(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-01
(45)【発行日】2023-12-11
(54)【発明の名称】電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システム
(51)【国際特許分類】
G01N 27/447 20060101AFI20231204BHJP
【FI】
G01N27/447 331B
G01N27/447 331K
(21)【出願番号】P 2020070351
(22)【出願日】2020-04-09
【審査請求日】2022-11-07
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(74)【代理人】
【識別番号】100111121
【氏名又は名称】原 拓実
(74)【代理人】
【識別番号】100200218
【氏名又は名称】沼尾 吉照
(72)【発明者】
【氏名】有村 良一
(72)【発明者】
【氏名】小林 伸次
(72)【発明者】
【氏名】難波 諒
(72)【発明者】
【氏名】黒川 太
(72)【発明者】
【氏名】毛受 卓
(72)【発明者】
【氏名】横山 雄
(72)【発明者】
【氏名】金谷 道昭
(72)【発明者】
【氏名】小城 和高
(72)【発明者】
【氏名】城田 昭彦
(72)【発明者】
【氏名】溝口 喬也
(72)【発明者】
【氏名】早見 徳介
(72)【発明者】
【氏名】野田 周平
【審査官】小澤 理
(56)【参考文献】
【文献】特開2019-089022(JP,A)
【文献】実開昭60-006116(JP,U)
【文献】国際公開第2015/108023(WO,A1)
【文献】国際公開第2017/104662(WO,A1)
【文献】特開2002-005888(JP,A)
【文献】米国特許出願公開第2002/0040851(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/447
(57)【特許請求の範囲】
【請求項1】
被処理水に含まれる不純物の移動速度の大きさを測定する移動速度測定ステップと、
前記移動速度の大きさが第1の設定値よりも小さい場合に、前記被処理水に測定電圧を印加して前記不純物の電気泳動の速度を測定する電気泳動速度測定ステップと、
を有
し、
前記移動速度測定ステップは、測定する移動速度の大きさが許容時間を経過しても前記第1の設定値よりも小さくならない場合は、前記被処理水とは別の被処理水を取得するステップを有する、
不純物の電気泳動の速度測定方法。
【請求項2】
被処理水に含まれる不純物の移動速度の大きさを測定する移動速度測定ステップと、
前記被処理水に含まれる不純物の移動速度の大きさを小さくさせるための減速電圧を前記被処理水に印加する減速ステップと、
前記移動速度の大きさが第1の設定値よりも小さい場合に、前記被処理水に測定電圧を印加して前記不純物の電気泳動の速度を測定する電気泳動速度測定ステップと、
を有する不純物の電気泳動の速度測定方法。
【請求項3】
前記減速ステップは、高い減速電圧から段階的に低い減速電圧を印加する、
請求項
2記載の不純物の電気泳動の速度測定方法。
【請求項4】
前記電気泳動速度測定ステップにおいて、測定された複数の不純物の電気泳動の速度について前記測定電圧による電場方向の速度成分の平均値を出力する、
請求項1乃至請求項
3のいずれか一項記載の不純物の電気泳動の速度測定方法。
【請求項5】
前記電気泳動速度測定ステップにおいて、前記複数の不純物の電気泳動の速度を、前記測定電圧による電場方向の速度成分と、前記電場方向と交差する方向の速度成分とに分解して測定し、
前記電場方向と交差する方向の速度成分の大きさが第2の設定値以下の不純物について、前記電場方向の速度成分の平均値を出力する、
請求項
4記載の不純物の電気泳動の速度測定方法。
【請求項6】
前記電気泳動速度測定ステップにおいて、前記複数の不純物の電気泳動の速度を、前記測定電圧による電場方向の速度成分と、前記電場方向と交差する方向の速度成分とに分解して測定し、
前記電場方向の速度成分の大きさに対する前記電場方向と交差する方向の速度成分の大きさが、許容比率以下の不純物について、前記電場方向の速度成分の平均値を出力する、
請求項
4記載の不純物の電気泳動の速度測定方法。
【請求項7】
被処理水に含まれる不純物の移動速度の大きさを測定する移動速度測定ステップと、
前記移動速度の大きさが第1の設定値よりも小さい場合に、前記被処理水に測定電圧を印加して前記不純物の電気泳動の速度を測定する電気泳動速度測定ステップと、
を有
し、
前記電気泳動速度測定ステップにおいて、測定された複数の不純物の電気泳動の速度について前記測定電圧による電場方向の速度成分の平均値を出力し、
前記電気泳動速度測定ステップにおいて、前記複数の不純物の電気泳動の速度を、前記測定電圧による電場方向の速度成分と、前記電場方向と交差する方向の速度成分とに分解して測定し、
前記電場方向の速度成分の大きさに対する前記電場方向と交差する方向の速度成分の大きさが、許容比率以下の不純物について、前記電場方向の速度成分の平均値を出力する、
不純物の電気泳動の速度測定方法。
【請求項8】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定
し、測定する移動速度の大きさが許容時間を経過しても前記第1の設定値よりも小さくならない場合は、前記被処理水とは別の被処理水を取得する速度測定部と、
を備える不純物の電気泳動の速度測定装置。
【請求項9】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、
前記被処理水に含まれる不純物の移動速度の大きさを小さくさせるための減速電圧を前記被処理水に印加し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定する速度測定部と、
を備える不純物の電気泳動の速度測定装置。
【請求項10】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定する速度測定部と、
を備え
、
前記速度測定部は、測定された複数の不純物の電気泳動の速度について前記測定電圧による電場方向の速度成分の平均値を出力し、
前記複数の不純物の電気泳動の速度を、前記測定電圧による電場方向の速度成分と、前記電場方向と交差する方向の速度成分とに分解して測定し、
前記電場方向の速度成分の大きさに対する前記電場方向と交差する方向の速度成分の大きさが、許容比率以下の不純物について、前記電場方向の速度成分の平均値を出力する、
