(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-28
(45)【発行日】2023-12-06
(54)【発明の名称】無線通信システムにおけるウェイクアップ通信
(51)【国際特許分類】
H04B 1/38 20150101AFI20231129BHJP
H04B 1/16 20060101ALI20231129BHJP
H04W 52/02 20090101ALI20231129BHJP
【FI】
H04B1/38
H04B1/16 M
H04W52/02 110
(21)【出願番号】P 2022531352
(86)(22)【出願日】2019-12-02
(86)【国際出願番号】 EP2019083293
(87)【国際公開番号】W WO2021110233
(87)【国際公開日】2021-06-10
【審査請求日】2022-07-21
(73)【特許権者】
【識別番号】598036300
【氏名又は名称】テレフオンアクチーボラゲット エルエム エリクソン(パブル)
(74)【代理人】
【識別番号】100109726
【氏名又は名称】園田 吉隆
(74)【代理人】
【識別番号】100161470
【氏名又は名称】冨樫 義孝
(74)【代理人】
【識別番号】100194294
【氏名又は名称】石岡 利康
(74)【代理人】
【識別番号】100194320
【氏名又は名称】藤井 亮
(74)【代理人】
【識別番号】100150670
【氏名又は名称】小梶 晴美
(72)【発明者】
【氏名】ショーランド, ヘンリク
(72)【発明者】
【氏名】ウィルヘルムソン, レイフ
【審査官】鴨川 学
(56)【参考文献】
【文献】特表2015-529412(JP,A)
【文献】特開2010-118855(JP,A)
【文献】特開2007-082057(JP,A)
【文献】特開2002-152129(JP,A)
【文献】米国特許出願公開第2019/0261268(US,A1)
【文献】国際公開第2018/166638(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 1/38
H04B 1/16
H04W 52/02
(57)【特許請求の範囲】
【請求項1】
無線通信デバイス(100)であって、
第1のデジタル制御発振器(DCO1)および水晶発振器(XO)を備える第1の周波数シンセサイザ(112)を備える、第1のトランシーバ(110)と、
ウェイクアップ受信機(Rx2)、第2の送信機(Tx2)、および前記ウェイクアップ受信機(Rx2)と前記第2の送信機(Tx2)とに接続された第2のデジタル制御発振器(DCO2)を備える、第2のトランシーバ(120)と、
前記無線通信デバイスの動作を制御するように設定された制御ユニット(170)と
を備え、
前記第2の送信機(Tx2)が、基地局に信号を周期的に送信するように設定され、
前記信号が、前記無線通信デバイス(100)を識別するコードによって変調され、前記第2のデジタル制御発振器(DCO2)によって設定された周波数において送信され
、
前記ウェイクアップ受信機(Rx2)が、前記基地局に送信された前記信号の周波数と同じ、前記第2のデジタル制御発振器(DCO2)によって設定された周波数を使用して、前記基地局からの信号を受信するように設定されている、無線通信デバイス(100)。
【請求項2】
前記第2のデジタル制御発振器(DCO2)の前記周波数が、前記第1のトランシーバ(110)が電源を低減される前に、前記第2のデジタル制御発振器の周波数を同調させるために前記第2のデジタル制御発振器を前記第1の周波数シンセサイザ(112)に接続することによって設定される、請求項1に記載の無線通信デバイス(100)。
【請求項3】
前記第2のデジタル制御発振器(DCO2)の前記周波数が、前記第2のデジタル制御発振器(DCO2)の周波数を同調させるために前記第2のデジタル制御発振器(DCO2)を第2の周波数シンセサイザ(PLL2)に接続することによって設定され、前記第2の周波数シンセサイザ(PLL2)は、前記第1の周波数シンセサイザ(11
2)の前記水晶発振器(XO)に接続され、前記第1のトランシーバ(110)が電源を低減されたときに電源を低減される、請求項1に記載の無線通信デバイス(100)。
【請求項4】
前記第2のデジタル制御発振器(DCO2)の前記周波数が、位相周波数検出器(PFD)およびそれに続くローパスフィルタ(LPF)および比較器(Comp)において前記第2のデジタル制御発振器(DCO2)の前記周波数を前記第1のデジタル制御発振器(DCO1)と比較することによって設定され、前記位相周波数検出器(PFD)、前記ローパスフィルタ(LPF)、および前記比較器(Comp)は、前記第1のトランシーバ(110)が電源を低減されたときに電源を低減される、請求項1に記載の無線通信デバイス(100)。
【請求項5】
基地局に信号を送信する際の周期が、前記第2のデジタル制御発振器(DCO2)のドリフトレートと、前記ウェイクアップ受信機(Rx2)の周波数誤差許容範囲とに基づく、請求項1から4のいずれか一項に記載の無線通信デバイス(100)。
【請求項6】
基地局に信号を送信する際の周期が、前記無線通信デバイスと前記基地局との間の経時的な無線チャネル変更のレートに基づく、請求項1から4のいずれか一項に記載の無線通信デバイス(100)。
【請求項7】
基地局への前記信号の送信持続時間が、
前記信号の送信電力とチャネル品質とに基づく、請求項1から6のいずれか一項に記載の無線通信デバイス(100)。
【請求項8】
前記
第2のトランシーバ(
