IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友重機械工業株式会社の特許一覧

<>
  • 特許-ショベル、ショベルのシステム 図1
  • 特許-ショベル、ショベルのシステム 図2
  • 特許-ショベル、ショベルのシステム 図3
  • 特許-ショベル、ショベルのシステム 図4
  • 特許-ショベル、ショベルのシステム 図5
  • 特許-ショベル、ショベルのシステム 図6
  • 特許-ショベル、ショベルのシステム 図7
  • 特許-ショベル、ショベルのシステム 図8
  • 特許-ショベル、ショベルのシステム 図9
  • 特許-ショベル、ショベルのシステム 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-01
(45)【発行日】2023-12-11
(54)【発明の名称】ショベル、ショベルのシステム
(51)【国際特許分類】
   E02F 9/20 20060101AFI20231204BHJP
   E02F 9/26 20060101ALI20231204BHJP
   G06F 3/04845 20220101ALI20231204BHJP
【FI】
E02F9/20 N
E02F9/26 B
G06F3/04845
【請求項の数】 4
(21)【出願番号】P 2021006985
(22)【出願日】2021-01-20
(62)【分割の表示】P 2016059336の分割
【原出願日】2016-03-24
(65)【公開番号】P2021067174
(43)【公開日】2021-04-30
【審査請求日】2021-02-17
【審判番号】
【審判請求日】2022-10-12
(73)【特許権者】
【識別番号】000002107
【氏名又は名称】住友重機械工業株式会社
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】小野 哲司
(72)【発明者】
【氏名】山口 朗
【合議体】
【審判長】前川 慎喜
【審判官】西田 秀彦
【審判官】土屋 真理子
(56)【参考文献】
【文献】特開2001-123476(JP,A)
【文献】特開2006-55273(JP,A)
【文献】特開平2-185379(JP,A)
【文献】特開2015-45145(JP,A)
【文献】特開2013-34142(JP,A)
【文献】特開2006-132132(JP,A)
【文献】特開2012-172429(JP,A)
【文献】再公表特許第2002/040783(JP,A1)
【文献】再公表特許第2003/000997(JP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
E02F3/42-3/43
E02F3/84-3/85
E02F9/00-9/28
(57)【特許請求の範囲】
【請求項1】
下部走行体と、
前記下部走行体に旋回可能に搭載される上部旋回体と、
前記上部旋回体に搭載され、ブーム、アーム、及びバケットを含む作業要素と、
掘削対象物の目標形状と前記バケットとを、両者の相対位置関係を認識可能な態様で、表示画面に表示する表示装置と、
操作装置の操作量に応じて前記作業要素を動作させる制御装置と、を備え、
前記制御装置は、前記表示画面に表示されている、前記掘削対象物の前記目標形状と前記バケットとの相対位置関係を表す図形が拡大されると、前記操作装置の操作量に対する前記ブーム、前記アーム、及び前記バケットの動作の感度を低下させる、
ショベル。
【請求項2】
前記図形の拡大縮小の指示を入力するための入力装置を備え、
前記入力装置は、ボタン又はタッチパネルである、
請求項1に記載のショベル。
【請求項3】
前記制御装置は、前記バケットの先端が前記表示画面に表示される状態を維持するように前記図形を拡大する、
請求項1又は2に記載のショベル。
【請求項4】
ショベルのブーム、アーム、及びバケットを含む作業要素による掘削対象物の目標形状と前記バケットとを、両者の相対位置関係を認識可能な態様で、表示画面に表示し、
前記表示画面に表示されている、前記掘削対象物の前記目標形状と前記バケットとの相対位置関係を表す図形が拡大されると、操作装置の操作量に対する前記ブーム、前記アーム、及び前記バケットの動作の感度を低下させる、
ショベルのシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ショベル等に関する。
