(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-27
(45)【発行日】2023-12-05
(54)【発明の名称】超音波検査装置
(51)【国際特許分類】
G01N 29/265 20060101AFI20231128BHJP
G01N 29/04 20060101ALI20231128BHJP
【FI】
G01N29/265
G01N29/04
(21)【出願番号】P 2019094603
(22)【出願日】2019-05-20
【審査請求日】2022-05-19
【前置審査】
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100112737
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100136168
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】上林 正和
(72)【発明者】
【氏名】杉浦 篤
(72)【発明者】
【氏名】増田 拓郎
【審査官】村田 顕一郎
(56)【参考文献】
【文献】特許第6470460(JP,B1)
【文献】特開2017-191076(JP,A)
【文献】特表2013-529791(JP,A)
【文献】特開2012-173259(JP,A)
【文献】特開2012-002586(JP,A)
【文献】米国特許出願公開第2017/0322185(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 29/00-29/52
F01D 25/00
(57)【特許請求の範囲】
【請求項1】
ロータディスクを超音波により検査するための超音波検査装置であって、
前記ロータディスクのディスク面へ超音波を送信する超音波探触子と、
前記ロータディスクの前記ディスク面に対して、前記超音波探触子を移動可能に保持する保持部と、
前記超音波探触子を前記ロータディスクの半径方向と交差する方向へ移動させると移動部と、
前記移動部の移動方向を調整する調整部と、
前記ディスク面に対して保持されている前記超音波探触子の前記半径方向の位置を検出する位置検出部と、
前記位置検出部が検出した情報に基づいて、前記超音波探触子の前記半径方向の位置が所定の範囲内となるように前記調整部を制御する制御部と、を備える超音波検査装置。
【請求項2】
前記移動部を駆動する駆動部を備える請求項1に記載の超音波検査装置。
【請求項3】
前記保持部は、前記ディスク面に吸着する磁石を有し、
前記磁石は、前記ディスク面と離間している請求項1または請求項2に記載の超音波検査装置。
【請求項4】
前記移動部によって移動した距離を検出する移動距離検出部を備える請求項1から請求項3のいずれかに記載の超音波検査装置。
【請求項5】
ロータディスクを超音波により検査するための超音波検査装置であって、
前記ロータディスクのディスク面へ超音波を送信する超音波探触子と、
前記超音波探触子が固定される探触子側ホルダと、
前記超音波探触子と前記ディスク面との間に設けられ、超音波を透過し、前記ディスク面に押し付けられることで変形可能な変形部と、
前記ディスク面に吸着する吸着部を有し、前記探触子側ホルダよりも前記ロータディスク側に設けられ、前記変形部を保持するロータディスク側ホルダと、
前記探触子側ホルダを前記ロータディスク側に付勢する付勢部と、を備える超音波検査装置。
【請求項6】
前記ディスク面に対する前記超音波探触子の角度を変更する角度調整部を備えている請求項5に記載の超音波検査装置。
【請求項7】
前記超音波探触子は、前記ロータディスクの前記ディスク面へ超音波を送信する第1超音波探触子と、前記ディスク面へ超音波を送信し、前記第1超音波探触子と隣接して設けられる第2超音波探触子と、を有し、
前記第1超音波探触子を前記第2超音波探触子の反対側へ傾斜させる第1傾斜手段と、
前記第2超音波探触子を前記第1超音波探触子の反対側へ傾斜させる第2傾斜手段と、をさらに備えた請求項1から請求項6のいずれかに記載の超音波検査装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波検査装置に関するものである。
【背景技術】
【0002】
発電プラントにおける蒸気タービンのタービンロータは、高い温度条件で運転される。このため、長期間使用されると、応力を受ける部位にSCC(応力腐食割れ)が発生することがある。特に、動翼の翼根部が植え込まれているロータディスクの翼溝部には、応力が大きく作用するため、SCCが発生し易い。したがって、翼溝部に発生するSCCの非破壊検査が行われている。翼溝部の非破壊検査の手法としては、汎用性や現地施工性の観点から、超音波探傷法が良く適用されることがある。
【0003】
特許文献1には、ロータディスクの翼植込部を超音波により検査するための超音波検査装置が記載されている。この装置は、プローブと、プローブをロータディスクに沿ってロータディスクの周方向に相対移動させるための台車とを備えている。台車は、ロータディスクのディスク面を走行するための複数のロータディスク走行用ローラと、ロータディスクと同心に設けられたロータシャフトの周面を走行するための複数のロータシャフト走行用ローラと、プローブをディスク面に対向した状態で保持するホルダを含むホルダアセンブリと、ホルダをロータシャフトの径方向に案内するための少なくとも一つのガイドレールと、を含む。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、大型のタービンロータのディスク面は、動翼からの蒸気の流れを効率良く静翼(車室)側に流れるようにするために、ディスク面に鍔を設けている。このため、他の領域よりも突出する鍔がある部分は、隣接するディスクとの隙間が狭い狭隘部となる。特許文献1の装置は、プローブをディスクの周方向に移動させるための台車を備えているので、比較的大型である。よって、狭隘部では、超音波検査装置と隣接するタービンロータと干渉する等の理由から、プローブの周方向走行が不安定となる可能性がある。
【0006】
