IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シグレイ、インコーポレイテッドの特許一覧

特許7395775結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法
<>
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図1
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図2
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図3
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図4
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図5
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図6
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図7
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図8
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図9
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図10
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図11
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図12
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図13A
  • 特許-結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法 図13B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-01
(45)【発行日】2023-12-11
(54)【発明の名称】結晶解析装置及び複数の検出器素子を使用するX線吸収分光法のためのシステム及び方法
(51)【国際特許分類】
   G01N 23/085 20180101AFI20231204BHJP
   G01N 23/223 20060101ALI20231204BHJP
   G01N 23/20008 20180101ALI20231204BHJP
【FI】
G01N23/085
G01N23/223
G01N23/20008
【請求項の数】 44
(21)【出願番号】P 2022570366
(86)(22)【出願日】2021-05-14
(65)【公表番号】
(43)【公表日】2023-04-27
(86)【国際出願番号】 US2021070564
(87)【国際公開番号】W WO2021237237
(87)【国際公開日】2021-11-25
【審査請求日】2022-12-21
(31)【優先権主張番号】63/026,613
(32)【優先日】2020-05-18
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】516065870
【氏名又は名称】シグレイ、インコーポレイテッド
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ユン,ウェンビン
(72)【発明者】
【氏名】シシャドリ,スリバトサン
(72)【発明者】
【氏名】チャオ,ルイミン
(72)【発明者】
【氏名】カーズ,ヤーノシュ
(72)【発明者】
【氏名】ルイス,シルビア・ジア・ユン
【審査官】清水 靖記
(56)【参考文献】
【文献】国際公開第2011/002037(WO,A1)
【文献】特開2002-214165(JP,A)
【文献】特表2019-529897(JP,A)
【文献】特開昭51-029180(JP,A)
【文献】米国特許出願公開第2019/0302042(US,A1)
【文献】特開平09-166488(JP,A)
【文献】特開平04-285847(JP,A)
【文献】特開2007-212272(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00 - G01N 23/2276
G21K 1/00 - G21K 7/00
G01T 1/00 - G01T 7/12
G01B 15/00 - G01B 15/08
A61B 6/00 - A61B 6/14
JSTPlus/JMEDPlus/JST7580(JDreamIII)
Scopus
(57)【特許請求の範囲】
【請求項1】
装置であって、
電子による衝撃の際にX線を生成するように構成された標的を備える、X線源と、
接平面内でローランド円上の前記X線源に対して相対的に位置付けられた、ローランド円半径(R)を有する結晶解析装置であって、前記結晶解析装置が、前記ローランド円半径の2倍(2R)に実質的に等しい曲率半径を有する、少なくとも前記接平面内の少なくとも1つの方向に沿って曲がった結晶面を備え、前記結晶面が、前記X線源からX線を受光しかつ受光した前記X線をブラッグの法則に従って分散するように構成された、結晶解析装置と、
分散された前記X線のうちの少なくとも一部を受光するように構成された空間分解検出器であって、前記空間分解検出器が、調整可能な第1のX線エネルギーおよび/または調整可能な第2のX線エネルギーを有する、複数のX線検出素子を備え、前記複数のX線検出素子が、前記第1のX線エネルギーを上回る受光した分散されたX線の測定を抑制しながら、前記第1のX線エネルギーを下回るX線エネルギーを有する前記受光した分散されたX線を測定するように、および/または前記第2のX線エネルギーを下回る前記受光した分散されたX線の測定を抑制しながら、前記第2のX線エネルギーを上回るX線エネルギーを有する前記受光した分散されたX線を測定するように構成されており、前記第1および第2のX線エネルギーが、1.5keV~30keVの範囲で調整可能である、空間分解検出器と、を備える、装置。
【請求項2】
前記ローランド円上の前記X線源に対して前記結晶解析装置を位置付けるように、前記結晶面の前記少なくとも1つの方向を前記接平面に合わせるように、および距離Dに前記空間分解検出器を位置付けるように構成された、少なくとも1つのステージをさらに備え、前記少なくとも1つのステージが、ローランド円の幾何学的形状を維持するために前記X線源、前記結晶解析装置、および前記空間分解検出器の相対的な位置が変更される間に、所定の角度範囲にわたって前記結晶解析装置を回転させるように構成された、請求項1に記載の装置。
