IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ニコベンチャーズ トレーディング リミテッドの特許一覧

特許7392917エアロゾル供給デバイス用のインダクタコイル
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-28
(45)【発行日】2023-12-06
(54)【発明の名称】エアロゾル供給デバイス用のインダクタコイル
(51)【国際特許分類】
   A24F 40/465 20200101AFI20231129BHJP
   A24F 42/80 20200101ALI20231129BHJP
   A24F 40/40 20200101ALI20231129BHJP
【FI】
A24F40/465
A24F42/80
A24F40/40
【請求項の数】 19
(21)【出願番号】P 2021568936
(86)(22)【出願日】2020-05-27
(65)【公表番号】
(43)【公表日】2022-07-27
(86)【国際出願番号】 EP2020064654
(87)【国際公開番号】W WO2020239812
(87)【国際公開日】2020-12-03
【審査請求日】2022-01-17
(31)【優先権主張番号】1907527.4
(32)【優先日】2019-05-28
(33)【優先権主張国・地域又は機関】GB
(31)【優先権主張番号】1916297.3
(32)【優先日】2019-11-08
(33)【優先権主張国・地域又は機関】GB
【前置審査】
(73)【特許権者】
【識別番号】519138265
【氏名又は名称】ニコベンチャーズ トレーディング リミテッド
【氏名又は名称原語表記】Nicoventures Trading Limited
【住所又は居所原語表記】Globe House, 1 Water Street,WC2R 3LA London,United Kingdom
(74)【代理人】
【識別番号】100107456
【弁理士】
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100162352
【弁理士】
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100123995
【弁理士】
【氏名又は名称】野田 雅一
(74)【代理人】
【識別番号】100211052
【弁理士】
【氏名又は名称】奥村 大輔
(72)【発明者】
【氏名】ウォーレン, ルーク ジェームズ
(72)【発明者】
【氏名】トールセン, ミッチェル
【審査官】根本 徳子
(56)【参考文献】
【文献】国際公開第2016/199893(WO,A1)
【文献】特開2003-168618(JP,A)
【文献】特開平06-076931(JP,A)
【文献】特開2014-216395(JP,A)
【文献】特表2016-528874(JP,A)
【文献】特開2005-085560(JP,A)
【文献】特開2014-183252(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A24F 40/00-47/00
H05B 6/36
H01F 41/04
(57)【特許請求の範囲】
【請求項1】
エアロゾル供給デバイスのインダクタコイルを形成する際に使用するための支持部材であって、
前記支持部材は、インダクタコイルのマルチストランドワイヤを巻くことができる軸線を定義し、
前記支持部材は、前記マルチストランドワイヤを前記支持部材に巻くことができる第1の形態部と、前記支持部材が前記第1の形態部にあるときよりも前記軸線に垂直な前記支持部材の断面幅が小さく、以て前記支持部材からの前記マルチストランドワイヤの取外しを容易にする第2の形態部との間で移動可能であり、
前記第2の形態部では、前記支持部材がスパイラル形態にある、支持部材。
【請求項2】
前記支持部材の外面が、前記ワイヤを受け入れるためのチャネルを備える、請求項に記載の支持部材。
【請求項3】
前記支持部材が、前記第2の形態部に向かって付勢される、請求項又はに記載の支持部材。
【請求項4】
前記支持部材の外面が、前記軸線の周りで周方向に配置された複数のセグメントによって形成される、請求項のいずれか一項に記載の支持部材。
【請求項5】
前記複数のセグメントのうちの少なくとも1つのセグメントが、前記支持部材が前記第1の形態部と前記第2の形態部との間を移動するときに、前記複数のセグメントのうちの隣り合うセグメントに対して移動するように構成される、請求項に記載の支持部材。
【請求項6】
前記複数のセグメントのうちの少なくとも1つのセグメントが、ヒンジによって前記複数のセグメントのうちの隣り合うセグメントに接続される、請求項に記載の支持部材。
【請求項7】
前記複数のセグメントのうちの少なくとも1つのセグメントが、前記複数のセグメントのうちの隣り合うセグメントに恒久的に接続されていない、請求項又はに記載の支持部材。
【請求項8】
前記複数のセグメントのうちの少なくとも1つのセグメントが、隣り合うセグメントに対する前記少なくとも1つのセグメントの動きを制限するためのストッパを有し、以て、前記支持部材が前記第2の形態部から離れて移動可能な範囲を制限する、請求項のいずれか一項に記載の支持部材。
【請求項9】
前記第1の形態部にあるとき、前記支持部材が、前記第1の形態部で前記支持部材を保持するようにデバイスを受け入れるための中空キャビティを画定する、請求項のいずれか一項に記載の支持部材。
【請求項10】
請求項のいずれか一項に記載の支持部材と、
前記第1の形態部と前記第2の形態部との間で前記支持部材を移動させるように構成されたデバイスと
を備える、システム。
【請求項11】
前記デバイスが、前記軸線に沿って移動可能であり、前記第1の形態部と前記第2の形態部との間で前記支持部材を移動させる、請求項10に記載のシステム。
【請求項12】
前記支持部材が前記第1の形態部にあるときには、前記デバイスが前記支持部材の中空キャビティ内で前記軸線に沿った第1の位置に配置されて前記支持部材を前記第1の形態部で保持し、
前記支持部材が前記第2の形態部にあるときには、前記デバイスが前記第1の位置とは異なる前記軸線に沿った第2の位置に配置される
ように構成された、請求項11に記載のシステム。
【請求項13】
前記支持部材を前記第2の形態部に向けて付勢するための付勢機構をさらに備える、請求項1012のいずれか一項に記載のシステム。
【請求項14】
エアロゾル供給デバイス用のインダクタコイルを形成する方法であって、
複数のワイヤストランドを備えるマルチストランドワイヤを用意するステップであり、前記複数のワイヤストランドのうちの少なくとも1つが接着性コーティングを備える、ステップと、
軸線を定義する支持部材であり、前記マルチストランドワイヤを前記支持部材に巻くことができる第1の形態部と、前記支持部材が前記第1の形態部にあるときよりも前記軸線に垂直な前記支持部材の断面幅が小さい第2の形態部との間で移動可能であり、前記第2の形態部では前記支持部材がスパイラル形態にある、該支持部材を用意し、前記第1の形態部にある前記支持部材の周りに前記マルチストランドワイヤを巻くステップと、
前記マルチストランドワイヤが前記支持部材によって決定された形状を実質的に維持するように前記接着性コーティングを活性化するステップと、
前記支持部材を前記第2の形態部に移動させることによって、前記軸線に垂直な方向で前記支持部材の断面幅を減少させるステップと、
前記支持部材から前記マルチストランドワイヤを取り外すステップと
を含む、方法。
【請求項15】
前記支持部材が前記第1の形態部にあるときには、デバイスが前記支持部材の中空キャビティ内で前記軸線に沿った第1の位置に配置されて前記支持部材を前記第1の形態部で保持し、
前記支持部材が前記第2の形態部にあるときには、前記デバイスが前記第1の位置とは異なる軸線に沿った第2の位置に配置され、
前記支持部材を第1の形態部と第2の形態部との間で移動させる前記工程が、前記デバイスを前記第1の位置と前記第2の位置との間で移動させることを含む、請求項14に記載の方法。
【請求項16】
前記支持部材の外面が、前記軸線の周りで周方向に配置された複数のセグメントによって形成され、前記支持部材の前記断面幅を減少させる前記ステップが、前記複数のセグメントのうちの少なくとも1つのセグメントを前記複数のセグメントのうちの隣り合うセグメントに対して移動させる工程を含む、請求項14又は15に記載の方法。
【請求項17】
巻く前記ステップが、前記軸線の周りに前記マルチストランドワイヤを巻く工程を含み、
前記支持部材から前記マルチストランドワイヤを取り外す前記ステップが、前記マルチストランドワイヤを前記支持部材に対して前記軸線に平行な方向に移動させる工程を含む、請求項1416のいずれか一項に記載の方法。
【請求項18】
前記支持部材の周りに前記マルチストランドワイヤを巻く前記ステップが、前記支持部材の外面に形成されたチャネルに前記マルチストランドワイヤを受け入れる工程を含む、請求項1417のいずれか一項に記載の方法。
【請求項19】
巻く前記ステップ及び活性化する前記ステップが、前記マルチストランドワイヤの少なくとも一部の断面形状を変える工程を含む、請求項18に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エアロゾル供給デバイス用のインダクタコイル、支持部材、エアロゾル供給デバイス用インダクタコイル製造システム、インダクタコイル、及びシステムを形成する方法に関する。
【背景技術】
【0002】
シガレットや葉巻タバコなどの喫煙品は、使用中にタバコを燃焼してタバコの煙を発生させる。燃焼せずに化合物を放出する製品を作成することによって、タバコを燃焼させるこれらの物品の代替品を提供する試みが成されている。そのような製品の例は、材料を燃焼させずに加熱することによって化合物を放出する加熱デバイスである。材料は、例えばタバコ又は他の非タバコ製品でよく、ニコチンを含むことも含まないこともある。
【発明の概要】
【0003】
本開示の第1の態様によれば、エアロゾル供給デバイス用のインダクタコイルを形成する方法であって、
複数のワイヤストランドを備えるマルチストランドワイヤを用意するステップであり、複数のワイヤストランドのうちの少なくとも1つが接着性コーティングを備える、ステップと、
マルチストランドワイヤが支持部材の外面に形成されたチャネルに受け入れられるように、マルチストランドワイヤを支持部材の周りに巻くステップと、
マルチストランドワイヤがチャネルによって決定された形状を実質的に維持するように、接着性コーティングを活性化するステップと、
支持部材からマルチストランドワイヤを取り外すステップと
を含む方法が提供される。
【0004】
本開示の第2の態様によれば、エアロゾル供給デバイスのインダクタコイルを形成するための支持部材であって、この支持部材は、インダクタコイルのマルチストランドワイヤを巻くことができる軸線を定義し、支持部材の外面は、マルチストランドワイヤを受け入れるためのチャネルを備える、支持部材が提供される。
【0005】
本開示の第3の態様によれば、エアロゾル供給デバイス用インダクタコイル製造システムであって、
第2の態様による支持部材と、
使用中にマルチストランドワイヤが支持部材に巻かれるように、支持部材の軸線の周りで支持部材を回転させるように構成された駆動アセンブリと
を備えるエアロゾル供給デバイス用インダクタコイルを製造するシステムが提供される。
【0006】
本開示の第4の態様によれば、エアロゾル供給デバイス用のインダクタコイルであって、第1の態様の方法を含む方法に従って形成されるインダクタコイルが提供される。
【0007】
本開示の第5の態様によれば、エアロゾル供給デバイス用のインダクタコイルであって、このインダクタコイルは軸線を定義し、また軸線の周りに巻かれたマルチストランドワイヤを備え、マルチストランドワイヤが、最大長手方向寸法よりも大きい最大横方向寸法を有する断面を有し、最大横方向寸法が、軸線に垂直な方向で測定され、最大長手方向寸法が、最大横方向寸法に垂直な方向で測定される、インダクタコイルが提供される。
【0008】
本開示の第6の態様によれば、
エアロゾル化可能な材料を備える物品の少なくとも一部を受け入れるためのレセプタクル(受容部)と、
物品がレセプタクルに配置されているときに物品を加熱するための加熱アセンブリと
を備えるエアロゾル供給デバイスであって、加熱アセンブリが、サセプタに侵入するように変動磁場を生成し、以てサセプタを加熱するための第4及び第5及び第10の態様のいずれかのインダクタコイルの少なくとも1つを備える、エアロゾル供給デバイスが提供される。
【0009】
本開示の第7の態様によれば、エアロゾル供給デバイスのインダクタコイルを形成する際に使用するための支持部材であって、この支持部材は、インダクタコイルのワイヤを巻くことができる軸線を定義し、支持部材は、ワイヤを支持部材に巻くことができる第1の形態部(configulation)と、支持部材が第1の形態部にあるときよりも軸線に垂直な支持部材の断面幅が小さく、以て支持部材からのワイヤの取外しを容易にする第2の形態部との間で移動可能である、支持部材が提供される。
【0010】
本開示の第8の態様によれば、
第7の態様による支持部材と、
第1の形態部と第2の形態部との間で支持部材を移動させるように構成されたデバイスと
を備えるシステムが提供される。