不純物の電気泳動の速度測定装置。
【請求項11】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定
し、測定する移動速度の大きさが許容時間を経過しても前記第1の設定値よりも小さくならない場合は、前記被処理水とは別の被処理水を取得する速度測定部と、
前記速度測定部によって測定された不純物の電気泳動の速度に基づいて凝集剤注入装置が注入する凝集剤注入量を決定する凝集剤注入制御部と、
を備える凝集制御装置。
【請求項12】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、
前記被処理水に含まれる不純物の移動速度の大きさを小さくさせるための減速電圧を前記被処理水に印加し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定する速度測定部と、
前記速度測定部によって測定された不純物の電気泳動の速度に基づいて凝集剤注入装置が注入する凝集剤注入量を決定する凝集剤注入制御部と、
を備える凝集制御装置。
【請求項13】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定する速度測定部と、
前記速度測定部によって測定された不純物の電気泳動の速度に基づいて凝集剤注入装置が注入する凝集剤注入量を決定する凝集剤注入制御部と、
を備え
、
前記速度測定部は、測定された複数の不純物の電気泳動の速度について前記測定電圧による電場方向の速度成分の平均値を出力し、
前記複数の不純物の電気泳動の速度を、前記測定電圧による電場方向の速度成分と、前記電場方向と交差する方向の速度成分とに分解して測定し、
前記電場方向の速度成分の大きさに対する前記電場方向と交差する方向の速度成分の大きさが、許容比率以下の不純物について、前記電場方向の速度成分の平均値を出力する、
凝集制御装置。
【請求項14】
コンピュータに、
被処理水に含まれる不純物の移動速度の大きさを測定する移動速度測定ステップと、
前記移動速度の大きさが第1の設定値よりも小さい場合に、前記被処理水に測定電圧を印加して前記不純物の電気泳動の速度を測定する電気泳動速度測定ステップと、
を実行させ
、
前記移動速度測定ステップは、測定する移動速度の大きさが許容時間を経過しても前記第1の設定値よりも小さくならない場合は、前記被処理水とは別の被処理水を取得するステップを実行させるためのプログラム。
【請求項15】
コンピュータに、
被処理水に含まれる不純物の移動速度の大きさを測定する移動速度測定ステップと、
前記被処理水に含まれる不純物の移動速度の大きさを小さくさせるための減速電圧を前記被処理水に印加する減速ステップと、
前記移動速度の大きさが第1の設定値よりも小さい場合に、前記被処理水に測定電圧を印加して前記不純物の電気泳動の速度を測定する電気泳動速度測定ステップと、
を実行させるためのプログラム。
【請求項16】
コンピュータに、
被処理水に含まれる不純物の移動速度の大きさを測定する移動速度測定ステップと、
前記移動速度の大きさが第1の設定値よりも小さい場合に、前記被処理水に測定電圧を印加して前記不純物の電気泳動の速度を測定する電気泳動速度測定ステップと、
を実行させ
、
前記電気泳動速度測定ステップにおいて、測定された複数の不純物の電気泳動の速度について前記測定電圧による電場方向の速度成分の平均値を出力し、
前記電気泳動速度測定ステップにおいて、前記複数の不純物の電気泳動の速度を、前記測定電圧による電場方向の速度成分と、前記電場方向と交差する方向の速度成分とに分解して測定し、
前記電場方向の速度成分の大きさに対する前記電場方向と交差する方向の速度成分の大きさが、許容比率以下の不純物について、前記電場方向の速度成分の平均値を出力するためのプログラム。
【請求項17】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定
し、測定する移動速度の大きさが許容時間を経過しても前記第1の設定値よりも小さくならない場合は、前記被処理水とは別の被処理水を取得する速度測定部と、
前記速度測定部によって測定された不純物の電気泳動の速度に基づいて決定された凝集剤注入量の凝集剤を注入する凝集剤注入装置と、
を有する凝集制御システム。
【請求項18】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、
前記被処理水に含まれる不純物の移動速度の大きさを小さくさせるための減速電圧を前記被処理水に印加し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定する速度測定部と、
前記速度測定部によって測定された不純物の電気泳動の速度に基づいて決定された凝集剤注入量の凝集剤を注入する凝集剤注入装置と、
を有する凝集制御システム。
【請求項19】
被処理水を撮像する撮像部と、
前記撮像部により撮像された少なくとも2つの画像に基づいて被処理水に含まれる不純物の移動速度の大きさを測定し、前記移動速度の大きさが第1の設定値よりも小さくなるときに測定電圧が印加された前記被処理水に含まれる不純物の電気泳動の速度を測定する速度測定部と、
前記速度測定部によって測定された不純物の電気泳動の速度に基づいて決定された凝集剤注入量の凝集剤を注入する凝集剤注入装置と、
を有し
、
前記速度測定部は、測定された複数の不純物の電気泳動の速度について前記測定電圧による電場方向の速度成分の平均値を出力し、
前記複数の不純物の電気泳動の速度を、前記測定電圧による電場方向の速度成分と、前記電場方向と交差する方向の速度成分とに分解して測定し、
前記電場方向の速度成分の大きさに対する前記電場方向と交差する方向の速度成分の大きさが、許容比率以下の不純物について、前記電場方向の速度成分の平均値を出力する、
凝集制御システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムに関する。
【背景技術】
【0002】
従来、河川水、雨水、下水及び工業排水等の被処理水の処理方法として、凝集剤を用いて被処理水に含まれる不純物を凝集物(フロック)とし、これを沈殿させて除去する方法がある。この方法では、フロックの凝集状態が、処理水の水質に影響を及ぼす。フロックの凝集状態は、被処理水に対する凝集剤注入量によって変化する。しかし、フロックの凝集状態が良好となる凝集剤注入量は、原水の水質の変動に伴って変化する。このため、被処理水の水質の変動に対応させて、フロックの凝集状態が良好となるように、凝集剤注入量を適切に制御する方法が検討されている。