【請求項3】
前記X線源と前記結晶解析装置との間かまたは前記結晶解析装置と前記空間分解検出器との間のいずれかに解析のための試料を位置付けるように構成された、試料ステージをさらに備える、請求項1に記載の装置。
【請求項4】
前記空間分解検出器が、前記ローランド円の内側に位置付けられた、請求項1に記載の装置。
【請求項5】
前記空間分解検出器が、前記ローランド円上に位置付けられた、請求項1に記載の装置。
【請求項6】
前記空間分解検出器が、前記ローランド円の外側に位置付けられた、請求項1に記載の装置。
【請求項7】
前記第1のX線エネルギーおよび前記第2のX線エネルギーが、50eV~5keVの範囲のエネルギーだけ互いと異なる、請求項1に記載の装置。
【請求項8】
前記空間分解検出器が、1次元または2次元画素アレイ検出器である、請求項1に記載の装置。
【請求項9】
前記空間分解検出器が、3keVよりも良好なエネルギー分解能を有する画素アレイ光子計数検出器である、請求項1に記載の装置。
【請求項10】
前記画素アレイ光子計数検出器が、ハイブリッドX線検出器、CCD検出器、およびCMOS検出器からなる群から選択された、直接変換固体X線検出器である、請求項9に記載の装置。
【請求項11】
前記複数のX線検出素子のうちの各X線検出素子が、3ミクロン~2ミリメートルの線寸法を有する、請求項1に記載の装置。
【請求項12】
前記分散されたX線が、前記接平面に対して垂直または平行な少なくとも1つの方向に沿って2eV~250eVの範囲のエネルギーバンド幅を有する、請求項1に記載の装置。
【請求項13】
前記結晶解析装置が、円筒状に曲がったJohansson結晶解析装置、球状に曲がったJohansson結晶解析装置、球状に曲がったJohann結晶解析装置、円筒状に曲がったJohann結晶解析装置、およびWittry幾何学的形状を有する解析装置からなる群から選択された、請求項1に記載の装置。
【請求項14】
前記ローランド円半径が、50ミリメートル~1000ミリメートルの範囲内である、請求項1に記載の装置。
【請求項15】
前記結晶解析装置が、シリコン、ゲルマニウム、および石英からなる群から選択された、単結晶材料を含む、請求項1に記載の装置。
【請求項16】
前記複数のX線検出素子のうちの少なくとも3つのX線検出素子が、前記接平面に対して垂直な方向に沿って少なくともいくつかの分散されたX線を測定するように構成された、請求項1に記載の装置。
【請求項17】
前記複数のX線検出素子のうちの少なくとも3つのX線検出素子が、前記接平面に対して平行な方向に沿って少なくともいくつかの分散されたX線を測定するように構成された、請求項1に記載の装置。
【請求項18】
前記X線源の前記標的が、Cr、Fe、Co、Ni、Cu、Mo、Rh、Pd、Ag、Ta、W、およびAuからなる群から選択された、1つ以上のX線生成標的材料を含む、請求項1に記載の装置。
【請求項19】
前記X線源の前記標的が、ダイヤモンド基材を含み、前記1つ以上のX線生成標的材料が、前記ダイヤモンド基材上に、または前記ダイヤモンド基材の中に、埋め込まれた、請求項18に記載の装置。
【請求項20】
前記X線源が、前記接平面に対して平行な方向に、50ミクロン未満の有効源サイズを有する、請求項1に記載の装置。
【請求項21】
前記X線源が、前記接平面に対して垂直な方向に、20~4000ミクロンの範囲の有効源サイズを有する、請求項1に記載の装置。
【請求項22】
前記結晶解析装置と前記空間分解検出器との間にアパーチャをさらに備える、請求項1に記載の装置。
【請求項23】
前記アパーチャが、3ミクロン~1000ミクロンの範囲の幅を有するスリットアパーチャである、請求項22に記載の装置。
【請求項24】
ビームストップであって、前記結晶解析装置によって回折されたのではない、前記X線源からの前記X線が、前記複数のX線検出素子によって受光されるのを防止するように、構成されたビームストップをさらに備える、請求項1に記載の装置。
【請求項25】
前記複数のX線検出素子によって生成された信号を解析することと、X線エネルギーの関数としてX線束のX線スペクトルを生成することによって前記信号に応答することと、異なる第1および/または第2のX線エネルギーで得られたX線スペクトルを、単一の組み合わせられたX線スペクトルに変換することと、をするように構成されたコンピュータシステムをさらに備える、請求項1に記載の装置。
【請求項26】
前記複数のX線検出素子の前記X線検出素子のうちの1つ以上によって測定されたX線吸収スペクトルを記録することと、解析を受けている試料の分光画像を生成することと、をするように構成されたコンピュータシステムをさらに備える、請求項1に記載の装置。
【請求項27】
蛍光モードX線吸収分光装置であって、
結晶解析装置と、
電子による衝撃の際にX線を生成するように構成された少なくとも1つの標的を備えるX線の源と、を備え、前記源および前記結晶解析装置は、接平面内に、ローランド円半径(R)を有するローランド円を画定し、前記源は、前記接平面に平行な方向に100ミクロン未満の有効源サイズを有し、および/または前記接平面に垂直な方向に20~4000ミクロンの範囲の有効源サイズを有し、前記蛍光モードX線吸収分光装置はさらに、
検出器と、
少なくとも1つのステージとを備え、前記少なくとも1つのステージは、試料の少なくとも一部が前記結晶解析装置と前記検出器との間にあるように前記試料を位置決めするように構成され、
前記結晶解析装置は、前記接平面内の前記ローランド円上に配置され、前記結晶解析装置が、前記ローランド円半径の2倍(2R)に実質的に等しい曲率半径を有する、少なくとも前記接平面内の少なくとも1つの方向に沿って曲がった結晶面を備え、前記結晶面は、X線を受光し、受光したX線をブラッグの法則に従って分散させるように構成され、前記検出器が、分散されたX線の少なくとも一部を受光するように構成された空間分解検出器を備え、
前記空間分解検出器は、調整可能な第1のX線エネルギーおよび/または調整可能な第2のX線エネルギーを有する複数のX線検出素子を備え、前記複数のX線検出素子は、前記第1のX線エネルギーを上回る前記受光した分散されたX線の測定を抑制しながら、前記第1のX線エネルギーを下回るX線エネルギーを有する前記受光した分散されたX線を測定し、および/または前記第2のX線エネルギーを下回るX線エネルギーを有する前記受光した分散されたX線の測定を抑制しながら、前記第2のX線エネルギーを上回る前記受光した分散されたX線の測定をするように構成され、前記第1のX線エネルギーおよび前記第2のX線エネルギーが、1.5keV~30keVの範囲で調整可能である、蛍光モードX線吸収分光装置。