120)が、デューティサイクルをもつオンオフ動作モードにおいて設定され、前記第2の送信機(Tx2)が、各ON周期の開始時に基地局に信号を送信するように設定された、請求項1から7のいずれか一項に記載の無線通信デバイス(100)。
【請求項9】
前記
第2のトランシーバ(
120)が、デューティサイクルをもつオンオフ動作モードにおいて設定され、前記第2の送信機(Tx2)が、N番目ごとのON周期の開始時に基地局に信号を送信するように設定され、ただし、Nは1よりも大きい整数である、請求項1から7のいずれか一項に記載の無線通信デバイス(100)。
【請求項10】
基地局に信号送信する際の周期が、前記基地局によって送られるべきウェイクアップ信号の帯域幅と、前記ウェイクアップ受信機(Rx2)中のチャネル選択性フィルタの帯域幅とにさらに基づく、請求項1から7のいずれか一項に記載の無線通信デバイス(100)。
【請求項11】
前記第2のトランシーバ(120)が、前記第2のデジタル制御発振器(DCO2)の前記周波数を調整するために前記基地局からの信号を受信するようにさらに設定された、請求項1から
10のいずれか一項に記載の無線通信デバイス(100)。
【請求項12】
前記第2のトランシーバ(120)が、前記第2のデジタル制御発振器(DCO2)のための調整された周波数設定を使用して前記基地局からの信号を受信するようにさらに設定された、請求項
11に記載の無線通信デバイス(100)。
【請求項13】
前記第1のトランシーバ(110)が、前記第2のトランシーバ(120)によって送られるべき前記信号の送信スケジュールおよび送信コードを示すために、電源を低減される前に前記基地局に信号を送るように設定された、請求項1から
12のいずれか一項に記載の無線通信デバイス(100)。
【請求項14】
複数のアンテナをもつ基地局において実行される方法であって、前記方法は、
無線通信デバイスからの信号を受信すること(310)であって、前記信号が、前記無線通信デバイス中に含まれたウェイクアップトランシーバ中のデジタル制御発振器(DCO)によって設定された周波数において送られる、無線通信デバイスからの信号を受信すること(310)と、
受信された前記信号の周波数に基づいて、前記ウェイクアップ
トランシーバ中の前記DCOの前記周波数を決定すること(320)と、
受信された前記信号に基づ
いて、ウェイクアップ信号として前記無線通信デバイスに送られるべき信号のビーム重みを更新すること(330)と、
前記DCOの決定された前記周波
数において前記無線通信デバイスに前記ウェイクアップ信号を送ること(340)と
を含む、方法。
【請求項15】
無線通信デバイスからの信号を受信することが、前記複数のアンテナから受信された信号を同相で組み合わせることを含む、請求項
14に記載の方法。
【請求項16】
前記DCOの決定された前記周波数に基づいて前記無線通信デバイスに前記ウェイクアップ信号を送ることが、前記DCOの前記周波数と同じ周波数において前記ウェイクアップ信号を送ることを含む、請求項
14または
15に記載の方法。
【請求項17】
前記DCOの決定された前記周波数に基づいて前記無線通信デバイスに前記ウェイクアップ信号を送ることが、前記DCOの前記周波数からオフセットされた周波数において前記ウェイクアップ信号を送ることを含む、請求項
14または
15に記載の方法。
【請求項18】
前記無線通信デバイスに前記ウェイクアップ信号を送ることは、前記ウェイクアップ信号が受信された前記信号の受信時間から所定の時間の後に送られるように、前記受信時間にさらに基づく、請求項
14から
17のいずれか一項に記載の方法。
【請求項19】
前記ウェイクアップトランシーバ中の前記DCOの周波数調整を容易にするために、前記無線通信デバイスに信号を送ることをさらに含む、請求項
14から
18のいずれか一項に記載の方法。
【請求項20】
請求項
14から
19のいずれか一項に記載の方法を実行するように設定された、複数のアンテナをもつ基地局(400)。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書の実施形態は、無線通信システムにおけるウェイクアップ通信のための無線通信デバイス、基地局、および基地局における方法に関する。特に、本明細書の実施形態は、無線通信デバイス中のウェイクアップトランシーバ、およびウェイクアップトランシーバと基地局との間のウェイクアップ通信に関する。
【背景技術】
【0002】
無線通信システムでは、電力消費量が極めて低いサポートデバイスへ向かう傾向が強い。これらのデバイスは、バッテリーが多年持続すべきであるか、またはバッテリーレス動作を達成するためにエネルギースカベンジング(energy scavenging)が使用される、小型のセンサーノードであり得る。無線通信システムが、そのようなデバイスと通信すべきであるとき、受信機をデバイス中で動作させなければならない。短い応答時間を達成するために、受信機を一定の間隔で動作させなければならない。その場合、受信機の電力消費量を制限しなければならない。したがって、特殊な超低電力専用受信機、いわゆるウェイクアップ受信機がしばしば使用される。しかしながら、ウェイクアップ受信機の機能は限定され、ウェイクアップ受信機はウェイクアップ要求の存在を検出することしかできない。そのような要求があるとき、実際の通信を受信することができるように、より高性能でより大電力のメイン受信機が始動させられる。
【0003】
