(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-11-28
(45)【発行日】2023-12-06
(54)【発明の名称】信号処理装置
(51)【国際特許分類】
B66B 3/00 20060101AFI20231129BHJP
B66B 5/00 20060101ALI20231129BHJP
B66B 5/02 20060101ALI20231129BHJP
【FI】
B66B3/00 R
B66B5/00 G
B66B5/02 S
(21)【出願番号】P 2022106262
(22)【出願日】2022-06-30
【審査請求日】2022-06-30
(73)【特許権者】
【識別番号】000112705
【氏名又は名称】フジテック株式会社
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】平田 智之
(72)【発明者】
【氏名】金子 元樹
(72)【発明者】
【氏名】佐藤 功一
【審査官】中田 誠二郎
(56)【参考文献】
【文献】特開2012-197181(JP,A)
【文献】特開2021-024704(JP,A)
【文献】特開2005-298071(JP,A)
【文献】中国特許出願公開第1837008(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
B66B 3/00-5/02
(57)【特許請求の範囲】
【請求項1】
エレベータの乗りかごの振動を検出するセンサが出力した
、前記乗りかごの走行開始から走行終了までの動作時間範囲内の振動波形信号を取得する情報取得部と、
前記情報取得部が取得した前記振動波形信号に対して、
複数に分割された前記動作時間範囲の各部分区間に設定された周波数帯でフィルタ処理したフィルタ波形信号を生成するフィルタ処理部と、
前記フィルタ処理部が生成したフィルタ波形信号において、所定期間の代表値を取得する代表値取得部と、を備えている、
信号処理装置。
【請求項2】
前記フィルタ処理部は、互いに異なる複数の周波数帯でフィルタ処理した複数のフィルタ波形信号を生成する、
請求項1に記載の信号処理装置。
【請求項3】
前記乗りかごの所定の動作の動作時間範囲を複数の部分区間に分割し、各部分区間で前記フィルタ処理が行われる周波数帯が設定されるフィルタ情報を記憶する記憶部と、
前記フィルタ情報に基づき、前記所定期間としての前記部分区間ごとの前記代表値を出力する出力部と、を備える、
請求項2に記載の信号処理装置。
【請求項4】
前記フィルタ情報は、複数種類の振動要因ごとに、前記各部分区間で前記フィルタ処理が行われる周波数帯が設定される情報を含んでいる、
請求項3に記載の信号処理装置。
【請求項5】
前記フィルタ処理部は、所定の種類の前記フィルタ波形信号を生成し、
前記フィルタ情報は、複数種類の振動要因ごとに、前記各部分区間で採用すべき前記フィルタ波形信号の種類を特定する情報を含んでいる、
請求項4に記載の信号処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はエレベータの振動信号を処理する信号処理装置に関する。
【背景技術】
【0002】
従来、エレベータの振動状態を確認するために、保守員がエレベータの乗りかごに加速度センサを設置して計測を行う測定作業が行われている。このような保守員による現地での測定作業は、保守員の負担となるとともに、エレベータの利用が制限されるものでもあった。
【0003】
これに対して、例えば特許文献1には、乗りかごに設置された振動センサが取得したエレベータの振動検出信号を、無線通信経由で情報処理装置に送信する通信装置を備えるエレベータの振動計測システムが開示されている。これにより、特許文献1に開示されているエレベータの振動計測システムでは、エレベータの振動を測定するために必要な手間や時間を軽減することができる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上述のような従来技術において、振動センサで取得される振動波形データとしての計測データは、そのデータサイズが比較的大きい。そのため、当該計測データを、例えば公衆回線を経由してクラウドサーバに送信する場合、高額な通信費が必要となるという問題がある。
【0006】
一方、計測データをエレベータ側の装置に保存しておき、保守作業時に現場で保守員が計測データを取得する方法も考えられる。しかしながら、この場合には、所定期間の計測データを保存するための大容量の記憶装置がエレベータ側の装置に必要となるという問題がある。
【0007】
本発明の一態様は、データサイズを抑えつつ、エレベータ動作解析に必要なデータを取得することができる信号処理装置を実現することを目的とする。
【課題を解決するための手段】
【0008】
上記の課題を解決するために、本発明の一態様に係る信号処理装置は、エレベータの乗りかごの振動を検出するセンサが出力した振動波形信号を取得する情報取得部と、前記情報取得部が取得した前記振動波形信号に対して、所定の周波数帯でフィルタ処理したフィルタ波形信号を生成するフィルタ処理部と、前記フィルタ処理部が生成したフィルタ波形信号において、所定期間の代表値を取得する代表値取得部と、を備えている。
【0009】
上記構成によれば、乗りかごの振動波形信号が所定の周波数帯でフィルタ処理されてフィルタ波形信号が生成され、所定期間の代表値が取得される。これにより、信号処理装置が取得する乗りかごの振動に関するデータサイズは、乗りかごの振動波形信号のデータサイズと比較して大幅に削減される。
【0010】