【0011】
本開示の第9の態様によれば、エアロゾル供給デバイス用のインダクタコイルを形成する方法であって、
複数のワイヤストランドを備えるマルチストランドワイヤを用意するステップであり、複数のワイヤストランドのうちの少なくとも1つが接着性コーティングを備える、ステップと、
軸線を定義する支持部材の周りにマルチストランドワイヤを巻くステップと、
マルチストランドワイヤが支持部材によって決定された形状を実質的に維持するように接着性コーティングを活性化するステップと、
軸線に垂直な方向で支持部材の断面幅を減少させるステップと、
支持部材からマルチストランドワイヤを取り外すステップと
を含む方法が提供される。
【0012】
第10の態様によれば、エアロゾル供給デバイス用のインダクタコイルであって、第9の態様の方法を含む方法に従って形成されるインダクタコイルが提供される。
【0013】
本発明のさらなる特徴及び利点は、添付図面を参照して成される、単に例として与えられる本発明の好ましい実施形態の以下の説明から明らかになろう。
【図面の簡単な説明】
【0014】
図1】エアロゾル供給デバイスの一例の正面図である。
図2】外側カバーを取り外した状態での図1のエアロゾル供給デバイスの正面図である。
図3図1のエアロゾル供給デバイスの断面図である。
図4図2のエアロゾル供給デバイスの分解図である。
図5】Fig.5Aはエアロゾル供給デバイス内の加熱アセンブリの断面図であり、Fig.5Bは、Fig.5Aの加熱アセンブリの一部の拡大図である。
図6】絶縁部材に巻き付けられた第1及び第2インダクタコイルの斜視図である。
図7】インダクタコイルを形成する例示的な方法の流れ図である。
図8】インダクタコイルを形成するために使用される製造機器の斜視図である。
図9A】形成されているインダクタコイルの斜視図である。
図9B】形成されているインダクタコイルの斜視図である。
図10】Fig.10Aは第1の例による支持部材の概略図であり、Fig.10Bは、Fig.10Aの支持部材の一部の拡大図である。
図10C図10のFig.10Aの支持部材の一部の拡大図である。
図11】第2の例による支持部材の概略図である。
図12】第3の例による支持部材の概略図である。
図13】第4の例による支持部材の概略図である。
図14】第5の例による支持部材の概略図である。
図15】第6の例による支持部材の概略図である。
図16A】支持部材が第1の形態部で配置されている、第7の例による支持部材の概略図である。
図16B】ワイヤによって取り囲まれた図16Aの支持部材を示す図である。
図16C図16Aの支持部材の断面図である。
図16D図16Bの支持部材の断面図である。
図17A】第2の形態部で配置された図16Aの支持部材を示す図である。
図17B】ワイヤによって取り囲まれた図17Aの支持部材を示す図である。
図17C図17Aの支持部材の断面図である。
図17D図17Bの支持部材の断面図である。
図18A図16Aの支持部材の端面図である。
図18B図17Aの支持部材の端面図である。
図19A】例示的な支持部材の中空キャビティに挿入されたデバイスの断面ブロック図である。
図19B】例示的な支持部材の中空キャビティから部分的に取り外されたデバイスの断面ブロック図である。
図20】インダクタコイルを形成する第2の例示的な方法の流れ図である。
【発明を実施するための形態】
【0015】
本明細書で使用するとき、「エアロゾル生成材料」という用語は、加熱時に、典型的にはエアロゾルの形で揮発成分を提供する材料を含む。エアロゾル生成材料は、任意のタバコ含有材料を含み、例えばタバコ、タバコ誘導体、膨化タバコ、再生タバコ、又はタバコ代替品のうちの1つ又は複数を含むことがある。エアロゾル生成材料は、他の非タバコ製品を含むこともあり、製品によってニコチンを含むことも含まないこともある。エアロゾル生成材料は、例えば固体、液体、ゲル、ワックスなどの形態であり得る。エアロゾル生成材料は、例えば、材料の組合せ又は混合でもよい。エアロゾル生成材料は、「喫煙材」と呼ばれることもある。
【0016】
エアロゾル生成材料を加熱して、エアロゾル生成材料の少なくとも1つの成分を揮発させ、典型的には、エアロゾル生成材料を燃やす又は燃焼させることなく、吸入可能なエアロゾルを形成する装置が知られている。そのような装置は、「エアロゾル生成デバイス」、「エアロゾル供給デバイス」、「非燃焼加熱式タバコデバイス」、「タバコ加熱製品デバイス」又は「タバコ加熱デバイス」などと呼ばれることもある。同様に、いわゆるeシガレットデバイスもあり、これは、典型的には、ニコチンを含むことも含まないこともある液体の形でのエアロゾル生成材料を気化させる。エアロゾル生成材料は、装置に挿入することができるロッド、カートリッジ、又はカセットなどの形態であり得る、又はその一部として提供されることがある。エアロゾル生成材料を加熱及び揮発させるためのヒーターは、装置の「恒久的な」部分として提供されることがある。
【0017】
エアロゾル供給デバイスは、加熱用のエアロゾル生成材料を含む物品を受け入れることができる。この文脈における「物品」は、使用時にエアロゾル生成材料を含む又は含有する構成要素であり、使用中に加熱されてエアロゾル生成材料及び任意選択で他の成分を揮発させる。ユーザは、物品をエアロゾル供給デバイスに挿入することができ、その後、エアロゾル供給デバイスが加熱されてエアロゾルを生成し、次いでユーザがエアロゾルを吸入する。物品は、例えば、物品を受け入れるようにサイズ設定されたデバイスの加熱チャンバ内に配置されるように構成された所定の又は特定のサイズのものであり得る。
【0018】
本開示の第1の態様は、エアロゾル供給デバイスで使用するためのインダクタコイルを形成する方法を定義する。この方法は、リッツ線などのマルチストランドワイヤから始まる。マルチストランドワイヤは、複数のワイヤストランドを備えるワイヤであり、交流電流を送るために使用される。マルチストランドワイヤは、導体の表皮効果損失を低減するために使用されることがあり、撚り合わされた又は織り合わされた複数の個別に絶縁されたワイヤを備える。この巻きの結果は、全長に対して各ストランドが導体の外側にある比率を均等にすることである。これは、ワイヤストランド間で交流電流を均等に分配し、ワイヤの抵抗を低減する効果がある。いくつかの例では、マルチストランドワイヤは、ワイヤストランドのいくつかの束を備え、各束のワイヤストランドは撚り合わされている。ワイヤの束は、同様の方法で撚り合わされる/織り合わされる。
【0019】
マルチストランドワイヤが提供された後、この方法は、マルチストランドワイヤが支持部材の外面の周りに形成されたチャネルに受け入れられるように、マルチストランドワイヤを支持部材の周りに巻くステップを含む。支持部材は、インダクタコイルを形成するための支持体として働く。支持部材は、例えば管状又は円筒形でよく、マルチストランドワイヤは、支持部材の周りに螺旋状に巻く/巻き付けることができる。
【0020】
本開示において、支持部材は、支持部材の外面の周りに延びるチャネルを有する。チャネルは、支持部材に巻かれるときにマルチストランドワイヤを受け入れる。チャネル内の隣り合うターン(turn:one turnは1巻き部分)の間隔が、形成されるインダクタコイルの隣り合うターンの間隔を設定することができる。したがって、インダクタコイルはチャネルによって提供される形状を取る。このチャネルにより、インダクタコイルの形状及び寸法を製造中により良く制御することができるようになる。チャネルを使用して、インダクタコイルが形成されている間、支持部材に対してマルチストランドワイヤを定位置に維持することができる。
【0021】
チャネルは、いくつかの例では螺旋状であり得る。螺旋チャネルは、支持部材の軸線に沿って一定の又は変化するピッチを有することがある。チャネルは、凹形案内経路又は溝と呼ばれることもある。支持部材は、成形ジグ又はマンドレルと呼ばれることもある。
【0022】
複数のワイヤストランドのうちの少なくとも1つは、接着性コーティングを備える。接着性コーティングは、ワイヤストランドを取り囲み、(加熱などによって)活性化することができるコーティングであり、マルチストランドワイヤ内のワイヤストランドは、1つ又は複数の隣り合うストランドに接着する。接着性コーティングにより、マルチストランドワイヤを支持部材のインダクタコイルの形状に形成することができ、接着性コーティングが活性化された後、インダクタコイルはその形状を維持する。したがって、接着性コーティングは、インダクタコイルの形状を「設定」する。いくつかの例では、接着性コーティングは、導電性コアを取り囲む電気絶縁層である。しかし、接着性コーティングと絶縁体とは別個の層でもよく、接着性コーティングが絶縁層を取り囲む。一例では、マルチストランドワイヤの導電性コアは、銅を含む。接着性コーティングは、エナメルを含むことがある。
【0023】
マルチストランドワイヤがチャネル内に配置されている状態で、この方法は、マルチストランドワイヤがチャネルによって決定された形状を実質的に維持するように、接着性コーティングを活性化するステップをさらに含むことがある。マルチストランドワイヤ(ここではインダクタコイルの形状である)は、その形状を失うことなく支持部材から取り外すことができる。
【0024】
上記の方法は、エアロゾル供給デバイスで使用するためのインダクタコイルを形成するために実施することができる。いくつかの例では、デバイスは、2つ以上のインダクタコイルを含むことがある。各インダクタコイルは、サセプタに侵入する変動磁場を生成するように配置される。本明細書でより詳細に論じるように、サセプタは導電性の物体であり、変動磁場が侵入することによって加熱可能である。エアロゾル生成材料を含む物品は、サセプタ内に受け入れることができる、又はサセプタの近くに若しくはサセプタと接触させて配置することができる。加熱されると、サセプタはエアロゾル生成材料に熱を伝達し、エアロゾルを放出する。
【0025】
マルチストランドワイヤを巻くステップ及び接着性コーティングを活性化するステップは、マルチストランドワイヤの少なくとも一部の断面形状を変えることを含むことがある。したがって、マルチストランドワイヤがチャネルに受け入れられるとき、マルチストランドワイヤの断面形状が変化することがある。したがって、チャネルは、コイルの寸法(個々のターンの間隔など)を設定することができるだけでなく、マルチストランドワイヤの断面形状を制御する又は変えるための手段を提供することもできる。
【0026】
チャネルは、所定の断面形状を有することができ、断面形状を変えるステップは、マルチストランドワイヤに所定の断面形状を与えることを含むことがある。チャネルの使用は、特定の断面形状を有するマルチストランドワイヤを簡単に且つ効果的に製造する方法を提供する。したがって、チャネルの寸法は、必要に応じてマルチストランドワイヤを成形するためのモールドとして働くことができる。特定の断面形状が異なる加熱効果を提供することができるため、これは特に有用である。
【0027】
マルチストランドワイヤをチャネルに導入することと、接着性コーティングを活性化することとの複合効果により、マルチストランドワイヤの断面を変形することができる。
【0028】
いくつかの例では、支持部材は軸線を定義し、巻くステップは、軸線の周りにマルチストランドワイヤを巻くことを含む。いくつかの例では、支持部材は細長く、軸線は長手方向軸線である。マルチストランドワイヤの断面形状を変えるステップは、マルチストランドワイヤの断面が最大横方向寸法とは異なる最大長手方向寸法を有するように、マルチストランドワイヤの断面を変形することを含むことがあり、ここで、最大長手方向寸法は、軸線に平行な方向で測定され、最大横方向寸法は、最大長手方向寸法に垂直な方向で測定される。したがって、支持部材及びチャネルを使用して、マルチストランドワイヤが非円形又は非正方形の断面を有するインダクタコイルを形成することができる。例えば、マルチストランドワイヤの幅は、深さよりも小さいことも大きいこともある。前述したように、これは望ましい加熱効果を提供することができる。
【0029】
特定の例では、断面形状を変えるステップは、マルチストランドワイヤの断面が最大横方向寸法よりも大きい最大長手方向寸法を有するようにマルチストランドワイヤの断面を変形することを含むことがある。したがって、マルチストランドワイヤは、(インダクタコイルの磁気軸線に平行な方向での)長手方向延在領域が(磁気軸線に垂直な方向での)横方向延在領域よりも大きい断面を有する。したがって、マルチストランドワイヤは、平坦又は長方形の断面を有することがあり、マルチストランドワイヤ内の個々のワイヤは、軸線に沿って、軸線に垂直な方向よりも大きく延びる。他の形状もこれらの寸法を有することがある。そのような断面は、インダクタコイルのエネルギー損失を低減することが分かっている。
【0030】
代替の例では、断面形状を変えるステップは、マルチストランドワイヤの断面が最大横方向寸法よりも小さい最大長手方向寸法を有するようにマルチストランドワイヤの断面を変形することを含むことがある。したがって、マルチストランドワイヤは、平坦又は長方形の断面を有することがあり、マルチストランドワイヤ内の個々のワイヤは、軸線に沿って、軸線に垂直な方向よりも小さく延びる。そのような形態は、インダクタコイルがその長さに沿ってより多くの巻き数を有することを可能にすることがあり、又は必要であれば加熱効果を低減することを可能にすることがある。例えば、サセプタに沿った特定の領域での加熱効果を低減することが有用であり得る。