超低電力消費量、たとえば、100μW未満を達成するために、ウェイクアップ受信機は、しばしば、オンオフキーイング(OOK)信号の振幅検出に基づく。それによって、電力を大量消費する位相ロックループ(PLL)を使用する正確な局部発振器(LO)信号の生成が回避され得る。しかしながら、自励式発振器(free-running oscillator)からのLO信号の周波数は正確でないので、振幅検出の前には、控えめなフィルタ処理しか実現され得ない。
【0004】
振幅検出の前のフィルタ処理の量が制限されるので、ウェイクアップ受信機は干渉を極めて受けやすい。ウェイクアップ信号と同じ周波数範囲内の振幅変調を有する振幅検出器に入るすべての干渉および雑音はウェイクアップ信号をマスキングすることになる。ここで、同じ周波数は、同じ周波数チャネルを使用して干渉が送られることを暗示しないことが理解されるべきである。代わりに、ウェイクアップ信号に隣接する信号をフィルタ処理で除去する能力が制限されるので、隣接する周波数チャネルにおいて、および潜在的にはさらに離れて送信される信号も、事実上、同一チャネル干渉物(co-channel interferer)と同じくらい悪影響を及ぼすことになることを理解されたい。代替的に、隣接干渉を効果的にフィルタ処理で除去することが可能であるためには、周波数生成は、高い精度を有しなければならず、かなりの電力を消費する必要がある。さらに、振幅検出器はまた、高度に非線形であり、したがって、弱い入力信号の場合に極めて小さい出力を生成する。振幅検出器が小さい信号について2次特性を有すると仮定すると、入力信号レベルが10dB低下するごとに、信号対雑音比が20dB低下することになる。このことは、すでに検出器入力において少量の干渉があると、干渉の存在は、入力信号がどのくらい増幅され得るかを制限するので、すぐに極めて不利になる。したがって、干渉に対する高い耐性をもつウェイクアップ受信機を達成するためには、振幅検出の前により多くのフィルタ処理が必要である。しかしながら、そのようなフィルタ処理を採用するためには、正確な周波数LO信号が必要とされるので、したがって、低い電力消費量でそのような信号を作成するための手段が与えられなければならない。
【発明の概要】
【0005】
したがって、本明細書の実施形態の目的は、無線通信システムにおける無線通信デバイスと基地局との間のウェイクアップ通信のための改善された方法および装置を提供することである。
【0006】
本明細書の実施形態の第1の態様によれば、上記の目的は、無線通信デバイスによって達成される。無線通信デバイスは、第1のデジタル制御発振器(digitally controlled oscillator)および水晶発振器を備える第1の周波数シンセサイザを備える、第1のトランシーバを備える。無線通信デバイスは、ウェイクアップ受信機、第2の送信機、およびウェイクアップ受信機と第2の送信機とに接続された第2のデジタル制御発振器を備える、第2のトランシーバをさらに備える。無線通信デバイスは、無線通信デバイスの動作を制御するように設定された制御ユニットをさらに備える。第2の送信機は、基地局に信号を周期的に送信するように設定される。信号は、無線通信デバイスを識別するコードによって変調され、第2のデジタル制御発振器によって設定された周波数において送信される。
【0007】
本明細書の実施形態の第2の態様によれば、上記の目的は、複数のアンテナをもつ基地局において実行される方法によって達成される。基地局は、無線通信デバイスからの信号を受信する。信号は、無線通信デバイス中に含まれたウェイクアップトランシーバ中のデジタル制御発振器によって設定された周波数において送られる。基地局は、ウェイクアップ受信機中のデジタル制御発振器の周波数を決定し、受信された信号に基づくウェイクアップ信号として無線通信デバイスに送られるべき信号のビーム重み(beam weight)を更新する。基地局は、デジタル制御発振器の決定された周波数に基づく周波数においてウェイクアップ信号を無線通信デバイスに送る。
【0008】
言い換えれば、本明細書の実施形態による無線通信デバイスでは、ウェイクアップ受信機は、超低電力(ULP)送信機、すなわち第2の送信機を伴う。ウェイクアップ受信機中の局部発振器、すなわち第2のデジタル制御発振器(DCO2)は、電力消費量を最小にするために自励式(free-running)であり、したがって、それの周波数は経時的にドリフトする。ULP送信機は、頻繁な時間間隔において信号を送出するために使用される。これらの信号は、無線通信デバイスを識別するコードによって変調される。ウェイクアップ受信機中の自励式局部発振器は、ULP送信機から送信される信号の周波数を設定するために使用される。送信の後に、無線通信デバイスは、同じ自励式局部発振器を使用して、送信のために前に使用されたのと同じ周波数においてウェイクアップメッセージをリッスンするために、ウェイクアップ受信機を使用し得る。
【0009】
基地局側において、基地局はULP送信機からの送信を受信し、基地局は、次いで、ウェイクアップ受信機中の自励式局部発振器の周波数を決定することができる。定期的な送信は基地局のためのタイミング基準を与え、それにより、基地局は、ウェイクアップ受信機がいつアクティブになり、したがって、メッセージが受信され得るかをも知ることになる。そのことにより、ウェイクアップ受信機はそれの探索空間を縮小することが可能になり、それにより、電力が節約されるとともに、フォールスアラームの危険が低減される。
【0010】