また、ディスク面に鍔を有しているディスク面から翼溝部を超音波検査で探傷する場合には、鍔の湾曲面に超音波探触子を配置する必要がある。特許文献1の装置は、鍔の湾曲面に配置することを考慮していないため、ディスク面の鍔の湾曲面から翼溝部を探傷する場合には、超音波探触子をセットした装置がタービンロータのディスク間に物理的に配置できない、また超音波探触子と湾曲しているディスク面との間に空気層等が形成されるなど、超音波の効果的な入射ができない可能性がある。
【0007】
また、特許文献1の装置で、ディスク面が湾曲しているディスク面から超音波検査で探傷する際に、探傷領域となる翼溝範囲に超音波を集束させるためには、湾曲部の形状(曲率)に応じるように湾曲形状に倣った素子配列を有する探触子、または一般的な平滑状に配列された素子から超音波を湾曲面に入射させるための中間媒質となるウェッジ等を用意する必要がある。このため、素子の使い回しができず、検査の準備が煩雑となる可能性があった。
【0008】
このような観点から、特許文献1の装置では、タービンロータのディスク面が湾曲している大型のタービンロータにおいて、好適に検査を行えない可能性があった。
【0009】
本発明は、このような事情に鑑みてなされたものであって、タービンロータのディスク面が湾曲している大型のタービンロータにおいて、好適に検査を行うことができる超音波検査装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明の超音波検査装置は以下の手段を採用する。
本発明の第1態様に係る超音波検査装置は、ロータディスクを超音波により検査するための超音波検査装置であって、前記ロータディスクのディスク面へ超音波を送信する超音波探触子と、前記ロータディスクの前記ディスク面に対して、前記超音波探触子を移動可能に保持する保持部と、前記超音波探触子を前記ロータディスクの半径方向と交差する方向へ移動させると移動部と、前記移動部の移動方向を調整する調整部と、前記ディスク面に対して保持されている前記超音波探触子の前記半径方向の位置を検出する位置検出部と、前記位置検出部が検出した情報に基づいて、前記超音波探触子の前記半径方向の位置が所定の範囲内となるように前記調整部を制御する制御部と、を備える。
【0011】
上記構成では、ロータディスクのディスク面に対して超音波探触子が移動可能に保持され、かつ、超音波探触子が移動部によって移動する。これにより、ロータディスクのディスク面を超音波検査装置が走行する。また、上記構成では、制御部が超音波探触子の半径方向の位置が所定の範囲内となるように調整部を制御している。これにより、超音波探触子がロータディスクの半径方向と交差する方向へ移動する際に、超音波探触子の半径方向の位置を所定の範囲内とすることができる。すなわち、超音波探触子を、所定の半径方向の位置を維持したまま、周方向へ移動させることができる。
【0012】
このように、上記構成では、超音波検査装置が、ロータディスクのディスク面を周方向に走行することができる。したがって、例えば、ロータシャフトに固定される台車等を設けることで超音波探触子の半径方向の位置を固定する構成と比較して、台車等を設けない分小型化することができる。よって、例えば、大型のロータディスク等のように、隣接するロータディスクとの距離が短いロータディスクであっても、容易に超音波検査装置をロータディスクのディスク面に設置することができる。
【0013】
また、本発明の第1態様に係る超音波検査装置は、前記移動部を駆動する駆動部を備えてもよい。
【0014】
上記構成では、超音波検査装置が、移動部を駆動する駆動部を備えている。これにより、外部から動力を得る必要がないので、ロータディスクのディスク面を超音波検査装置が自走することができる。よって、超音波検査装置が外部から動力を得る構造と比較して、動力線の取り回しがなく超音波検査装置の移動自由度を確保することができる。
また、超音波検査装置が自走するので、超音波検査装置を作業員が手動で動かす必要がないので、作業員等の手が届きにくい大型のロータディスクの検査にも適用することができる。
【0015】
また、本発明の第1態様に係る超音波検査装置は、前記保持部は、前記ディスク面に吸着する磁石を有し、前記磁石は、前記ディスク面と離間していてもよい。
【0016】
上記構成では、磁石はディスク面と離間している。これにより、超音波検査装置が移動する際の走行抵抗を低減することができる。
【0017】
また、本発明の第1態様に係る超音波検査装置は、前記移動部によって移動した距離を検出する移動距離検出部を備えてもよい。
【0018】
上記構成では、移動した距離を検出する移動距離検出部を備えている。これより、超音波検査装置の周方向の位置を把握することができる。したがって、超音波探触子の検査結果と周方向の位置とを関連付けることができる。よって、ロータディスクに生じている損傷の位置を特定することができる。
【0019】
本発明の第2態様に係る超音波検査装置は、ロータディスクを超音波により検査するための超音波検査装置であって、前記ロータディスクのディスク面へ超音波を送信する超音波探触子と、前記超音波探触子が固定される探触子側ホルダと、前記超音波探触子と前記ディスク面との間に設けられ、超音波を透過し、前記ディスク面に押し付けられることで変形可能な変形部と、前記ディスク面に吸着する吸着部を有し、前記探触子側ホルダよりも前記ロータディスク側に設けられ、前記変形部を保持するロータディスク側ホルダと、前記探触子側ホルダを前記ロータディスク側に付勢する付勢部と、を備える。
【0020】
上記構成では、超音波探触子とロータディスクとの間に、ロータディスクに押し付けられることで変形する変形部が設けられている。これにより、変形部をロータディスクに押し付けることで、変形部がロータディスクの表面に応じて変形するので、ロータディスクの表面の空気層を排除することができる。超音波探触子とロータディスクとの間の空気層を除去することができるので、超音波探触子からロータディスクへ好適に超音波を伝達することができる。したがって、例えば、大型のロータディスク等のように、ディスク面が湾曲しているロータディスクであっても、変形部を変形させることで、好適に検査を行うことができる。