【0031】
最大長手方向寸法への言及は、(長手方向)軸線に平行な方向で測定可能な断面の最長の長手方向延在領域を意味する。断面は不定形状を有することがあり、したがって、断面の長手方向延在領域は、ワイヤの様々な点で異なることがある。同様に、最大横方向寸法への言及は、(長手方向)軸線に垂直な方向で測定可能な断面の最長横方向延在領域を意味する。ここでも、断面は不定形状を有することがあり、したがって、断面の長手方向延在領域は、軸線に沿った様々な点で異なることがある。いくつかの例では、最大長手方向寸法を最大の第1の寸法と呼び、最大横方向寸法を最大の第2の寸法と呼ぶことがある。
【0032】
マルチストランドワイヤの断面形状を変形するステップは、マルチストランドワイヤを軸線に平行な方向に圧縮して、複数のワイヤストランドの密度を増加させることを含むことがある。例えば、チャネルは、チャネルの底部に向かう距離と共に減少する幅寸法を有することがあり、幅の減少により、マルチストランドワイヤの個々のワイヤを、長手方向寸法においてより密に圧縮させることができる。この圧縮は、マルチストランドワイヤの長手方向延在領域を減少させ、マルチストランドワイヤの横方向延在領域が増加することを意味することがある。
【0033】
接着性コーティングを活性化するステップは、接着性コーティングが加熱されるように支持部材を加熱することを含むことがある。例えば、マルチストランドワイヤが支持部材の周りに巻かれた後、マルチストランドワイヤを加熱することにより、ワイヤストランドの接着性コーティングが自己接着することができ、インダクタコイルが熱硬化を受ける。支持部材を加熱することによって、熱をマルチストランドワイヤに均一に伝導することができる。
【0034】
この方法は、同時に、支持部材を加熱し、支持部材にマルチストランドワイヤを巻くステップを含むことがある。したがって、加熱することは、巻くステップと同時に実施される。マルチストランドワイヤを支持部材に巻きながら加熱することにより、製造時間を短縮することができる。他の例では、加熱は、マルチストランドワイヤが支持部材の周りに巻かれた後又は前に行われることがある。
【0035】
支持部材を加熱することは、支持部材を約150℃~350℃の範囲内、例えば約150℃~250℃の範囲内、又は約180℃~200℃の範囲内の温度に加熱することを含むことがある。したがって、接着性コーティングは、この範囲内の温度で活性化されることがある。
【0036】
別の例では、接着性コーティングは、溶剤によって活性化されることがある。
【0037】
接着性コーティングを活性化するステップは、接着性コーティングを加熱した後、マルチストランドワイヤを冷却することをさらに含むことがある。これにより、接着性コーティングを冷却し、それによりインダクタコイルの形状を設定することができる。マルチストランドワイヤを冷却することは、マルチストランドワイヤの上に空気を通すことを含むことがある。例えば、エアガン又はファンは、マルチストランドワイヤに空気を吹き付けることができる。エアガン又はファンの使用は、冷却プロセスの速度を上げることができる。
【0038】
一例では、ワイヤストランドは、Elektrisola Inc.(米国ニューハンプシャー州)から市販されているThermobond STP18ワイヤである。これらのワイヤは、エアロゾル供給デバイスでの使用によく適していることが分かっている。例えば、これらのワイヤは、デバイス内の加熱されたサセプタにより接着性コーティングが再び軟化しないように、比較的高い接着温度を有する。
【0039】
この方法は、支持部材の軸線の周りで支持部材を回転させ、以て支持部材の周りにマルチストランドワイヤを巻くステップをさらに含むことがある。したがって、支持部材は、マルチストランドワイヤが支持部材に引っ張られるように回転させることができる。この回転により、インダクタコイルの製造が容易になる。例えば、これにより、静止した支持部材の周りでワイヤを動かす必要がなくなる。
【0040】
この方法は、(同時に支持部材を回転させながら)支持部材を軸線に平行な方向に動かすステップをさらに含むことがある。これにより、マルチストランドワイヤを螺旋チャネルに受け入れることができる。特定の例では、マルチストランドワイヤの端部は、マルチストランドワイヤがほどけないように、支持部材の端部又はその近くに固定される。
【0041】
第2の態様によれば、エアロゾル供給デバイスのインダクタコイルを形成するための支持部材が提供される。支持部材は、インダクタコイルのマルチストランドワイヤを巻くことができる長手方向軸線などの軸線を定義する。支持部材の外面は、マルチストランドワイヤを受け入れるためのチャネルを備える。チャネルは、例えば螺旋チャネルであり得る。
【0042】
いくつかの例では、チャネルは、軸線に垂直な方向で測定される最大深さ寸法と、最大深さ寸法に垂直な方向で測定される最大幅寸法を有し、最大深さ寸法は最大幅寸法とは異なる。いくつかの例では、最大深さ寸法は最大幅寸法よりも大きい。したがって、チャネルは、幅よりも深さが大きいことがある。そのようなチャネルは、それが支持部材に巻かれているときに、マルチストランドワイヤを定位置にしっかりと保持することができる。幅よりも深さが大きいチャネルは、接着性コーティングを活性化することによってマルチストランドワイヤの形状を固定することができる前に、マルチストランドワイヤが意図せずチャネルから出ないようにする助けとなり得る。いくつかの例では、最大深さ寸法と最大幅寸法との比は、約1.1~2の範囲内(すなわち約1.1:1~約2:1の範囲内)である。
【0043】
いくつかの例では、最大深さ寸法は最大幅寸法よりも小さい。したがって、チャネルは、深さよりも幅が大きいことがある。
【0044】
チャネルは、ワイヤ受容部分につながるテーパ付き口部分を備えることがある。ワイヤ受容部分は、マルチストランドワイヤを受け入れるように構成される。ワイヤ受容部分は、軸線に垂直な方向で測定される最大深さと、最大深さに垂直な方向で測定される最大幅とを有することがあり、最大深さは最大幅とは異なる。いくつかの例では、最大深さは最大幅よりも大きい。これにより、最大横方向延在領域/寸法よりも小さい最大長手方向延在領域/寸法を有するインダクタコイルを形成することができる。
【0045】
代替の例では、最大幅が、最大深さよりも大きいことがある。これにより、最大横方向寸法よりも大きい最大長手方向寸法を有するインダクタコイルを形成することができる。
【0046】
ワイヤ受容部分は、マルチストランドワイヤがチャネルに完全に受け入れられた後にマルチストランドワイヤを保持又は当接するチャネルの部分である。したがって、ワイヤ受容部分は、チャネルの底部/床部に向かって配置される。チャネルがマルチストランドワイヤに所定の形状を与える例では、ワイヤ受容部分は、所定の形状を与えるチャネルの部分である。テーパ付き口部分は、マルチストランドワイヤをチャネルのワイヤ受容部分に案内するためのガイドを画定する。例えば、テーパ付き口部分は、チャネルの底部に向かって減少している幅寸法(支持部材の軸線に平行に測定される)を有する。したがって、テーパ付き口部分により、マルチストランドワイヤをより適切に位置合わせしてチャネルに受け入れることができる。テーパ付き口部は、ワイヤ受容部分よりも軸線から離して配置される。テーパ付き口部分は、ベベル又は面取りされた縁部によって提供されることがある。
【0047】
最大幅寸法又は最大幅への言及は、(長手方向)軸線に平行な方向で測定可能なチャネルの最も広い部分を意味する。チャネルは不定の幅を有することがあり、したがって、チャネルの幅は様々な点で異なることがある。同様に、最大深さ寸法又は最大深さへの言及は、(長手方向)軸線に垂直な方向で測定可能なチャネルの最も深い部分を意味する。チャネルは不定の深さを有することがあり、したがって、チャネルの深さは様々な点で異なることがある。
【0048】
特定の例では、最大深さ寸法と最大幅寸法との比は、約1.1~2の範囲内(すなわち約1.1:1~約2:1の範囲内)である。この範囲内の比は、インダクタコイル内のマルチストランドワイヤが正しい向きに保たれることを保証しながら、インダクタコイルの加熱効果を制御できるようにすることが分かっている。任意選択で、比は、約1.1~約1.5の範囲内である。この比は、約1.1~約1.2の範囲内であり得る。
【0049】
一例では、最大幅は、約1.2mm~約1.5mmの範囲内である。一例では、最大深さは、約1.6mm~約1.7mmの範囲内である。これらの寸法を有するワイヤ受容部分に形成されるインダクタコイルは、エアロゾル供給デバイスでの加熱に特に適していることが分かっている。
【0050】
いくつかの例では、チャネルは螺旋チャネルである。
【0051】
テーパ付き口部分の表面は、第1の表面勾配を有することがあり、テーパ付き口部分に隣り合うワイヤ受容部分の表面は、第1の表面勾配よりも大きい第2の表面勾配を有することがある。第1及び第2の表面勾配は、軸線に対して定義される。したがって、テーパ付き口部分は、テーパ付き口部分の隣に配置されたワイヤ受容部分の勾配よりも浅い勾配を有する。より浅い勾配は、マルチストランドワイヤがワイヤ受容部分に受け入れられる前にマルチストランドワイヤの断面形状を意図せずに変えることなく、チャネルへの滑らかな移行を可能にする。一例では、テーパ付き口部分に隣り合って配置されたワイヤ受容部分の表面は、実質的に垂直に配置される(すなわち軸線に対して垂直に向けられる)。この垂直配置は、チャネル内にマルチストランドワイヤを収納して固定する手段を提供することができる。
【0052】
特定の例では、チャネルの床部は、実質的に平坦である又は丸みがある。すなわち、チャネルの底部は、平坦である又は丸みがある。平坦な又は丸みがある形状により、マルチストランドワイヤをチャネルから容易に簡単に取り外すことができる。
【0053】
チャネルは、チャネルの床部/底部に向かう距離と共に減少する幅寸法を有することがある。したがって、チャネルはテーパ付きであり、傾斜面を有し、これにより、マルチストランドワイヤがチャネルに受け入れられるときにマルチストランドワイヤをより均一に収縮/圧縮することができる。チャネルの底部は、支持部材の外面から最も離して配置されるチャネルの部分である。
【0054】
支持部材は、150℃を超える温度に対して耐熱性があり得る。これにより、支持部材を少なくとも150℃の温度に加熱でき、したがって、マルチストランドワイヤの接着性コーティングを加熱によって活性化することができる。支持部材は、例えば良好な熱伝導体であり高融点を有する金属から作製されることがある。例えば、支持部材は、鋼、ステンレス鋼、又はアルミニウムを含むことがある。支持部材は、例えば、約600℃を超える、又は約700℃を超える、又は約800℃を超える、又は約1000℃を超える、又は約1500℃を超える融点を有することがある。
【0055】
第3の態様によれば、上記の例のいずれかに記載の支持部材と、使用中にマルチストランドワイヤが支持部材に巻かれるように、支持部材の長手方向軸線などの軸線の周りで支持部材を回転させるように構成された駆動アセンブリとを備えるエアロゾル供給デバイス用インダクタコイル製造システムが提供される。駆動アセンブリは支持部材を回転させ、以てマルチストランドワイヤを支持部材に巻けるようにする。駆動アセンブリは、回転されるドラムを備えることもある。
【0056】
システムは、マルチストランドワイヤを支持部材に送給するためのワイヤ送給アセンブリをさらに備えることがある。一例では、ワイヤ送給アセンブリは受動型であり、駆動システムが支持部材を回転させている間、マルチストランドワイヤを定位置に単に保持する。したがって、回転する支持部材がワイヤを支持部材に引き出す。受動ワイヤ送給アセンブリは製造を単純化する。別の例では、ワイヤ送給アセンブリが能動型であり、ワイヤを支持部材に能動的に巻く。
【0057】
駆動アセンブリは、ワイヤ送給アセンブリに対して軸線に平行な方向に支持部材を移動させるようにさらに構成されることがある。例えば、駆動アセンブリは、静止した支持部材に対してワイヤ送給アセンブリを移動させることができる、又は駆動アセンブリは、静止したワイヤ送給アセンブリに対して支持部材を移動させることができる。特定の例では、駆動アセンブリは、支持部材の軸線に平行に向けられたガイドレールに沿ってドラム(支持部材に取り付けられている)を動かす。
【0058】
システムは、支持部材を加熱するためのヒーターをさらに備えることもある。例えば、支持部材は、マルチストランドワイヤの接着性コーティングを活性化することができるように加熱されることがある。
【0059】
システムは、マルチストランドワイヤが支持部材に巻かれるときに、支持部材に対してマルチストランドワイヤの一部分を保持するように構成された固定具をさらに備えることがある。したがって、固定具は、マルチストランドワイヤを固定し、支持部材が回転されるときにマルチストランドワイヤがほどけるのを防ぐ。
【0060】
一例では、支持部材は、マルチストランドワイヤを受け入れるためのねじ山付き外側プロファイルを備える。したがって、ねじ山付き外側プロファイルは、マルチストランドワイヤを受け入れることができるチャネルを形成する。
【0061】
第4の態様によれば、エアロゾル供給デバイス用のインダクタコイルが提供され、インダクタコイルは上記の方法に従って形成される。
【0062】