ULP送信機からの頻繁で定期的な送信により、基地局は、無線通信デバイスの周波数だけでなく、無線通信デバイスのためのビーム重みをも追跡することが可能になる。基地局からの信号は、その場合、強度が高められ、干渉が少ない状態でウェイクアップ受信機によって受信され得る。ウェイクアップ送信は、その場合、また、高い精度で無線通信デバイスをターゲットにし、それにより、意図された無線通信デバイスに対する信号レベルが改善されるとともに、他の無線通信デバイスに対する干渉が低減され得る。
【0011】
さらに、無線通信デバイスの局部発振器周波数についての情報を定期的に得ることによって、基地局は、ウェイクアップ受信機の周波数を調整させるためにウェイクアップ受信機にメッセージを送り、それにより、無線通信デバイスにおける周波数制御ループを伴うことなしにウェイクアップ受信機を制御された状態に保ち得る。また、基地局は、無線通信デバイスをウェイクアップすることなしにウェイクアップ通信の周波数を変更することが可能である。
【0012】
基地局中の複数のアンテナにより、ULP送信機からの弱い信号を基地局が受信することが可能になる。また、複数のアンテナにより、他のデバイスに対する干渉を小さくしながら、ウェイクアップ時に無線通信デバイスにより強い信号を送信することが可能になる。このことにより、依然としてウェイクアップ電力消費量を小さくしながら、ウェイクアップ通信の範囲が拡大することになる。ウェイクアップ受信機中の局部発振器の周波数を正確に知ることにより、基地局は、十分にターゲットを絞った周波数においてウェイクアップメッセージを送ることが可能になり、それにより、ウェイクアップ受信機中で狭帯域フィルタが使用され得る。ウェイクアップ受信機は、したがって、高い感度と選択性の両方を有すると同時に、低電力消費量に適合する自励式局部発振器を使用し得る。さらに、複数アンテナ基地局の高い性能により、ウェイクアップトランシーバ中の第2の送信機の出力電力を小さくすることが可能になり、それにより、ウェイクアップトランシーバの電力消費量がウェイクアップ受信機の電力消費量と同等になり得る。
【0013】
したがって、本明細書の実施形態は、無線通信システムにおける無線通信デバイスと基地局との間のウェイクアップ通信のための改善された方法および装置を提供する。
【0014】
本明細書の実施形態の例について、添付の図面を参照しながら、より詳細に説明する。
【図面の簡単な説明】
【0015】
【
図1】本明細書の実施形態による、ウェイクアップトランシーバを備える無線通信デバイスを示す概略ブロック図である。
【
図2】本明細書の実施形態による、異なる較正代替例を示す概略ブロック図である。
【
図3】本明細書の実施形態による、基地局において実行される方法を示すフローチャートである。
【
図4】複数のアンテナをもつ基地局の一実施形態を示す概略ブロック図である。
【発明を実施するための形態】
【0016】
図1は、本明細書の実施形態による、低電力ウェイクアップトランシーバを備える無線通信デバイス100のアーキテクチャを示す。
【0017】
図1から見られ得るように、第1のメイントランシーバMain TRX110と、第2のトランシーバ、すなわちウェイクアップトランシーバWuTRX120の、2つのトランシーバがある。第1のTRX110は、第1の受信機Rx1と、第1の送信機Tx1と、第1のデジタル制御発振器DCO1を備える第1の周波数シンセサイザSynth112と、水晶発振器XOとを備える。第1のトランシーバTRX110は、アンテナスイッチ140と帯域選択フィルタ150とを通してアンテナ130に接続される。第1の受信機Rx1および第1の送信機Tx1は第1の周波数シンセサイザ112に接続され、第1の周波数シンセサイザ112は、位相ロックループ(PLL)を使用することによって水晶発振器XOから導出される正確な周波数を生成する。
【0018】
第2のトランシーバWuTRX120は、第2の受信機Rx2、すなわちウェイクアップ受信機と、第2の送信機Tx2、すなわちウェイクアップ送信機とを備える。
【0019】
WuTRX120は、マッチングネットワーク160と、アンテナスイッチ140と、帯域選択フィルタ150とを介して、アンテナ130に接続される。マッチングネットワーク160は、アンテナインピーダンスをはるかに高いレベルにアップ変換(up-transform)し、それにより、ウェイクアップ受信機Rx2における電圧レベルを高め、それにより低い電力消費量で感度を高めることが可能になる。また、インピーダンスの増加により、極めて低い出力電力レベルを供給しながら第2の送信機Tx2の効率を高めることが可能になる。
【0020】
WuTRX120は、ウェイクアップ受信機Rx2と第2の送信機Tx2とに接続された第2のデジタル制御発振器DCO2を備える。DCO2は局部発振器(LO)信号を生成する。ウェイクアップ受信機Rx2において、局部発振器信号はダウンコンバージョンミキサに接続され、第2の送信機Tx2において、LO信号はアップコンバージョンミキサに接続されるか、または第2の送信機Tx2中に含まれた電力増幅器のためのオンオフキーイング(OOK)信号を直接生成するためにゲートオンオフされ得る。
【0021】
無線通信デバイス100は、無線通信デバイス100の動作を制御するように設定された制御ユニット170をさらに備える。制御ユニット170は、帯域選択フィルタ150を除くすべてのブロックに接続され、2つのトランシーバを含む無線通信デバイス100の全システムの動作を制御する。制御ユニット170はまた、周波数シンセサイザと第2のデジタル制御発振器とのための周波数設定を制御する。
【0022】
無線通信デバイス100は電力管理部160をさらに備え得る。すべてのアクティブなブロックは、それらが電源を投入される(powered up)か電源を低減される(powered down)かを制御する電力管理部160に接続される。