エレベータの乗りかごの振動から振動要因を特定する場合、例えば、センサにより検出された乗りかごの振動波形信号の全てを用いて、振動分析手法を用いて分析を行う必要があった。これに対して、本願発明者は、乗りかごの振動波形信号の全てを用いずとも、振動要因の特定に必要な周波数帯でフィルタ処理を行ったフィルタ波形信号における、所定期間の代表値によって振動要因を特定する方法を見出した。
【0011】
すなわち、上記の構成によれば、所定の周波数帯および所定期間を適宜設定することで、データサイズを抑えつつ、エレベータ動作解析に必要なデータを取得することができる。
【0012】
本発明の他の態様に係る信号処理装置では、前記フィルタ処理部は、互いに異なる複数の周波数帯でフィルタ処理した複数のフィルタ波形信号を生成してもよい。
【0013】
上記構成によれば、互いに異なる複数の周波数帯によるフィルタ波形信号が生成されるので、例えば振動要因や動作タイミングに応じて、振動の特徴が出やすい周波数帯に対応するフィルタ波形信号を選択し、その代表値を取得することができる。
【0014】
本発明の他の態様に係る信号処理装置では、前記乗りかごの所定の動作の動作時間範囲を複数の部分区間に分割し、各部分区間で前記フィルタ処理が行われる周波数帯が設定されるフィルタ情報を記憶する記憶部と、前記フィルタ情報に基づき、前記所定期間としての前記部分区間ごとの前記代表値を出力する出力部と、を備えていてもよい。
【0015】
振動要因によっては、部分区間によって振動の特徴が出やすい周波数帯が変化することがある。これに対して、上記の構成によれば、各部分区間で設定された周波数帯でフィルタ処理されたフィルタ波形信号に基づいて、部分区間ごとの代表値が出力されるので、振動の特徴が出ている可能性の高い代表値のデータ群が生成されることになる。よって、所定の振動要因の特徴を表しているデータを取得することができる。
【0016】
本発明の他の態様に係る信号処理装置では、前記フィルタ情報は、複数種類の振動要因ごとに、前記各部分区間で前記フィルタ処理が行われる周波数帯が設定される情報を含んでいてもよい。
【0017】
上記構成によれば、複数種類の振動要因ごとに、各部分区間の代表値が出力されるので、各部分区間で影響力の高い振動要因を認識することが可能となる。
【0018】
本発明の他の態様に係る信号処理装置では、前記フィルタ処理部は、所定の種類の前記フィルタ波形信号を生成し、前記フィルタ情報は、複数種類の振動要因ごとに、前記各部分区間で採用すべき前記フィルタ波形信号の種類を特定する情報を含んでいてもよい。
【0019】
上記構成によれば、フィルタ処理部によって生成されるフィルタ波形信号の種類は所定となり、その中から各部分区間で採用すべきフィルタ波形信号の種類が選択される。すなわち、振動要因ごとではなく、各部分区間で共通して参照可能な周波数帯ごとにフィルタ波形信号を生成すればよいことになる。よって、フィルタ波形信号を生成する演算負荷を軽減することができる。
【0020】
本発明の各態様に係る信号処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記信号処理装置が備える各部(ソフトウェア要素)として動作させることにより前記信号処理装置をコンピュータにて実現させる信号処理装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
【発明の効果】
【0021】
本発明の一態様によれば、データサイズを抑えつつ、エレベータ動作解析に必要なデータを取得することができる信号処理装置を実現することができる。
【図面の簡単な説明】
【0022】
【
図1】本発明の実施形態に係る信号処理装置を含む保守支援システムの全体構成を示す機能ブロック図である。
【
図2】乗りかごにおけるセンサおよび信号処理装置の設置位置を示す乗りかごの正面図である。
【
図6】フィルタマップ作成処理の一例を示すフロー図である。
【
図8】加振周波数マップ作成の一例を示す図である。
【
図9】上記信号処理装置の動作の一例を示すフロー図である。
【
図10】情報処理装置の表示部の表示の一例を示す図である。
【発明を実施するための形態】
【0023】
以下、本発明の一実施形態について詳細に説明する。ただし、以下の説明は本発明に係る信号処理装置40の一例であり、本発明の技術的範囲は図示例に限定されるものではない。
【0024】
〔実施形態〕
(保守支援システム100)
保守支援システム100は、エレベータシステム1の乗りかご20の動作状態を確認するための乗りかご20の振動の測定作業を自動で行い、当該測定作業で得たデータのうち、振動要因を特定するために必要なデータのみを取得するシステムである。また、保守支援システム100では、取得したデータに基づき振動要因を判断するための情報を保守員に提示する。
【0025】
図1は、本発明の実施形態に係る信号処理装置40を含む保守支援システム100の全体構成を示す機能ブロック図である。
図1に示すように、保守支援システム100は、エレベータシステム1と、情報処理装置50と、を備えている。信号処理装置40と情報処理装置50とは、通信ネットワーク60を介して接続されている。通信ネットワーク60の形態は限定されるものではなく、例えばインターネットでもよい。
【0026】
(エレベータシステム1)
エレベータシステム1(エレベータ)は、エレベータ制御装置10と、乗りかご20と、センサ30と、信号処理装置40と、を備えている。
【0027】
(エレベータ制御装置10)
エレベータ制御装置10は、エレベータシステム1全体の動作を制御する。エレベータ制御装置10は制御部11と、記憶部12と、を備えている。
【0028】
制御部11はエレベータ制御装置10の各部を統括的に制御する。制御部11の機能は、記憶部12に記憶されたプログラムを、CPUが実行することで実現されてよい。