【背景技術】
【0002】
近年、建設現場、土木現場における建設機械の情報技術(IT)化が進んでいる。例えば、掘削深さ、土塁の斜面の傾斜角等の様々な施工情報を、二次元的または三次元的にデータ化する。ショベル等の建設機械の表示画面に、データ化された施工情報が図形として表示される。オペレータは、表示画面に表示された施工情報を利用して、ショベル等の操作を行なうことができる。
【0003】
下記の特許文献1に開示された技術では、表示画面に目標とする地形と、ショベルのバケットとが表示される。オペレータは、表示画面に表示された目標とする地形と、バケットの位置とを確認しながら、精度よく掘削作業を行なうことができる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2001-98585号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本開示の目的は、表示装置に示された図形を確認しながら行なう作業の操作性を高めることが可能なショベル等を提供することである。
【課題を解決するための手段】
【0006】
本開示の一実施形態では、
下部走行体と、
前記下部走行体に旋回可能に搭載される上部旋回体と、
前記上部旋回体に搭載され、ブーム、アーム、及びバケットを含む作業要素と、
掘削対象物の目標形状と前記バケットとを、両者の相対位置関係を認識可能な態様で、表示画面に表示する表示装置と、
操作装置の操作量に応じて前記作業要素を動作させる制御装置と、を備え、
前記制御装置は、前記表示画面に表示されている、前記掘削対象物の前記目標形状と前記バケットとの相対位置関係を表す図形が拡大されると、前記操作装置の操作量に対する前記ブーム、前記アーム、及び前記バケットの動作の感度を低下させる、
ショベルが提供される。
【0007】
また、本開示の他の実施形態では、
ショベルのブーム、アーム、及びバケットを含む作業要素による掘削対象物の目標形状と前記バケットとを、両者の相対位置関係を認識可能な態様で、表示画面に表示し、
前記表示画面に表示されている、前記掘削対象物の前記目標形状と前記バケットとの相対位置関係を表す図形が拡大されると、操作装置の操作量に対する前記ブーム、前記アーム、及び前記バケットの動作の感度を低下させる、
ショベルのシステムが提供される。
【発明の効果】
【0008】
図形が拡大されると、操作装置の操作量に対する作業要素の動作の感度が低下するため、作業要素の位置決めが容易になり、作業性を高めることができる。
【図面の簡単な説明】
【0009】
図1】実施例によるショベルの側面図である。
図2】実施例によるショベルの表示装置の正面図である。
図3】表示装置の表示画面に表示されている拡大前の図形と、拡大後の図形とを示す図である。
図4】実施例によるショベルのブロック図である。
図5】図形の拡大率と作業要素の動作の感度との関係の一例示すグラフである。
図6】操作装置の操作量と、パイロット圧指令信号の指令値との関係の一例を示すグラフである。
図7】図形拡大率と、エンジン回転数指令信号の指令値との関係の一例を示すグラフである。
図8】図形拡大率と、メインポンプの1回転当たりの吐出量との関係の一例を示すグラフである。
図9】他の実施例によるショベルにおける油圧アクチュエータのフィードバック制御を説明するためのブロック図である。
図10図9に示した実施例によるショベルの操作量と油圧アクチュエータの動作速度との関係の一例を示すグラフである。
【発明を実施するための形態】
【0010】
図1図8を参照して、実施例によるショベルについて説明する。
【0011】
図1に、実施例によるショベルの側面図を示す。下部走行体10に上部旋回体11が旋回可能に搭載されている。上部旋回体11に、掘削対象物を掘削する作業要素15が搭載されている。作業要素15は、上部旋回体11に連結されたブーム12、ブーム12の先端に連結されたアーム13、アーム13の先端に連結されたバケット14を含む。
【0012】
ブーム12は、ブームシリンダ16によって上下方向に駆動される。アーム13は、アームシリンダ17によって駆動されることにより、ブーム12に対して開閉動作を行う。バケット14は、バケットシリンダ18によって駆動されることにより、アーム13に対して開閉動作を行う。ブームシリンダ16、アームシリンダ17、及びバケットシリンダ18には、油圧アクチュエータ(油圧シリンダ)が用いられる。
【0013】