【0023】
見られ得るように、ウェイクアップ受信機Rx2は、超低電力(ULP)送信機である第2の送信機Tx2を伴う。電力消費量を最小にするために、第2のデジタル制御発振器DCO2は自励式であり、したがって、それの周波数は経時的にドリフトする。第2の送信機Tx2は、頻繁な時間間隔において信号を送出するために使用される。これらの信号は、無線通信デバイス100を識別するコードによって変調される。自励式DCO2は、送信の周波数を設定するために使用される。
【0024】
基地局は第2の送信機Tx2からの送信を受信し、基地局は、次いで、自励式DCO2の周波数を決定することができる。基地局はまた、ウェイクアップ受信機Rx2がいつアクティブになり、したがってメッセージが受信され得るかを知ることになる。この特徴は、WuTRXが、常時オンではないが、電力消費量を一層低減するためにデューティサイクル化モードにおいて動作するときに有用である。ウェイクアップ受信機局部発振器DCO2の周波数を正確に知ることにより、基地局は、十分にターゲットを絞った周波数においてウェイクアップメッセージを送ることが可能になる。
【0025】
送信の後に、無線通信デバイス100は、同じ自励式DCO2を使用して、送信のために前に使用されたのと同じ周波数においてウェイクアップメッセージをリッスンするために、ウェイクアップ受信機Rx2を使用し得る。
【0026】
したがって、本明細書の実施形態によれば、第2の送信機Tx2は、基地局に信号を周期的に送信するように設定される。信号は、無線通信デバイス100を識別するコードによって変調され、第2のデジタル制御発振器DCO2によって設定された周波数において送信される。
【0027】
本明細書のいくつかの実施形態によれば、第2のトランシーバ120は、基地局に信号を送信するときに使用されるのと同じ、第2のデジタル制御発振器DCO2のための周波数設定を使用して、基地局からの信号を受信するように設定され得る。
【0028】
本明細書のいくつかの実施形態によれば、第2のトランシーバ120は、第2のデジタル制御発振器DCO2の周波数を調整するために基地局からの信号を受信するようにさらに設定され得る。第2のデジタル制御発振器DCO2は、無線通信デバイスをウェイクアップすることがない、基地局によって命令された周波数調整のためのウェイクアップ受信機Rx2への接続を有する。コマンドは、一定数のステップまたは一定数のMHzだけ第2のDCO2の周波数設定を増加または減少させるためのものであり得る。この場合、第2のトランシーバWuTRX120は、第2のデジタル制御発振器DCO2のための調整された周波数設定を使用して基地局からの信号を受信するようにさらに設定され得る。
【0029】
ウェイクアップ通信が開始する前に第2のデジタル制御発振器DCO2の周波数を較正または設定するための異なる代替例がある。
【0030】
本明細書のいくつかの実施形態によれば、第2のデジタル制御発振器DCO2の周波数は、第1のトランシーバ110が電源を低減される前に、第2のデジタル制御発振器DCO2の周波数を同調させるために第2のデジタル制御発振器DCO2を第1の周波数シンセサイザ112に接続することによって設定され得る。
図2(a)は、単一のPLL周波数シンセサイザPLL1が使用される、この実施形態を示す。この実施形態では、第2のデジタル制御発振器DCO2は、スリーピング周期の開始時における正確な較正のために第1の周波数シンセサイザ112中のPLL1への接続を有する。アクティブモードにおいて、第1のデジタル制御発振器DCO1は、PLL1に接続され、XOから導出される正確な周波数を生成する。スリープモードに入れられるべきときには、第2のデジタル制御発振器DCO2が、代わりにPLL1に接続され、その場合、設定後に、第1のデジタル制御発振器DCO1が前に生成したのと同じ周波数を生成する。このようにして達成された、第2のデジタル制御発振器DCO2のデジタル制御ワード、すなわち第2のDCO2のための周波数設定は、その場合、スリープモードにおいて使用される。第2のデジタル制御発振器DCO2は、第1のデジタル制御発振器DCO1と比較してより低電力の発振器であり、PLL1ならびに第1のDCO1は、較正の後に電源を低減されてスリープモードに入る。
【0031】
本明細書のいくつかの実施形態によれば、第2のデジタル制御発振器DCO2の周波数は、第2のDCO2の周波数を同調させるために第2のDCO2を第2の周波数シンセサイザPLL2に接続することによって設定され得る。第2の周波数シンセサイザPLL2は、第1の周波数シンセサイザ112の水晶発振器XOに接続され、第1のトランシーバ110が電源を低減されたときに電源を低減される。
図2(b)は、別個の第2のPLL2が第2のDCO2較正のために使用される、この実施形態を示す。2つのPLLおよび第1のDCO1は電源を低減されてスリープモードに入り、XOも、その場合、電源を低減され得る。
【0032】
本明細書のいくつかの実施形態によれば、第2のデジタル制御発振器DCO2の周波数は、位相周波数検出器およびそれに続くローパスフィルタおよび比較器において第2のデジタル制御発振器DCO2の周波数を第1のデジタル制御発振器DCO1と比較することによって設定され得る。位相周波数検出器、ローパスフィルタ、および比較器は、第1のトランシーバ110が電源を低減されたときに電源を低減される。