【請求項28】
前記第1のX線エネルギーおよび前記第2のX線エネルギーが、50eV~5keVの範囲のエネルギーだけ互いと異なる、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項29】
前記複数のX線検出素子のうちの少なくとも3つのX線検出素子は、前記接平面に垂直な方向に沿って少なくともいくつかの前記分散されたX線を測定するように構成され、および/または前記複数のX線検出素子のうちの少なくとも3つのX線検出素子は、前記接平面に平行な方向に沿って少なくともいくつかの前記分散されたX線を測定するように構成される、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項30】
前記少なくとも1つのステージは、前記源に対して前記結晶解析装置を位置付けるように、前記結晶面の少なくとも1つの方向を前記接平面に合わせるように、距離Dに前記空間分解検出器を位置付けるようにさらに構成され、前記少なくとも1つのステージが、前記ローランド円の幾何学的形状を維持するために、前記源、前記結晶解析装置、および前記空間分解検出器の相対的な位置が変更される間に、所定の角度範囲にわたって前記結晶解析装置を回転させるように構成された、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項31】
前記複数のX線検出素子の各X線検出素子は、3ミクロンから200ミクロンの間の線寸法を有する、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項32】
前記分散されたX線は、前記接平面に垂直または平行な少なくとも1つの方向に沿って2eV~250eVの範囲のエネルギー帯域幅を有する、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項33】
前記検出器は、少なくとも部分的に前記ローランド円の内側に配置される、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項34】
前記複数のX線検出素子は、3keVよりも良好なエネルギー分解能を有する、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項35】
前記結晶解析装置は、円筒形に曲がったJohansson結晶解析装置を備える、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項36】
前記ローランド円半径は、50ミリメートル~1000ミリメートルの範囲である、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項37】
前記少なくとも1つの標的は、Cr、Fe、Co、Ni、Cu、Mo、Rh、Pd、Ag、Ta、WおよびAuからなる群から選択された、1つまたは複数のX線発生標的材料を備える、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項38】
前記少なくとも1つの標的はダイヤモンド基板を備え、前記1つまたは複数のX線発生標的材料は前記ダイヤモンド基板上または前記ダイヤモンド基板内に埋め込まれる、請求項37に記載の蛍光モードX線吸収分光装置。
【請求項39】
前記源は、前記接平面に平行な方向に50ミクロン未満の有効源サイズを有する、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項40】
前記結晶解析装置と前記検出器との間のアパーチャをさらに備える、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項41】
前記アパーチャは、3ミクロン~1000ミクロンの範囲の幅を有するスリットアパーチャである、請求項40に記載の蛍光モードX線吸収分光装置。
【請求項42】
ビームストップは、前記結晶解析装置によって回折されないX線源からのX線が前記検出器によって受光されるのを防止するように構成されることをさらに備える、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項43】
前記検出器によって生成された信号を解析することと、X線エネルギーの関数としてX線束のX線スペクトルを生成することによって前記信号に応答することと、異なるX線エネルギーで得られたX線スペクトルを、単一の組み合わせられたX線スペクトルに変換することと、をするように構成されたコンピュータシステムをさらに備える、請求項27に記載の蛍光モードX線吸収分光装置。
【請求項44】
前記検出器によって測定されたX線吸収スペクトルを記録し、分析中の前記試料の分光画像を生成するように構成されたコンピュータシステムをさらに備える、請求項27に記載の蛍光モードX線吸収分光装置。
【発明の詳細な説明】
【技術分野】
【0001】
優先権の主張
本出願は、参照により全体が本明細書に組み込まれる、2020年5月18日に出願された米国特許仮出願63/026,613号の優先権の利益を主張する。
【0002】
背景
分野
本出願は、全体としてX線吸収分光法システムに関する。
【背景技術】
【0003】
関連技術の説明
X線吸収分光法(X-ray absorption spectroscopy:XAS)は、物質の局所的な原子の幾何学的及び/又は電子的状態を決定するために広く使用されている技術である。XASデータは、典型的には、多くの場合結晶モノクロメータを使用して、内殻電子を励起できる範囲(1~30keV)へ光子エネルギーを調整することによって得られる。端は、部分的に、どの内殻電子が励起されるかによって命名され、主量子数n=1、2、及び3は、それぞれK、L、及びM端に対応する。例えば、1s電子の励起は、K端で起こり、2s又は2p電子の励起は、L端で起こる。
【0004】
XASは、材料マトリックス中の元素のX線吸収応答を、K端、L端、及びM端をそれぞれ含む元素の吸収端の1つを横切るエネルギー範囲にわたって測定する。XASスペクトルには3つの主なスペクトル領域があり、1)ピーク吸収エネルギーの前の、プレ・エッジ・スペクトル領域(white line)、2)white lineより高い約10eVから約150eVまでのエネルギー範囲の、NEXAFS(Near-edge X-ray Absorption Fine Structure(端近傍X線吸収微細構造))とも呼ばれるX線吸収端近傍構造(X-ray Absorption Near-Edge Structure:XANES)領域、並びに3)吸収端より高い、及びそれを含む、1000eVまでのエネルギー範囲のEXAFS(Extended X-ray Absorption Fine Structure(広域X線吸収微細構造))領域である。