【0003】
従来、フロックの凝集状態を観測する手法は実用化されておらず、原水の水質変動に合わせて凝集剤注入量を制御していた。本来であれば、フロックの凝集状態が良好となるように、被処理水への凝集剤注入量を制御するには、フロックの凝集状態を評価し、その結果を用いて最適な凝集剤の注入量を算出する必要がある。
【0004】
フロックの凝集状態の評価の指標として、不純物(フロックを含む)の荷電状態が用いられている。
【0005】
不純物の荷電状態は、電圧が印加された被処理水に含まれる不純物の電気泳動の速度を画像処理によって測定することが考案されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特許6270655号公報
【文献】特開2017-56418号公報
【文献】特開2018-143937号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明が解決しようとする課題は、不純物の電気泳動の速度を連続的に安定して正確に測定できる電気泳動の速度測定方法を提供することである。
【課題を解決するための手段】
【0008】
上記課題を達成するために、実施形態の電気泳動の速度測定方法は、移動速度測定ステップと、電機泳動速度測定ステップと、を有する。移動速度測定ステップは、被処理水に含まれる不純物の移動速度の大きさを測定する。電気泳動速度測定ステップは、移動速度の大きさが第1の設定値よりも小さい場合に、前記被処理水に測定電圧を印加して前記不純物の電気泳動の速度を測定する。移動速度測定ステップは、測定する移動速度の大きさが許容時間を経過しても前記第1の設定値よりも小さくならない場合は、前記被処理水とは別の被処理水を取得するステップを有する。
【図面の簡単な説明】
【0009】
【
図1】第1の実施形態に係る水処理プラントの構成を示す図。
【
図2】第1の実施形態に係る懸濁液を収容するセルを示す図。
【
図3】第1の実施形態に係るセル内の懸濁液の様子を示す図。
【
図4】第1の実施形態に係るセル内の懸濁液の上昇流の様子を示す図。
【
図5】第1の実施形態に係る凝集制御装置の動作を示す図。
【
図6】第1の実施形態に係る凝集制御装置の動作の概略を示す図。
【
図7】第2の実施形態に係る凝集制御装置の動作を示す図。
【
図8】第2の実施形態に係る凝集制御装置の動作の概略を示す図。
【
図9】第2の実施形態に係る凝集制御装置の動作の変形例を示す図。
【
図10】第3の実施形態に係る凝集制御装置の動作を示す図。
【
図11】第4の実施形態に係る凝集制御装置の動作を示す図。
【
図12】第4の実施形態に係る凝集制御装置の動作の概略を示す図。
【発明を実施するための形態】
【0010】
以下、発明を実施するための実施形態を説明する。
【0011】
(第1の実施形態)
第1の実施形態に係る電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムを、
図1乃至
図6を用いて説明する。
【0012】
図1は、第1の実施形態に係る水処理プラント1の構成を示す図である。水処理プラント1は、固液分離工程を備える。固液分離工程は、液体に含まれている懸濁物等の固形物(不純物)を凝集剤によって液体から分離する工程であるが、特定の設備に限定されない。水処理プラント1は、例えば、浄水場、下水処理場及び産業排水処理施設等である。水処理プラント1が浄水場である場合、原水は、例えば、河川水、ダム湖水、地下水、雨水、下水である。以下、水処理プラント1は、一例として浄水場として記述する。水処理プラント1は、浄水場に限定されず、下水処理場又は産業排水処理施設等であっても構わない。
【0013】
例えば、
図1に示す水処理プラント1は、固液分離機能を実現する設備として凝集制御システム2及び各貯水部を備える。例えば、各貯水部は、着水井10、混和池20(急速混和池)、フロック形成池30-1~30-3、沈殿池40、ろ過池50である。各貯水部のうち、着水井10は、被処理水の流れに関して最も上流に位置する。各貯水部のうち、ろ過池50は、被処理水の流れに関して最も下流に位置する。
【0014】
着水井10は、水処理プラント1に送られてきた原水を貯え、原水から植物や土砂等の比較的比重の大きい不純物を分離して後段の貯水部に送水する設備である。ここでいう原水とは被処理水のことであり、水処理プラント1の内外から着水井10に送られる。「被処理水」とは、水処理プラント1が処理中の、処理により分離しようとする対象物質を含んだ水である。また、被処理水は、水処理プラント1が処理中の水の一部であり、水処理プラント1から採取されたものも含む。処理を終えて放流又は再利用可能となった水を「処理水」と記載する。即ち、原水は初期状態の被処理水ということができる。被処理水は、水処理プラント1から採取されたのちに水処理プラント1へ返さないものも含む。またここでいう「不純物」とは、水処理プラント1による処理により分離しようとしている対象物質のことである。「不純物」は、後述する凝集剤により不純物同士が凝集している状態のもの(フロック)も含む。
【0015】
着水井10には水質計11が備えられる。水質計11は着水井10内の被処理水の水質を測定する。例えば、水質は、濁度や色度、水温、導電率、pH(水素イオン濃度指数)、アルカリ度(酸消費量)等の諸量によって表される。水質計11は、これら諸量の測定によって得られた水質を表す情報を凝集制御システム2に送信する。着水井10では、植物や土砂等の比較的大きな不純物が沈殿によって被処理水から分離される。これらの不純物が分離された上澄みの水(以下「上澄み水」という。)は、沈殿によって分離されずに残留した不純物を含んだ状態で後段の混和池20に送られる。
【0016】
着水井10と混和池20との間の配管には流量計12が備えられる。流量計12は、着水井10から混和池20に送られる上澄み水の流量を測定する。流量計12は、着水井10から混和池20に送られる上澄み水の流量を表す情報を、凝集制御システム2に送信する。
【0017】
混和池20には、上澄み水が着水井10から送られる。凝集制御システム2は、混和池20の水(混和水)に凝集剤を注入する。例えば、凝集剤には、ポリ塩化アルミニウム(PAC:Poly Aluminium Chloride)や硫酸アルミニウム(硫酸ばんど)等のアルミ系の無機凝集剤がある。このうち、浄水場においてはPACが主に用いられる。
【0018】