図2(c)はこの実施形態を示す。第1の周波数シンセサイザ112中のPLL1はアクティブモード中に動作し、その場合、第2のDCO2は、第1のDCO1と同じ周波数を生成するように較正される。2つの発振器DCO1およびDCO2の周波数は、位相周波数検出器PFDと、ローパスフィルタLPFと、比較器Compとのチェーンにおいて直接比較される。比較器は、どちらの周波数がより高いかに関するバイナリ決定を出力する。制御ブロックCtrlは、次いで、この情報を使用して、周波数差を最小にする第2のDCO2のための制御ワードを見つける。見つけられた制御ワードは、次いで、スリープモード中の第2のDCO2のために使用され、他のあらゆるものは、その場合、電源を低減され得る。
【0033】
無線通信デバイスの異なるタイプと、無線通信デバイスの異なる適用例および異なる動作モードとに応じて、基地局に信号を送信するための周期および持続時間は異なり得る。
【0034】
a)連続動作
第2のトランシーバWuTRX120が常時オンである、すなわち連続動作モードにあるとき、WuTRX120は、デフォルトモードとして受信モードにあり、時々、WuTRX120は、基地局が自励式発振器DCO2の現在の周波数とビーム重みとを決定することを可能にするための信号を第2の送信機Tx2が送ることを可能にするために、低電力送信モードに切り替わる。これの後に、WuTRX120は受信モードにスイッチバックされる。
【0035】
較正のための送信がどのくらいの頻度で行われるかは、自励式発振器のドリフトレートと、WuTRX120についてどのくらいの周波数不確定性が許容でき得るかに依存し得る。そのことはまた、デバイスのモビリティ、すなわち、そのデバイスがどのくらい速く移動するかに依存し得る。較正のための送信の持続時間は、他方では、固定され得るか、または、チャネル減衰量が比較的高いことが知られているときに、より長い送信持続時間が使用されるように、可変にされ得るかのいずれかである。代替的に、較正のために使用される送信の持続時間は、同じく可変にされ、較正信号の送信電力が低減されたときに、より長い持続時間が使用されるように、較正信号のために使用される送信電力に依存し得る。
【0036】
したがって、本明細書のいくつかの実施形態によれば、基地局に信号を送信する際の周期は、第2のDCO2のドリフトレートと、ウェイクアップ受信機Rx2の周波数誤差許容範囲とに基づき得る。代替的に、基地局に信号を送信する際の周期は、経時的なチャネル変更のレート、すなわち、無線通信デバイスと基地局との間の無線チャネルがどのくらい急速に経時的に変化するかに基づき得る。チャネルがより速く変化すれば、基地局に信号を送信する際の周期はより短くされ得る。基地局に送信される信号の持続時間は送信電力とチャネル品質とに基づき得る。
【0037】
b)デューティサイクル化動作
感度要件が比較的高い、いくつかの適用例では、電力消費量を望ましいレベルまで下げることが可能でないことがある。これが当てはまるとき、ウェイクアップ受信機をデューティサイクル化すること、すなわち、ウェイクアップ受信機がオンにされたときにそれがより多い電力を消費する場合でも、平均電力消費量が望ましいレベルになるように、ウェイクアップ受信機が時間の一部分の間のみオンになることが一般的である。たとえば、デューティサイクルが10%である場合、平均電力消費量はほぼ1/10に低減される。
【0038】
したがって、本明細書のいくつかの実施形態によれば、ウェイクアップトランシーバWuTRX120は、デューティサイクルをもつオンオフ動作モードにおいて設定され得、第2の送信機Tx2は、各ON周期の開始時に基地局に信号を送信するように設定され得る。ON周期はON持続時間またはONスロットと呼ばれることもある。
【0039】
本実施形態によれば、デューティサイクリングパターンの選択は、少なくとも部分的に、周波数およびビーム重み較正の必要性に基づく。特に、WuTRX120がオンにされたときに、WuTRX120が、最初に較正信号を送信し、次いで受信モードに切り替わるように、WuTRX120は、デューティサイクル化されたときのON周期の開始時に低電力送信モードに入り得る。このことは、そのON周期について、ON持続時間が一般にかなり小さくなるので、ON周期中の周波数ドリフトがかなり小さいことが仮定され得るので、基地局が自励式DCO2の周波数の極めて良好な推定値を有することを保証することになる。
【0040】
ON周期が短く、比較的頻繁に、たとえば、50msごとに5msの頻度で到来する場合、ON周期間の時間、すなわち、この例では50msの間の周波数ドリフトは非常に小さいので、ONスロットごとに較正のための低電力信号を送る必要がないことがあり得る。この場合、低電力較正信号は、ONスロットの一部分の開始おいて、たとえば、5つのうちの1つ、または10個のうちの1つのみ送られる。
【0041】
したがって、本明細書のいくつかの実施形態によれば、ウェイクアップトランシーバWuTRX120は、デューティサイクルをもつオンオフ動作モードにおいて設定され得、第2の送信機Tx2は、N番目ごとのON周期の開始時に基地局に信号を送信するように設定され、ただし、Nは1よりも大きい整数である。
【0042】
c)ウェイクアップ信号の帯域幅
干渉が限定された環境において良好な性能を保証するためのウェイクアップ受信機における重要な部分は、隣接チャネル干渉(ACI)をフィルタ処理で除去する能力である。このことを行うための標準的な方法は、ウェイクアップ信号の帯域幅と同様の帯域幅をもつチャネル選択性フィルタを使用することである。その場合、不整合は、ウェイクアップ信号がチャネル選択性フィルタの通過帯域中にないことを意味するので、ウェイクアップ信号とウェイクアップ受信機との間の正確な周波数整合を保証することが必要である。