【0005】
透過モードXASは、関心のある元素を含有する物体を通して透過させられたX線を測定する。XASスペクトルは、XASスペクトルのスペクトル領域、及び吸収端のエネルギーに応じて、十分に高いX線エネルギー分解能で、(例えば、0.3eV~10eVの範囲で)測定される。広いエネルギーバンド幅にわたってX線を放出するX線源については、単結晶解析装置は、典型的には、ブラッグの法則に従って狭いエネルギーバンド幅を選択するために使用される。
【0006】
【数1】
【0007】
式中、dは結晶解析装置の格子間隔、θはブラッグ角、nは整数、λはブラッグの法則を満たすX線の波長である。結晶解析装置のより高いミラー指数の結晶面によって回折される、λ/nに等しい波長のX線は、高次高調波と呼ばれる。さらに、より大きいd間隔を有する、より低いミラー指数の結晶面は、低次高調波と呼ばれる、比例して大きい波長を有するX線を反射する。
【発明の概要】
【課題を解決するための手段】
【0008】
概要
本明細書に記載の特定の実現では、装置は、電子による衝撃の際にX線を生成するように構成された標的を備える、X線源を備える。装置は、接平面内でローランド円上のX線源に対して相対的に位置付けられた、ローランド円半径(R)を有する結晶解析装置をさらに備える。結晶解析装置は、ローランド円半径の2倍(2R)に実質的に等しい曲率半径を有する、少なくとも接平面内の少なくとも1つの方向に沿って曲がった結晶面を備える。結晶面は、X線源からX線を受けるように、及び受けたX線をブラッグの法則に従って分散するように、構成される。装置は、分散されたX線の少なくとも一部を受けるように構成された、空間分解検出器をさらに備える。空間分解検出器は、調整可能な第1のX線エネルギー及び/又は調整可能な第2のX線エネルギーを有する、複数のX線検出素子を備える。複数のX線検出素子は、第1のX線エネルギーより高い受けた分散されたX線の測定を抑制しながら、第1のX線エネルギーより低いX線エネルギーを有する受けた分散されたX線を測定するように、及び/又は第2のX線エネルギーより低い受けた分散されたX線の測定を抑制しながら、第2のX線エネルギーより高いX線エネルギーを有する受けた分散されたX線を測定するように、構成される。第1及び第2のX線エネルギーは、1.5keV~30keVの範囲で調整可能である。
【0009】
本明細書に記載の特定の実現では、蛍光モードX線吸収分光装置は、X線の源、結晶、及び検出器を備える。源及び結晶は、ローランド円を画定する。装置は、検出器が試料の表面に面して、ローランド円の焦点で試料を受けるように構成される。
【0010】
本明細書に記載の特定の実現では、方法は、XANESスペクトルを収集することを含む。方法は、XANESスペクトルよりも粗い分解能を有する、EXAFSスペクトルを収集することをさらに含む。EXAFSスペクトルは、少なくとも30eVのエネルギー領域内でXANESスペクトルにオーバーラップする。方法は、XANESスペクトル及びEXAFSスペクトルを互いに対してエネルギー領域内で正規化し、エネルギー領域内のEXAFSスペクトルをエネルギー領域内のXANESスペクトルと置き換え、組み合わせられたスペクトルを生成することと、をさらに含む。
【図面の簡単な説明】
【0011】
図1】2種類の結晶解析装置、Johann結晶解析装置(左)及びJohansson結晶解析装置(右)を概略的に示す図である。
図2】400ミクロンのX線源スポットサイズ及び500ミリメートルのローランド円直径(2R)での、8keVのX線についての、ブラッグ角θの関数としての、例示的な計算されたエネルギー広がりΔEのプロットである。
図3】解析されている試料内の元素の原子番号の関数としての、X線ラインエネルギー及び放射ライン幅のプロットである。
図4】本明細書に記載の特定の実現による例示的な装置を概略的に示す図である。
図5】本明細書に記載の特定の実現による、例示的な円筒状に曲がったJohansson結晶解析装置から下流の、分散されたX線のシミュレーション光線追跡を概略的に示す図である。
図6】本明細書に記載の特定の実現による、例示的な球状に曲がったJohansson結晶解析装置から下流の、分散されたX線のシミュレーション光線追跡を概略的に示す図である。
図7】本明細書に記載の特定の実現による、例示的な球状に曲がったJohann結晶解析装置から下流の、分散されたX線のシミュレーション光線追跡を概略的に示す図である。
図8】タングステン(W)標的、ロジウム(Rh)標的、及びモリブデン(Mo)標的からのシミュレートされたX線スペクトルを示す図である。
図9】本明細書に記載の特定の実現による、様々な標的についての、例示的な円筒状に曲がったJohansson結晶解析装置から下流の分散されたX線のシミュレーション光線追跡を概略的に示す図である。
図10】本明細書に記載の特定の実現による、XAS測定のために構成された例示的な装置を概略的に示す図である。
図11】本明細書に記載の特定の実現による、XAS測定のために構成された別の例示的な装置を概略的に示す図である。
図12】本明細書に記載の特定の実現による、XAS測定のために構成された別の例示的な装置を概略的に示す図である。
図13A】本明細書に記載の特定の実現による、X線源と結晶解析装置との間に試料を有するように構成された例示的な装置の、接平面及びサジタル平面を概略的に示す図である。
図13B】本明細書に記載の特定の実現による、結晶解析装置と空間分解検出器との間に試料を有するように構成された例示的な装置の、接平面及びサジタル平面を概略的に示す図である。
【発明を実施するための形態】
【0012】
詳細な説明
概観
良質な及び高スループットのXAS測定のために実験室X線源を使用するXASシステムには、いくつかの課題がある。これらの課題は、主に、実験室X線源及び既存のXASシステム設計に根ざしている。X線源に関連する課題には、以下のものが含まれる。
【0013】
・長い測定時間をもたらす低いX線源輝度、
・高いブラッグ角で動作する結晶解析装置、源から結晶への大きい解析装置距離、又はそれらの組合せを必要とする、大きいX線源スポットサイズ、
・XAS測定に有用ではない拡大されたX線エネルギー範囲にわたる狭い特性スペクトル線の存在、並びに