【0021】
また、上記構成では、変形部がディスク面の湾曲態様に応じて変化するため、いずれの湾曲態様であっても空気層を除去することができる。よって、例えば、超音波検査装置が移動する場合には、移動に伴って検査対象であるディスク面の湾曲態様が変化することがある。このような場合であっても、ディスク面の湾曲態様の変化に従って、変形部が変化する。よって、超音波検査装置を移動させつつ、好適に検査を行うことができる。
【0022】
また、上記構成では、探触子側ホルダが、付勢部によって、ロータディスク側に付勢している。これによって、探触子側ホルダを介して、変形部をロータディスクに押し付けることができる。したがって、より好適に変形部をロータディスクに押し付けることができる。よって、より好適に変形部をロータディスクのディスク面に応じて変形させ、空気層を除去することができる。
【0023】
また、本発明の第2態様に係る超音波検査装置は、前記ディスク面に対する前記超音波探触子の角度を変更する角度調整部を備えていてもよい。
【0024】
上記構成では、ロータディスクのディスク面に対する超音波探触子の角度を変更する角度調整部を備えている。これにより、超音波探触子の角度を調整することで、的確に目的箇所(検査対象箇所)へ超音波を送信することができる。
【0025】
本発明の第3態様に係る超音波検査装置は、ロータディスクを超音波により検査するための超音波検査装置であって、前記ロータディスクのディスク面へ超音波を送信する第1超音波探触子と、前記ディスク面へ超音波を送信し、前記第1超音波探触子と隣接して設けられる第2超音波探触子と、前記第1超音波探触子を前記第2超音波探触子の反対側へ傾斜させる第1傾斜手段と、前記第2超音波探触子を前記第1超音波探触子の反対側へ傾斜させる第2傾斜手段と、を備えている。
【0026】
上記構成では、第1超音波探触子を第2超音波探触子の反対側へ傾斜させる第1傾斜手段と、第2超音波探触子を第1超音波探触子の反対側へ傾斜させる第2傾斜手段とを備えている。これにより、第1超音波探触子及び第2超音波探触子を傾斜させた状態で、第1超音波探触子及び第2超音波探触子から超音波を送信することで、第1超音波探触子から送信される超音波と、第2超音波探触子から送信される超音波とが、ロータディスクの内部で集束させることができる。また、傾斜角度を調整することで、超音波の集束位置の深さ(ロータディスクのディスク面からの距離)を調整することができる。したがって、例えば、大型のロータディスク等のように、ディスク面が湾曲しているタービンであっても、湾曲部の形状に応じて、第1超音波探触子及び第2超音波探触子の傾斜角度を調整することで、所望の位置に超音波を集束させることができる。よって、湾曲部の形状(曲率)に応じるように屈折角を計算した素子等を用意する必要がないため、検査を容易化することができる。
【0027】
また、第1超音波探触子の傾斜角度と、第2超音波探触子の傾斜角度とを異なる角度とすることで、超音波の集束位置を、第1超音波探触子側または第2超音波探触子側とすることができる。すなわち、第1超音波探触子の傾斜角度を、第2超音波探触子の傾斜角度よりも大きくした場合には、超音波の集束位置が第2超音波探触子側となる。また、反対に、第2超音波探触子の傾斜角度を、第1超音波探触子の傾斜角度よりも大きくした場合には、超音波の集束位置が第1超音波探触子側となる。したがって、より広い範囲で超音波を収束させることができる。
【発明の効果】
【0028】
タービンロータのディスク面が湾曲している大型のタービンロータにおいて、好適に検査を行うことができる。
【図面の簡単な説明】
【0029】
【
図1】本発明の実施形態に係るタービンロータ及び動翼の縦断面図である。
【
図2】本発明の実施形態に係るロータディスクのディスク面を正面から見た図である。
【
図3】本発明の実施形態に係るロータディスクの上面図である。
【
図4】本発明の実施形態に係る超音波検査装置の模式的な斜視図である。
【
図6】本発明の実施形態に係る超音波検査装置の斜視図である。
【
図7】本発明の実施形態に係る超音波検査装置の斜視図であって、ロータディスクに設置されている状態を示す図である。
【
図8】本発明の実施形態に係る制御装置のブロック図である。
【
図9】本発明の実施形態に係る検査部の斜視図である。
【
図10】本発明の実施形態に係る検査部の斜視図であって、アーム部を省略した図である。
【
図11】本発明の実施形態に係る検査部の斜視図であって、アーム部及び角度調整部を省略した図である。
【
図12】本発明の実施形態に係る検査部の断面を示す斜視図である。
【
図13】本発明の実施形態に係る検査部に設けられた第2磁石及び転動ローラを示す模式的な図である。
【
図14】本発明の実施形態に係る検査部の模式的な側面図である。
【
図15A】本発明の実施形態に係る傾斜調整機構を示す模式的な図である。
【
図15B】本発明の実施形態に係る傾斜調整機構を示す模式的な図である。
【
図15C】本発明の実施形態に係る傾斜調整機構を示す模式的な図である。
【
図15D】本発明の実施形態に係る傾斜調整機構を示す模式的な図である。
【
図17】本発明の実施形態に係る検査部の模式的な側面図である。
【発明を実施するための形態】
【0030】
以下に、本発明に係る超音波検査装置の一実施形態について、図面を参照して説明する。なお、以下の説明において、ロータディスクの半径方向をX方向とも称し、ロータディスクの板厚方向をY方向とも称し、ロータディスクの接線方向(X方向及びY方向と直交する方向)をZ方向もと称する。
【0031】
図1は、蒸気タービンの縦断面図である。
図1に示すように、蒸気タービン1は、タービンロータ2と、タービンロータ2に固定される動翼3とを備えている。タービンロータ2は、ロータシャフト4と、ロータシャフト4と同心状に設けられた複数のロータディスク5を有する。ロータディスク5は、
図2に示すように、外周部に動翼3が嵌め込まれる複数の翼溝部6が形成されている。
【0032】
本実施形態に係る超音波検査装置100は、