【0043】
しかしながら、場合によっては、単に受信機フィルタの帯域幅よりも広い信号を送信することによって、代替方法でこの問題に対処することが可能である。このことは、送信された信号エネルギーの一部、すなわち、受信機フィルタの通過帯域中に入る一部のみが、受信機にとって有用であることを意味する。そのことはまた、受信機フィルタの厳密な中心周波数は重要でないが、代わりに、送信された信号の少なくとも一部が受信機フィルタの通過帯域中に入っていれば十分であることを意味する。
【0044】
例として、IEEE802.11baにおいて、ウェイクアップ信号の帯域幅は約4MHzであり、したがって、受信機フィルタの好適な帯域幅は4MHzになるであろう。しかしながら、4MHzのウェイクアップ信号の送信は20MHzのチャネルの中央において行われ、ウェイクアップ信号のいずれの側にも信号はない。すなわち、ウェイクアップ信号の各側に使用されていない8MHzがあることになる。
【0045】
この場合、原則として、4MHzのウェイクアップ信号の代わりに20MHzのウェイクアップ信号が送信され得る。ウェイクアップ受信機における周波数誤差が8MHzを超えない限り、ウェイクアップ受信機は4MHzの有用な信号を受信することになる。
【0046】
本実施形態によれば、利用可能なチャネル帯域幅が信号帯域幅よりもはるかに広いことは、より広い帯域幅をもつウェイクアップ信号を故意に送ることによって活用され得る。このことにより、ウェイクアップ受信機における周波数精度に関する要件の緩和が可能になる。特に、低電力較正信号が送信されるかどうか、および低電力較正信号がどのくらいの頻度で送信されるかは、少なくとも、送られるべきウェイクアップ信号が、受信機フィルタと比較してどのくらい広くされ得るかに基づいて決定されることになる。
【0047】
したがって、本明細書のいくつかの実施形態によれば、基地局に信号を送信する際の周期は、基地局によって送られるべきウェイクアップ信号の帯域幅と、ウェイクアップ受信機Rx2中のチャネル選択性フィルタの帯域幅とに基づき得る。
【0048】
WuTRX120がどのくらいの頻度で送信モードに切り替わるか、すなわち、基地局に信号を送信する際の周期と、送信がどのくらい長く続くか、すなわち送信の持続時間とが、メイントランシーバTRX110を使用してネゴシエートまたは通信され得る。デューティサイクリングが使用されるとき、ウェイクアップ受信機がいつオンになるかについての厳密なパターンは一般に基地局によって知られており、したがって、ウェイクアップ信号は、ウェイクアップ受信機Rx2がオンになるときにのみ送られる。また、好適なデューティサイクリングパターンのネゴシエーションおよび決定は、ウェイクアップトランシーバWuTRX120を使用して行われ得る。
【0049】
したがって、本明細書のいくつかの実施形態によれば、第1のトランシーバTRX110は、第2のトランシーバWuTRX120によって送られるべき信号の送信スケジュールおよび送信コードを示すために、電源を低減される前に基地局に信号を送るように設定され得る。
【0050】
無線通信デバイスに信号を送るための複数のアンテナをもつ基地局において実行される方法について、
図3を参照しながら説明する。本方法は、任意の好適な順序で実行され得る、以下のアクションを含む。
【0051】
アクション310
基地局は無線通信デバイスからの信号を受信する。信号は、無線通信デバイス中に含まれたウェイクアップトランシーバ中のDCOによって設定された周波数において送られる。
【0052】
無線通信デバイスから送られる信号はULP信号である。ULP信号を受信するために、基地局は複数のアンテナを使用し得る。複数のアンテナにおける受信された信号は、ベースバンドに変換され、次いで、高い感度のために、および他の方向から来る雑音および干渉の抑制のために、同相で組み合わせられる。したがって、本明細書のいくつかの実施形態によれば、基地局は、複数のアンテナから受信された信号を同相で組み合わせ得る。
【0053】
基地局が、送信された信号を見つけることが可能であり、同期させられるべきである場合、無線通信デバイスがスリープモードに入るときに、無線通信デバイスは、ULP送信スケジュールおよび送信コードに関して基地局と一致するために、無線通信デバイスのメイントランシーバを使用し得る。たとえば、上記で説明したように、無線通信デバイスは、無線通信デバイス中の第2のトランシーバWuTRX120によって送られるべき信号の送信スケジュールおよび送信コードを示すために、電源を低減される前に基地局に信号を送り得る。
【0054】
アクション320
基地局はウェイクアップ受信機中のDCOの周波数を決定する。ウェイクアップ受信機中の自励式DCOは、最初に、無線通信デバイス中のメイントランシーバによって使用される周波数に対して較正され得る。したがって、ULP信号は、メイントランシーバと同じ周波数を使用して送信される。このことにより、基地局は、この初期点から経時的に無線通信デバイスの周波数を追跡することが可能になる。
【0055】
アクション330
無線通信デバイスからの頻繁で定期的な送信により、基地局は、無線通信デバイスの周波数だけでなく、無線通信デバイスについてのビーム重みをも追跡することが可能になる。
【0056】