【0029】
制御部11は、例えば、乗りかご20の現在位置および現在運転方向等に基づき、乗場における呼びボタン押下や乗りかご20内での行先階入力などに応じて、乗りかご20の運行を制御する。また、制御部11は、乗りかご20の振動の測定データを取得するために、例えば、夜間など利用者がいない時間帯に乗りかごを最下階から最上階に運行させるように乗りかご20の運行を制御する。
【0030】
記憶部12は、エレベータ制御装置10が実行する各種のプログラム、およびプログラムによって使用されるデータを格納している。
【0031】
(乗りかご20)
乗りかご20は、エレベータシステム1において、例えば、利用者を乗せて塔内を昇降する筐体である。乗りかご20は、制御部21を備えている。制御部21は、エレベータ制御装置10からの指示に基づいて、戸の開閉制御やボタン入力制御、表示制御などの制御を行う。
【0032】
センサ30は、エレベータシステム1の乗りかご20の振動を検出する。センサ30は、例えば、加速度センサまたはジャイロセンサを用いることができる。センサ30は、乗りかご20の振動を検出し、振動波形信号を信号処理装置40に出力する。
【0033】
図2は、乗りかご20におけるセンサ30および信号処理装置40の設置位置を示す乗りかご20の正面図である。
図2に示すように、センサ30は、乗りかご20の下部に設置されている。例えば、センサ30は、乗りかご20を支持するかご枠の下枠に設置することで乗りかご20の下部に設置されていてもよい。上記に限らず、センサ30は乗りかご20の上部に設置してもよい。
【0034】
(信号処理装置40)
信号処理装置40は、センサ30から出力された振動波形信号から、振動要因を特定するために必要なデータを取得する。信号処理装置40は、制御部41と、記憶部42と、を備えている。信号処理装置40は、
図2に示すように、乗りかご20の下部においてセンサ30の近傍に設置してもよい。信号処理装置40は、上記に限らず、乗りかご20の制御盤に組み込まれていてもよい。
【0035】
記憶部42は、信号処理装置40が実行する各種のプログラム、およびプログラムによって使用されるデータを格納している。また、記憶部42は、フィルタマップ422(フィルタ情報)を格納している。フィルタマップ422について、詳しくは後述する。
【0036】
(制御部41)
制御部41は信号処理装置40の各部を統括的に制御する。制御部41の機能は、記憶部42に記憶されたプログラムを、CPUが実行することで実現されてよい。制御部41は、情報取得部411と、フィルタ処理部412と、代表値取得部413と、出力部414と、を備えている。
【0037】
情報取得部411は、センサ30が出力した振動波形信号を取得する。情報取得部411は、所定の時間ごと(例えば、1秒ごと)にセンサ30が出力した振動波形信号を取得する。
【0038】
(フィルタ処理部412)
フィルタ処理部412は、情報取得部411が取得した振動波形信号に対して、所定の周波数帯でフィルタ処理したフィルタ波形信号を生成する。
【0039】
フィルタ処理部412は、情報取得部411が取得した振動波形信号に対して、
図3に示すようなフィルタマップ422(詳細は後述)で設定された各バンドパスフィルタ(フィルタ番号F1からフィルタ番号F5)の周波数帯でフィルタ処理を行い、
図4に示すようなフィルタ波形信号を生成する(詳細は後述)。言い換えると、フィルタ処理部412は、互いに異なる複数の周波数帯でフィルタ処理した複数のフィルタ波形信号を生成する。
【0040】
上記フィルタ処理は、フィルタマップ422で設定された各バンドパスフィルタについて一斉に行われる。
【0041】
(代表値取得部413)
代表値取得部413は、フィルタ処理部412が生成したフィルタ波形信号において、所定期間の代表値を取得する。代表値は、振動要因を特定するための値であり、例えば、所定期間のピーク値、または、所定期間の実効値である。本実施形態では、代表値取得部413は、各振動要因において、フィルタマップ422で設定された各部分区間のフィルタ番号に応じたフィルタ波形信号のピーク値を取得する。ピーク値は各部分区間の振動の幅の最大値であり、単位は、例えばgalである。
【0042】
(出力部414)
出力部414は、所定期間としての部分区間ごとの代表値を出力する。本実施形態では、例えば、出力部414は、代表値取得部413が代表値として取得したピーク値に基づき、
図5に示す分析情報5001を作成し(詳細は後述)、情報処理装置50に出力する。出力部414は、ピーク値を記録した分析情報5001を記憶部42に保存してもよい。
【0043】
出力部414は、分析情報5001を情報処理装置50に出力または記憶部42に保存した後、当該部分区間のフィルタ波形信号を破棄する。
【0044】
出力部414から出力されるデータ量は、部分区間ごとの代表値のみであるため、振動波形信号をそのまま出力される場合のデータ量と比較して大幅な容量削減が可能となる。
【0045】
なお、出力部414は、センサ30側に設置された通信装置を介して情報処理装置50に出力してもよく、エレベータ制御装置10を介して情報処理装置50に出力してもよい。
【0046】
(フィルタマップ422)
フィルタマップ422は、フィルタ処理部412でのフィルタ処理に用いられる情報であり、乗りかご20の所定の動作の動作時間範囲を複数の部分区間に分割し、各部分区間でフィルタ処理が行われる周波数帯が設定されるフィルタ情報である。
【0047】
フィルタマップ422は、後述する信号処理装置40の処理(
図9参照)を行う前に予め作成して記憶部42に格納する。フィルタマップ422の作成方法については以下に説明する。