図1に示すように、ロータディスク5のディスク面5aに取り付けられ、翼溝部6を超音波により検査するための装置である。具体的には、翼溝部6に向かって超音波を送信することで、翼溝部6にSCC(応力腐食割れ)等の破損が発生しているか否かを検査する装置である。本実施形態では、複数のロータディスク5のうち、大型のロータディスク5を検査対象とする例について説明する。
【0033】
図1に示すように、大型のロータディスク5のディスク面5aは、平坦面ではない。詳細には、ディスク面5aは、ロータディスク5の半径方向に湾曲するとともに、ロータディスク5の周方向にも湾曲しており、二次元曲面形状となっている。以下の説明では、単に「半径方向」といった場合には、ロータディスク5の半径方向を意味する。また、単に「周方向」といった場合には、ロータディスク5の周方向を意味する。また、ディスク面5aの半径方向の湾曲を「小径R」とも称し、周方向の湾曲を「大径R」とも称する。
【0034】
図2に示すように、ロータディスク5に形成される各翼溝部6は、ロータディスク5の外周面から凹む溝であって、ロータディスク5の一側のディスク面5aから他側のディスク面5aに向かって延在する、いわゆるサイドエントリー型の溝である。また、各翼溝部6は、
図3に示すように、板厚方向と傾斜するように形成される、いわゆるスキュードタイプの溝である。複数の翼溝部6は、周方向に所定の間隔で並ぶように形成されている。動翼3は、いわゆるクリスマスツリー形状の翼根部を有するサイドエントリー型動翼である。
【0035】
超音波検査装置100は、
図1に示すように、翼溝部6とロータシャフト4との間に形成され、ディスク面5aから突出する突出部よりも、ロータシャフト4側の湾曲面に取り付けられている。また、詳しくは後述するが、超音波検査装置100は、
図2に示すように、ロータディスク5のディスク面5aを、ロータディスク5の周方向に沿って移動する(
図2矢印参照)。
【0036】
[超音波検査装置]
次に、超音波検査装置100の詳細について、
図4から
図8を用いて説明する。
超音波検査装置100は、
図4及び
図5に示すように、超音波を送信する検査部10と、ロータディスク5のディスク面5aに対して、検査部10を移動可能に保持する複数の第1磁石(保持部)11と、検査部10をロータディスク5の半径方向と交差する方向へ移動させると駆動輪(移動部)12と、駆動輪12の進行方向を調整する操舵輪(調整部)13と、ディスク面5aに対して保持されている検査部10の半径方向の位置を検出する2基のストロークセンサ(位置検出部)14と、ストロークセンサ14が検出した情報に基づいて操舵輪13を制御する制御装置(制御部)15と、を備えている。超音波検査装置100は、駆動輪12等によってロータディスク5を周方向に走行しながら、検査部10によって、ロータディスク5の周方向の全域のデータ(UTデータ)を検出する。
また、超音波検査装置100は、駆動輪12を支持する駆動輪支持部16と、操舵輪13を支持する操舵輪支持部17とを備えている。駆動輪支持部16及び操舵輪支持部17は、板状の部材であって、板面がロータディスク5のディスク面5aと対向するように設けられる。以下では、ディスク面5aと対向する駆動輪支持部16及び操舵輪支持部17の板面を、対向面16a、17aと称する。
【0037】
検査部10は、ロータディスク5のディスク面5aへ超音波を送信及び受信する超音波探触子31を有している。検査部10は、超音波探触子31によって得られたUTデータを取得し、制御装置15へ送信する。検査部10は、駆動輪支持部16と操舵輪支持部17との間に設けられている。
図6に示すように、検査部10は、駆動輪支持部16及び操舵輪支持部17に対して、ロール方向(
図6の矢印A2参照)に回転可能とされている。ロール方向とは、超音波検査装置100の進行方向(
図6矢印A1参照)を中心軸線C1とする回転方向である。検査部10の具体的な構造については後述する。
【0038】
第1磁石11は、駆動輪支持部16に2つ設けられ、2つの第1磁石11は半径方向に並んで配置されている。また、第1磁石11は、操舵輪支持部17にも2つ設けられており、2つの第1磁石11は半径方向に並んで配置されている。各第1磁石11は、駆動輪支持部16及び操舵輪支持部17の対向面16a、17aに固定されている。各第1磁石11は、対向面16a、17aからロータディスク5方向へ突出するように設けられている。4つの第1磁石11は、ロータディスク5のディスク面5aに磁力により吸着することで、超音波検査装置100をディスク面5aに保持する。ただし、4つの第1磁石11は、ディスク面5aから離間するように配置されている。これは、駆動輪12及び操舵輪13が第1磁石11よりもタービンディスク側に突出しているためである(
図5参照)。
各第1磁石11は、各々、ストローク制御装置18によって対向面16a、17aからの突出する長さを調整されている。
図7に示すように、湾曲面に吸着する際には、ストローク制御装置18が各第1磁石11の突出長さを湾曲面に応じた長さとすることで、第1磁石11とディスク面5aとの距離が一定とする。これにより、第1磁石11がディスク面5aを好適に吸着することができる。なお、ストローク制御装置18は必須ではなく、第1磁石11とディスク面5aとの距離が一定となるように、図面情報を基に磁石設置位置を事前に設定しておいてもよい。
【0039】
駆動輪12は、駆動輪支持部16の対向面16aに設けられている。駆動輪12は、ロータディスク5のディスク面5aと接触するように配置されている。駆動輪12は、モータ(図示省略)からの駆動力によって回転駆動する。なお、モータは、駆動輪12に内蔵されていてもよく、駆動輪12の外部に設けられていてもよい。駆動輪12が回転駆動することで、超音波検査装置100がディスク面5aを走行する。駆動輪12の内部にはエンコーダ(移動距離検出部)が内蔵されている。エンコーダは、駆動輪12の移動量を検出する。エンコーダは、検出した情報を制御装置15へ送信する。
【0040】
操舵輪13は、操舵輪支持部17の対向面17aに設けられている。操舵輪13は、ロータディスク5のディスク面5aと接触するように配置されている。操舵輪13は、対向面17aと直交する中心軸線C2を中心として回転可能に操舵輪支持部17に支持されている。中心軸線C2を中心に操舵輪13を回転させることにより、超音波検査装置100の進行方向を調整する。