混和池20には攪拌装置21及びpH計22が備えられる。攪拌装置21(急速攪拌装置)は混和池20の水を撹拌する。例えば、攪拌装置21はフラッシュミキサである。攪拌装置21にはモータが接続されており、撹拌スピードが可変であってもよい。pH計22は混和池20の水のpHを連続的に測定する。pH計22は混和池20の水のpHを、予め定められた周期で間欠的に測定してもよい。例えば、pH計22は10分周期でpHを測定する。pH計22は、混和池20の水のpHの値を表す情報を、凝集制御システム2に送信する。pH計22は、混和池20とフロック形成池30-1~30-3との間の配管に備えられていてもよい。混和池20に凝集剤が注入されると、被処理水に含まれる懸濁物(不純物)は凝集して凝集物(フロック)となる。混和池20は、攪拌装置21により、原水と凝集剤との混和が促進される。原水中の不純物は、原水と凝集剤との混和が促進されることで凝集しフロックが形成される。混和池20は、原水と凝集剤とが混和された被処理水を、形成されたフロックと共にフロック形成池30-1~30-3へ送る。
【0019】
フロック形成池30-1~30-3は、混和池20において形成されたフロックを凝集させ、より大きなフロックを形成させる。フロック形成池30-1~30-3は、処理水を緩速撹拌する緩速攪拌装置31-1~31-3を有する。
【0020】
緩速攪拌装置31-1~31-3は、下流に向けて段階的に撹拌の強度が小さくなるように設定されている。つまり、緩速攪拌装置31-1~31-3の回転数は、緩速攪拌装置31-1が最も大きく、緩速攪拌装置31-2、緩速攪拌装置31-3の順で小さくなる。これにより、フロックは、被処理水中で他のフロックと衝突が繰り返され、巨大化して沈降しやすくなる。フロック形成池30-1~30-3は、フロックを含む被処理水を沈殿池40へ送る。
【0021】
沈殿池40は、フロック形成池30-1~30-3から供給される被処理水を所定時間以上滞留させることにより、被処理水に含まれるフロックを沈殿させる。所定時間は、例えば3時間程度である。沈殿池40は、所定時間以上滞留させた被処理水をろ過池50へ送る。
【0022】
ろ過池50は、例えば、砂ろ過により、沈殿池40で沈殿除去されなかった微小なフロックを除去する。ろ過池50によりフロックが除去された清浄水は、図示しない浄水池において塩素による殺菌等が行われた後、配水管へと分配される。なお、処理水は、ろ過池50において砂ろ過に通される前に適宜、オゾン処理や生物活性炭処理が施される場合もある。また、処理水は、砂ろ過に通された後に同様の処理が施されたりする場合もある。
【0023】
凝集制御装置80は、移動速度測定装置90、凝集剤注入制御部83及び荷電状態目標値算出部84を備える。移動速度測定装置90、凝集剤注入制御部83及び荷電状態目標値算出部84のうちの一部又は全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。プログラムの実行により、凝集制御装置80は、電気泳動と画像処理を組み合わせた不純物(フロックを含む)の荷電状態に応じて算出される凝集剤注入率設定値と、流量計12で測定される被処理水の流量とに基づき、凝集剤注入量を決定する。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。診断装置プログラムは、電気通信回線を介して送信されてもよい。
【0024】
移動速度測定装置90は、移動速度測定部81と、出力部82とを備える。
【0025】
移動速度測定部81は、採取された被処理水の一部を分析して凝集状態指標値を測定する装置である。
図1に示す水処理プラント1では、混和池20から一部の被処理水が採取される構成を示している。しかしながら、この構成は一例であり、被処理水は必ずしも混和池20から採取される必要はない。例えば、被処理水は、混和池20とフロック形成池30-1~30-3との間の配水管から分取されてもよいし、フロック形成池30-1~30-3から取得されてもよい。また、移動速度測定部81への通水は、ポンプ等による機械的な採取でもよいし、ポンプに代えて水処理プラント1の運転員が被処理水の採取を行ってもよい。
【0026】
採取された被処理水は、所定の測定容器(以下「セル200」という)に収容される。被処理水は、不純物や微細なフロックが含まれている。以下では、被処理水は、必要に応じて懸濁液300という。また、被処理水は、必要に応じて試験水、試料ともいう。
【0027】
移動速度測定部81は、凝集状態指標値を測定する構成として光源部810、撮像部811及び速度測定部812を備える。光源部810はセル200に光を照射する。光源部810は、例えばレーザー光や可視光を照射する光源である。光源部810は、照射する光の強度や波長を変更可能なように構成されてもよい。
【0028】
撮像部811は、カメラ等の撮像装置を用いて構成される。撮像部811は、光源部810から照射された光が被処理水中のフロックの表面によって反射された散乱光を光学系に受光する。撮像部811は、セル200内の被処理水を撮像可能な位置に配置される。例えば、撮像部811は、セル200の透明な側面を通して懸濁液300を撮像できるようにセル200の側面に設置される。撮像部811は、懸濁液300に
図2に示すように、懸濁液300を所定周期で撮像する。所定周期は、例えば1/3秒~1秒周期である。所定周期が1/3秒周期である場合、撮像部811は1秒間に3フレームの画像データを生成する。表面電荷が中和している微細なフロックは、電場方向のみならず2次元方向に移動する。撮像部811は、生成した画像データを、撮像時刻ごとに速度測定部812に出力する。
【0029】
速度測定部812は、撮像部811から出力される画像データに対して、ソフトウェアによる画像解析処理を施し、被処理水中のフロックの移動速度を測定する。具体的には、速度測定部812は、撮像部811から出力される画像データにおける懸濁液300中のフロックの位置を、フロックごとに測定する。速度測定部812は、異なる撮像時刻における各フロックの位置を測定する。ここで、任意の撮像時刻を第1撮像時刻とし、所定周期後の撮像時刻を第2撮像時刻とする。第1撮像時刻と第2撮像時刻との間隔は、例えば、1秒間隔又は1/3秒間隔である。速度測定部812は、第1撮像時刻におけるフロックの位置と第2撮像時刻におけるフロックの位置とに基づいて、フロックの電気泳動の速度を測定する。また、速度測定部812は、2以上の撮像時刻におけるフロックの位置に基づいて、フロックの電気泳動の平均的な速度を測定してもよい。速度測定部812は、測定したフロックごとの電気泳動速度の測定データを出力部82に出力する。
