となる。また、FS圧力を加えたときの差分信号Voutは、-2.433[V]となる。
【0030】
このとき、ゼロ圧力のときの差分信号VoutとFS圧力を加えたときの差分信号Voutとの差は、約Δ0.214[V]となる。これは、AD変換器250の入力電圧範囲である±2.5[V]に対して、約4%の大きさの電圧である。狭い電圧幅で圧力の計測を行わなければならず、S/N比は低い。
【0031】
そこで、実施の形態1の隔膜真空計1の静電容量型センサ検出部10は、容量調整器212を有し、検出側電極部108における静電容量の調整を行う。容量調整器212は、検出側電極部108の電極間に直流電圧を印加し、クーロン力を発生させることで、可動センサ電極104と固定センサ電極105との距離を変化させ、検出側電極部108の静電容量を調整する。ここでは、静電容量CXを51.5[pF]にする調整を行う。そして、他の条件が同じであるものとすると、ゼロ圧力のときの検出信号VXと参照信号VRとの差分は、0.0000[V]となる。また、FS圧力を加えたときの検出信号VXと参照信号VRとの差分は、0.0194[V]となる。
【0032】
この場合、差分増幅器223のゲインを125倍にしても、ゼロ圧力のときの差分信号Voutは、0.000[V]となる。また、FS圧力を加えたときの差分信号Voutは、2.427[V]となる。したがって、AD変換器250の入力電圧範囲の±2.5Vを超えない。ゼロ圧力のときの差分信号VoutとFS圧力を加えたときの差分信号Voutとの差は、Δ2.427[V]となる。これは、AD変換器250の入力電圧範囲である±2.5[V]に対して、49%の大きさの電圧であり、前述した信号の振幅が同じである場合に比べて、約11倍のS/N比となる。
【0033】
静電容量型センサ検出部10の製造方法について、静電容量調整を行う場合、生産ラインにおいて、静電容量型センサ検出部10について、被測定物体の圧力が加わっていないゼロ圧力の状態とする。そして、静電容量型センサ検出部10を動作させて、容量調整器212が印加する直流電圧を変化させていく容量変化工程を行う。そして、容量変化を繰り返し行い、差分信号Voutが0になるような直流電圧を決定する電圧決定工程を行って、検出側電極部108における静電容量の調整を行う。静電容量の調整は、生産ラインにおける各静電容量型センサ検出部10に対して行う。
【0034】
以上のように、実施の形態1の隔膜真空計1の静電容量型センサ検出部10は、容量調整器212を有し、直流電圧を印加して電極間の距離を変化させ、検出側電極部108における静電容量を調整することができる。このため、検出用の信号経路に配置された素子と参照用の信号経路に配置された素子とにおける容量のばらつきを抑え、ゼロ圧力のときの差分信号VoutとFS圧力を加えたときの差分信号Voutとの差を広げることができる。したがって、差分増幅器223におけるゲインを大きくすることができ、S/N比を高くすることができる。このとき、生産ラインの静電容量型センサ検出部10に対して、それぞれ検出側電極部108における静電容量の調整を行うことで、個々の静電容量型センサ検出部10に生じる容量のばらつきに合わせた静電容量の調整を行うことができる。ここで、電極間に発生させることができるクーロン力には限りがある。また、クーロン力を発生させるには電圧が必要となる。電圧を印加しすぎると、電極が張り付く場合もある。以上のことから考えると、静電容量の調整は、微小な圧力変化を検出する静電容量型センサ検出部10である場合に、特に有効である。
【0035】
実施の形態2.
図4は、実施の形態2に係るセンサ部の要部の構成を示す図である。
図4において、
図2と同じ符号を付しているものについては、実施の形態1において説明したことと同様の機能などを有する。
【0036】
前述した実施の形態1の静電容量型センサ検出部10は、信号発生器211が発生した交流信号のうち、検出側電極部108に送られる信号に対して、容量調整器212が直流電圧の成分を重畳するものであった。
【0037】
実施の形態2の静電容量型センサ検出部10は、可動直流印加電極110および固定直流印加電極111を有する直流電圧印加用電極部112をさらに有する。そして、容量調整器212は、直流電圧印加用電極部112に直流電圧を印加して、クーロン力を発生させ、センサダイアフラム102を撓ませる。これにより、検出側電極部108の電極間距離が変化し、静電容量を調整することができる。
【0038】
実施の形態3.
前述した実施の形態1では、静電容量調整の方法について、差分信号Voutが0になるように、静電容量の調整を行った。差分信号Voutに基づいた静電容量の調整を行うことで、電荷増幅器220の検出側コンデンサ222Aと参照側コンデンサ222Bとにおける容量のばらつきなども含めた設定を行うことができるが、これに限定するものではない。
【0039】
たとえば、センサ部100内の検出側電極部108の検出信号および参照側電極部109の参照信号とを比較して、検出側電極部108における静電容量の調整を別々に行うようにしてもよい。
【0040】
また、前述した実施の形態1では、ゼロ圧力のときの静電容量型センサ検出部10において、差分信号Voutが0になるように、容量調整器212による検出側電極部108における静電容量の調整に係る工程を行うようにしたが、これに限定するものではない。たとえば、AD変換器250の入力電圧範囲が±2.5[V]であるものとする。このとき、計測を行っていないときの基準の電位が-2[V]であるものとして設定し、ゼロ圧力のときに、たとえば、-2[V]の直流信号V1がAD変換器250に送られるような、差分信号Voutが出力される振幅調整を行うようにしてもよい。このため、広い電圧幅で、ゼロ圧力からFS圧力に到る圧力を計測することができる。
【0042】
上述した実施の形態1~実施の形態3においては、物理量として圧力を計測する静電容量型センサ検出部10について説明したが、被計測対象および物理量は、重量、加速度など、圧力に限定するものではない。また、静電容量型センサ検出部10は、隔膜真空計1だけでなく、他の計測装置に適用することができる。
【0043】
以上、実施の形態を参照して、本発明を説明したが、本発明は上記の実施の形態の内容に限定されるものではない。本発明の構成、詳細などには、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
【符号の説明】
【0044】
1 隔膜真空計、10 静電容量型センサ検出部、100 センサ部、101 基台、101a 支持部、102 センサダイアフラム、102a 可動領域、103 容量室、104 可動センサ電極、105 固定センサ電極、106 可動参照電極、107 固定参照電極、108 検出側電極部、109 参照側電極部、200 回路部、210 信号発生装置、211 信号発生器、212 容量調整器、220 電荷増幅器、221A 検出側増幅器、221B 参照側増幅器、222A 検出側コンデンサ、222B 参照側コンデンサ、223 差分増幅器、230 検波回路器、231A,231B,231C 整流回路、240 平滑器、241A,241B,241C ローパスフィルタ、250 AD変換器、260 ノイズ除去部、261A,261B,261C バンドパスフィルタ。