【0041】
ストロークセンサ14は、駆動輪支持部16と操舵輪支持部17に1基ずつ設けられている。ストロークセンサ14は、ロータディスク5の半径方向の基準部と、超音波検査装置100との距離を検出する。ストロークセンサ14は、検出した情報を制御装置15へ送信する。
図7の例では、半径方向の基準部として、ディスク面5aから突出する肩部5bを適用している。具体的には、各ストロークセンサ14の先端に設けられた鉤部を肩部5bに引っ掛けることで、基準の位置を把握している。なお、基準部は肩部5bでなくてもよい。半径方向の基準となる部分であればよく、例えば、ロータシャフト4の外周面を基準部としてもよい。
【0042】
制御装置15は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
【0043】
制御装置15は、
図8に示すように、超音波検査装置100をディスク面5aに設置した際の超音波検査装置100と肩部(基準部)との距離の値(初期値)を記憶する記憶部21と、ストロークセンサ14が検出した情報に基づいて超音波検査装置100の半径方向の位置が所定の範囲内となるように操舵輪13の向きを制御する操舵輪制御部22と、エンコーダからの情報に基づいて自己位置を検出する自己位置検出部(移動距離検出部)23と、ロータディスク5の損傷を把握する損傷把握部24と、を有する。
【0044】
操舵輪制御部22は、記憶部21が記憶している初期値及びストロークセンサ14が検出した情報に基づいて、超音波検査装置100と肩部(基準部)との距離が初期値となるように、操舵輪13の回転する角度を制御する。このように操舵輪13を制御することで、所定の半径方向の位置を維持したまま周方向に走行することができる。
【0045】
自己位置検出部23は、エンコーダからの上方に基づいて走行距離を算出し、超音波検査装置100の周方向の自己位置を検出する。
【0046】
損傷把握部24は、検査部10が検出したロータディスク5のUTデータと、エンコーダからの自己位置の情報とを、時間的同期をとって記録する。すなわち、UTデータと、当該UTデータが得られた周方向の位置とを紐づける。これにより、ロータディスク5のどの部分にどのような損傷が生じているのかを把握することができる。
【0047】
[検査部]
次に、検査部10の詳細について、
図9から
図13を用いて説明する。なお、
図4から
図7では、検査部10と操舵輪支持部17及び駆動輪支持部16との連結構造を模式的に示しているが、検査部10と操舵輪支持部17及び駆動輪支持部16は、
図9から
図13に示す固定アーム30によって連結されている。また、以下の説明では、ロータディスク5側の方向を一方向と称し、一方向と反対方向については他方向と称する。また、一方向側の端部を一端部と称し、他方向側の端部を他端部と称する。
【0048】
検査部10は、
図9に示すように、ロータディスク5のディスク面5aへ超音波を送信する2つの超音波探触子31と、超音波探触子31が固定される探触子側ホルダ32と、超音波探触子31とディスク面5aとの間に設けられる軟化ゲル部(変形部)33と、探触子側ホルダ32よりもロータディスク5側に設けられ、軟化ゲル部33を保持するロータディスク側ホルダ34と、探触子側ホルダ32をロータディスク5側に付勢する付勢部35と、ディスク面5aに対する超音波探触子31の角度を変更する角度調整部36と、を備えている。
【0049】
各超音波探触子31は、ロータディスク5へ超音波を送信する装置である。2つの超音波探触子31は、各々、傾斜調整機構50を介して、探触子側ホルダ32に固定されている。傾斜機構の詳細については、後述する。2つの超音波探触子31は、並んで配置されている。詳細には、超音波検査装置100をロータディスク5へ設置した際に、径方向と交差する方向(Z方向)に並んで配置されている。以下の説明では、一方の超音波探触子31を第1超音波探触子31aと称し、他方の超音波探触子31を第2超音波探触子31bと称する。
【0050】
探触子側ホルダ32は、1対の固定アーム30に対して接続されている。探触子側ホルダ32は、1対の固定アーム30を介して、駆動輪支持部16及び操舵輪支持部17に連結されている。探触子側ホルダ32と固定アーム30とは角度調整部36及び回転固定部を介して接続されている。角度調整部36及び回転固定部については、後述する。
探触子側ホルダ32は、他端部に第1超音波探触子31aが固定される第1探触子側ホルダ32aと、他端部に第2超音波探触子31bが固定される第2探触子側ホルダ32bとを有する。第1探触子側ホルダ32aと第2探触子側ホルダ32bとは、矩形の枠体を枠体の中心軸線を基準として対称となるように分割した形状をしている。すなわち、第1探触子側ホルダ32aと第2探触子側ホルダ32bとは、端部どうした接触することで、
図12に示すように、中心に空間S1が形成される略矩形の枠体を構成する。この空間S1には、軟化ゲル部33(
図13参照)が充填されている。探触子側ホルダ32の一端部は平面となっており、ロータディスク側ホルダ34の他端部と当接している。探触子側ホルダ32の他端部には、2つの超音波探触子31が固定されている。以下では、第1探触子側ホルダ32aと、第2探触子側ホルダ32bとを分けて説明しなくてもよい場合には、単に探触子側ホルダ32と称する。
【0051】
ロータディスク側ホルダ34は、探触子側ホルダ32よりもロータディスク5側に設けられている。ロータディスク側ホルダ34の一端部は、小径Rに対応するように湾曲面となっている。またロータディスク側ホルダ34の他端部は平面となっており、探触子側ホルダ32の一端部と当接している。また、ロータディスク側ホルダ34は矩形の枠形状であって、中心には空間S2が形成されている。空間S2は、
図12に示すように、他側よりも一側の方が、Z方向の長さが長くなっている。空間S2の一側の端部では、ロータディスク側ホルダ34のZ方向の全域に亘って形成されるとともに、遮蔽板37によってX方向に分割されている。空間S2は、探触子側ホルダ32の中心に形成された空間S1と連通しており、S1とS2とで軟化ゲル部33が充填される空間Sを形成している。