【0048】
(フィルタマップ422の作成方法)
図6は、フィルタマップ422作成処理の一例を示すフロー図である。
図6に基づき、フィルタマップ422の作成について説明する。フィルタマップ422の作成は、信号処理装置40による実稼働の前に、保守員によってPCなどの情報処理装置を利用して行われる。
図6に示すように、まず、速度マップ7002が作成され(S01)、加振周波数マップ8001が作成された後(S02)に、フィルタマップ422が作成される(S03)。
【0049】
(速度マップの作成(S01))
図7は、速度マップ7002作成の一例を示す図である。速度マップ7002を作成するために、まず速度波形7001が作成される。速度波形7001は、乗りかご20の最下階から最上階までの移動において、乗りかご20の速度変化を示したグラフである。速度波形7001の縦軸は速度、横軸は時間を示す。
【0050】
速度波形7001は、対象とするエレベータシステム1の定格速度、最下階から最上階までの移動距離(ライズ)、加速度α、加加速度βより算出することができる。定格速度、ライズ、加速度αおよび加加速度βは、エレベータシステム1の動作仕様に応じて決まる値である。
【0051】
次に、速度波形7001に基づき、速度マップ7002が作成される。速度マップ7002は、部分区間ごとの速度の最小値、平均値および最大値を示した情報であり、速度波形7001より算出することができる。部分区間は任意に設定することができ、例えば、1秒を1区間とすることができる。
【0052】
図7の例で説明すると、速度波形7001に基づき区間1(例えば、0~1秒までの間)では、速度の最小値が0、最大値が10、平均値が4であることが算出される。同様に各部分区間の速度の最小値、最大値、および平均値を算出することで速度マップ7002が作成される。
【0053】
(加振周波数マップの作成(S02))
図8は、加振周波数マップ8001作成の一例を示す図である。加振周波数マップ8001は、振動要因の候補のそれぞれに対して、各部分区間において、各振動要因によって発生する振動の周波数範囲(振動する周波数の最大値および最小値)を算出した情報である。言い換えると、加振周波数マップ8001は、乗りかご20の速度変化に応じて、各振動要因によって発生する振動の周波数範囲の変化を示している。加振周波数マップ8001は、エレベータシステム1の構造的な仕様と、速度マップ7002とに基づき算出することができる。
【0054】
図8には、振動要因として、トラクションマシーン(TM)シーブのモータの回転周波数による振動(振動要因A)、コンベンションチェーンの通過周波数(コンベンションチェーン自体が曲がるタイミング)による振動(振動要因B)、RG(ローラガイド)の回転周波数による振動(振動要因C)、および、カーシーブ(CS)間の弦振動による振動(振動要因D)を例示している。
【0055】
なお、保守支援システム100により特定できる振動要因は上記に限らない。保守支援システム100では、走行中に周期的に発生する振動要因を分析対象とすることができるため、上記振動要因を含む、シーブ系やRGなどの速度依存成分、または、速度に依存がない固有成分(弦振動など)を振動要因の分析対象とすることができる。
【0056】
具体的には、保守支援システム100では、上記振動要因以外に、ロープストランド噛み込み周波数による振動、駆動周波数による振動、カーバランス不良による振動、ふわふわ振動、レール大曲による振動、CWT(カウンタウエイト)すれ違い時の風圧による振動、等の振動要因を特定することができる。
【0057】
ロープストランド噛み込み周波数による振動とは、ロープストランドがシーブに噛み込まれることで、ロープストランドのピッチ周期で発生する振動である。ロープストランドとは、細い素線をより合わせたストランドを、線維芯を中心としてさらにより合わせた構造のエレベータのワイヤーロープであり、ロープストランドのピッチとは、1本のストランドが、線維芯に一周巻き付くまでのロープ軸方向の長さである。ロープストランド噛み込み周波数による振動は、ロープストランドがシーブに噛み込まれ(巻き込まれ)、ピッチの長さだけロープストランドが進む時間を周期とする振動がロープストランドに生じ、乗りかご20まで当該振動が伝わることで発生する。
【0058】
駆動周波数による振動とは、インバータ、モータ起因で発生する振動である。カーバランス不良による振動とは、乗りかご20の偏荷重によりレールに荷重が加わっている状態となった場合において、レールおよびガイドシューから乗りかご20に伝わる振動である。また、ふわふわ振動とは、主ロープが伸縮することで発生する振動である。レール大曲による振動とは、据付誤差のあるレールを乗りかご20が通過するときに発生する振動である。CWTすれ違い時の風圧による振動とは、乗りかご20がCWTとすれ違う際に風圧を受けて発生する振動である。
【0059】
(フィルタマップの作成(S03))
フィルタマップ422(
図3参照)は、加振周波数マップ8001に基づき、振動要因ごとに各部分区間の周波数範囲よりバンドパスフィルタを設定した情報である。
【0060】
バンドパスフィルタの設定は、加振周波数マップ8001に基づき、振動要因ごとに、高域カットオフ周波数(HPF-fc)および低域カットオフ周波数(LPF-fc)を設定することで行う。
【0061】
具体的には、例えば、加振周波数マップ8001の振動要因Aの区間3においては、最大値はAx03であり、最小値はAn03である。この場合、最大値Ax03を整数で切り上げて、振動要因Aの区間3の高域カットオフ周波数をy1とし、最小値An03を整数で切捨てて振動要因Aの区間3の低域カットオフ周波数をz1として、バンドパスフィルタを設定する。また、設定したバントパスフィルタについてフィルタ番号(