【0030】
出力部82は、速度測定部812によって出力されたフロックごとの電気泳動速度の測定データを取得する。出力部82は、フロックごとの電気泳動速度の測定データに基づいて、各フロックの電気泳動速度の平均値を算出する。平均値を算出する際に用いる測定データは、1~5分間において撮像された測定データである。この1~5分間に、フロックは、数10個から数100個観測される。出力部82は、各フロックの電気泳動速度を統計的に処理することにより、1回の測定における電気泳動速度の平均値を求めている。出力部82は、電気泳動速度の平均値を表す情報を凝集剤注入制御部83に出力する。
【0031】
荷電状態目標値算出部84は、凝集剤注入装置70の凝集剤注入率をフィードバック制御方式で決定する際の制御目標値を算出する。フィードバック制御は、制御量と制御目標値との偏差に基づいて操作量を変動させることで制御量を制御目標値に追従させる制御方式である。荷電状態目標値算出部84は、着水井10の水質を測定する水質計11、混和池20の水質を測定するpH計22、沈殿池40の水質を測定する沈殿池水質計器41及びろ過池50の水位を測定するろ過池水位計51からの情報に基づいて荷電状態の目標値を算出する。なお、目標値は、運転員が手入力してもよいし、着水井10の原水水質や沈殿池40の処理水質、ろ過池50の目詰まりの速度の情報から目標値を演算してもよい。目標値を運転員が手入力する場合、運転員が目標値手入力部60から入力を行う。目標値手入力部60は、例えば、キーボード、マウス、タッチパネル等である。荷電状態目標値算出部84は、算出した目標値を凝集剤注入制御部83に出力する。
【0032】
凝集剤注入制御部83は、荷電状態目標値算出部84によって算出された目標値と、凝集剤注入制御部83によって算出された電気泳動速度の平均値を表す情報とに基づいて凝集剤注入装置70の凝集剤注入量を操作量として決定する。例えば、凝集剤注入制御部83は、P制御(比例制御:Proportional Controller)やPI制御(比例積分制御:Proportional-Integral Controller)、PID制御(Proportional-Integral-Differential Controller)等のフィードバック制御を実行する。凝集剤注入制御部83は、決定した凝集剤注入量を凝集剤注入装置70に出力する。凝集剤注入量は、単位時間当たりに注入される凝集剤の量である凝集剤注入率であってもよい。
【0033】
凝集剤注入装置70は、凝集制御装置80からの制御に従い、凝集剤を混和池20へ注入する。
【0034】
次にフロックの凝集状態について説明する。
【0035】
フロックの凝集状態は被処理水に対する凝集剤注入量に応じて異なる。懸濁物の表面は、通常、水中ではマイナスに帯電している。一方凝集剤としては、水中ではプラスに帯電しているものを用いる。従って、凝集剤は懸濁物(不純物)に付着する。懸濁物に付着した凝集剤は、懸濁物のマイナスの荷電を打ち消すことによって、懸濁物の表面電位を0[mV]に近づける。従って、凝集剤は、懸濁物同士の反発を弱めて衝突回数を増加させる作用を有する。この凝集剤の作用により、衝突したフロック同士が徐々に集塊化していき、より大きなフロックの形成が促進される。
【0036】
凝集剤注入量が不足している場合、懸濁物の表面電位の平均値がマイナスに大きいままとなり懸濁物同士が反発する。そのため、凝集剤注入量が不足している状況ではフロックの形成は十分に進まない。一方で、凝集剤注入量が過剰である場合、懸濁物の表面電位の平均値がプラスになってしまい懸濁物同士が反発する。そのため、凝集剤注入量が過剰である状況においてもフロックの形成は十分に進まない。これに対して、凝集剤注入量が適正である場合、懸濁物の表面電荷が中和して、分子間力の作用により懸濁物同士が互いに引き合う。そのため、凝集剤注入量が適正である状況ではフロックの形成が進む。従って、凝集剤注入量は、懸濁物の表面電荷を中和させる(表面電位を約0[mV]に近づくようにする)ような適正量に制御されることが望ましい。
【0037】
図2は、第1の実施形態に係る懸濁液300を収容するセル200を示す図である。セル200の材質は、例えば、ガラスやアクリルなどの透明な材質である。セル200は、図中x軸の正方向の端部に電極210を、x軸の負方向の端部に電極220を備える。つまりセル200は、一対の電極210、220を有する。また、電極210と電極220とはx軸方向に対向配置される。電極210と電極220とは、電圧印加部230に接続されている。電圧印加部230は、電極210と電極220との間に電圧を印加する。
図2において、電圧印加部230の負極は、電極210と接続される。以降必要に応じて、電圧印加部230の負極に接続された電極を、陰極という。また、電圧印加部230の正極は、電極220と接続される。以降必要に応じて、電圧印加部230の正極に接続された電極を、陽極という。
図2において、電圧印加部230は電極210に負電位を印加し、電極220に正電位を印加する。フロックの移動速度を測定するときの測定電圧は、例えば10~40Vである。電圧の印加時間は、例えば3~5分間である。3~5分間電圧を印加後に、懸濁液300を入れ替える。この電圧の印加により、正又は負に帯電した懸濁液300中のフロックが電極210又は電極220の方向(電場方向)に移動する。以下、x軸の正方向の移動速度は正値で表され、x軸の負方向の移動速度は負値で表されるものとする。同様に、y軸の正方向の移動速度は正値で表され、y軸の負方向の移動速度は負値で表されるものとする。ここで、測定容器(セル)のZ軸方向の深さ(厚み)は、例えば1mm~3mmである。表面電荷がマイナスである微細なフロックは、懸濁液300に電圧が印加されている場合、正電位が印加された電極220に向かってx軸の負方向に電気泳動する。従って、表面電荷がマイナスである懸濁液300内のフロックの電気泳動の平均速度は負値である。
【0038】
測定電圧による電場方向は、おおよそx軸の方向となるため、以降必要に応じて電場方向をx軸方向という。また、測定電圧による電場方向と交差する方向に、y軸方向が含まれるため、以降必要に応じて、測定電圧による電場方向と交差する方向をy軸方向という。
【0039】
表面電荷がプラスである微細なフロックは、懸濁液300に電圧が印加されている場合、負電位が印加された電極210に向かってx軸の正方向に電気泳動する。従って、表面電荷がプラスである懸濁液300内のフロックの電気泳動の平均速度は正値である。
【0040】