【0052】
ロータディスク側ホルダ34は、
図13に示すように、ディスク面5aに吸着する第2磁石(吸着部)38と、ボールローラ39とを有している。第2磁石38は、ロータディスク側ホルダ34の一端部に埋め込まれている。ボールローラ39は、第2磁石38を挟むように配置されており、一部がロータディスク側ホルダ34の一端部に埋め込まれているとともに、一部がロータディスク側ホルダ34の一端から突出している。ボールローラ39は、ディスク面5aと接触することで、ロータディスク側ホルダ34とディスク面5aとの相対移動を円滑にする。
【0053】
軟化ゲル部33は、押圧力が作用しない状態では、所定の形状を保っているが、押圧されることで変形する部材である。また、軟化ゲル部33は、超音波を好適に透過する部材である。軟化ゲル部33は、空間S内に充填されている。軟化ゲル部33の一端部は、超音波検査装置100が取り付けられるディスク面5aの湾曲態様(例えば、小径R)に応じた形状に形成される。軟化ゲル部33の一端部は、ロータディスク側ホルダ34の一端部よりも、さらにロータディスク5側に突出するように配置されている。これにより、ロータディスク側ホルダ34をディスク面5aに押し付けることで、軟化ゲル部33もディスク面5aに押し付けられる。この押圧力によって軟化ゲル部33は、ディスク面5aに密着するように変形する。
【0054】
付勢部35は、
図9及び
図11に示すように、固定アーム30に固定される板状の第1ブラケット40と、第1ブラケット40に他端部が固定されるバネ41と、探触子側ホルダ32に固定される板状の第2ブラケット42と、を有する。バネ41の一端部は、第2ブラケット42に当接している。これにより、バネ41の付勢力が、第2ブラケット42を介して探触子側ホルダ32に伝達されるので、探触子側ホルダ32が一端側(ロータディスク5側)に付勢される。
【0055】
また、第1ブラケット40には、スライダ部43が固定されている。また、探触子側ホルダ32には、レール部44が固定されている。スライダ部43及びレール部44は、Y方向に延在している。スライダ部43及びレール部44は、係合可能に構成されている。スライダ部43とレール部44とが係合することで、固定アーム30と探触子側ホルダ32とのX方向及びZ方向の移動を規制する。
【0056】
また、第2ブラケット42の一端部は探触子側ホルダ32の一端部よりも突出している。第2ブラケット42は、この突出した部分が、ロータディスク側ホルダ34のX方向の端面と当接又は近接している。よって、第2ブラケット42は、探触子側ホルダ32とロータディスク側ホルダ34とのX方向の相対移動を規制している。
【0057】
角度調整部36は、
図10に示すように、探触子側ホルダ32と固定アーム30との間に設けられている。角度調整部36は、探触子側ホルダ32を、固定アーム30に対して中心軸線C1(
図6参照)に沿って延びるシャフト(図示省略)を中心として回転可能としている。よって、角度調整部36に設けられたレバー45を動かすことによって、検査部10を所望の角度とすることができる。また、角度調整部36は、固定アーム30に設けられた回転固定用ネジ46を締めこむことで、ゴム材で形成された回転固定用ネジ46の先端とシャフトとが当接することで、回転が規制される。よって、検査部10の角度を固定することができる。
【0058】
[傾斜調整機構]
次に、傾斜調整機構50について
図14から
図17を用いて説明する。
本実施形態に係る検査部10は、
図14に示すように、傾斜調整機構(第1傾斜手段、第2傾斜手段)50によって、第1探触子側ホルダ32a及び第1超音波探触子31aを、第2探触子側ホルダ32b及び第2超音波探触子31bの反対側へ、所望の角度傾斜させることができる。また、傾斜調整機構50によって、第2探触子側ホルダ32b及び第2超音波探触子31bを第1探触子側ホルダ32a及び第1超音波探触子31aの反対側へ、所望の角度傾斜させることができる。
【0059】
第1探触子側ホルダ32a及び第1超音波探触子31aを傾斜させる傾斜調整機構50と、第2探触子側ホルダ32b及び第2超音波探触子31bを傾斜させる傾斜調整機構50とは、対称に構成されている。したがって、以下では、第1探触子側ホルダ32a及び第1超音波探触子31aを傾斜させる傾斜調整機構50を説明し、第2探触子側ホルダ32b及び第2超音波探触子31bを傾斜させる傾斜調整機構50の説明は省略する。
【0060】
傾斜調整機構50は、
図15A及び
図15Bに示すように、第1探触子側ホルダ32a及びロータディスク側ホルダ34を貫通する2本の外側ネジ51と、2本の内側ネジ52を有している。内側ネジ52の長さは、外側ネジ51の長さよりも長くなっている。各ネジの先端には、球体部51a、52aが設けられている。2本の外側ネジ51は第1超音波探触子31aを挟むように配置されている。また、2本の内側ネジ52は、外側ネジ51よりも内側に設けられ、第1超音波探触子31aを挟むように配置されている。
【0061】
第1探触子側ホルダ32aには、外側ネジ51が挿通する2つの外側ネジ孔53及び内側ネジ52が挿通する2つの内側ネジ孔54が形成されている。探触子側ホルダ32に形成されている外側ネジ孔53及び内側ネジ孔54は、いずれも探触子側ホルダ32を貫通している。外側ネジ孔53は、外側ネジ51が螺合可能な雌ネジが内周面に形成されている。内側ネジ孔54の直径は、内側ネジ52の軸部の直径よりも十分に大きく形成されている。すなわち、内側ネジ孔54と内側ネジ52とは螺合しない。
【0062】
ロータディスク側ホルダ34には、外側ネジ51が挿通する2つの外側ネジ孔56及び内側ネジ52が挿通する2つの内側ネジ孔57が形成されている。ロータディスク側ホルダ34に形成される内側ネジ孔57及び外側ネジ孔56は、各々、有底状の凹部形状をしている。外側ネジ孔56及び内側ネジ孔57の底部は、球体部51a、52aが挿入される球状空間56a、57aが形成されている。また、外側ネジ孔56及び内側ネジ孔57の内周面は、内側ネジ52及び外側ネジ51が傾斜可能なように、第2探触子側ホルダ32b及び第2超音波探触子31bから離れるように傾斜している。