・XAS測定に有用なX線の生成を減少させる、結晶解析装置によって反射され得る高次高調波を最小化するための最大電子加速電圧への制約。
【0014】
高いブラッグ角で動作する結晶解析装置に関連する問題には、過度に狭いエネルギーバンド幅を有する、結晶解析装置の高いミラー指数の結晶面の使用と、結晶解析装置のより高いミラー指数の結晶面によって反射される高次高調波、及び/又は結晶解析装置のより低いミラー指数の結晶面によって反射される(nが整数の分数である)低次高調波に起因するスペクトル汚染と、結晶解析装置ごとの、制限されたX線調整X線範囲と、測定されるX線エネルギーにわたる試料上の大きいビームサイズ変化と、が含まれる。X線エネルギーの、より高次及び/又はより低次の高調波は、XAS測定の信号対雑音比を減少させるのであり、XAS測定の質及びスループットの実質的な減少をもたらす可能性がある。この問題はまた、透過モードXAS測定において透過させられるX線を測定するために使用される、X線検出器に課題を課す。
【0015】
さらに、いくつかの問題は、正確なX線スペクトル測定を妨げる可能性があり、1)測定中におけるX線源、結晶解析装置、及び検出器の間の相対位置の変化と、2)結晶解析装置の角度安定性と、3)測定中におけるX線源のX線スペクトルの変化と、が含まれる。
【0016】
本明細書に記載の特定の実現は、有利なことに、正確なX線スペクトル測定を提供するためにこれらの問題のうちの少なくともいくつかを回避する。さらに、本明細書に記載の特定の実現は、X線源から放出されるX線の、大きい立体角を収集することによって、より高いデータ収集速度を達成する。
【0017】
1970年代及び1980年代に、材料解析のためのX線吸収分光法の能力と実験室ベースのXASシステムの利便性との認識によって、多くの実験室XASシステムが学術団体によって開発された。リガクは、商用の実験室XASシステムのモデルをいくつか開発したが、しばらく前にそれらを放棄した。ほとんどの実験室XASシステムは、電子衝撃実験室X線源、ローランド円の幾何学的形状で動作するように設計された円筒状に湾曲した結晶、及び単一要素(例えば点)X線検出器(例えば、イオン化チャンバ又は比例計数管など)を使用する。XASスペクトルは、典型的には、1点ずつX線エネルギーを走査することによって生成される。エネルギー走査は、ローランド円に沿って結晶と検出器の両方を移動させながら、湾曲した結晶を回転させることによって実現される。
【0018】
そのような従来の実験室アプローチは、不十分なエネルギー分解能、劣ったXASデータの質、長い測定時間、大きい照射されるエリアに関連する厳しい試料準備要件、単一スペクトルの獲得のために複数の結晶の使用を必要とすること、並びに標準的な動作についての製造困難性(例えば、ローランド円に沿って重い回転するアノードX線源を移動させること、及び/又は関心のある試料がインサイチュ環境に置かれている場合に困難である、試料を移動させること、に関連する課題)を含む、欠点をこうむった。それらの欠点は、シンクロトロンX線源ベースのXAS設備の利用可能性の増大と相まって、実験室ベースのXASの開発の衰退をもたらした。
【0019】
図1は、2種類の結晶解析装置、Johann結晶解析装置(左)及びJohansson結晶解析装置(右)を概略的に示す。より早期のシステムでは、結晶は、円筒状に湾曲していたのであり、1つの次元では平坦で、他の次元では円筒の一部のように曲がっていた。Johann型とJohansson型の結晶は、広がり誤差が異なる。Johann型結晶については、中心から離れた結晶上の反射点は、ローランド円の外側にあり(図1を見られたい)、そのため、結晶の網状平面によってそれら非中心点で反射されたX線は、異なる点に集束され、幾何学的形状から生じる集束収差(例えば、Johann誤差であり、集束誤差とも呼ばれる)を引き起こす。これらの集束収差は、エネルギー分解能の劣化をもたらし、これは、ブラッグ角θに依存するのであり、かつ以下の式で表すことができる。
【0020】
【数2】
【0021】
式中、lは、ローランド円に沿った結晶サイズ(例えば幅)であり、Rは、ローランド円直径である。この関係は、より低いブラッグ角では集束収差が急速に増加すること、及び、したがって、θのコタンジェントが小さい場合には、(通常は70度よりも大きい)より高いブラッグ角を使用して高エネルギー分解能測定が実行されることを含意する。比較すれば、Johansson結晶解析装置は、結晶が、その表面がローランド円に一致しかつJohansson型結晶のすべての点がローランド円上に合致するように、研削されているから、Johann集束収差をこうむらない(図1を見られたい)。
【0022】
ワシントン大学のJerry Seidler教授が主導するグループによって開発された例示的な実験室XASシステムは、球状に湾曲した(例えば、円筒状に湾曲した単一の曲がった状態ではなく、二重に曲がった)Johann結晶解析装置及びシリコンドリフト検出器を含む、最近開発された市販のX線構成要素を有する従来の実験室X線源に基づいている。(例えば、55度以上の)大きいブラッグ角は、Johann集束誤差の結果として生じる結晶解析装置によって反射されるX線の最小のエネルギー広がりを達成するために使用され、エネルギー広がりΔEは、
【0023】
【数3】
【0024】
によって与えられ、式中、Eは、X線エネルギーであり、Δwは、結晶によって見られる通りの、X線源の角度幅である。高いブラッグ角の使用は、(有限の源スポットサイズからの源広がり、及びJohann誤差を最小化するから)高いエネルギー分解能を可能にする。
【0025】
図2は、400ミクロンのX線源スポットサイズ及び500ミリメートルのローランド円直径(2R)での、8keVのX線についての、ブラッグ角θの関数としての、例示的な計算されたエネルギー広がりΔEのプロットである。角度寄与(Δw)は、X線源スポットサイズを、X線源から結晶までの距離(2・R・sinθと同等である)で除算したものである。図2に示すように、高いブラッグ角は、大きいX線源について使用され、8keVのX線に対する2eVのエネルギー分解能は、73度以上の角度において達成される。
【0026】
高いブラッグ角では、良質な単結晶材料(例えば、Si及びGe)の高いミラー指数の回折面が、典型的には使用され、これは、いくつかの重大な欠点をもたらす。高いミラー指数の結晶の反射は、非常に狭いダーウィン幅を有し、これは、結晶のエネルギーバンド通過が、ほとんどのXAS測定について望まれるX線エネルギー分解能よりも実質的に小さいことを意味する(例えば、約2keVのXANESについては0.5eVぐらい、XANESのより高いエネルギー吸収端については1eV~4eV)。したがって、高いミラー指数の結晶は、有用な源であるX線の大きな損失を、したがって源であるX線の無駄をもたらす、過度に狭いエネルギーフィルタとして作用する。さらに、高次高調波を含む望ましくないX線は、より低いミラー指数の面よりも、より高いミラー指数の結晶面を有する結晶解析装置によって反射される可能性があり、結果としてXASスペクトルのより低い質がもたらされる。