ブーム12、アーム13、及びバケット14に、それぞれ姿勢センサ21、22、及び23が取り付けられている。姿勢センサ21、22、23は、それぞれブーム12、アーム13、及びバケット14の姿勢を検出する。一例として、姿勢センサ21、22、23は、それぞれ水平面に対するブーム12、アーム13、バケット14の角度を検出する。
【0014】
その他の構成として、姿勢センサ21が上部旋回体11の旋回軸に対するブーム12の角度を検出し、姿勢センサ22がブーム12に対するアーム13の角度を検出し、姿勢センサ23がアーム13に対するバケット14の角度を検出するようにしてもよい。さらに、その他の構成として、姿勢センサ21、22、23が、それぞれブームシリンダ16、アームシリンダ17、及びバケットシリンダ18の伸縮長を検出するようにしてもよい。
【0015】
上部旋回体11にキャビン30が搭載されている。キャビン30内に操作装置31及び表示装置32が配置されている。キャビン30にオペレータが搭乗し、操作装置31を操作して作業要素15を動作させることにより、掘削作業等が行われる。表示装置32は、掘削作業時に参照されるガイダンス情報を図形として表示する。
【0016】
図2に、表示装置32の正面図を示す。表示装置32は、図形を表示する表示画面33、及び表示画面33に表示されている図形の拡大縮小の指示を入力する入力装置34を含む。表示画面33に、掘削対象物の目標形状35と、作業要素15とが、両者の相対位置関係を認識可能な態様で、図形として表示される。入力装置34は、例えば、図形の拡大を指示する拡大ボタンと、図形の縮小を指示する縮小ボタンとで構成される。その他の構成として、表示画面33にタッチパネルを用い、このタッチパネルを入力装置として使用してもよい。この場合、表示画面33に拡大ボタンと縮小ボタンとを表示してもよいし、ピンチアウト操作とピンチイン操作とによって、拡大縮小を指示するようにしてもよい。
【0017】
表示装置32は、さらに、キャリブレーションボタン36を有する。バケット14(図1)の先端を掘削対象物の基準点に位置させた状態でキャリブレーションボタン36を押すことにより、表示画面33内の目標形状35と作業要素15との相対位置関係のキャリブレーションを行うことができる。
【0018】
図3に、表示画面33に表示されている拡大前の図形と、拡大後の図形とを示す。図3の上図に拡大前の画像が示されており、下図に拡大後の画像が示されている。図形を拡大する前の表示画面33には、作業要素15を含むショベル全体の図形と、目標形状35とが表示されている。入力装置34(図1)を操作して図形の拡大が指示されると、表示画面33に表示されている図形が拡大されるとともに、バケット14の先端が表示画面33内に表示されるように、自動的に、拡大図形のパンニングが行われる。ここで、「パンニング」とは、表示画面33に入りきらない大きな図形(または画像)を上下左右に移動させて、図形の特定部分を表示画面33に表示することを意味する。
【0019】
次に、図3に示した拡大前の図形から、図形拡大率を徐々に大きくする場合について説明する。拡大前の図形の中心位置が表示画面33内で変位しない条件で図形が徐々に拡大されると、まず、ショベルの後端及びクローラの後輪が表示画面33から外れる。このとき、バケット14の先端は、表示画面33内の周縁部に表示される。拡大前の図形の中心位置が変位しない条件で、さらに図形拡大率を大きくすると、バケット14の先端が表示画面33から外れてしまう。実施例においては、拡大された図形をパンニングすることにより、バケット14の先端が表示画面33に表示された状態が維持される。なお、図形拡大率を徐々に大きくする途中段階において、表示画面33の中心を含むある領域(中心近傍領域)内にバケット14の先端が継続して表示されるように、図形拡大率に応じて少しずつパンニングを行ってもよい。
【0020】
拡大図形のパンニングを行うことにより、図形拡大時、及び拡大途中段階にも、オペレータは、バケット14の先端と目標形状35との相対位置関係を視認することができる。これにより、バケット14の先端と目標形状35との相対位置関係を確認しながら掘削作業を行うことができる。
【0021】