【0063】
また、内側ネジ52には、第1探触子側ホルダ32aよりも他側に、ナット58が螺合している。ナットを螺合する位置は、用途によって異なる。例えば、
図15Bに示すように、第1探触子側ホルダ32aに接触するようにナット58を螺合させ、
図15Bの矢印で示すように、外側ネジ51と内側ネジ52とを同時に回転させた場合には、
図15Cに示すように、第1探触子側ホルダ32a及び第1超音波探触子31aが平行の状態のままロータディスク側ホルダ34から離間する。
【0064】
一方、
図15Dに示すように、内側ネジ52の基端側にナット58を螺合させた場合には、軟化ゲルの押圧力(矢印A3参照)によって、第1探触子側ホルダ32a及び第1超音波探触子31aの内側のみが他側に移動する。これによって、第1探触子側ホルダ32a及び第1超音波探触子31aが第2探触子側ホルダ32b及び第2超音波探触子31bの反対側へ傾斜する。ナット58と第1探触子側ホルダ32aとが接触した位置で、第1探触子側ホルダ32a及び第1超音波探触子31aは停止するので、ナット58の螺合する位置を調整することで、第1探触子側ホルダ32a及び第1超音波探触子31aの傾斜角度θ1を所望の角度とすることができる。傾斜角度θ1は、第1探触子側ホルダ32aの一端面と、ロータディスク側ホルダ34の他端面とが為す角度である。
【0065】
また、第1探触子側ホルダ32aとロータディスク側ホルダ34との間にさらにナット(図示省略)を設け、当該ナットを第1探触子側ホルダ32aの一端面と接触させる場合には、ナットにより第1探触子側ホルダ32a及び第1超音波探触子31aを支持することができるので軟化ゲルの押圧力に依らずに、第1探触子側ホルダ32a及び第1超音波探触子31aを所望の傾斜角度θ1に固定することができる。
【0066】
[傾斜調整機構50の変形例]
なお、傾斜調整機構50は、
図16Aから
図16Cに示すように、構成されてもよい。
本変形例では、外側ネジ51の代わりに、蝶番61及び引張バネ62が設けられている点で
図15Aから
図15Dに示されている構成と異なっている。内側ネジ52の構成は
図15Aから
図15Dに示されている構成と略同一であるので、説明は省略する。蝶番61は、ロータディスク側ホルダ34のZ方向の外側に固定されている。また、蝶番61は、第1探触子側ホルダ32aのZ方向の外側に引張バネ62を介して固定されている。引張バネ62は、第1探触子側ホルダ32aをロータディスク側ホルダ34方向へ付勢している。
【0067】
このような構成でも、
図16Cに示すように、内側ネジ52の基端側にナット58を螺合させた場合には、軟化ゲルの押圧力(矢印A3参照)によって、第1探触子側ホルダ32a及び第1超音波探触子31aの内側のみが他側に移動する。これによって、第1探触子側ホルダ32a及び第1超音波探触子31aが第2探触子側ホルダ32b及び第2超音波探触子31bの反対側へ傾斜する。ナット58と第1探触子側ホルダ32aとが接触した位置で、第1探触子側ホルダ32a及び第1超音波探触子31aは停止するので、ナット58の螺合する位置を調整することで、第1探触子側ホルダ32a及び第1超音波探触子31aの傾斜角度θ1を所望の角度とすることができる。
【0068】
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、ロータディスク5のディスク面5aに対して超音波検査装置100が移動可能に保持され、かつ、超音波検査装置100が駆動輪12によって移動する。これにより、ロータディスク5のディスク面5aを超音波検査装置100が走行する。また、本実施形態では、制御装置15が超音波探触子31の半径方向(X方向)の位置が所定の位置となるように操舵部を制御している。これにより、超音波探触子31がロータディスク5の半径方向と交差する方向(Z方向)へ移動する際に、超音波探触子31の半径方向の位置を所定の位置とすることができる。すなわち、超音波探触子31を、所定の半径方向の位置を維持したまま、周方向へ移動させることができる。
【0069】
このように、本実施形態では、超音波検査装置100が、ロータディスク5のディスク面5aを周方向に走行することができる。したがって、例えば、ロータシャフト4に固定される台車等を設けることで超音波探触子31の半径方向の位置を固定する構成と比較して、台車等を設けない分小型化することができる。よって、例えば、大型のロータディスク5等のように、隣接するロータディスク5との距離が短いロータディスク5であっても、隣接するロータディスク5との干渉を抑制し、容易に超音波検査装置100をロータディスク5のディスク面5aに設置することができる。
【0070】
本実施形態では、超音波検査装置100が、駆動輪12を駆動するモータを備えている。これにより、外部から動力を得る必要がないので、ロータディスク5のディスク面5aを超音波検査装置100が自走することができる。よって、超音波検査装置100が外部から動力を得る構造と比較して、構造を簡素化することができる。
また、超音波検査装置100が自走するので、超音波検査装置100を作業員が手動で動かす必要がないので、作業員等の手が届きにくい大型のロータディスク5の検査にも適用することができる。
【0071】
本実施形態では、第1磁石11を用いて、ディスク面5aと接触しないように超音波探触子31をディスク面5aに対して保持している。これにより、超音波検査装置100が移動する際の走行抵抗を低減することができる。
【0072】
本実施形態では、移動した距離を検出するエンコーダを備えている。これより、超音波検査装置100の周方向の位置を把握することができる。したがって、超音波探触子31の検査結果と周方向の位置とを関連付けることができる。よって、ロータディスク5に生じている損傷の位置を特定することができる。
【0073】