【0027】
高いブラッグ角を使用することの、別の主な欠点は、複数の結晶の使用である。高いブラッグ角における結晶回転の1度当たりのエネルギー変化は、低いブラッグ角におけるよりも実質的に小さく、結果的に結晶解析装置ごとのエネルギーカバレッジが制限される。したがって、動作エネルギー範囲をカバーするために多くの結晶解析装置が利用される。例えば、30度のブラッグ角及び8KeVのX線については、結晶の回転は、1度当たり約236eVをカバーするが、一方、85度においては、結晶の回転は、1度当たり約12.4eVしかカバーしない。したがって、約100eVカバレッジの測定については、より低いブラッグ角の使用は、カバーされる範囲を容易に満たすが、より高いブラッグ角ではそうではない。元素の周期表のうちの大きな部分に対処できる広いエネルギーカバレッジ(例えば、2~20keV)を有するそのようなシステムは、非現実的に多数である結晶の使用によって、扱いにくく高価になるであろう。さらに、試料上のビームサイズはまた、より高いブラッグ角においては、より低いブラッグ角におけるよりも実質的に速くX線エネルギーと共に変化し、均質な試料(例えば、良好な試料均一性)の使用、又は不均質な試料によるXASスペクトルのより低い質につながる。
【0028】
1970年代及び1980年代の実験室ベースのX線システムに存在した、重要な課題は、信号を汚染する高調波の存在であった。そのようなより早期のシステムは単純に、スペクトルの汚染を回避するために、最低のより高次の高調波の、エネルギー未満の、電子加速電圧(例えば、kVp)でX線源を動作させた。電子衝撃によって生成される制動放射X線の量は、加速電圧に比例するから、加速電圧のこの低減は、X線源効率を犠牲にして行われた。X線源をより高い効率で動作させるために、Seidlerのグループは、XASスペクトルに対する高調波汚染の問題を回避するためにシリコンドリフト検出器(silicon drift detector:SDD)を使用するが、しかし新しい問題が持ち込まれる。第1に、SDDの活性領域の寸法は、典型的には非常に小さく、直径4~12mmぐらいであり、これは、ローランド円平面に対して垂直な方向に沿って結晶解析装置によって反射されるビームよりもはるかに小さいのであり得、したがって長いデータ収集時間をもたらす。検出器のサイズは、ポイント・ツー・ポイントの集束を利用するから、SDDの使用はまた、そのシステム設計を、球状に湾曲したJohann結晶解析装置(spherically bent Johann crystal analyzer:SBCA)を使用することに制限する。Johannの広がり誤差に起因して、それらのシステムは、高いブラッグ角での動作に制限される。SDDの別の問題は、許容可能な線形性での最大計数速度が毎秒100万未満であり、それらの使用を、より低い計数速度を有するシステムに制限することである。
【0029】
本明細書で開示される特定の実現は、上述の以前の実験室XASシステムの問題のうちの少なくともいくつかを回避し、及び格別の能力を有する実験室XASシステムを可能にする、実験室XASシステム(例えば装置)を提供する。
【0030】
本明細書の説明では、ローランド円の平面を接平面と呼び、接平面に沿った方向を接線方向と呼び、接平面に対して垂直な方向をサジタル方向と呼ぶ。
【0031】
特定の厚さの所与の試料についての単位エネルギーバンド幅当たりの単位時間当たりのX線光子の数によって与えられる、X線信号は、
【0032】
【数4】
【0033】
によって近似的に記述することができ、式中、SD及びSSは、それぞれ接線方向及びサジタル方向における、X線源のX線生成スポットサイズ(又は具体的なシステム設計に応じた検出器アパーチャのサイズ)であり、Bは、(X線源のX線生成スポットサイズSD及びSSに依存する)X線源の輝度であり、Tは、試料を通るX線透過率であり、ΩD及びΩSは、それぞれ接平面及びサジタル方向における結晶解析装置の収集角度であり、Rは、(結晶反射面のミラー指数、及び使用される材料の選択に依存する)結晶解析装置の反射率であり、Dは、検出器の検出効率であり、ΔEは、システムのエネルギー分解能であり、Mは、同時に測定される(エネルギー)スペクトルモードの数であり、同時に測定されるエネルギー範囲をΔEで除算したものに等しい。
【0034】
エネルギー分解能ΔEは、XAS測定についての所望のエネルギー分解能を満たすように選択することができる。(X線源スポットサイズ、及びX線源と結晶解析装置との間の距離によって決定される)X線ビームの幾何学的広がり、結晶のダーウィン幅、結晶内へのX線の透過、並びにアパーチャの有限のサイズを含む、いくつかの要因は、以下によって近似的に表されるように、エネルギー分解能ΔEに影響を及ぼす。
【0035】
【数5】
【0036】
式中、ωCは、結晶のダーウィン幅であり、μは、特定のX線エネルギーについての、試料の線形吸収係数である。XANES領域内のXAS測定については、エネルギー分解能ΔEは、コアホール広がりに起因して、吸収端に固有の放射ライン幅未満となり得る。XANES領域よりも高いエネルギーのEXAFSスペクトル領域内でのXAS測定については、エネルギー分解能ΔEは、放射ライン幅よりも高く10eVまでであり得る。
【0037】
本明細書に記載の特定の実現は、具体的なXAS測定についてエネルギー分解能と測定速度との間の最適なトレードオフを得る、エネルギー分解能ΔEを有する。エネルギー分解能が粗すぎる場合、XASスペクトルのより細かい詳細は得られない。しかしながら、エネルギー分解能が細かすぎる場合、スペクトルの獲得に長くかかりすぎることによって、スループット損失の形で著しい不利益を受け、システムを非実用的にする。本明細書に記載の特定の実現は、スループットとエネルギー分解能との間のトレードオフを最適化する、X線源スポットサイズ、パワー負荷、結晶選択、及びアパーチャ開口部の賢明な選択を提供する。
【0038】
図3は、解析されている試料内の元素の原子番号の関数としての、X線ラインエネルギー及び放射ライン幅のプロットである。図3に示すように、放射ライン幅は、典型的には、X線吸収端のエネルギーに依存する。本明細書に記載の特定の実現では、XASシステムは、適切なXAS測定のための所望の(例えば必要とされる)エネルギー分解能と一致するエネルギー分解能を有するように構成される。例えば、放射ライン幅の0.2倍~1倍のエネルギー分解能は、具体的な用途に基づいてXANESスペクトル領域内でのXAS測定のために選択することができる。より粗いエネルギー分解能は、源であるX線を効率的に使用してスループットを向上するために、EXAFS領域のために選択することができる。