図3ではフィルタ番号F1)を付与する。
【0062】
同様に、加振周波数マップ8001に基づき、振動要因ごとに、各部分区間においてバンドパスフィルタの設定を行い、フィルタ番号を付与する。
【0063】
各振動要因の各部分区間において高域カットオフ周波数および低域カットオフ周波数が共通する場合がある。その場合は、バンドパスフィルタを共通とし、共通のフィルタ番号を付与する。言い換えると、各振動要因の各部分区間には所定のバンドパスフィルタが割り当てられる。これにより、フィルタ処理部412によって生成されるフィルタ波形信号の種類は、所定のものに限られるため、フィルタ波形信号を生成する演算負荷を軽減することができる。
【0064】
具体的には、フィルタマップ422(
図3参照)の振動要因Aの区間3は、高域カットオフ周波数がy1であり、振動要因Aの区間3の低域カットオフ周波数がz1である。また、振動要因Bの区間2は、高域カットオフ周波数がy1であり、振動要因Bの区間2の低域カットオフ周波数がz1である。したがって、振動要因Aの区間3と振動要因Bの区間2とは、高域カットオフ周波数および低域カットオフ周波数が共通するため、バンドパスフィルタを共通とし、共通のフィルタ番号(
図3ではフィルタ番号F1)を付与する。
【0065】
なお、乗りかご20の動き始め等は、フィルタマップ422で算出される周波数自体が低く、0(ゼロ)に近い。そのような場合は、振動には影響ないため、フィルタマップ422において、カットオフ周波数を0とし計算対象外とする。
【0066】
乗りかご20の振動要因の分析は互いに直交する3軸方向(鉛直方向(Z方向)、および、水平方向の2方向(X方向、Y方向))それぞれで行うことが望ましい。その場合、フィルタ処理を行うに際し、それぞれの軸を対象とした3種類のフィルタマップ422が必要となる。
【0067】
上述したように、フィルタマップ422は、乗りかご20の所定の動作の動作時間範囲を複数の部分区間に分割し、各部分区間でフィルタ処理が行われる周波数帯が設定されている。フィルタマップ422の上記特徴により、フィルタ処理部412が行うフィルタ処理では、互いに異なる複数の周波数帯によるフィルタ波形信号が生成される。そのため、例えば振動要因や動作タイミングに応じて、振動の特徴が出やすい周波数帯に対応するフィルタ波形信号を選択することができる。
【0068】
また、各部分区間で設定された周波数帯でフィルタ処理されたフィルタ波形信号に基づいて、代表値取得部413により、部分区間ごとの代表値が出力されるので、振動の特徴が出ている可能性の高い代表値のデータ群が生成される。これにより、部分区間によって振動の特徴が出やすい周波数帯が変化する振動要因に対して、所定の振動要因の特徴を表しているデータを取得することができる。
【0069】
また、フィルタマップ422は、複数種類の振動要因ごとに、各部分区間でフィルタ処理が行われる周波数帯が設定される情報を含んでいる。
【0070】
フィルタマップ422の上記特徴により、フィルタ処理では、複数種類の振動要因ごとに、各部分区間の代表値が出力されるので、各部分区間で影響力の高い振動要因を認識することが可能となる。
【0071】
さらに、フィルタマップ422は、複数種類の振動要因ごとに、各部分区間で採用すべきフィルタ波形信号の種類を特定する情報を含んでいる。
【0072】
フィルタマップ422の上記特徴により、フィルタ処理では、フィルタ処理部412によって生成された所定のフィルタ波形信号の中から各部分区間で採用すべきフィルタ波形信号の種類が選択される。すなわち、フィルタ処理部412では、振動要因毎ではなく、各部分区間で共通して参照可能な周波数帯毎にフィルタ波形信号を生成すればよい。よって、フィルタ波形信号を生成する演算負荷を軽減することができる。
【0073】
(フィルタマップ作成の変形例)
加振周波数マップ8001からフィルタマップ422を作成する際に、各要因の各区間で設定されるバンドパスフィルタは、カットオフ周波数のバリエーションに応じて予め設定されていてもよい。この場合、予め設定された複数のバンドパスフィルタの中から、各要因の各区間で一番適切なバンドパスフィルタを選択することでフィルタマップ422を作成する。
【0074】
例えば、予め0Hz以上10Hz未満の周波数帯においては2Hz刻みに、10Hz以上20Hz未満の周波数帯においては5Hz刻みに、20Hz以上の周波数帯においては10Hz刻みに、バンドパスフィルタの設定を行い、フィルタ番号を付与しておく。
【0075】
具体的には、0Hz以上2Hz未満の周波数のフィルタ波形を生成するバンドパスフィルタにはフィルタ番号F1を付与し、2Hz以上4Hz未満の周波数のフィルタ波形を生成するバンドパスフィルタにはフィルタ番号F2を付与する。以降の0Hz以上10Hz未満の周波数帯においては、同様に、各周波数帯のバンドパスフィルタにフィルタ番号F3からフィルタ番号F5を付与する。
【0076】
また、10Hz以上20Hz未満の周波数帯においては、10Hz以上15Hz未満の周波数のフィルタ波形を生成するバンドパスフィルタにフィルタ番号F6を付与し、15Hz以上20Hz未満の周波数のフィルタ波形を生成するバンドパスフィルタにフィルタ番号F7を付与する。
【0077】
さらに、20Hz以上の周波数帯においては、20Hz以上30Hz未満の周波数のフィルタ波形を生成するバンドパスフィルタにフィルタ番号F7を付与し、以降同様にバンドパスフィルタにも順にフィルタ番号を付与する。
【0078】
加振周波数マップ8001からフィルタマップ422を作成する際、各要因の各区間においては、周波数の最大値および最小値から平均値を算出し、当該平均値が含まれるバンドパスフィルタを選択する。具体的に