本実施形態では、超音波探触子31とロータディスク5との間に、ロータディスク5に押し付けられることで変形する軟化ゲル部33が設けられている。これにより、軟化ゲル部33をロータディスク5に押し付けることで、軟化ゲル部33がロータディスク5の表面に応じて変形するので、ロータディスク5の表面の空気層を排除することができる。超音波探触子31とロータディスク5との間の空気層を除去することができるので、超音波探触子31からロータディスク5へ好適に超音波を伝達させることができる。したがって、例えば、大型のロータディスク5等のように、ディスク面5aが湾曲しているロータディスク5であっても、軟化ゲル部33を変形させることで、好適に検査を行うことができる。
【0074】
また、本実施形態では、軟化ゲル部33がディスク面5aの湾曲態様に応じて変化するため、いずれの湾曲態様であっても空気層を除去することができる。よって、例えば、同一のタービンロータで複数のディスク翼溝部を探傷する場合に、縦断面図にて同様な形状を有する鍔部の湾曲面がディスク面に存在すると、ディスク上の探触子を配置する位置の直径寸法によって、検査対象であるディスク面5aの湾曲態様(大径R)が変化する。このような場合であっても、ディスク面5aの湾曲態様の変化に応じて、軟化ゲル部33が変形する。よって、ディスク直径が異なっても同一形状の鍔部に対して探触子やホルダを変更することなく、同一の超音波検査装置100を移動させつつ、好適に検査を行うことができる。
【0075】
また、本実施形態では、探触子側ホルダ32が、付勢部35によって、ロータディスク5側に付勢している。これによって、探触子側ホルダ32を介して、軟化ゲル部33をロータディスク5に押し付けることができる。したがって、より好適に軟化ゲル部33をロータディスク5に押し付けることができる。よって、より好適に軟化ゲル部33をロータディスク5のディスク面5aに応じて変形させ、空気層を除去することができる。
【0076】
本実施形態では、ロータディスク5のディスク面5aに対する超音波探触子31の角度を変更する角度調整部36を備えている。これにより、超音波探触子31の角度を調整することで、的確に目的箇所(検査対象箇所)へ超音波を送信することができる。
【0077】
本実施形態では、第1超音波探触子31aを第2超音波探触子31bの反対側へ傾斜させる傾斜調整機構50と、第2超音波探触子31bを第1超音波探触子31aの反対側へ傾斜させる傾斜調整機構50とを備えている。これにより、第1超音波探触子31a及び第2超音波探触子31bを傾斜させた状態で、第1超音波探触子31a及び第2超音波探触子31bから超音波を送信することで、第1超音波探触子31aから送信される超音波と、第2超音波探触子31bから送信される超音波とが、ロータディスク5の内部で集束させることができる。また、傾斜角度θ1を調整することで、超音波の集束位置の深さL(ロータディスク5のディスク面5aからの距離。
図13参照)を調整することができる。したがって、例えば、大型のロータディスク5等のように、ディスク面5aが湾曲しているタービンであっても、湾曲部の形状に応じて、第1超音波探触子31a及び第2超音波探触子31bの傾斜角度θ1を調整することで、所望の位置に超音波を収束させることができる。よって、湾曲部の形状(曲率)に応じるように屈折角を計算した素子等を用意する必要がないため、検査を容易化することができる。
【0078】
傾斜調整機構50は、傾斜角度θ1を所望の角度とすることができる。また、第1超音波探触子31aの傾斜角度と、第2超音波探触子31bの傾斜角度とを異なる角度とすることで、超音波の集束位置を、第1超音波探触子31a側または第2超音波探触子31b側とすることができる。すなわち、
図17に示すように、第1超音波探触子31aの傾斜角度を、第2超音波探触子31bの傾斜角度よりも大きくした場合には、超音波の集束位置P’が第2超音波探触子31b側となる。また、反対に、第2超音波探触子31bの傾斜角度を、第1超音波探触子31aの傾斜角度よりも大きくした場合には、超音波の集束位置が第1超音波探触子31a側となる。したがって、より広い範囲で超音波を収束させることができる。特に、
図3に示すような、スキュードタイプの翼溝部6に対して、楔などを用いることなく、翼溝部6の延在する方向に超音波を収束させることができるので、検査を容易化することができる。
【0079】
なお、本発明は、上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
例えば、超音波検査装置100は、慣性計測装置やレーザレンジファインダやソナー等をさらに備えてもよい。このような計器類をもうけることで、超音波検査装置100の制御精度を向上させることができる。
【0080】
また、第1磁石11の表面をゲル等の低摩擦材で覆い、低摩擦材をディスク面5aに接触させてもよい。このような方法でも、走行抵抗を低減することができる。
【符号の説明】
【0081】
1 :蒸気タービン
2 :タービンロータ
3 :動翼
4 :ロータシャフト
5 :ロータディスク
5a :ディスク面
6 :翼溝部
10 :検査部
11 :第1磁石(保持部)
12 :駆動輪(移動部)
13 :操舵輪(調整部)
14 :ストロークセンサ(位置検出部)
15 :制御装置(制御部)
16 :駆動輪支持部
16a :対向面
17 :操舵輪支持部
17a :対向面
18 :ストローク制御装置
21 :記憶部
22 :操舵輪制御部
23 :自己位置検出部(移動距離検出部)
24 :損傷把握部
30 :固定アーム
31 :超音波探触子
31a :第1超音波探触子
31b :第2超音波探触子
32 :探触子側ホルダ
32a :第1探触子側ホルダ
32b :第2探触子側ホルダ
33 :軟化ゲル部
34 :ロータディスク側ホルダ
35 :付勢部
36 :角度調整部
37 :遮蔽板
38 :第2磁石
39 :ボールローラ
40 :第1ブラケット
41 :バネ
42 :第2ブラケット
43 :スライダ部
44 :レール部
45 :レバー
46 :回転固定用ネジ
50 :傾斜調整機構(第1傾斜手段、第2傾斜手段)
51 :外側ネジ
51a :球体部
52a :球体部
52 :内側ネジ
53 :外側ネジ孔
54 :内側ネジ孔
56 :外側ネジ孔
56a :球状空間
57a :球状空間
57 :内側ネジ孔
58 :ナット
61 :蝶番
62 :引張バネ
100 :超音波検査装置