表面電荷が中和している微細なフロックは、電圧を印加した場合でも、懸濁液300内を浮遊する。従って、表面電荷が中和している微細なフロックの電気泳動の方向は、電極210と電極220との間に電圧を印加されている場合でも一定ではない。よって個々のフロックの移動速度のばらつきが大きくなり、移動速度の分散が大きくなる。表面電荷が中和している微細なフロックの電気泳動の速度の分散値は所定値以上となる。つまり、この所定値を閾値として、電圧を印加した場合における分散値を閾値と比較することによって、表面電荷が中和しているか否かを把握することができる。
【0041】
上記のように、懸濁液300内のフロックの電気泳動の速度を測定することにより、フロックの表面電荷の状態(荷電状態)を取得することができる。しかし、フロックの荷電状態を連続的に測定するセル200内において、セル200内に懸濁液300を封入した直後から、電圧を印加していないにもかかわらず、フロックが動いてしまう現象が生じる。
【0042】
この要因は、封入弁を閉めた衝撃がセル200内の懸濁液300に伝わることによる流れの発生、懸濁液300の水温とセル200周辺の気温との温度差による懸濁液300内の対流の発生、セル200のガラス内壁にフロック等の付着物が堆積することによりセル200内の容積が変化することによる懸濁液300の対流の発生等が考えられる。
【0043】
図3は、第1の実施形態に係るセル200内の懸濁液300の様子を示す図である。本来であればセル200内に懸濁液300を封入した直後の、測定電圧を印加する前の時点においては、フロックはほぼ静止するはずである。しかしながら
図3に示すように、封入直後から一定の方向へフロックが動く現象が観測される場合がある。このような動きが見られると、本来測定しようとするフロックの荷電状態に応じた電極方向の電気泳動速度を正しく測定することができない。
【0044】
また、懸濁液300の水温とセル200周辺の気温との温度差によって生じる対流は、上記のように、セル200内での上昇流がある。
【0045】
図4は、第1の実施形態に係るセル200内の懸濁液300の上昇流の影響を受けたフロックの様子を示す図である。
図4に示すように、懸濁液300の水温とセル200周辺の気温との温度差が大きいほど、大きな上昇流が発生する。例えば懸濁液300の水温が冷たくセル200周辺の気温が高いほど、大きな上昇流が発生する。これにより、フロックのy軸方向の動きが大きくなる。
【0046】
移動速度の測定において、測定電圧を印加した際のx軸方向のフロックの電気泳動速度のみを採用する場合に、上昇流に伴うy軸方向の動きが大きくなりすぎると、本来のx軸方向の電気泳動速度が小さくなる可能性がある。そのため、以下に説明する電気泳動の速度測定方法を実施する。
【0047】
図5は、第1の実施形態に係る凝集制御装置80の動作を示すフローチャートである。
【0048】
図6は、第1の実施形態に係る凝集制御装置80の動作の概略を示す図である。
【0049】
図5に示すように、凝集制御装置80の動作は、不純物の電気泳動の速度の出力に係る処理フローである。上記で説明したように、セル200内に懸濁液300を封入後、本来であればフロックの動きはほぼ静止するはずであるが、セル200内の懸濁液300の対流などによりフロックに動きが見られる場合がある。この対流は、しばらく待つことで動きが収まっていく。そこで本実施形態は、被処理水(懸濁液300)封入後から、不純物(フロックを含む)の移動速度の数値化を開始し、x軸方向(電場方向)の移動速度の大きさが、別途設定した設定値(第1の設定値)よりも小さくなった時点から測定電圧を印加し、測定電圧の印加を開始した後の時間帯で取得した情報から不純物(フロックを含む)の電気泳動の速度を求めるものである。
【0050】
ステップS101において、被処理水(懸濁液300)をセル200内に通水し、セル200前後の弁を閉じる。懸濁液300は、混和池20から採取された被処理水の一部である。混和池20から懸濁液300を採取して、セル200に通水する。次いで、セル200前後の弁を閉じる。セル200前後の弁を閉じる作業は、電動式開閉機等により機械的に行ってもよいし、水処理プラント1の運転員が手動で行ってもよい。
【0051】
ステップS102において、移動速度測定部81は、
図6(a)に示すように懸濁液300中の不純物(フロックを含む)を連続的に撮像し、画像処理により個々の不純物(フロックを含む)のx軸方向及びy軸方向の移動速度を測定する。この移動速度とは、測定電圧を印加していない状態における不純物の移動速度のことである。この移動速度は、ある方向に沿った不純物の移動速度としてもよいし、移動速度の大きさであってもよい。また不純物が複数の場合、移動速度は、不純物それぞれの移動速度の平均値としてもよいし、複数の不純物の移動速度の中央値や最大値としてもよい。本実施形態では、ステップS102を、移動速度測定ステップと呼ぶ。
【0052】
ステップS103において、移動速度測定部81は、ステップS102において測定した移動速度の大きさが第1の設定値よりも小さいか否かを判定する。第1の設定値は、本来測定しようとする不純物(フロックを含む)の荷電状態に応じた電場方向の電気泳動速度を正しく測定することができない程度の、不純物の移動速度の閾値である。第1の設定値は、操作者もしくは管理者によって任意に設定されてもよい。ステップS103において、個々の不純物の移動速度におけるx軸方向移動速度の平均値が第1の設定値よりも小さい場合に、S104に進む。ステップS103において、個々の不純物の移動速度におけるx軸方向移動速度の平均値が第1の設定値以上の場合に、ステップS102に進む。本実施形態では、個々の不純物の移動速度におけるx軸方向移動速度の平均値に基づいて判定しているが、x軸方向移動速度に限定されず、個々の不純物の移動速度の大きさの平均値に基づいて判定しても良い。
【0053】
ステップS104において、移動速度測定部81は、
図6(b)に示すように、懸濁液300に測定電圧を印加する。
【0054】
ステップS105において、移動速度測定部81は、
図6(c)に示すように、測定電圧が印加されている懸濁液300中の不純物(フロックを含む)を連続的に撮像し、画像処理により測定電圧印加中の懸濁液300における個々の不純物のx軸方向及びy軸方向の電気泳動の速度を測定する。本実施形態における電気泳動の速度とは、測定電圧が印加されている懸濁液300に含まれる不純物の移動速度の測定値である。
【0055】