【0039】
例示的な実現
図4は、本明細書に記載の特定の実現による例示的な装置100を概略的に示す。装置100は、電子による衝撃の際にX線114を生成するように構成された標的112を備える、X線源110を備える。装置100は、接平面内でローランド円150上のX線源110に対して相対的に位置付けられた、ローランド円半径(R)を有する結晶解析装置120をさらに備える。結晶解析装置120は、ローランド円半径の2倍(2R)に実質的に等しい曲率半径を有する、少なくとも1つの方向124に沿って曲がった結晶原子面122を備える。結晶原子面122は、X線源110からX線114を受けるように、及び受けたX線をブラッグの法則に従って分散する(例えば、分散されたX線126)ように、構成される。装置100は、結晶解析装置120の下流側128から距離(D)に位置付けられた空間分解検出器130をさらに備え、Dは、2R以下である。空間分解検出器130は、分散されたX線126のうちの少なくとも一部を受けるように構成され、空間分解検出器130は、調整可能な第1のX線エネルギー及び/又は調整可能な第2のX線エネルギーを有する、複数のX線検出素子132を備える。複数のX線検出素子132は、第1のX線エネルギーより高い受けた分散されたX線126の測定を抑制しながら、第1のX線エネルギーより低いX線エネルギーを有する受けた分散されたX線126を測定するように、及び/又は第2のX線エネルギーより低い受けた分散されたX線126の測定を抑制しながら、第2のX線エネルギーより高いX線エネルギーを有する受けた分散されたX線126を測定するように、構成される。第1及び第2のX線エネルギーは、1.5keV~30keVの範囲で調整可能である。
【0040】
特定の実現では、ローランド円150は、X線114が当たる結晶解析装置120の表面の中心に接する円である。特定の実現におけるローランド円半径(R)は、100ミリメートル未満の範囲内、100ミリメートル~200ミリメートルの範囲内、200ミリメートル~300ミリメートルの範囲内、300ミリメートル~500ミリメートルの範囲内、又は500ミリメートル~1000ミリメートルの範囲内である。
【0041】
特定の実現では、装置100は、接平面内でローランド円150上のX線源110に対して結晶解析装置120を位置付け結晶原子面122の曲がった方向124が接平面に合わせられるように、及び結晶解析装置120の下流側128から距離(D)に空間分解検出器130を位置付けるように構成された少なくとも1つのステージ140をさらに備える。例えば、少なくとも1つのステージ140は、(例えば、実質的に垂直なx方向、y方向、及びz方向に沿って)結晶解析装置120の位置を調節するように構成された少なくとも1つの直線運動ステージと、(例えば、主軸の周りの実質的に垂直なピッチ、ヨー、ロール角で)結晶解析装置120の向きを調節するように構成された少なくとも1つの回転運動ステージとを備えることができる。別の例では、少なくとも1つのステージ140は、(例えば、実質的に垂直なx方向、y方向、及びz方向に沿って)空間分解検出器130の位置を調節するように構成された少なくとも1つの直線運動ステージと、(例えば、主軸の周りの実質的に垂直なピッチ、ヨー、ロール角で)空間分解検出器130の向きを調節するように構成された少なくとも1つの回転運動ステージとを備えることができる。
【0042】
特定の実現では、装置100は、X線源110と結晶解析装置120との間か又は結晶解析装置120と空間分解検出器130との間のいずれかに解析のための試料162を位置付けるように構成された、試料ステージ160をさらに備える。例えば、試料ステージ140は、(例えば、実質的に垂直なx方向、y方向、及びz方向に沿って)試料162の位置を調節するように構成された少なくとも1つの直線運動サブステージと、(例えば、主軸の周りの実質的に垂直なピッチ、ヨー、ロール角で)試料162の向きを調節するように構成された少なくとも1つの回転運動サブステージとを備えることができる。
【0043】
特定の実現では、結晶解析装置120は、低いブラッグ角(例えば、10度~60度の範囲、10度~40度の範囲、10度~30度の範囲)で動作させられるように構成される。例えば、曲がった結晶原子面122は、低いミラー指数(例えば、Si<111>、Si<220>、Ge<111>、Ge<400>)を有し、かつ少なくとも1つの方向124に沿って湾曲して(例えば、機械的に変形して曲がって)100ミリメートル~2000ミリメートルの範囲の曲率半径(2R)を有する、結晶原子面(例えば、シリコン、ゲルマニウム、及び石英からなる群から選択される単結晶材料の原子面)を備えることができる。特定の実現では、曲がった低いミラー指数の結晶原子面122は、低いブラッグ角において、有利なことに試料均一性の制約を緩和することができる。低いブラッグ角では、結晶解析装置120が回転させられる際、解析に寄与する試料162上のX線ビームサイズの変化は、小さいからである。
【0044】
特定の実現では、そのような曲がった低いミラー指数の結晶原子面122を使用することによって、結晶解析装置120は、行われるX線吸収分光法(XAS)測定の所定のスペクトル領域に従って最適化された、エネルギー分解能を有することができる。例えば、エネルギー分解能は、測定される元素の放射ライン幅の0.2~1倍であるように選択することができ(例えば図3を見られたい)、ここで当該放射ライン幅は、ピーク吸収端エネルギーよりも前のプレ・エッジ・スペクトル領域及びX線吸収端近傍構造(XANES)領域についての、コアホール広がりに起因し、エネルギー分解能は、EXAFS領域についての放射ライン幅の1~5倍であるように選択することができる。結晶解析装置120のそのようなエネルギー最適化は、源であるX線114の効率的な使用、及び高速なデータ獲得速度を可能にすることができる。
【0045】
特定の実現では、曲がった低いミラー指数の結晶原子面122は、結晶解析装置120の回転の1度当たりの大きなエネルギー変化を提供し、それによって、結晶解析装置120がXAS測定についての所与の回転角度範囲にわたって大きなエネルギー範囲をカバーすることを可能にする。特定のそのような実現では、少数の結晶解析装置120を、大きなエネルギー範囲にわたるXAS測定に使用することができる。例えば、10度~50度の範囲のブラッグ角で動作する、1つのものがGe<111>結晶原子面122を有し、他のものがGe<200>結晶原子面を有する、たった2つだけの結晶解析装置120は、4keV~20keVのエネルギー範囲にわたるXAS測定に十分であり得る。