図4に、実施例によるショベルのブロック図を示す。エンジン68から出力される動力により、メインポンプ69が駆動される。メインポンプ69から吐出された作動油が、コントロールバルブ70に供給される。コントロールバルブ70は、制御装置50からの指令に基づいて、作動油を、複数の油圧アクチュエータに分配する。複数の油圧アクチュエータには、ブームシリンダ16、アームシリンダ17、バケットシリンダ18、旋回油圧モータ80、右走行油圧モータ81、左走行油圧モータ82が含まれる。旋回油圧モータ80は、上部旋回体11(図1)を旋回させる。右走行油圧モータ81及び左走行油圧モータ82は、それぞれ下部走行体10の右及び左のクローラを駆動する。
【0022】
操作装置31から操作装置31の操作量を表す信号S1が、制御装置50の操作量検出部51に入力される。信号S1は、電気信号であってもよいし、油圧信号であってもよい。操作量検出部51は、入力された信号S1に基づいて操作量データD1を生成する。
【0023】
図形表示感度生成部52が、制御装置50の記憶装置に予め記憶されている施工データ53に基づいて、掘削対象物の目標形状35(図2)を求め、表示装置32の表示画面33に表示する。さらに、ショベルの現在位置情報に基づいて、作業要素15(図1)を含むショベルの図形を表示画面33に表示する。
【0024】
姿勢センサ21、22、23の検出値S2が、制御装置50の図形表示感度生成部52に入力される。図形表示感度生成部52は、姿勢センサ21、22、23の検出値S2に基づいて作業要素15の現時点の姿勢を算出する。表示画面33に表示されるショベルの作業要素15の図形には、現時点の作業要素15の姿勢が反映される。
【0025】
バケット14の先端の位置を掘削対象物の基準点に合わせた状態で、キャリブレーションボタン36(図2)を操作することにより、目標形状35と作業要素15との相対位置関係を較正してもよい。
【0026】
図形表示感度生成部52は、さらに、現時点の図形の拡大率に基づいて、作業要素の動作の感度データD2を生成する。ここで、「作業要素の動作の感度」とは、操作装置31の操作量の変化に対する作業要素15の先端(バケット14の先端)の移動の度合いを意味する。作業要素15の動作の感度データD2が大きい場合には、小さい場合に比べて、操作量の変化が小さくても作業要素15の先端の移動量が大きくなる。逆に、作業要素15の動作の感度データD2が小さい場合には、大きい場合に比べて、操作量の変化が大きくても作業要素15の先端の移動量が小さくなる。
【0027】
図5に、図形の拡大率と作業要素の動作の感度との関係を定義するグラフの一例を示す。横軸は図形拡大率を表し、縦軸は作業要素の動作の感度を表す。図形拡大率が大きくなるに従って作業要素の動作の感度が低下する。
【0028】
制御装置50(図4)のパイロット圧指令生成部54が、操作量データD1と感度データD2とに基づいて、パイロット圧指令信号S3を生成する。パイロット圧指令信号S3は、油圧アクチュエータごとに生成される。
【0029】
パイロット圧制御弁60が、パイロット圧指令信号S3を受けて、1次側パイロット圧(パイロットポンプの吐出圧)を2次側パイロット圧に変換することにより、油圧信号P3を生成する。制御回路61が、油圧信号P3に基づいて、コントロールバルブ70の開度を制御する。これにより、各油圧アクチュエータに供給される作動油の流量が制御される。
【0030】
制御装置50のエンジン回転数指令生成部56に、スロットルボリューム37の設定値が入力される。エンジン回転数指令生成部56は、スロットルボリューム37の設定値、操作量データD1、及び感度データD2に基づいて、エンジン回転数指令信号S4を生成する。エンジンコントロールユニット67が、エンジン回転数指令信号S4を受けて、エンジン68の回転数が指令値に近づくように、エンジン68を制御する。
【0031】
制御装置50のポンプ馬力指令生成部55が、操作量データD1と感度データD2とに基づいて、馬力制御信号S5を生成する。馬力制御弁64が、馬力制御信号S5を受けて、1次側パイロット圧を2次側パイロット圧に変換することにより、メインポンプ69の馬力制御に用いられる油圧信号P5を生成する。
【0032】
制御回路65が、油圧信号P5を受けて、メインポンプ69の斜板傾転角を制御する。これにより、メインポンプ69の1回転当たりの吐出量を増減させることができる。
【0033】
次に、図6図8を参照して、感度データD2に基づいて、作業要素15の先端の移動の度合いを変化させる方法について、3種類の例を挙げて説明する。
【0034】
図6に示した例では、パイロット圧指令生成部54(図4)が生成するパイロット圧指令信号S3の指令値を感度データD2に応じて変化させることにより、作業要素15の先端の移動の度合いを変化させる。