第5の態様によれば、エアロゾル供給デバイス用のインダクタコイルであって、軸線を定義し、軸線の周りに巻かれたマルチストランドワイヤを備え、マルチストランドワイヤが、最大長手方向寸法よりも大きい最大横方向寸法を有する断面を有し、最大横方向寸法が、軸線に垂直な方向で測定され、最大長手方向寸法が、最大横方向寸法に垂直な方向で測定される、インダクタコイルが提供される。
【0063】
第6の態様によれば、エアロゾル化可能な材料を備える物品の少なくとも一部を受け入れるためのレセプタクルと、物品がレセプタクルに配置されたときに物品を加熱するための加熱アセンブリとを備えるエアロゾル供給デバイスが提供される。加熱アセンブリは、サセプタを加熱するための変動磁場を生成するための第4又は第5又は第10の態様のインダクタコイルの少なくとも1つを備える。いくつかの例では、加熱アセンブリは、変動磁場が侵入することによって加熱可能なサセプタを備える。
【0064】
第7の態様によれば、2つ以上の形態部間で移動させることができる支持部材が提供される。例えば、支持部材は、第1の形態部と第2の形態部との間で移動可能であり得る。明らかになるように、形態/形状を変える支持部材は、形成されたインダクタコイルを支持部材から取り外すのをより容易にすることができる。上記のように、支持部材は、インダクタコイルのワイヤを巻くことができる軸線(例えば長手方向軸線)を定義することができる。第1の形態部では、ワイヤを支持部材の周りに巻いて、インダクタコイルを形成することができる。第2の形態部では、支持部材の断面幅(軸線に垂直に測定される)は、支持部材が第1の形態部にあるときよりも小さい。したがって、第2の形態部では、支持部材は、より小さな断面幅を有する。支持部材の断面幅を減少させると(インダクタコイルが形成された後に)、インダクタコイルを支持部材からより容易に取り外すことができることが分かっている。例えば、支持部材の断面幅を減少させることによって、ワイヤ/コイルを支持部材から少なくとも部分的に分離する/取り外すことができ、したがって、インダクタコイルの取外しにより、取外し時にインダクタコイルが損傷又は変形することはない。
【0065】
第1の形態部では、支持部材は第1の断面幅を有し、第2の形態部では、支持部材は第2の断面幅を有し、第1の断面幅は第2の断面幅よりも大きい。
【0066】
いくつかの例では、ワイヤはマルチストランドワイヤである。
【0067】
断面幅は、支持部材によって定義された軸線に垂直に測定される。この断面幅は、第2の軸線に沿って測定することができ、第2の軸線は、支持部材によって定義される軸線に垂直である。支持部材によって定義される軸線は、第1の軸線であり得る。支持部材が実質的に円筒形である例では、支持部材の断面幅(第1の形態部)は、支持部材の直径に等しい。
【0068】
上記のいずれの例でも、ワイヤが支持部材に巻かれてインダクタコイルを形成する。したがって、ワイヤは、支持部材に形成された後、インダクタコイルになる。
【0069】
一例では、支持部材はモノリシックであり、単一の構成要素から形成される。しかし、他の例では、支持部材は、複数の構成要素/部品から形成されることもある。
【0070】
特定の例では、支持部材の外面は、ワイヤを受け入れるためのチャネルを備える。上で説明したように、チャネルは、ワイヤが支持部材に巻かれているときにワイヤを受け入れることができる。チャネル内の隣り合うターンの間隔が、形成されるインダクタコイルの隣り合うターンの間隔を設定することができる。この特定の例では、支持部材が形態を変える機能がさらに有用である。チャネルの性質は、ワイヤが支持部材内に延びることを意味し、これにより、支持部材からインダクタコイルを取り外すことが難しくなる。例えば、インダクタコイルは、少なくとも部分的にチャネル内に配置されているので、支持部材の長さに沿って摺動させるのは難しい。支持部材の断面幅を減少させることにより、インダクタコイルをより簡単に取り外すことができる。一例では、インダクタコイルが適切な隙間を有することを保証するために、断面幅がチャネルの深さ寸法のせいぜい2分の1に減少されている。
【0071】
チャネルは、第2の軸線に平行に測定された深さと、第1の軸線に平行に測定された幅寸法とを有することができる。
【0072】
支持部材は、第2の形態部に向けて付勢されることがある。したがって、支持部材は、断面幅が最小である形態に「自動的に」再構成することができる。デバイスは、必要なときには、第1の形態部で支持部材を保持することができる。
【0073】
特定の構成では、支持部材は、支持部材を第2の形態部に向けて付勢するための1つ又は複数のばねなど、1つ又は複数の付勢機構を備えることができる。
【0074】
支持部材の外面は、軸線の周りで周方向に配置された複数のセグメントによって形成されることがある。したがって、一例では、支持部材は、複数の構成要素から形成されることがある。これらのセグメント/構成要素のうちの1つ又は複数を動かすことにより、支持部材を第1の形態部と第2の形態部との間で移動させることができる。
【0075】
一例では、各セグメントは、支持部材の長さに沿って、支持部材の長手方向軸線に平行な方向に延びる。
【0076】
支持部材が実質的に円筒形である例では、各セグメントは、湾曲したプロファイルを有することがあり、支持部材の外周の周りに部分的に延びる弧長を有する。
【0077】
セグメントは、1つ又は複数の隣り合うセグメントに当接することがある。当接は、より連続的な外面を提供し、セグメント間の熱伝導を改良することもできる。
【0078】
複数のセグメントのうちの少なくとも1つのセグメントは、支持部材が第1の形態部と第2の形態部との間を移動するときに、複数のセグメントのうちの隣り合うセグメントに対して移動するように構成されることがある。したがって、前述したように、支持部材を再構成することができる。特定の例では、少なくとも1つのセグメントは、隣り合うセグメントに対して回転/旋回することができる。
【0079】
いくつかの例では、セグメントの一部のみが移動可能である。例えば、支持部材の一部のみが形状を変えることがあるが、それでも支持部材全体は依然としてより小さい断面幅を有することができる。
【0080】
複数のセグメントのうちの少なくとも1つのセグメントは、ヒンジによって複数のセグメントのうちの隣り合うセグメントに接続されることがある。したがって、ヒンジによって接合される2つのセグメントがあり得る。ヒンジは、隣り合うセグメントを動かす単純で効果的な方法を提供する。支持部材が第2の形態部に向けて付勢されるように、1つ又は複数のヒンジが付勢されることがある。
【0081】
いくつかの例では、複数のセグメントのうちの少なくとも1つのセグメントは、複数のセグメントのうちの隣り合うセグメントに恒久的には接続されていない。したがって、すべてのセグメントが(例えばヒンジによって)恒久的に接続されているとは限らない。これにより、支持部材が第1の形態部から第2の形態部に移動されるときに、支持部材の一端が他端から離れることができる。
【0082】
いくつかの例では、複数のセグメントのうちの少なくとも1つのセグメントは、隣り合うセグメントに対する上記少なくとも1つのセグメントの動きを制限するためのストッパを有し、以て、支持部材が第2の形態部から離れて移動可能な範囲を制限する。「ストッパ」は、支持部材が第2の形態部から第1の形態部に戻るときに、支持部材が第1の形態部を越えて延びず、第1の形態部までしか移動しないことを保証する。「支持部材が第2の形態部から移動可能である範囲を制限する」とは、断面幅が第1の形態部での支持部材の断面幅よりも大きくならないことを意味することがある。ストッパは、ヒンジ(2つのセグメントを接続する)が反対方向に曲がる可能性を低減することができる。
【0083】
特定の例では、少なくとも1つのセグメントの外面は突出部分を含み、隣り合うセグメントの外面は、支持部材が第2の形態部から第1の形態部に移動するときに突出部分を受け入れるための受容部分を含む。したがって、「ストッパ」は、受容部分によって提供することができ、動きは、突出部分が受容部分に接触することによって制限される。突出部は、リップ又はフランジであり得る。各セグメントの外面は、支持部材の中心に沿って延びる長手方向軸線から最も遠い部分である。
【0084】
一例では、第2の形態部では、支持部材はスパイラル形態にある。例えば、支持部材は、第1の形態部から第2の形態部に移動するときに、それ自体にロール又はカールされることがある。支持部材が複数のセグメントを備える例では、セグメントは、支持部材をスパイラル形態にロールできるようにすることがある。スパイラル形態は、支持部材の長手方向軸線に沿って見たときに最も明らかであり得る。
【0085】
一例では、第1の形態部では、支持部材は、第1の形態部で支持部材を保持するためのデバイスを受け入れるための中空キャビティを画定することができる。例えば、デバイスは、支持部材の中央に挿入されることがあり、支持部材と係合して支持部材を第1の形態部で支持する。そのようなデバイスは、支持部材が第2の形態部に向けて付勢される場合に特に有用であり得る。したがって、デバイスを取り外すことにより、特に付勢力(加えられたとき)の下で、支持部材が第2の形態部に「自動的に」移動することができる。
【0086】
一例では、デバイスは、支持部材の内面に接触する挿入部材である。挿入部材は、支持部材の軸線に沿って第1の方向へ中空キャビティ内に移動することができ、軸線に沿って第1の方向とは反対の第2の方向へ移動することもできる。デバイス/挿入部材は、テーパ付きプロファイルを有することがあり、デバイスが第1の方向に移動されるとき、デバイスの最も狭い区域が最初にキャビティに挿入され(支持部材が第2の形態部にあるとき)、デバイスのより広い区域が挿入されるとき、支持部材の断面幅は、支持部材が第1の形態部になるまで徐々に増加される。
【0087】
第8の態様によれば、第7の態様による支持部材と、第1の形態部と第2の形態部との間で支持部材を移動させるように構成されたデバイスとを備えたシステムが提供される。デバイスは、第1の形態部で支持部材を保持するために支持部材の中空キャビティに挿入されるのと同じデバイスでもよい。
【0088】
簡単に述べたように、デバイスは軸線に沿って移動可能であり、第1の形態部と第2の形態部の間で支持部材を移動させることができる。これは、簡単な自動化及び少数の可動部品を用いて支持部材の断面幅を変える効果的な方法を提供する。
【0089】
システムは、支持部材が第1の形態部にあるときには、デバイスが支持部材の中空キャビティ内で軸線に沿った第1の位置に配置されて支持部材を第1の形態部で保持し、支持部材が第2の形態部にあるときには、デバイスが第1の位置とは異なる軸線に沿った第2の位置に配置されるように構成されることがある。いくつかの例では、第2の形態部では、デバイスは、依然として部分的に中空キャビティ内に配置されることがある。他の例では、デバイスを中空キャビティから完全に取り外すことができる。
【0090】
システムは、支持部材を第2の形態部に向けて付勢するための付勢機構を備えることがある。いくつかの例では、付勢機構は、支持部材とは別個でもよい。他の例では、付勢機構は支持部材の一部でもよい。
【0091】
第9の態様によれば、エアロゾル供給デバイス用のインダクタコイルを形成する方法が提供される。この方法は、(i)複数のワイヤストランドを備えるマルチストランドワイヤを用意するステップであり、複数のワイヤストランドのうちの少なくとも1つが接着性コーティングを備える、ステップと、(ii)軸線を定義する支持部材の周りにマルチストランドワイヤを巻くステップと、(iii)マルチストランドワイヤが支持部材によって決定された形状を実質的に維持するように接着性コーティングを活性化するステップと、(iv)軸線に垂直な方向で支持部材の断面幅を減少させるステップと、(v)支持部材からマルチストランドワイヤを取り外すステップとを含む。
【0092】
一例では、支持部材の周りにワイヤを巻くステップは、チャネルにワイヤを受け入れることを含むことがある。
【0093】
支持部材の断面幅を減少させるステップは、支持部材を第1の形態部と第2の形態部との間で移動させることを含むことがあり、支持部材が第2の形態部にあるとき、軸線に垂直な支持部材の断面幅は、支持部材が第1の形態部にあるときよりも小さい。
【0094】
支持部材の断面幅を減少させるステップは、支持部材をロールする、又は支持部材を折り畳むことを含むことがある。
【0095】
一例では、支持部材が第1の形態部にあるときには、デバイスは、支持部材の中空キャビティ内で軸線に沿った第1の位置に配置されて支持部材を第1の形態部で保持することがある。支持部材が第2の形態部にあるときには、デバイスは、第1の位置とは異なる軸線に沿った第2の位置に配置される。したがって、支持部材を第1の形態部と第2の形態部との間で移動させることは、デバイスを第1の位置と第2の位置との間で移動させることを含むことがある。
【0096】
前述したように、支持部材の外面は、軸線の周りで周方向に配置された複数のセグメントによって形成されることがある。したがって、支持部材の断面幅を減少させるステップは、複数のセグメントのうちの少なくとも1つのセグメントを、複数のセグメントのうちの隣り合うセグメントに対して移動させることを含むことがある。
【0097】
一例では、巻くステップは、マルチストランドワイヤを軸線の周りに巻くことを含み、支持部材からマルチストランドワイヤを取り外すステップは、マルチストランドワイヤを支持部材に対して軸線に平行な方向に移動させることを含む。インダクタコイルが定位置に保持された状態で、支持部材を軸線に平行な方向に移動させることができる。代替として、支持部材が定位置に固定されている状態で、インダクタコイルを移動させることができる。