図11に基づき説明する。
図11は、フィルタマップ422の変形例であるフィルタマップ422Aを説明する図である。
【0079】
フィルタマップ422Aの振動要因Eの区間1は、周波数の最大値が4であり、最小値が2であるため、平均値が3である。そこで、振動要因Eの区間1では、周波数3が含まれるバンドパスフィルタであるフィルタ番号F2が付与されたバンドパスフィルタを選択して設定する。同様に、振動要因Eの区間2から区間6において、各区間の周波数の平均値が含まれるバンドパスフィルタを選択して設定することにより、フィルタマップ422Aを作成する。
【0080】
これにより、フィルタ処理部412は、振動要因ごとではなく、各部分区間で共通して参照可能な周波数帯ごとにフィルタ波形信号を生成すればよいことになる。よって、フィルタ波形信号を生成する演算負荷を軽減することができる。
【0081】
(信号処理装置の動作の一例)
図9は、信号処理装置40の動作の一例を示すフロー図である。
図9に基づき、信号処理装置40の動作の一例について説明する。
【0082】
まず、エレベータシステム1が、例えば最下階などの移動開始階からの乗りかご20の移動を開始させる。情報取得部411は、センサ30が検出した乗りかご20の振動の計測データである振動波形信号を取得する(S11)。フィルタ処理部412は、情報取得部411が取得した振動波形信号に対して、フィルタマップ422に基づき、その時点で必要とされるフィルタ番号に対応するフィルタ処理を行い(S12)、フィルタ波形信号を生成する。
【0083】
図4は、フィルタ処理の一例を説明する図である。
図4で示す、フィルタ波形FW1は、フィルタマップ422で設定したフィルタ番号F1のバンドパスフィルタの周波数帯で、振動波形信号をフィルタ処理することで生成されたフィルタ波形信号である。同様にフィルタ波形FW2からフィルタ波形FW5は、それぞれ、フィルタマップ422で設定したフィルタ番号F2からフィルタ番号F5のバンドパスフィルタの周波数帯で、振動波形信号をフィルタ処理することで生成されたフィルタ波形信号である。
【0084】
また、フィルタ波形FW0は、フィルタ処理されていない振動波形を示す。なお、
図4において、各振動波形信号の縦軸のスケールは異なっている。フィルタ波形FW0は、フィルタ処理されていない振動波形であるため、
図4の例では、フィルタ波形FW0の実際の振幅は、フィルタ処理されているフィルタ波形FW1~FW5よりも大きい。よって、高周波成分はグラフには表れていないが、実際にはフィルタ波形FW0は高周波成分から低周波成分まで全て含んだ波形となっている。
【0085】
以上のように、フィルタ処理部412は、所定の種類のフィルタ波形信号(フィルタ波形FW1からフィルタ波形FW5)を生成する。
【0086】
なお、鉛直方向(Z方向)についてフィルタ処理を行う際、ステップS11において取得された振動波形信号には、鉛直方向の振動波形信号に対して1Hzのハイパスフィルタをかけた上で、フィルタマップ422により規定された振動要因に対応したバンドパスフィルタをかけることが望ましい。当該振動波形信号には、一般に「走行開始から一定速度に至るまで」及び「一定速度から走行終了に至るまで」の加減速が含まれる。そこで、フィルタマップ422のフィルタ処理を行う前に鉛直方向の振動波形信号に対して1Hzのハイパスフィルタをかけることで、このような走行にともなう鉛直方向の加減速の成分を除去することができる。
【0087】
フィルタ処理部412は、区間が切り替わったか否かを判定する(S13)。区間が切り替わった場合、すなわち所定期間が経過した場合(S13でYES)、代表値取得部413は、フィルタ処理部412が生成したフィルタ波形信号に基づき、フィルタマップ422で振動要因ごとに設定された周波数帯における各部分区間での代表値としてピーク値を取得する(S14)。一方、区間が切り替わっていない場合(S13においてNO)、その時点でのピーク値を特定することができないので、S15の処理に遷移する。
【0088】
図5は、ピーク値の取得の一例を説明する図である。
図3から
図5に基づき、各振動要因の各部分区間のピーク値の取得について説明する。例えば、代表値取得部413により、振動要因Bの各部分区間においては、
図5の領域BRに示すピーク値が取得される。
【0089】
具体的には、
図3に示すように、フィルタマップ422の振動要因Bでは、区間2においてフィルタ番号F1が設定されている。この場合、代表値取得部413は、振動要因Bの区間2については、
図4に示す、フィルタ波形FW1の区間2の領域P02のピーク値Bp02を取得する。また、フィルタマップ422の振動要因Bでは、区間3においてフィルタ番号F2が設定されている。この場合、代表値取得部413は、振動要因Bの区間3については、フィルタ波形FW2の区間3の領域P03のピーク値Bp03を取得する。
【0090】
同様にして、フィルタマップ422の振動要因Bの区間4から区間12については、代表値取得部413は、領域P04から領域P12のピーク値Bp04からピーク値Bp12を取得する。代表値取得部413は、他の振動要因についても同様にピーク値を取得する。
【0091】
なお、
図4のフィルタマップ422において振動要因Aと振動要因Cとは、各部分区間においてフィルタ番号が一致している。そのため、
図5に示すピーク値Ap03からピーク値Ap11と、ピーク値Cp03からピーク値Cp11は同じ値となる。
【0092】
また、代表値取得部413は、フィルタ波形FW0について、各部分区間のピーク値を取得してもよい。フィルタ波形FW0の各部分区間のピーク値により、乗りかご20の振動がどの部分区間で大きくなるのかを確認することができる。