【0035】
図6は、操作装置31(図4)の操作量と、パイロット圧指令信号S3の指令値との関係の一例を示す。横軸は操作量を表し、縦軸はパイロット圧指令信号S3の指令値を表す。操作量とパイロット圧指令信号S3との関係が、図形の拡大率ごとに定義されている。操作量が不感帯の上限を超えると、操作量の増加に伴って、パイロット圧指令信号S3が増加する。図形の拡大率が大きくなると、操作量に対するパイロット圧指令信号S3の傾きが小さくなる。言い換えると、図形の拡大率が大きくなると、操作量の変動に対するパイロット圧指令信号S3の変動の割合が小さくなる。
【0036】
パイロット圧指令信号S3の変動が小さくなると、油圧アクチュエータに供給される作動油の流量の変動も小さくなる。これにより、操作装置31の操作量の変化に対する作業要素15の先端の移動の度合いが小さくなる。言い換えると、作業要素15の先端の移動の感度が低下する。
【0037】
図7に示した例では、エンジン回転数指令生成部56(図4)が生成するエンジン回転数指令信号S4の指令値を感度データD2に応じて変化させることにより、作業要素15の先端の移動の度合いを変化させる。
【0038】
図7は、図形の拡大率と、エンジン回転数指令の補正係数を単位「%」で表す。通常のショベルにおいて、エンジン回転数の指令値は、オペレータがスロットルボリューム37(図4)を操作することにより設定される。スロットルボリューム37で設定された指令値に一致するように、エンジン68の回転数が制御される。
【0039】
図7に示した例では、図形拡大率が最も小さいときのエンジン回転数の補正係数が100%であり、図形拡大率が大きくなるに従って、エンジン回転数の補正係数が小さくなっている。エンジン回転数指令生成部56(図4)は、スロットルボリューム37で設定されたエンジン回転数の指令値に、図7から求まる補正係数を乗じることにより、エンジン回転数指令信号S4を生成する。このため、図形の拡大率が大きくなるに従って、エンジン回転数指令信号S4の指令値が低下する。その結果、メインポンプ69(図4)からの作動油の吐出量が少なくなり、操作装置31の操作量の変化に対する作業要素15の先端の移動の度合いが小さくなる。言い換えると、作業要素15の先端の移動の感度が低下する。
【0040】
図8に示した例では、ポンプ馬力指令生成部55(図4)が生成する馬力制御信号S5の指令値を感度データD2に応じて変化させることにより、作業要素15の先端の移動の度合いを変化させる。馬力制御信号S5の指令値が大きくなると、メインポンプ69(図4)の1回転当たりの吐出量が多くなる。
【0041】
図8は、図形拡大率と、メインポンプ69の1回転当たりの吐出量との関係の一例を示す。横軸は図形の拡大率を表し、縦軸はメインポンプ69の1回転当たりの吐出量を表す。操作量が同一であっても、図形の拡大率が大きくなるに従って、メインポンプ69の1回転当たりの吐出量が少なくなる。その結果、操作装置31の操作量の変化に対する作業要素15の先端の移動の度合いが小さくなる。言い換えると、作業要素15の先端の移動の感度が低下する。
【0042】
次に、上記実施例の優れた効果について説明する。
【0043】
表示画面33(図3)に表示されている図形が拡大された状態でも、作業要素15の動作の感度が不変である場合、操作装置31の操作量がわずかであっても、バケット14の先端が表示画面33内で大きく移動してしまう。図形が拡大されたとき作業要素15の動作の感度を低下させると、表示画面33内におけるバケット14の先端の移動量が小さくなる。このため、オペレータが表示画面33を見ながら操作を行う場合に、図形の拡大時においてオペレータに与える違和感を軽減することができる。
【0044】
オペレータがバケット14の先端の位置精度を高めて作業を行いたい場合に、表示画面33に表示されている図形を拡大すると考えられる。図形の拡大率が大きくなって作業要素15の動作の感度が低下すると、バケット14の先端を高精度に位置決めすることが容易になる。このため、オペレータの意図する通りの操作感が得られる。
【0045】
図6に示したパイロット圧指令信号S3の指令値によって作業要素15の動作の感度を調整する方法、図7に示したエンジン回転数指令信号S4の指令値によって作業要素15の動作の感度を調整する方法、及び図8に示した馬力制御信号S5の指令値によって作業要素15の動作の感度を調整する方法の3種類の方法を併用してもよい。