【0098】
第10の態様によれば、エアロゾル供給デバイス用のインダクタコイルであって、第9の態様の方法を含む方法に従って形成されるインダクタコイルが提供される。
【0099】
図1は、エアロゾル生成媒体/材料からエアロゾルを生成するためのエアロゾル供給デバイス100の一例を示す。概して、デバイス100を使用して、エアロゾル生成媒体を備える交換可能な物品110を加熱して、デバイス100のユーザによって吸入されるエアロゾル又は他の吸入可能な媒体を生成することができる。
【0100】
デバイス100は、デバイス100の様々な構成要素を取り囲んで収容する(外側カバーの形態での)ハウジング102を備える。デバイス100は、一端に開口部104を有し、開口部104を通して、加熱アセンブリによる加熱のために物品110を挿入することができる。使用中、物品110は、加熱アセンブリに完全に又は部分的に挿入されることがあり、そこで、ヒーターアセンブリの1つ又は複数の構成要素によって加熱されることがある。
【0101】
この例のデバイス100は、蓋108を備える第1の端部部材106を備え、蓋108は、物品110が定位置にないときに開口部104を閉じるために第1の端部部材106に対して移動可能である。図1では、蓋108は開いた形態で示されているが、蓋108は閉じた形態に移動することもできる。例えば、ユーザは、蓋108を矢印「A」の方向に摺動させることができる。
【0102】
デバイス100は、ボタン又はスイッチなどのユーザ操作可能な制御要素112も含むことがあり、制御要素112は、押されたときにデバイス100を操作する。例えば、ユーザは、スイッチ112を操作することによってデバイス100をオンにすることができる。
【0103】
デバイス100は、ソケット/ポート114などの電気構成要素を備えることもあり、電気構成要素は、デバイス100のバッテリーを充電するためにケーブルを受け入れることができる。例えば、ソケット114は、USB充電ポートなどの充電ポートであり得る。
【0104】
図2は、外側カバー102が取り外されており、物品110が存在しない状態で、図1のデバイス100を示す。デバイス100は、長手方向軸線344を定義する。
【0105】
図2に示されるように、第1の端部部材106は、デバイス100の一端に配置され、第2の端部部材116は、デバイス100の他端に配置される。第1の端部部材106と第2の端部部材116とが共に、デバイス100の端面を少なくとも部分的に画定する。例えば、第2の端部部材116の底面は、デバイス100の底面を少なくとも部分的に画定する。この例では、蓋108はまた、デバイス100の上面の一部分を画定する。
【0106】
開口部104に最も近いデバイス100の端部は、使用中にユーザの口に最も近いので、デバイス100の近位端(又は口端部)と呼ばれることがある。使用中、ユーザは、物品110を開口部104に挿入し、ユーザ制御部112を操作して、エアロゾル生成材料の加熱を開始し、デバイスで生成されたエアロゾルを引き出す。これにより、エアロゾルは、流路に沿ってデバイス100を通ってデバイス100の近位端に向かって流れる。
【0107】
開口部104から最も遠いデバイス100の他端は、使用中にユーザの口から最も遠い端部であるので、デバイス100の遠位端と呼ばれることがある。ユーザがデバイスで生成されたエアロゾルを引き出すとき、エアロゾルはデバイス100の遠位端から流れ出る。
【0108】
デバイス100は、電源118をさらに備える。電源118は、例えば充電式バッテリー又は非充電式バッテリーなどのバッテリーであり得る。バッテリーは、加熱アセンブリに電気的に結合されて、必要なときにコントローラ(図示せず)の制御下で電力を供給し、エアロゾル生成材料を加熱する。この例では、バッテリーは、バッテリー118を定位置に保持する中央支持体120に接続される。
【0109】
デバイスは、少なくとも1つの電子モジュール122をさらに備える。電子モジュール122は、例えば、プリント回路基板(PCB)を含むことがある。PCB122は、プロセッサなどの少なくとも1つのコントローラ、及びメモリをサポートすることができる。PCB122は、デバイス100の様々な電子構成要素を互いに電気的に接続するための1つ又は複数の電気トラックを備えることもある。例えば、バッテリー端子は、電力をデバイス100全体に分配することができるようにPCB122に電気的に接続されることがある。ソケット114も、電気トラックを介してバッテリーに電気的に結合されることがある。
【0110】
例示的なデバイス100では、加熱アセンブリは、誘導加熱アセンブリであり、誘導加熱プロセスによって物品110のエアロゾル生成材料を加熱するための様々な構成要素を備える。誘導加熱は、電磁誘導によって導電性物体(サセプタなど)を加熱するプロセスである。誘導加熱アセンブリは、誘導要素、例えば1つ又は複数のインダクタコイルと、交流電流などの変動電流を誘導要素に通すためのデバイスとを備えることがある。誘導要素内の変動電流は、変動磁場を生成する。変動磁場は、誘導要素に対して適切に配置されたサセプタに侵入し、サセプタ内に渦電流を生成する。サセプタは渦電流に対して電気抵抗を有し、したがって、この抵抗に反する渦電流の流れにより、ジュール加熱によってサセプタが加熱される。サセプタが鉄、ニッケル、又はコバルトなどの強磁性体を含む場合、サセプタの磁気ヒステリシス損失によって、すなわち変動磁場との位置合わせによる磁性材料の磁気双極子の変動する配向によって熱が生成されることもある。誘導加熱では、例えば伝導による加熱と比較して、サセプタ内で熱が生成され、急速な加熱を可能にする。さらに、誘導ヒーターとサセプタとの間に物理的な接触は必要なく、構成及び適用の自由度を高める。
【0111】
例示的なデバイス100の誘導加熱アセンブリは、サセプタ構成体132(以下「サセプタ」と呼ぶ)、第1のインダクタコイル124、及び第2のインダクタコイル126を備える。第1及び第2のインダクタコイル124、126は、導電性材料から形成される。この例では、第1及び第2のインダクタコイル124、126は、リッツ線/ケーブルなどのマルチストランドワイヤから形成され、マルチストランドワイヤは、インダクタコイル124、126を提供するために概して螺旋状に巻かれる。リッツ線は、個別に絶縁され、撚り合わされて1本のワイヤを形成する複数のワイヤストランドを備える。リッツ線は、導体の表皮効果損失を低減するように設計される。例示的なデバイス100では、第1及び第2のインダクタコイル124、126は、長方形断面を有する銅リッツ線から形成される。他の例では、リッツ線は、他の形状の断面を有することができる。
【0112】
第1のインダクタコイル124は、サセプタ132の第1の区域を加熱するための第1の変動磁場を生成するように構成され、第2のインダクタコイル126は、サセプタ132の第2の区域を加熱するための第2の変動磁場を生成するように構成される。この例では、第1のインダクタコイル124は、デバイス100の長手方向軸線134に平行な方向で第2のインダクタコイル126に隣り合っている。第1及び第2のインダクタコイル124、126の端部130は、PCB122に接続することができる。
【0113】
第1及び第2のインダクタコイル124、126は、いくつかの例では、互いに異なる少なくとも1つの特性を有することがあることを理解されたい。例えば、第1のインダクタコイル124は、第2のインダクタコイル126とは異なる少なくとも1つの特性を有することがある。より具体的には、一例では、第1のインダクタコイル124は、第2のインダクタコイル126とは異なるインダクタンス値を有することがある。図2では、第1及び第2のインダクタコイル124、126は異なる長さであり、第1のインダクタコイル124が、第2のインダクタコイル126よりもサセプタ132の小さな区域にわたって巻かれるようになっている。したがって、第1のインダクタコイル124は、第2のインダクタコイル126とは異なる巻き数を備えることがある(個々のターンの間隔が実質的に同じであると仮定して)。さらに別の例では、第1のインダクタコイル124は、第2のインダクタコイル126とは異なる材料から形成されることがある。いくつかの例では、第1及び第2のインダクタコイル124、126は、実質的に同一でもよい。
【0114】
この例のサセプタ132は中空であり、エアロゾル生成材料が受け入れられるレセプタクルを画定する。例えば、物品110は、サセプタ132に挿入することができる。この例では、サセプタ120は管状であり、円形断面を有する。
【0115】
図2のデバイス100は、絶縁部材128をさらに備え、絶縁部材128は、一般に管状であり、少なくとも部分的にサセプタ132を取り囲むことができる。絶縁部材128は、例えばプラスチックなどの任意の絶縁材料から構成することができる。この特定の例では、絶縁部材は、ポリエーテルエーテルケトン(PEEK)から構成される。絶縁部材128は、サセプタ132で発生する熱からデバイス100の様々な構成要素を絶縁する助けとなり得る。
【0116】
絶縁部材128はまた、第1及び第2のインダクタコイル124、126を完全に又は部分的に支持することができる。例えば、図2に示されるように、第1及び第2のインダクタコイル124、126は、絶縁部材128の周りに配置され、絶縁部材128の径方向外側の表面と接触する。いくつかの例では、絶縁部材128は、第1及び第2のインダクタコイル124、126に当接していない。例えば、絶縁部材128の外面と第1及び第2のインダクタコイル124、126の内面との間に小さなギャップが存在することがある。
【0117】
特定の例では、サセプタ132と、絶縁部材128と、第1及び第2のインダクタコイル124、126とは、サセプタ132の中心長手方向軸線の周りで同軸線である。
【0118】
図3は、デバイス100の部分側断面図を示す。この例では、外側カバー102が存在する。
【0119】
デバイス100は、サセプタ132の一端を係合してサセプタ132を定位置に保持する支持体136をさらに備える。支持体136は、第2の端部部材116に接続される。
【0120】
デバイスは、制御要素112内に関連付けられた第2のプリント回路基板138も備えることがある。
【0121】
デバイス100は、デバイス100の遠位端に向かって配置された第2の蓋/キャップ140及びばね142をさらに備える。ばね142は、第2の蓋140を開くことができるようにし、サセプタ132へのアクセスを提供する。ユーザは、第2の蓋140を開いて、サセプタ132及び/又は支持体136を洗浄することができる。
【0122】
デバイス100は、拡張チャンバ144をさらに備え、拡張チャンバ144は、サセプタ132の近位端からデバイスの開口部104に向かって延びる。拡張チャンバ144内に少なくとも部分的に、デバイス100内に受け入れられたときに物品110に当接して保持するための保持クリップ146が配置される。拡張チャンバ144は、端部部材106に接続される。
【0123】
図4は、外側カバー102が省かれた図1のデバイス100の分解図である。
【0124】
図5のFig.5Aは、図1のデバイス100の一部の断面を示す。図5のFig.5Bは、図5のFig.5Aの領域の拡大図を示す。図5のFig.5A及びFig.5Bは、サセプタ132内に受け入れられた物品110を示し、物品110は、物品110の外面がサセプタ132の内面に当接するように寸法設定されている。この例の物品110は、エアロゾル生成材料110aを備える。エアロゾル生成材料110aは、サセプタ132内に配置される。物品110は、フィルタ、包装材料、及び/又は冷却構造などの他の構成要素をも含むことがある。
【0125】
図5のFig.5Bは、サセプタ132の長手方向軸線158に垂直な方向で測定して距離150だけ、サセプタ132の外面がインダクタコイル124、126の内面から離間されていることを示す。1つの特定の例では、距離150は、約3mm~4mm、約3mm~3.5mm、又は約3.25mmである。
【0126】
図5のFig.5Bは、サセプタ132の長手方向軸線158に垂直な方向で測定して距離152だけ、絶縁部材128の外面がインダクタコイル124、126の内面から離間されていることをさらに示す。1つの特定の例では、距離152は約0.05mmである。別の例では、距離152は実質的に0mmであり、したがって、インダクタコイル124、126は、絶縁部材128に当接して接触する。
【0127】
一例では、サセプタ132は、約0.025mm~1mm、又は約0.05mmの壁厚154を有する。
【0128】
一例では、サセプタ132は、約40mm~60mm、約40mm~45mm、又は約44.5mmの長さを有する。
【0129】
一例では、絶縁部材128は、約0.25mm~2mm、0.25mm~1mm、又は約0.5mmの壁厚156を有する。
【0130】
図6は、デバイス100の加熱アセンブリの一部を示す。上で簡単に述べたように、加熱アセンブリは、軸線200に沿った方向で互いに隣り合って配置された第1のインダクタコイル124及び第2のインダクタコイル126を備える。インダクタコイル124、126は、絶縁部材128の周りに延びる。サセプタ132は、管状絶縁部材128内に配置される。この例では、第1及び第2のインダクタコイル124、126を形成するワイヤは円形又は楕円形の断面を有するが、長方形、正方形、「L」、「T」、又は三角形の断面など異なる形状の断面を有することもある。