基地局は、無線通信デバイスからの受信された信号に基づいて、ウェイクアップ信号として無線通信デバイスに送られるべき信号のビーム重みを更新する。そのことは、各アンテナ要素における受信された信号の位相および振幅に基づく。ビーム重みは、各アンテナ要素からのベースバンド信号と、組み合わせられた受信されたベースバンド信号との間の相関によって決定され得る。したがって、受信された信号から、基地局はまた、無線通信デバイスの動きを追跡し得る。ビーム重みは、信号電力および方向が無線通信デバイスの動きに基づくように更新され得る。基地局からの信号は、その場合、強度が高められ、干渉が少ない状態でウェイクアップ受信機によって受信され得る。ウェイクアップ送信は、その場合、また、高い精度で無線通信デバイスをターゲットにし、それにより、意図された無線通信デバイスに対する信号レベルが改善されるとともに、他の無線通信デバイスに対する干渉が低減され得る。
【0057】
アクション340
基地局は、DCOの決定された周波数に基づく周波数において無線通信デバイスにウェイクアップ信号を送る。
【0058】
基地局は、DCOの周波数と同じ周波数においてウェイクアップ信号を送り得る。
【0059】
基地局は、DCOの周波数からオフセットされた周波数においてウェイクアップ信号を送り得る。
【0060】
本明細書のいくつかの実施形態によれば、基地局は、ウェイクアップ信号が受信時間から所定の時間の後に送られるように、受信された信号の受信時間に基づいて無線通信デバイスにウェイクアップ信号を送り得る。
【0061】
定期的な送信は基地局ウェイクアップメッセージ送信のためのタイミング基準を与える。そのことにより、ウェイクアップ受信機はそれの探索空間を縮小することが可能になり、それにより、電力が節約されるとともに、フォールスアラームの危険が低減される。
【0062】
本明細書のいくつかの実施形態によれば、基地局は、ウェイクアップトランシーバ中のDCOの周波数調整を容易にするために無線通信デバイスに信号をさらに送り得る。無線通信デバイス局部発振器周波数についての情報を定期的に得ることによって、基地局は、周波数を調整させるためにウェイクアップ受信機にメッセージを送り、それにより、無線通信デバイスにおける周波数制御ループを伴うことなしにウェイクアップ受信機を制御された状態に保つことができる。また、基地局は、無線通信デバイスをウェイクアップすることなしにウェイクアップ通信の周波数を変更することが可能である。
【0063】
図4は、複数のアンテナをもつ基地局400のブロック図を示す。基地局400は、
図3を参照しながら説明した方法アクション310~340を実行するために、たとえば、受信機410、送信機420、処理ユニット430、メモリ440などを備える。
【0064】
要約すると、本明細書の実施形態は、ウェイクアップ受信機と超低電力(ULP)送信機の両方を特徴とする低電力無線通信デバイスを提供する。ULP送信機は、基地局がULP送信機の自励式局部発振器の周波数を追跡することを可能にするメッセージを送出し、自励式局部発振器の周波数はまた、ウェイクアップ受信機のために使用される。ウェイクアップ受信機局部発振器の周波数を正確に知ることにより、基地局は、十分にターゲットを絞った周波数においてウェイクアップメッセージを送ることが可能になる。このことにより、極めて低い電力消費量をもつ自励式発振器を使用しながらなお、より狭い帯域幅の、したがって、敏感で選択的なウェイクアップ受信機が可能になる。また、超低電力送信機からのメッセージにより、基地局は、両方の方向におけるウェイクアップ通信のための信号対雑音および干渉比を高めるために、複数アンテナ構成のビーム重みを更新することが可能になる。超低電力送信機からのメッセージはまた、ウェイクアップ受信機の電力とフォールスアラームレートとを低減するために使用され得るタイミング情報を与える。基地局はまた、無線通信デバイスをウェイクアップすることなしに、無線通信デバイスの局部発振器周波数を更新するように無線通信デバイスに命令する信号を送ることによって、ウェイクアップ受信機の周波数を制御し得る。
【0065】
複数のアンテナにより、無線通信デバイスからの弱い信号を基地局が受信することが可能になり、また、それらのアンテナにより、他のデバイスに対する干渉を小さくしながら、ウェイクアップ時に無線通信デバイスにより強い信号を送信することが可能になる。このことにより、ウェイクアップ電力消費量を小さくしながらなお、本システムの範囲が拡大することになる。複数アンテナ基地局の高い性能により、通信デバイスのウェイクアップトランシーバ中の送信機の出力電力を小さくすることが可能になり、それにより、ウェイクアップトランシーバの電力消費量がウェイクアップ受信機の電力消費量と同等になり得る。
【0066】
総エネルギー消費量が提案されたアーキテクチャによってどのくらい影響を受けるかを評価するためには、PLLが数百μWを消費すると仮定するのが妥当である。提案されたソリューションを用いると、PLLの必要は回避され、代わりに、電力が小さい第2の送信機が必要とされる。第2の送信機は、-20dBm(10μW)の送信電力で十分であり得る場合に、100μW未満を消費するように設計され得る。送信電力が、たとえば、-15dBm(30μW)まで高くなり得る場合でも、第2の送信機の総電力消費量は、なお、PLLのための総電力消費量よりもかなり小さくなり得る。
【0067】
「備える(comprise)」または「備える(comprising)」という単語が使用されるとき、それは、非限定的な、すなわち、「少なくとも~からなる(consist at least of)」を意味するものとして解釈されるべきである。
【0068】
本明細書の実施形態は、上記で説明した好ましい実施形態に限定されない。様々な代替、変更および均等物が使用され得る。したがって、上記の実施形態は、添付の特許請求の範囲によって定義された本発明の範囲を限定するものとして取られるべきでない。