【0046】
次に、図9及び図10を参照して、他の実施例について説明する。以下、図1図8に示した実施例との相違点について説明し、共通の構成については説明を省略する。図1図8に示した実施例では、作業要素15の制御に開ループ制御が適用される。これに対し、本実施例では、作業要素15の制御に閉ループ制御が適用される。
【0047】
図9に、本実施例によるショベルにおける油圧アクチュエータのフィードバック制御のブロック図を示す。図9では、油圧アクチュエータとしてブームシリンダ16が示されているが、その他の油圧アクチュエータの制御も、ブームシリンダ16の制御と同様である。
【0048】
ブームシリンダ16に供給される作動油の流路に流量センサ57が取り付けられている。流量センサ57の検出値が制御装置50のパイロット圧指令生成部54にフィードバックされる。パイロット圧指令生成部54は、操作量データD1及び感度データD2に基づいてブームシリンダ16の動作速度の目標値を算出する。操作量データD1と動作速度の目標値との関係は、予め対応表で定義しておいてもよいし、関数で定義しておいてもよい。
【0049】
パイロット圧指令生成部54は、ブームシリンダ16に供給される作動油の流量に基づいて、ブームシリンダ16の動作速度を算出する。動作速度の算出値が、動作速度の目標値に一致するように、パイロット圧指令信号S3の指令値が決定される。このように、閉ループ制御を行うことにより、オペレータは、油圧アクチュエータを意図したとおりの動作速度で動作させることができる。
【0050】
図10に、操作量と油圧アクチュエータの動作速度との関係の一例を示す。横軸は操作量を表し、縦軸は油圧アクチュエータの動作速度を表す。操作量が大きくなるにしたがって、油圧アクチュエータの動作速度が速くなる。図形の拡大率が大きくに従って、操作量に対する油圧アクチュエータの動作速度の傾きが小さくなる。操作量が同一である場合、図形の拡大率が大きい程、油圧アクチュエータの動作速度が遅くなる。その結果、操作装置31の操作量の変化に対する作業要素15の先端の移動の度合いが小さくなる。言い換えると、作業要素15の先端の移動の感度が低下する。
【0051】
図9及び図10に示した実施例においても、図1図8に示した実施例と同様に、オペレータが表示画面33を見ながら操作を行う場合に、オペレータに与える違和感を軽減することができるとともに、オペレータの意図する通りの操作感が得られる。
【0052】
上記実施例では、表示画面33(図2)に表示される目標形状35が、掘削対象物の目標とする表面と、鉛直平面と交線で定義されていた。すなわち、鉛直平面内における二次元の図形で、目標形状35が表示画面33に表示されていた。
【0053】
掘削対象物の目標形状を定義する施工データ53(図4)は、本来三次元画像データである。表示画面33に、この3次元画像データに基づいて、目標形状35を三次元画像として表示してもよい。この場合に、三次元画像の拡大率に基づいて、作業要素の15の動作の感度を調整してもよい。
【0054】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【符号の説明】
【0055】
10 下部走行体
11 上部旋回体
12 ブーム
13 アーム
14 バケット
15 作業要素
16 ブームシリンダ
17 アームシリンダ
18 バケットシリンダ
21、22、23 姿勢センサ
30 キャビン
31 操作装置
32 表示装置
33 表示画面
34 入力装置
35 掘削対象物の目標形状
36 キャリブレーションボタン
37 スロットルボリューム
50 制御装置
51 操作量検出部
52 図形表示感度生成部
53 施工データ
54 パイロット圧指令生成部
55 ポンプ馬力指令生成部
56 エンジン回転数指令生成部
57 流量センサ
60 パイロット圧制御弁
61 制御回路
64 馬力制御弁
65 制御回路
67 エンジンコントロールユニット
68 エンジン
69 メインポンプ
70 コントロールバルブ
80 旋回油圧モータ
81 右走行油圧モータ
82 左走行油圧モータ
D1 操作量データ
D2 感度データ
P3、P5 油圧信号
S1 操作量を表す信号
S2 姿勢センサの検出値
S3 パイロット圧指令信号
S4 エンジン回転数指令信号
S5 馬力制御信号
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10