【0131】
軸線200は、インダクタコイル124、126の一方又は両方によって定義されることがある。例えば、軸線200は、インダクタコイル124、126のいずれか1つの長手方向軸線であり得る。軸線200は、デバイス100の長手方向軸線134に平行であり、サセプタの長手方向軸線158に平行である。したがって、各インダクタコイル124、126は、軸線200の周りに延びる。
【0132】
各インダクタコイル124、126は、複数のワイヤストランドを備えるリッツ線などマルチストランドワイヤから形成される。例えば、各マルチストランドワイヤには、約50~約150本のワイヤストランドがあり得る。この例では、各マルチストランドワイヤには約115本のワイヤストランドがある。
【0133】
個々のワイヤストランドは、それぞれ直径を有する。例えば、直径は、約0.05mm~約0.2mmの範囲内であり得る。いくつかの例では、直径は、34AWG(0.16mm)~40AWG(0.0799mm)の範囲内である。ここで、AWGは、米国ワイヤゲージ規格(American Wire Gauge)である。この例では、各ワイヤストランドは、38AWG(0.101mm)の直径を有する。
【0134】
マルチストランドワイヤが円形断面を有する例では、マルチストランドワイヤは、約1mm~約2mmの範囲内の直径を有することがある。この例では、マルチストランドワイヤは、約1.3mm~約1.5mm、例えば約1.4mmの直径を有する。
【0135】
図6に示されるように、第1のインダクタコイル124のマルチストランドワイヤは、軸線202に約6.75回巻き付けられ、第2のインダクタコイル126のマルチストランドワイヤは、軸線202に約8.75回巻き付けられる。マルチストランドワイヤのいくつかの端部は、完全な一巻きが完了する前に絶縁部材128の表面から曲げられて離れているので、マルチストランドワイヤは、整数の巻き数を形成しない。他の例では、巻き数が異なることがある。例えば、各マルチストランドワイヤは、軸線202の周りに約4~15回巻き付けられることがある。
【0136】
図6は、連続する巻き/ターン間のギャップを示す。これらのギャップは、例えば約0.5mm~約2mmの範囲内であり得る。
【0137】
いくつかの例では、各インダクタコイル124、126は同じピッチを有し、ピッチは、完全な一巻きにわたるインダクタコイルの長さ(インダクタコイルの軸線200に沿って又はサセプタの長手方向軸線158に沿って測定される)である。他の例では、各インダクタコイル124、126は異なるピッチを有する。
【0138】
一例では、第1及び第2のインダクタコイル124、126の内径は、長さが約12mmであり、外径は、長さが約14.3mmである。別の例では、第1及び第2のインダクタコイル124、126の内径は、約8mm~約15mmの範囲内であり得て、外径は、約10mm~約17mmの範囲内であり得る。
【0139】
図7は、エアロゾル供給デバイス用インダクタコイルを形成するための方法300の流れ図を示す。そのような方法を使用して、図2~6に関連して述べたインダクタコイル124、126の一方又は両方を形成することができる。
【0140】
この方法は、ブロック302で、複数のワイヤストランドを備えるマルチストランドワイヤを用意するステップを含み、複数のワイヤストランドのうちの少なくとも1つは、接着性コーティングを備える。例えば、上述したパラメータを有するマルチストランドワイヤが提供されることがある。上述したように、接着性コーティングは、ワイヤストランドを取り囲み、(加熱などによって)活性化することができるコーティングであり、マルチストランドワイヤ内のストランドは、1つ又は複数の隣り合うストランドに接着する。接着性コーティングにより、マルチストランドワイヤを支持部材のインダクタコイルの形状に形成することができ、接着性コーティングが活性化された後、マルチストランドワイヤはその形状を維持する。したがって、接着性コーティングは、インダクタコイルの形状を「設定」する。
【0141】
この方法は、ブロック304で、支持部材の周りにマルチストランドワイヤを巻くステップをさらに含む。例えば、マルチストランドワイヤは、支持部材の周りに螺旋状に巻くことができる。
【0142】
図8は、マルチストランドワイヤからインダクタコイル400を形成するために使用される例示的なシステムを示す。図示されるように、マルチストランドワイヤ402は、最初はボビン404の周りに巻かれることがあり、その後、ほどかれて支持部材406の周りに巻かれる。この例では、ドラム408が回転され、ガイドレール410と平行に移動され、これにより、マルチストランドワイヤが支持部材406の長さに沿って巻かれる。ドラム408及びガイドレール510は、マルチストランドワイヤ402を支持部材406に一緒に巻く駆動アセンブリの一部を形成する。
【0143】
特定の例では、支持部材406は、その外面に形成されたチャネルを有する。したがって、マルチストランドワイヤ402が支持部材406に巻かれるとき、マルチストランドワイヤ402は、チャネルに受け入れられることがある。チャネルは、インダクタコイル400を形成するマルチストランドワイヤ402の形状及び寸法をより良く制御するための手段を提供する。チャネルは、支持部材406の周りに螺旋状に延びることがある。
【0144】
いくつかの例では、チャネルは、マルチストランドワイヤ402に与えられた特定の断面形状を有する。したがって、チャネルは、マルチストランドワイヤ402がチャネルの形状を取るように「モールド」として働くことができる。
【0145】
図9Aは、支持部材406の周りに巻かれたマルチストランドワイヤ402の代替図を示す。この時点で、インダクタコイル400は部分的にしか形成されておらず、マルチストランドワイヤ402は依然として支持部材406に巻かれている。支持部材406の外面の周りに延びるチャネル412を見ることができる。マルチストランドワイヤ402は、支持部材406の周りに巻かれるとき、チャネル412内に落ちる。したがって、チャネルは、インダクタコイル400の隣り合うターンの間隔を正確に制御する手段を提供する。
【0146】
図8及び9Aはまた、支持部材406へのマルチストランドワイヤ402の供給を可能にする又は制御するワイヤ送給アセンブリ414を示す。いくつかの例では、図8及び9Aに示されるように、ワイヤ送給アセンブリ414は受動型である。例えば、上述したように、システムは、支持部材406を、支持部材406によって定義される長手方向軸線416の周りで回転させるように構成された駆動アセンブリを備えることがある。このシステムは、マルチストランドワイヤ402の端部を定位置に保持する固定具418を備えることもある。駆動アセンブリが矢印420によって示される方向に支持部材406を回転させ、長手方向軸線416に平行な方向に支持部材406を移動させると、マルチストランドワイヤ402は、受動ワイヤ送給アセンブリ414を通って、支持部材406に引き出される。
【0147】
他の例では、ワイヤ送給アセンブリ414が能動型であり、マルチストランドワイヤを支持部材406に能動的に巻く。例えば、ワイヤ送給アセンブリ414は、ワイヤが支持部材406に巻かれている間、支持部材406の周りを回転することができる。
【0148】
図9Bは、後の時点での図9Aのシステムを示す。この時点で、インダクタコイル400はまだ部分的にしか形成されていないが、マルチストランドワイヤ402は、支持部材406の周りにより多くの回数巻かれている。駆動アセンブリは、支持部材406を回転させ、ワイヤ送給アセンブリ414が静止したままの状態で、長手方向軸線416に平行な方向422に支持部材406を移動させている。代替の例では、駆動アセンブリは、支持部材406の長手方向変位が静止したままの状態で、長手方向軸線416に平行な方向にワイヤ送給アセンブリ414を移動させることがある。いずれの場合にも、駆動アセンブリは、ワイヤ送給アセンブリ414に対して支持部材406を移動させて、マルチストランドワイヤ402を支持部材406に巻く。マルチストランドワイヤ402は、インダクタコイル400が所望の長さになるまで、支持部材406に巻き続けられる。マルチストランドワイヤ402は、切断ツール424(図8に示される)を使用して所定のサイズに切断することができる。
【0149】
マルチストランドワイヤ402が支持部材406の周りに巻かれているとき、方法300は、ブロック306で、マルチストランドワイヤがチャネルによって提供される形状を実質的に維持するように接着性コーティングを活性化することをさらに含む。代替として、ブロック306は、マルチストランドワイヤ402が支持部材406の周りに完全に巻かれた後に行われることがある。この例では、マルチストランドワイヤは、エナメル接着性コーティングを有し、加熱によって活性化される。したがって、マルチストランドワイヤ402が支持部材406上及びチャネル412内に留まっている状態で、マルチストランドワイヤ402に熱が加えられる。例えば、支持部材406は、ヒーター(図示せず)によって加熱されることがあり、これにより、マルチストランドワイヤ402が加熱される。一例では、マルチストランドワイヤ402は、約190℃の活性化温度に加熱され、これにより、接着性コーティングの粘度が低くなる。所定の時間後、熱の適用が停止され、接着性コーティングが冷却し始める。いくつかの例では、冷却プロセスは、冷気の適用によって加速することができる。例えば、エアガン又はファンにより、冷却された/周囲空気がマルチストランドワイヤ402を横切って流れることができる。接着性コーティングの温度が低下すると、接着性コーティングの粘度は再び高くなる。これにより、マルチストランドワイヤ内の個々のワイヤストランドが互いに接着する。
【0150】
代替の例では、加熱された空気がマルチストランドワイヤ402の上を流される。例えば、空気は、接着性コーティングを活性化させるのに適した活性化温度に加熱され、ファン又はエアガンによってインダクタコイル400を横切るように流される。
【0151】
いずれの例でも、マルチストランドワイヤ402が支持部材406に巻かれるのと同時に、マルチストランドワイヤ402に熱が加えられることが好ましい。
【0152】
チャネル内にマルチストランドワイヤ402を受け入れることと、接着性コーティングを活性化することとの複合効果により、チャネル412の断面形状がマルチストランドワイヤ402に与えられる。例えば、マルチストランドワイヤ402は、チャネル412に導入される前に特定の断面形状を有することがあり、チャネル412から取り外された後に異なる断面形状を有することがある。したがって、チャネル412は、マルチストランドワイヤ402の断面形状を変形するための手段を提供する。様々な所定の断面形状を有するチャネルを有する様々な例示的な支持部材を、図10~15に関連して述べる。
【0153】
図10のFig.10Aは、第1の例示的な支持部材500の側面図を示す。図10のFig.10Bは、図10のFig.10Aの一部の拡大図を示す。支持部材500は、マルチストランドワイヤ504を巻くことができる長手方向軸線502を定義する。支持部材500の外面は、マルチストランドワイヤ504を受け入れるためのチャネル506を備える。
【0154】
図10のFig.10Bに最も明確に示されているように、この例のチャネル506は、テーパ付き口部分508及びワイヤ受容部分510を備える。テーパ付き口部分508は、支持部材500の外面に向かって配置され、ワイヤ受容部分510は、支持部材500の中心に向かって、半径方向内側に配置される。いくつかの例では、テーパ付き口部分508を省いてもよい。
【0155】
テーパ付き口部分508は、マルチストランドワイヤ504をチャネル506のワイヤ受容部分510に案内するためのガイドを画定する。例えば、テーパ付き口部分508の傾斜面は、マルチストランドワイヤ504が支持部材500に巻かれているときにチャネルと正確に位置合わせされていない場合、マルチストランドワイヤ504をチャネル506に「送り入れる(funnel)」ことができる。ワイヤ受容部分510は、マルチストランドワイヤ504がチャネル506に完全に受け入れられた後にマルチストランドワイヤ504を保持又は当接するチャネル506の部分である。
【0156】
この例では、ワイヤ受容部分510は、マルチストランドワイヤ504に所定の断面形状を与える。図10のFig.10Bは、ワイヤ受容部分510に入る前の、概して円形の断面形状を有するマルチストランドワイヤ504を示す。マルチストランドワイヤ504がワイヤ受容部分510に完全に受け入れられるとき、マルチストランドワイヤ504は、1つ又は複数の寸法で収縮されることがあり、以てマルチストランドワイヤ504の断面を変形する。
【0157】
図10のFig.10Bに示されるように、チャネル506は、長手方向軸線502に垂直な方向で測定された最大深さ寸法512と、最大深さ寸法512に垂直な方向で測定された最大幅寸法514とを有する。したがって、最大深さ寸法512は、チャネル506の全体の深さである。この例では、最大深さ寸法512は最大幅寸法514よりも大きい。全体として、チャネル506は、チャネル506の底部506aに向かって距離と共に減少する幅寸法を有する。同様に、ワイヤ受容部分510は、チャネル506の底部506aに向かった距離と共に減少する幅寸法を有する。