【0093】
その後、フィルタ処理部412は、走行が完了したか、すなわち、情報取得部411が取得した振動波形信号において全ての区間についてピーク値を取得したか否かを判定する(S15)。走行が完了している場合(S15でYES)、全ての区間で必要なピーク値が取得されたことになるので、出力部414は
図5に示す分析情報5001を作成し、情報処理装置50に出力する。これにより処理が終了する。走行が完了していない場合(S15でNO)、S11の処理に戻る。
【0094】
なお、上述した信号処理装置40の動作は、例えば、下記の(1)から(3)のタイミングで実行される。(1)夜間などの利用者がいない時間帯に、乗りかご20を最下階から最上階を走行させる場合、(2)通常運転中に乗りかご20が最下階から最上階に走行し、かつ、乗りかご20に人がいない場合、(3)乗りかご20が最下階停止中に、最上階で乗場操作盤のボタンが押下され、かつ、乗りかご20に人がいない場合。なお、乗りかご20の走行方向は上記に限らず、上記(1)から(3)において、最上階から最下階に走行させるものであってもよい。
【0095】
なお、振動要因が多数ある場合、同時に処理すべきバンドパスフィルタの種類も多数になり、信号処理装置40の演算処理機能をオーバーすることが考えられる。この場合、振動要因を複数のグループに分けて、グループごとに
図9に示す処理を行うようにしてもよい。この場合、グループの数だけ
図9に示す処理が繰り返し実行されることになる。
【0096】
(情報処理装置50)
情報処理装置50は、信号処理装置40と通信を行い、信号処理装置40から出力された分析情報5001に基づき、振動要因を判断するための情報を表示部53に表示させる。
図1に示すように、情報処理装置50は、制御部51と、記憶部52と、表示部53と、を備えている。
【0097】
保守員は、情報処理装置50を直接操作して情報を確認してもよいし、スマートフォン、タブレット端末、ノートPC等でサーバとしての情報処理装置50にアクセスして情報を確認してもよい。
【0098】
記憶部52は、情報処理装置50が実行する各種のプログラム、およびプログラムによって使用されるデータを格納している。
【0099】
制御部51は、情報処理装置50の各部を統括的に制御する。制御部51の機能は、記憶部52に記憶されたプログラムを、CPUが実行することで実現されてよい。制御部51は、情報取得部511と、情報処理部512と、表示制御部513と、を備えている。
【0100】
情報取得部511は、分析情報5001を信号処理装置40から取得する。情報取得部511は、取得した分析情報5001を記憶部52に格納してもよい。
【0101】
情報処理部512は、情報取得部511が取得した分析情報5001に基づき、対象となる乗りかご20の振動に関する計測データを表示部53に表示させるための表示情報を生成する。
【0102】
表示制御部513は、情報処理部512により生成された表示情報を表示部53に出力し、表示情報を表示部53に表示させる。
【0103】
表示部53は、表示制御部513から取得した表示情報に基づいて生成される画像を表示する。
【0104】
図10は、情報処理装置50の表示部53の表示の一例を示す図である。
図10に示すように、情報処理部512では、分析情報5001に基づき、例えば、グラフ1001を表示部53に表示するように表示情報を生成する。
【0105】
グラフ1001では、縦軸は加速度、横軸は区間を示しており、R1からR5はそれぞれ異なる振動要因を示している。例えば、グラフ1001における棒グラフは、各部分区間において、振動要因R1から振動要因R5までのピーク値を積み重ねたものである。具体的には、区間1に示す棒グラフは、区間1における振動要因R1から振動要因R5までのピーク値を積み重ねたものであり、区間2から区間10も同様に生成される。
【0106】
グラフ1001を表示部53に表示することで、保守員は、全体の加速度(折れ線グラフ)に対する各振動要因の加速度の割合(棒グラフ)を目視で容易に確認することができる。例えば、グラフ1001の場合、区間1から区間10にわたって、全体の加速度に対する振動要因R1の加速度の割合が大きい。そのため、保守員は、当該乗りかご20の振動の主要要因は振動要因R1であると診断することができる。
【0107】
これにより、保守員は、乗りかご20の動作分析に必要な乗りかご20の計測データを、現場に行かずとも遠隔で、かつ、データ容量を抑えた状態で取得し、計測結果を確認することができる。その結果、保守員の作業時間を短縮することができる。
【0108】
なお、信号処理装置40と情報処理装置50とは、通信ネットワーク60を介して接続されてなくともよく、情報処理装置50は信号処理装置40に保存された分析情報5001のデータを現場で取得してもよい。例えば、信号処理装置40がUSB(Universal Serial Bus)などの有線接続機能、または、Bluetooth(登録商標)などの近距離無線接続機能を有し、これらの機能により情報処理装置50が分析情報5001を取得してもよい。また、例えば、信号処理装置40がリムーバブルメディアへの書き込み機能を有し、リムーバブルメディア経由で情報処理装置50が分析情報5001を取得してもよい。これらの場合、情報処理装置50としては、例えばノートPC、タブレット端末、およびスマートフォンなどの情報端末が想定される。
【0109】
(効果)
上述したように、従来、エレベータシステム1の乗りかご20の振動問題の解決のため、保守員は現地で振動波形信号を計測し、振動波形信号の分析処理を行っている。しかしながら、振動波形信号の全てを保存、蓄積すると、サーバや通信の容量が大容量になり、コストアップとなる。