ステップS106において、出力部82は、所定の測定時間経過後、不純物(フロックを含む)のx軸方向の移動速度の時間的な平均値を算出する。所定の測定時間は、例えば測定電圧の印加時間である3~5分間である。本実施形態では、S104~S106を電気泳動速度測定ステップと呼ぶ。
【0056】
図5のステップS100乃至ステップS107は、例えば所定時間毎に繰り返し実行される。若しくは、ステップS107の終了直後に、ステップS100に進む。
【0057】
本実施形態は、試料(懸濁液300)封入直後から閾値(第1の設定値)以下となるまでの移動速度のデータは除外されることになり、x軸方向の動きがなくなった時点で測定電圧を印加し、それ以降のデータを採用することで本来のフロックの電気泳動の速度を正確に数値化することができる。
【0058】
また、試料(懸濁液300)封入直後の動きが小さくなるまでの時間が、水質や水温、浄水場ごとに異なる場合であっても、本機能により汎用的に本来の電気泳動の速度を数値化することが可能となる。
【0059】
(第2の実施形態)
第2の実施形態は、第1の実施形態の処理に加えて、y軸方向の移動速度の大きさが閾値(第2の設定値)以下であるフロックのデータのみを採用し、不純物の電気泳動の速度を出力するものである。
【0060】
第2の実施形態に係る電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムを、
図7及び
図8を用いて説明する。なお、電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムの構成は、第1の実施形態と同様のため、同一の符号を付して説明を省略する。
【0061】
図7は、第2の実施形態に係る凝集制御装置80の動作を示す図である。
【0062】
図8は、第2の実施形態に係る凝集制御装置80の動作の概略を示す図である。
図8(a)乃至(c)は、
図6(a)乃至(c)と同様である。
【0063】
図7に示すように、S200乃至S205は、第1の実施形態に係るS100乃至S105と同様のため、説明を省略する。
【0064】
ステップS206において、移動速度測定部81は、
図8(d)に示すように所定の測定時間経過後、個々の不純物(フロックを含む)のx軸方向の移動速度とy軸方向の電気泳動の速度のペアにおいて、y軸方向の電気泳動の速度の大きさが第2の設定値以下であるデータのみを採用し、平均値を算出する。所定の測定時間は、例えば第1の実施形態と同様に、測定電圧の印加時間である3~5分間である。第2の設定値は、本来測定しようとするフロックの荷電状態に応じた電極方向の電気泳動の速度を正しく測定することができない程度の、フロックのy軸方向の電気泳動の速度の閾値である。第2の設定値は、操作者もしくは管理者によって任意に設定されてもよい。
【0065】
測定電圧印加後、個々の不純物(フロックを含む)の電気泳動の速度は、x軸方向の電気泳動の速度とy軸方向の電気泳動の速度とがペアで算出されてくる。ここで、セル200内の上昇流などによりy軸方向の電気泳動の速度が大きくなる不純物が出現するケースがある。これは、測定時間が後半になるほど出現しやすくなる。
【0066】
そこで第2の実施形態においては、個々の不純物(フロックを含む)のx軸方向の電気泳動の速度とy軸方向の電気泳動の速度のペアにおいて、y軸方向の電気泳動の速度の大きさが閾値(第2の設定値)以下である不純物のデータのみを採用し、x軸方向の電気泳動の速度の平均値を算出する。y軸方向の電気泳動の速度が閾値(第2の設定値)を超えるような上昇流などによりy軸の正方向への動きが大きい不純物は電気泳動の速度の平均値算出から除外する。
【0067】
図7のステップS200乃至ステップS207は、所定時間毎若しくはステップS207の終了直後に繰り返し実行される。
【0068】
図9は、第2の実施形態に係る凝集制御装置の動作の変形例を示す図である。
図9(a)乃至(d)は、
図8(a)乃至(d)と同様である。
【0069】
図9(e)に示すように、y軸方向の閾値(第2の設定値)で除外するのではなく、x軸方向の電気泳動速度の大きさとy軸方向の電気泳動速度の大きさの比率に基づいて、上昇流の影響の大きい不純物(フロックを含む)の電気泳動速度を除外するものである。本実施形態では、本来測定しようとする不純物の荷電状態に応じた電気泳動速度を正しく測定することができない程度の、不純物の電場方向(x軸方向)の電気泳動速度の大きさと、電場方向と交差する方向(y軸方向)の電気泳動速度の大きさとの比率の閾値を、「許容比率」と呼ぶ。例えば、x軸電気泳動速度の大きさに対してy軸電気泳動速度の大きさの比率が大きいときは、実際の不純物の移動方向とy軸方向の角度は小さくなる。このような状態をx軸電気泳動速度の大きさに対するy軸電気泳動速度の大きさの比率で判別し、データを除外するものである。また極端に重い不純物が混入し、沈降する速度が大きい場合も、移動方向とy軸方向の角度が小さくなるのでデータを除外する。
【0070】
本実施形態は、上記に示す方法により、主に水平方向(x軸方向)に電気泳動する不純物(フロックを含む)のみから電気泳動速度を数値化することができる。
【0071】
(第3の実施形態)
第3の実施形態は、x軸方向の移動速度が閾値(第1の設定値)以下になるまでの許容可能な待ち時間(許容時間)を設定しておき、許容時間を超過した場合、その測定は終了し、セル200内の試料(懸濁液300)の入れ替えを強制的に行うものである。
【0072】
第3の実施形態に係る電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムを、
図10を用いて説明する。なお、電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムの構成は、第1の実施形態と同様のため、同一の符号を付して説明を省略する。
【0073】
図10は、第3の実施形態に係る凝集制御装置80の動作を示す図である。
【0074】
図10に示すように、S300乃至S307は、第1の実施形態に係るS100乃至S107と同様である。ステップS303において、NOと判定された場合にステップS308に進む。
【0075】
ステップS308において、許容時間以内か否かを判定する。ステップS308において、許容時間以内の場合、ステップS302に進む。ステップS308において、許容時間を超過しても、移動速度の大きさが第1の設定値よりも小さくならないとき、ステップS309に進む。
【0076】