【0158】
やはり図10のFig.10Bに示されるように、ワイヤ受容部分510は、長手方向軸線502に垂直な方向で測定される最大深さ516と、最大深さ516に垂直な方向で測定される最大幅518とを有する。したがって、最大深さ516は、ワイヤ受容部分510の全体の深さである。この例では、最大深さ512は最大の幅514よりも大きい。この特定の形状により、マルチストランドワイヤ504は、ワイヤがチャネル506に完全に受け入れられるときに、長手方向軸線502に平行な寸法で収縮/圧縮され、長手方向軸線502に垂直な寸法で伸長される。したがって、ワイヤ受容部分510の断面形状がマルチストランドワイヤ504に与えられる。したがって、マルチストランドワイヤ504は、チャネル506によって提供されるのと同じ断面形状を得る。
【0159】
したがって、得られるマルチストランドワイヤ504は、最大長手方向の寸法よりも大きい最大横方向寸法を有する。最大長手方向寸法は、長手方向軸線502に平行な方向で測定され、最大横方向寸法は、最大長手方向寸法に垂直な方向で測定される。したがって、マルチストランドワイヤ504の最大横方向寸法は、最大深さ516と実質的に同じである。同様に、マルチストランドワイヤ504の最大長手方向寸法は、最大幅518と実質的に同じである。
【0160】
特定の例では、マルチストランドワイヤ504は、チャネル506に導入される前に、約1.4mmの直径を有する。最大深さ516は約1.7mmであり、最大幅518は約1.4mmである。したがって、チャネル506に受け入れられた後、マルチストランドワイヤ504の最大長手方向寸法は約1.4mmのままである。しかし、マルチストランドワイヤの最大横方向寸法は、約1.7mmに増加される。したがって、マルチストランドワイヤ504内のワイヤストランドは、長手方向軸線502に平行な寸法でより密に詰められることがある。ワイヤストランドは、移動するにつれて、長手方向軸線502に垂直な寸法であまり密に詰められなくなることがある。
【0161】
マルチストランドワイヤがチャネルに受け入れられた後、及び接着性コーティングが活性化されてチャネルの所定の断面形状をマルチストランドワイヤに与えた後、この方法は、ブロック308で、支持部材からマルチストランドワイヤを取り外すステップをさらに含む。例えば、マルチストランドワイヤを支持部材からほどくことができる。マルチストランドワイヤ自体をほどいて支持部材から取り外すことは、ワイヤが十分な弾性を有し、ほどいた後にそのコイル形状に戻る場合に適していることがある。代替として、支持部材からマルチストランドワイヤを取り外すステップは、(i)支持部材をコイルから緩めること(すなわち、コイルを静止して保ちながら支持部材を回転して引き抜くことによって)、又は(ii)支持部材からコイルを緩めること(すなわち、支持部材を静止して保ちながらコイルを回転して引き抜くことによって)、又は(iii)コイルを摺動させて支持部材から外すこと若しくはその逆(コイルが、チャネルの隣り合うトラフ(谷部)間の隆起部分を通過するのに十分な弾性を有する場合)、のうちの1つを含むことがある。少なくとも代替形態(i)及び(ii)では、チャネルは、コイルが支持部材からより容易に分離されるように、支持部材の長さに沿って一定のピッチを有することがある、及び/又は支持部材の一端まで延在することがある。
【0162】
接着性コーティングを使用してマルチストランドワイヤの形状を設定することによって、インダクタコイルは、支持部材から取り外された後も実質的にその形状を維持する。支持部材からの取外しを容易にするために、支持部材は、マルチストランドワイヤが強く接着しない材料から形成される又はそのような材料でコーティングされることがあり、したがって、マルチストランドワイヤは、活性化プロセス中にも支持部材に接着されない。支持部材は、例えば金属から作製されることがある。
【0163】
インダクタコイルが形成されて支持部材から取り外されると、インダクタコイルをデバイス100に組み付けることができる。インダクタコイルは、絶縁部材128に受け取られることがある。例えば、インダクタコイルを絶縁部材128上に摺動させることができる。
【0164】
図10Cは、テーパ付き口部分508及びワイヤ受容部分510をより明確に示すために、図10のFig.10Aの一部分の別の拡大図を示す。この例では、テーパ付き口部分508の第1の表面520は第1の表面勾配を有し、テーパ付き口部分508に隣り合うワイヤ受容部分510の第2の表面522aは、第1の表面勾配よりも大きい第2の表面勾配を有する。換言すると、第1の表面520の傾斜角524は、第2の表面522aの傾斜角526よりも小さい。表面勾配及び傾斜角は、長手方向軸線502に対して定義される。より小さい傾斜角は、より浅い/より小さい勾配を示す。テーパ付き口部分508のより浅い勾配は、マルチストランドワイヤがチャネル506に案内されるように滑らかな移行を可能にする。この例では、第2の表面522a(すなわち、テーパ付き口部分508に直接隣り合う表面)は垂直である。他の例では、第2の表面522aは垂直ではないことがある。例えば、テーパ付き口部分508に隣り合う表面は、第3の表面522bの勾配と同様の勾配を有することがある。第3の表面522bは、第1の表面勾配よりも大きい第3の表面勾配と、第1の表面520の傾斜角524よりも大きい傾斜角528とを有する。
【0165】
図11は、第2の例示的な支持部材550の側面図を示す。支持部材550は、マルチストランドワイヤ504を巻くことができる長手方向軸線552を定義する。支持部材550の外面は、マルチストランドワイヤ554を受け入れるためのV字形断面を有する螺旋チャネル556を備える。
【0166】
この例のチャネル556は、連続するテーパ付き口部分558及びワイヤ受容部分560を含む。すなわち、テーパ付き口部分558の第1の表面は第1の表面勾配を有し、テーパ付き口部分558に隣り合うワイヤ受容部分560の第2の表面は、第1の表面勾配と等しい第2の表面勾配を有する。
【0167】
この例では、ワイヤ受容部分560は、マルチストランドワイヤ554に所定の断面形状を与える。図11は、ワイヤ受容部分560に入る前の、概して円形の断面形状を有するマルチストランドワイヤ554を示す。マルチストランドワイヤ554がワイヤ受容部分560に完全に受け入れられるとき、マルチストランドワイヤ554は、1つ又は複数の寸法で収縮されることがあり、以てマルチストランドワイヤ554の断面を変形する。
【0168】
この例では、図10のFig.10Bの例と同様に、ワイヤ受容部分560の最大深さ566は、ワイヤ受容部分560の最大幅568よりも大きい。この特定の形状により、マルチストランドワイヤ554は、ワイヤがチャネル556に完全に受け入れられるときに、長手方向軸線552に平行な寸法で収縮され、長手方向軸線552に垂直な寸法で伸長される。したがって、ワイヤ受容部分560の断面形状がマルチストランドワイヤ554に与えられる。したがって、マルチストランドワイヤ554は、チャネル556によって提供されるのと同じ断面形状を得る。そこで、マルチストランドワイヤ554は、最大長手方向寸法よりも大きい最大横方向寸法を有する。
【0169】
図12は、第3の例示的な支持部材600の側面図を示す。この例の支持部材600は、チャネルが平坦な床部/底部を有するという点で、図10~11に示されるものとは異なる。したがって、チャネル606の最も深い区域は平坦である。例示的な支持部材600を使用してインダクタコイルを製造することができ、ここで、マルチストランドワイヤは、長方形など少なくとも1つの平らな辺を有する形状を有し、最大横方向寸法よりも大きい最大長手方向寸法を有する。
【0170】
前の例と同様に、支持部材600は、マルチストランドワイヤ604を巻くことができる長手方向軸線602を定義する。支持部材600の外面は、マルチストランドワイヤ604を受け入れるためのチャネル606を備える。
【0171】
チャネル606は、テーパ付き口部608及びワイヤ受容部分610を備える。この例では、ワイヤ受容部分610は、マルチストランドワイヤ604に所定の断面形状を与える。図12は、ワイヤ受容部分610に入る前の、概して円形の断面形状を有するマルチストランドワイヤ604を示す。マルチストランドワイヤ604がワイヤ受容部分610に完全に受け入れられるとき、マルチストランドワイヤ604は、1つ又は複数の寸法で収縮されることがあり、以てマルチストランドワイヤ604の断面を変形する。
【0172】
この例では、ワイヤ受容部分610の最大幅618は、ワイヤ受容部分610の最大深さ616よりも大きい。この特定の形状により、マルチストランドワイヤ604は、最大横方向寸法よりも大きい最大長手方向寸法を有する断面形状を与えられる。したがって、マルチストランドワイヤ604は、チャネル606によって提供されるのと同じ断面形状を得る。
【0173】
図13は、第4の例示的な支持部材650の側面図を示す。この例の支持部材650は、チャネルがテーパ付き口部分を有さず、丸い底部を有するという点で、図10~12に示されるものとは異なる。したがって、チャネル656の最も深い区域は丸い。前の例と同様に、支持部材650は、マルチストランドワイヤ654を巻くことができる長手方向軸線652を定義する。支持部材650の外面は、マルチストランドワイヤ654を受け入れるためのU字形の断面を有する概して螺旋状のチャネル656を備える。
【0174】
この例では、ワイヤ受容部分660は、マルチストランドワイヤ664に所定の断面形状を与える。図13は、ワイヤ受容部分660に入る前の、概して楕円形の断面形状を有するマルチストランドワイヤ604を示す。マルチストランドワイヤ604がワイヤ受容部分660に完全に受け入れられるとき、マルチストランドワイヤ654は、1つ又は複数の寸法で収縮されることがあり、以てマルチストランドワイヤ654の断面を変形する。他の例では、チャネルの丸い底部は、マルチストランドワイヤ654がその元の断面形状を実質的に維持していることを意味することがある。
【0175】
前述したように、チャネル656は、テーパ付き口部分を備えないことがある。すなわち、チャネル656の口部分658は、ワイヤ受容部分660に向かう距離にわたって概して一定の幅寸法を有する。実際、チャネル656の底部に向かう距離と共に減少する幅寸法を有するのはワイヤ受容部分660である。
【0176】
図14は、第5の支持部材700の側面図を示す。この例の支持部材700は、図13に示されているものと同様であるが、チャネルは、テーパ付き口部分708を有する。前の例と同様に、支持部材700は、マルチストランドワイヤ704を巻くことができる長手方向軸線702を定義する。支持部材700の外面は、マルチストランドワイヤ704を受け入れるための概してU字形のチャネル706を備える。
【0177】
この例では、ワイヤ受容部分710は、マルチストランドワイヤ704に所定の断面形状を与える。図13は、ワイヤ受容部分710に入る前の、概して円形の断面形状を有するマルチストランドワイヤ704を示す。マルチストランドワイヤ704がワイヤ受容部分710に完全に受け入れられるとき、マルチストランドワイヤ704は、1つ又は複数の寸法で収縮されることがあり、以てマルチストランドワイヤ704の断面を変形する。他の例では、チャネルの丸い底部は、マルチストランドワイヤ704がその元の断面形状を実質的に維持していることを意味することがある。
【0178】
図15は、第6の支持部材750の側面図を示す。この例の支持部材600は、平坦な底部を有し、ワイヤ受容部分の最大幅768よりも大きい最大深さ766を有するワイヤ受容部分760を有する。前の例と同様に、支持部材750は、マルチストランドワイヤ754を巻くことができる長手方向軸線752を定義する。支持部材750の外面は、マルチストランドワイヤ754を受け入れるためのチャネル756を備える。
【0179】
チャネル756は、テーパ付き口部分758及びワイヤ受容部分760を含む。この例では、ワイヤ受容部分760は、マルチストランドワイヤ754に所定の断面形状を与える。図15は、ワイヤ受容部分760に入る前の、概して円形の断面形状を有するマルチストランドワイヤ754を示す。マルチストランドワイヤ754がワイヤ受容部分760に完全に受け入れられるとき、マルチストランドワイヤ754は、1つ又は複数の寸法で収縮されることがあり、以てマルチストランドワイヤ754の断面を変形する。
【0180】
この例では、ワイヤ受容部分760の最大深さ766は、ワイヤ受容部分760の最大幅768よりも大きい。この特定の形状により、マルチストランドワイヤ754は、最大長手方向寸法よりも大きい最大横方向寸法を有する断面形状を与えられる。したがって、マルチストランドワイヤ754は、チャネル756によって提供されるのと同じ断面形状を得る。したがって、マルチストランドワイヤ754は、概して長方形の形状を有することがある。
【0181】
上述した例での支持部材は、支持部材によって定義される軸線に垂直な固定断面幅を有する。他の例では、支持部材の断面幅は可変であり得る。可変断面幅を有する例示的な支持部材を、図16A~20に関連して述べる。上記の例で述べた(1つ又は複数の)支持部材は、それらの例で述べた特徴と組み合わせて可変断面幅を有することもあることに留意されたい。同様に、図16A~20で述べる(1つ又は複数の)支持部材は、上記の例で述べた特徴のいずれかを有することもある。