【0110】
また、振動波形信号を保存するためには、「走行時間×サンプリング周波数」分のデータ数をメモリできる演算ボードが必要となる。演算ボードの性能に応じてサンプリング周波数を低くする方法も考えられるが、低くしたサンプリング周波数に応じて分析できる周波数範囲も狭くなり、正確な診断が行えない。
【0111】
一方、振動波形信号のピーク値のみを保存すると、データ容量は抑えることができるが、振動が大きくなった走行区間や、着目していない区間の振動値などの情報が失われることになり、必要な情報が得られないという問題がある。
【0112】
それに対して、本願発明は、エレベータシステム1の乗りかご20の振動を検出するセンサ30が出力した振動波形信号を取得する情報取得部411と、情報取得部411が取得した振動波形信号に対して、所定の周波数帯でフィルタ処理したフィルタ波形信号を生成するフィルタ処理部412と、フィルタ処理部412が生成したフィルタ波形信号において、所定期間の代表値を取得する代表値取得部413と、を備えている。
【0113】
これにより、乗りかご20の振動波形信号が所定の周波数帯でフィルタ処理されてフィルタ波形信号が生成され、所定期間の代表値のみが取得される。その結果、信号処理装置40が取得する乗りかご20の振動に関するデータサイズは、乗りかご20の振動波形信号のデータサイズと比較して大幅に削減される。
【0114】
また、従来、エレベータシステム1の乗りかご20の振動から振動原因を特定する場合、例えば、センサ30により検出された乗りかご20の振動波形信号の全てを用いて、振動分析手法等を用いて分析を行う必要があった。
【0115】
それに対して、本願発明者は、乗りかご20の振動波形信号の全てを用いずとも、振動原因の特定に必要な周波数帯でフィルタ処理を行ったフィルタ波形信号における、所定期間の代表値によって振動原因を特定する方法を見出した。
【0116】
これにより、本願発明によれば、所定の周波数帯および所定期間を適宜設定することで、振動波形信号の全てを出力または保存することなく、データサイズを抑えつつ、エレベータ動作解析に必要なデータを取得し、データ動作解析を行うことができる。その結果、サーバや通信によるコストを抑え、高性能なパソコンや演算ボードを利用せずに振動要因の特定が可能となる。
【0117】
また、本願発明では、計測データ全体を通して所定期間ごとの代表値が取得されるため、乗りかご20の振動値がいずれの期間において大きくなっているかを適格に抽出することができる。これにより、ポイントを絞った対応ができるため保守作業の効率が向上する。
【0118】
さらに、本願発明では、振動要因および所定期間ごとに抽出する周波数帯を定め、共通する周波数帯ごとに代表値を算出する。これにより、振動要因ごとの代表値を抽出することができるため、振動要因の特定を的確に行うことができる。また、振動要因ごとではなく、共通する周波数帯ごとに演算が行われるため、走行中における所定期間ごとの演算負荷を軽減することができる。
【0119】
また、本願発明によれば、データ容量を抑えて動作分析に必要なデータを取得することができるため、例えば、過去から現在までのデータ、および過去から現在までの振動評価値を保存しておくことができる。これにより、過去の乗りかご20の状況と、現在の乗りかご20の状況との比較が容易となる。また、上記比較を行うことで、機器の故障/劣化診断を容易に行うことが可能となる。さらに、上記比較により不具合の予兆を捉えることができるため、不具合の発生を防止することができる。
【0120】
〔ソフトウェアによる実現例〕
信号処理装置40(以下、「装置」と呼ぶ)の機能は、当該装置としてコンピュータを機能させるためのプログラムであって、当該装置の各制御ブロック(特に制御部41に含まれる各部)としてコンピュータを機能させるためのプログラムにより実現することができる。
【0121】
この場合、上記装置は、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。
【0122】
上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。
【0123】
また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。
【0124】
また、上記各実施形態で説明した各処理は、AI(Artificial Intelligence:人工知能)に実行させてもよい。この場合、AIは上記制御装置で動作するものであってもよいし、他の装置(例えばエッジコンピュータまたはクラウドサーバ等)で動作するものであってもよい。
【0125】
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【符号の説明】
【0126】
1 エレベータシステム(エレベータ)
12、42、52 記憶部
20 乗りかご
30 センサ
40 信号処理装置
411、511 情報取得部
412 フィルタ処理部
413 代表値取得部
414 出力部
422 フィルタマップ(フィルタ情報)
【要約】
【課題】データサイズを抑えつつ、エレベータ動作解析に必要なデータを取得することができる信号処理装置を実現する。
【解決手段】信号処理装置(40)は、エレベータの乗りかご(20)の振動を検出するセンサ(30)が出力した振動波形信号を取得する情報取得部(411)と、情報取得部(411)が取得した振動波形信号に対して、所定の周波数帯でフィルタ処理したフィルタ波形信号を生成するフィルタ処理部(412)と、フィルタ処理部(412)が生成したフィルタ波形信号において、所定期間の代表値を取得する代表値取得部(413)と、を備えている。
【選択図】
図1