ステップS309において、セル200内の水(懸濁液300)を交換する。具体的には、セル200内の懸濁液を排水し、次の懸濁液の採水を実施する。つまり、移動速度の大きさが許容時間を経過しても第1の設定値よりも小さくならない場合は、被処理水を排水し、別の被処理水を取得する。別の被処理水は、排水した被処理水と同一の水処理プラント1が処理中の水のなかの、排水した被処理水とは異なる部分である。
【0077】
図10に示すように、測定電圧を印加する前に、x軸方向の移動速度の大きさが閾値(第1の設定値)よりも小さくなるまで電気泳動の速度の測定を待機しているが、長時間待機しても閾値(第1の設定値)以下にならない場合がある。これは、セル200内に小さい気泡などが混入し、セル200の水(懸濁液300)が振動している場合等である。本実施形態においては、x軸方向の移動速度の大きさが閾値(第1の設定値)よりも小さくなるまでの許容可能な待ち時間(許容時間)を設定しておき、所定の時間を超過した場合、その測定は終了し、セル200内の試料(懸濁液300)の入れ替えを強制的に行うものである。
【0078】
本実施形態は、上記に示す方法により、速やかに次の工程に進むことができ、電気泳動の速度が更新される時間を早めることができる。
【0079】
(第4の実施形態)
第4の実施形態は、被処理水(懸濁液300)封入直後から測定電圧を印加せずx軸方向の動きが小さくなるまで待つのではなく、強制的にx軸方向の動きが小さくなるように、不純物の動きと反対向きに、不純物の動きを打ち消すように減速電圧を印加するものである。
【0080】
第4の実施形態に係る電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムを、
図11及び
図12を用いて説明する。なお、電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システムの構成は、第1の実施形態と同様のため、同一の符号を付して説明を省略する。
【0081】
図11は、第4の実施形態に係る凝集制御装置80の動作を示す図である。
【0082】
図12は、第4の実施形態に係る凝集制御装置80の動作の概略を示す図である。
【0083】
図11に示すように、S400乃至S402は、第1の実施形態に係るS100乃至S102と同様である。また、
図12に示すように、
図12(a)は、
図6(a)と同様である。また、
図12(c)は、
図6(b)と同様である。
【0084】
ステップS403において、x軸方向の不純物(フロックを含む)の動きを打ち消す方向に減速電圧を印加する。ステップS403を、本実施形態では「減速ステップ」という。
【0085】
本実施形態は、セル200に被処理水(懸濁液300)封入直後から測定電圧を印加せずに、x軸方向の動きが小さくなるまで待つのではなく、強制的にx軸方向の移動速度の大きさが小さくなるように、不純物(フロックを含む)の動きと反対向きに減速電圧を印加することを特徴としている。ここでは、x軸方向の不純物の動く方向に応じて電圧の極性を変更できる機能を合わせ持つことになる。具体的には、不純物は多くの場合マイナスに帯電しており、この不純物が陰極方向に泳動しているのであれば、その状態で減速電圧を印加することで、反対方向の陽極側に動く力がかかるため、初期の動きが小さくなる。一方、マイナスに帯電している不純物が陽極の方向へ泳動している場合は、その状態で減速電圧を印加すると更に陽極の方向へ大きく泳動することになるので、陽極と陰極の極性を入れ替えて減速電圧を印加すればよいことになる。
【0086】
ここで減速電圧を長時間かけすぎると、減速電圧に依存した電気泳動を始めるため、
図12(d)の上側で示したようにパルス的に短時間の印加を繰り返す方法がよい。また
図12(d)の下側で示すように、ここで印加する減速電圧の大きさは、一定でもよいし、初めは大きな減速電圧をパルス的に印加し、徐々に減速電圧を段階的に下げていく方式が取られてもよい。一定の減速電圧を印加する場合、減速電圧の大きさは、例えば20~30Vである。初めは大きな減速電圧をパルス的に印加し、徐々に減速電圧を段階的に下げていく場合、初めの大きな減速電圧の大きさは、例えば40~60Vである。また、電圧を印加していないときの移動速度を測定し、その移動速度に応じた減速電圧値に設定することも考えられる。さらには、パルス的に印加する場合は、パルス間で移動速度を測定し、次のパルスの電圧値を変更することも考えられる。
【0087】
ステップS404において、移動速度測定部81は、ステップS403終了後の移動速度の大きさが第1の設定値よりも小さいか否かを判定する。ステップS404において、個々の不純物(フロックを含む)の移動速度におけるx軸方向移動速度の大きさ(例えば平均値)が第1の設定値よりも小さい場合に、S405に進む。ステップS404において、個々の不純物の移動速度におけるx軸方向移動速度が第1の設定値以上の場合に、ステップS403に進む。
【0088】
ステップS405乃至ステップS408は、
図5におけるステップS104乃至ステップS107と同様のため、説明を省略する。
【0089】
本実施形態は、上記に示す方法により、初期の動き(移動速度)が短時間で小さくなるようにし、その後、電気泳動速度を測定するための減速電圧を印加し、測定電圧を印加した後の電気泳動速度のみからx軸方向の電気泳動速度の平均値を求めることで、短時間で正確にフロックの電気泳動の速度を数値化することができる。
【0090】
このように、第1の実施形態乃至第4の実施形態によれば、電圧が印加された水中における不純物の電気泳動の速度を連続的に安定して正確に測定できる電気泳動の速度測定方法、電気泳動の速度測定装置、凝集制御装置、プログラム及び凝集制御システム提供できる。
【0091】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0092】
1・・・水処理プラント
2・・・凝集制御システム
10・・・着水井
11・・・水質計
12・・・流量計
20・・・混和池
21・・・攪拌装置
22・・・pH計
30-1、30-2、30-3・・・フロック形成池
31-1、31-2、31-3・・・緩速攪拌装置
40・・・沈殿池
41・・・沈殿池水質計器
50・・・ろ過池
51・・・ろ過池水位計
60・・・目標値手入力部
70・・・凝集剤注入装置
80・・・凝集制御装置
81・・・移動速度測定部
82・・・出力部
83・・・凝集剤注入制御部
84・・・荷電状態目標値算出部
90・・・移動速度測定装置
200・・・セル
210、220・・・セル両端部の電極
230・・・電圧印加部
300・・・懸濁液
810・・・光源部
811・・・撮像部
812・・・速度測定部