【0182】
図16Aは、2つ以上の形態部間で移動することができる例示的な支持部材800を示す。図16Aでは、支持部材800は、長手方向軸線などの第1の軸線802を定義する。第2の軸線804は、第1の軸線802に垂直に配置される。図16Aでは、支持部材800は、支持部材800が第1の断面幅806を有する第1の形態部で配置されている。支持部材は任意の形状を取ることができるが、この例での支持部材800は、円筒形状と、第1の断面幅806に等しい直径とを有する。
【0183】
支持部材800の外面は、支持部材800の長さに沿って第1の軸線802の周りに延びる螺旋チャネルなどのチャネル808を有する。上述したように、ワイヤは、支持部材800の周りに巻き、チャネル808内に受け入れることができる。他の例では、チャネルを省くことができ、ワイヤを支持部材800の外面に直接巻くことができる。いずれの場合にも、インダクタコイルが形成されている間、支持部材800は第1の形態部で配置されている。図16Bは、ワイヤ810が支持部材800に巻かれてインダクタコイルを形成することを示す。
【0184】
図16Cは、方向「A」に沿って見た図16Aの支持部材の断面図を示す。図16Dは、方向「B」に沿って見た図16Bの支持部材の断面図を示す。
【0185】
これらの例では、チャネル808は、支持部材800の長さに沿って可変ピッチを有する。換言すると、隣り合うターンの間隔は、支持部材800の長さに沿って変化することがある。しかし、他の例では、チャネル808は一定のピッチを有することがある。
【0186】
図17Aは、支持部材800の断面幅が低減された後の、第2の形態部で配置された支持部材800を示す。図17Aでは、支持部材800は、第1の断面幅806よりも小さい第2の断面幅812を有する。これは、多くの異なる機構によって実現することができるが、この例では、支持部材800をロールしてスパイラル形態にすることによって支持部材がつぶされている。図17Aは、ワイヤ810を有さない支持部材800を示し、図17Bは、インダクタコイルに形成された後のワイヤ810を示す。図16Bとは対照的に、図17Bは、支持部材800の断面幅が減少されるにつれて、ワイヤ810(したがってインダクタコイル)が緩められ、支持部材800から容易に取り外すことができることを示す。インダクタコイルは、支持部材800の長さに沿って移動し、支持部材800から完全に取り外すことができる。インダクタコイルが形成された後に支持部材800の断面幅を減少させることによって、インダクタコイルの取外しにより、コイルの最終的な形状が損傷又は変形される可能性がより低くなる。
【0187】
図17Cは、方向「C」に沿って見た図17Aの支持部材の断面図を示す。図17Dは、方向「D」に沿って見た図17Bの支持部材の断面図を示す。
【0188】
図16Aに戻ると、支持部材800は、第1の軸線802の周りに周方向に配置された複数のセグメント814から形成されて示されている。すなわち、各セグメントは、支持部材800の外周/周囲の周りに部分的に延びる。各セグメント814は、支持部材800の長さに沿って、第1の軸線802に平行な方向に延びる。セグメント814は、支持部材800を第1の形態部と第2の形態部との間で移動させることができるように相対移動可能である。
【0189】
図18Aは、第1の軸線802に沿って見たときの図16Aの支持部材800の端面図を示す。したがって、図18Aでは、支持部材800は第1の形態部で配置されている。図18Bは、第1の軸線802に沿って見たときの図17Aの支持部材800の端面図を示す。したがって、図18Bでは、支持部材800は第2の形態部で配置されている。図18A及び18Bの両方において、第1の軸線802は紙面奥に延びる。
【0190】
支持部材800は、この例では8つのセグメントを有するが、他の例では、より多数又はより少数のセグメントを有することがある。3つのセグメント814a、814b、814cは、参照用に符号を付されている。各セグメントは、支持部材800の外周の周りに少なくとも部分的に延びる弧長818を有する。したがって、セグメントは、第1の軸線802の周りに周方向に配置される。
【0191】
図18Aを参照すると、第1のセグメント814aは、第2のセグメント814bに隣り合って配置され、第1のセグメント814aは、支持部材800が第1の形態部と第2の形態部との間を移動するときに第2のセグメント814bに対して移動するように構成される。例えば、第2のセグメント814bは、第1のセグメント814aに対して、方向816で回転又は旋回することができる。図18Bは、第1のセグメント814aに向かって回転した後の第2のセグメント814bを示す。この回転を可能にするために、隣り合うセグメント814a、814bは、ヒンジ820を介して接続されることがある。簡単にするために、図18A及び18Bには1つのヒンジのみが示されていることに留意されたい。いくつかの他のセグメントもヒンジによって接続することができる。さらに、隣り合うセグメントの各対が複数のヒンジによって接続されることがある。
【0192】
第3のセグメント814cは、第2のセグメント814bに隣り合って配置され、第3のセグメント814cは、支持部材800が第1の形態部と第2の形態部との間を移動するときに第2のセグメント814bに対して移動するように構成される。この例では、第2のセグメント814bは、隣り合う第3のセグメント814cに恒久的には接続されていない。2つのセグメント814b、814cは、第1の形態部にあるときに当接することがあり、(図18Bに示されるように)支持部材が第2の形態部に向かって移動するときに離されることがある。したがって、第2のセグメント814bは、支持部材の円周の一端を形成することができ、第3のセグメント814cは、円周の反対側の端部を形成することができる。これら2つのセグメント814b、814cを互いに対して移動させることによって、支持部材800を第1の形態部と第2の形態部との間で移動させることができる。第2の形態部では、支持部材800は、セグメントが移動されるにつれて支持部材の外縁部が内方向に巻き込まれるので、スパイラル/ロール形態で構成されていると言うことができる。
【0193】
いくつかの例では、セグメントが意図される方向と反対の方向に回転するのを止めることが有利であり得る。例えば、図18Aに示されるように、矢印816の方向への回転のみを許可し、矢印822の方向への回転を制限すると有用であり得る。この動きを制限するために、各セグメントは、隣り合うセグメントに対するセグメントの動きを制限するためのストッパを含むことがある。したがって、ストッパは、支持部材800が第2の形態部から離れて移動可能である範囲を制限する(すなわち、第1の形態部を越えて移動することができない)。ストッパを提供するために、各セグメントは、隣り合うセグメントの突出部分826と嵌合するための受容部分824を備えることがある。ヒンジによって提供される支持に加えて、構成要素のこのインターロックは、隣り合うセグメントが反対方向に移動するのを防ぐ。受容部分は、凹部又は切欠き部分の形態でよく、突出部分は、受容部分と合体するリップ又は先端部の形態でよい。他の例では、他の形態のストッパを採用することができる。
【0194】
この特定の例では、支持部材800は第2の形態部に付勢されている。すなわち、外力を加えることなく、支持部材800は第2の形態部を取る。一例では、これは、付勢されたヒンジ820を隣り合うセグメント間に提供することによって実現される。例えば、1つ又は複数のヒンジは、隣り合うセグメントを互いに向かって回転させるためのばね又は他の付勢機構を備えることがある。例えば、付勢されたヒンジ820は、第2のセグメント814bを矢印816の方向に回転させることができる。他の例では、ばね又は他の付勢機構は、ヒンジとは別個であり得る。ヒンジの一部又はすべてが付勢されていることがある。
【0195】
第1の形態部で支持部材800を保持するために、外力が加えられることがある。例えば、デバイス(図示せず)は、1つ又は複数の位置で支持部材800の内面に力を加えることができる。デバイスは、支持部材800の中空キャビティ830に挿入されることがある。図18Aの矢印828は、第3のセグメント814cと当接するセグメントを保持するための、第2のセグメント814bの内面への力の印加を示す。ヒンジ820の付勢された性質により、デバイス(したがって力)を取り除くと、第2のセグメント814bが矢印816の方向に回転し、支持部材が図18Bの第2の形態部に向かって移動する。
【0196】
特定の例では、デバイスは、第1の軸線802に沿って移動可能であり、第1の形態部と第2の形態部との間で支持部材800を移動させる。例えば、支持部材800が第1の形態部にあるときには、デバイスが支持部材の中空キャビティ830内で軸線802に沿った第1の位置に配置されて支持部材800を第1の形態部で保持することがあり、支持部材800が第2の形態部にあるときには、デバイスが第1の位置とは異なる軸線802に沿った第2の位置に配置される。
【0197】
図19Aは、例示的な支持部材800と、支持部材800の中空キャビティ830に挿入されたデバイス832との側断面図を示す。ここで、デバイス832は、第1の軸線802に沿った第1の位置に配置される。図19Aでは、支持部材800は第1の形態部で配置され、デバイス830は、支持部材800を第1の形態部で保持するために支持部材800の内面に当接している。
【0198】
図19Bは、デバイス832が矢印834によって示される方向に第1の軸線802に沿って移動された後の、後の時点での支持部材800を示す。デバイス832は、支持部材800の中空キャビティ830から少なくとも部分的に引き抜かれ、ここで第1の軸線802に沿った第2の位置に配置される。いくつかの例では、デバイス832は、中空キャビティから完全に取り外されることがある。
【0199】
図示されるように、デバイス832はテーパ付きプロファイルを有し、デバイス832が方向834に移動されるとき、デバイス832のより広い部分がキャビティから取り外され、したがって、支持部材800が第2の形態部になるまで支持部材800の断面幅を減少させる。支持部材800の付勢された性質により、支持部材800は再構成する。
【0200】
図20は、エアロゾル供給デバイス用インダクタコイルを形成するための方法900の流れ図を示す。
【0201】
この方法は、ブロック902で、複数のワイヤストランドを備えるマルチストランドワイヤ810を用意するステップを含み、複数のワイヤストランドのうちの少なくとも1つは、接着性コーティングを備える。上述したように、接着性コーティングは、ワイヤストランドを取り囲み、(加熱などによって)活性化することができるコーティングであり、マルチストランドワイヤ内のストランドは、1つ又は複数の隣り合うストランドに接着する。接着性コーティングにより、マルチストランドワイヤを支持部材のインダクタコイルの形状に形成することができ、接着性コーティングが活性化された後、インダクタコイルはその形状を維持する。したがって、接着性コーティングは、インダクタコイルの形状を「設定」する。
【0202】
この方法は、ブロック904で、軸線802を定義する支持部材800の周りにマルチストランドワイヤを巻くステップをさらに含む。例えば、マルチストランドワイヤは、支持部材800の周りに螺旋状に巻くことができる。
【0203】
マルチストランドワイヤ810が支持部材800の周りに巻かれているとき、方法900は、ブロック906で、マルチストランドワイヤが支持部材800によって決定された形状(例えばチャネル808によって提供された形状)を実質的に維持するように、接着性コーティングを活性化するステップをさらに含む。代替として、ブロック906は、マルチストランドワイヤ810が支持部材800の周りに完全に巻かれた後に行われることがある。
【0204】
マルチストランドワイヤが巻かれた後、及び接着性コーティングが活性化された後、この方法は、ブロック908で、支持部材の断面幅を軸線に垂直な方向で低減するステップをさらに含む。支持部材の断面幅を減少させるステップは、支持部材を第1の形態部と第2の形態部との間で移動させることを含むことがあり、支持部材が第2の形態部にあるとき、軸線に垂直な支持部材の断面幅は、支持部材が第1の形態部にあるときよりも小さい。
【0205】
支持部材の断面幅が低減された後、この方法は、ブロック910で、支持部材からマルチストランドワイヤを取り外すステップをさらに含む。
【0206】
上記の実施形態は、本発明の例示的な例として理解すべきである。本発明のさらなる実施形態が想定される。任意の1つの実施形態に関して述べた任意の特徴は、単独で、又は記載された他の特徴と組み合わせて使用することができ、また、任意の他の実施形態又は任意の他の実施形態の任意の組合せのうちの1つ又は複数の特徴と組み合わせて使用することもできることを理解されたい。さらに、添付の特許請求の範囲で定義される本発明の範囲から逸脱することなく、上述していない均等形態及び修正形態を使用することもできる。
図1
図2
図3
図4
図5A-5B】
図6
図7
図8
図9A
図9B
図10A-10B】
図10C
図11
図12
図13
図14
図15
図16A
図16B
図16C
図16D
図17A
図17B
図17C
図17D
図18A
図18B
図19A
図19B
図20