【0046】
特定の実現では、曲がった結晶原子面122についての接平面(例えば分散面)における、源であるX線の収集角度(例えば効率)は、平坦な結晶原子面についてよりも大きいのであり得、それによって、接平面内のローランド円150において、収束する(例えば、集束される)X線ビームを生成する。例えば、ローランド円150上に集束されるX線ビーム126では、単一要素の検出器を使用することができる。特定の実現では、エネルギー分解能を向上するために、ローランド円150上で及び検出器130の上流側で、スリットアパーチャを使用することができる。例えば、50ミリメートル~100ミリメートルのオーダの結晶解析装置120のサイズでは、接平面内の狭いエネルギーバンド幅の約0.1ラジアン~0.3ラジアンの収集角度をもたらすことができ、これは、受入れ角度がダーウィン幅によって決定される(例えば、10マイクロラジアン~50マイクロラジアンの範囲内)、平坦な結晶によるよりも、2桁を超えて高いのであり得る。特定の実現では、結晶原子面122はまた、サジタル方向に曲がっている(例えば、湾曲している)とすることができ、それによってサジタル方向のX線126の収集角度も増加させられる。
【0047】
特定の実現では、装置100は、円筒状に曲がった(例えば湾曲した)Johansson結晶解析装置120を備え、これは、所与のX線エネルギーについて、接線方向には大きなX線収集角度を、しかしサジタル方向には限られたX線収集角度を提供し得る。特定の他の実現では、装置100は、球状に曲がった(例えば湾曲した)Johansson結晶解析装置、球状に曲がった(例えば湾曲した)Johann結晶解析装置、円筒状に曲がった(例えば湾曲した)Johann結晶解析装置、又はWittry幾何学的形状を有する解析装置を備える。
【0048】
図5は、本明細書に記載の特定の実現による、例示的な円筒状に曲がったJohansson結晶解析装置120から下流の、分散されたX線126のシミュレーション光線追跡を概略的に示す。図5の例示的な円筒状に曲がったJohansson結晶解析装置120は、300ミリメートルに等しいローランド円半径R、及び600ミリメートルに等しい結晶面曲げ半径2Rを有するのであり、X線源110は、接線方向に±40ミリラジアン及びサジタル方向に±48ミリラジアンの角度内でX線114を放出する点源、並びに8047eV~8054eVの範囲のX線エネルギーの組として、図5の各バンドが1eVエネルギーバンドに対応して、シミュレートされた。横軸は、ローランド円150に平行な接線方向の距離であり、縦軸は、サジタル方向の距離である。最も左のプロットでは、バンドの各々は、1つのエネルギーのX線を反射する結晶解析装置120の表面エリアに対応する。中央のバンドは、8048eVのエネルギーを有するX線に対応し、残りのバンドは、8048eVよりも高いエネルギーを有するX線に対応する。中央縞から数えたバンドの各対は、X線エネルギーの1eVの増加に対応する。図5の、他のプロットは、ローランド円150に対して相対的な様々な場所(例えば、ローランド円150の内側へ200ミリメートル、ローランド円150の内側へ50ミリメートル、ローランド円150の内側へ5ミリメートル、及びローランド円150上)における、分散されたX線126の例示的なX線スペクトル分布を示す。
【0049】
図5に見られるように、例示的な円筒状に曲がったJohansson結晶解析装置120は、高いエネルギーのX線分散で、サジタル方向に広いエネルギー範囲を分散することができる。分散されたX線126は、サジタル方向に沿って角度的に分散されたX線126を区別するために、サジタル方向に沿って位置付けられた少なくともいくつかの検出素子132を有する、検出器130によって測定することができる(例えば、十分な空間分解能を有する、サジタル方向に沿った複数の検出器素子132を有する、検出器130は、スペクトルを分解することができる)。このようにして、装置100は、十分に高いエネルギー分解能で、有限のX線エネルギー範囲にわたってスペクトルを測定することができる。さらに、スペクトルを測定するための空間分解能は、検出器130が結晶解析装置120の近く(例えば、ローランド円150内)に位置付けられる場合、大幅に緩和することができる。
【0050】
検出素子132のうちのいくつか又はすべてが、関心のあるXASエネルギーバンド幅(例えば、50eV~5keV)を定義するための少なくとも1つのエネルギー閾値(例えば、調整可能な第1及び第2のX線エネルギー)を有する、特定の実現では、XASスペクトルの信号対雑音比は、関心のあるXASエネルギーバンド幅より高いX線126の測定を抑制(例えば、当該X線126を拒絶)しそれによって結晶解析装置120によって回折される1つ以上の高調波を抑制(例えば拒絶)することによって、及び/又は蛍光X線を抑制(例えば拒絶)することによって関心のあるXASエネルギーバンド幅より低いX線エネルギーを有するX線126を拒絶することによって、改善することができる。
【0051】
特定の実現では、装置100は、球状に曲がった(例えば湾曲した)Johansson結晶解析装置120を備え、これは、所与のX線エネルギー分解能について、接線方向には大きなX線収集角度を、及びサジタル方向にはより高いX線収集角度を、円筒状に曲がったJohansson結晶解析装置120がし得るよりも提供し得る。球状に曲がったJohansson結晶解析装置120は、接線方向とサジタル方向の両方にX線エネルギー範囲を分散することができ、分散されたX線126は、接線方向に沿って、角度的に分散されたX線126を測定するように構成された複数の検出素子132を有する検出器130によって測定することができ、高いエネルギー分解能で有限のX線エネルギー範囲にわたるスペクトルを実現する。
【0052】
図6は、本明細書に記載の特定の実現による、例示的な球状に曲がったJohansson結晶解析装置120から下流の、分散されたX線126のシミュレーション光線追跡を概略的に示す。図6の例示的な球状に曲がったJohansson結晶解析装置120は、300ミリメートルに等しいローランド円半径R、及び600ミリメートルに等しい結晶面曲げ半径2Rを有するのであり、X線源110は、接線方向に±40ミリラジアン及びサジタル方向に±48ミリラジアンの角度内でX線114を放出する点源、並びに8045eV~8049eVの範囲のX線エネルギーの組として、図6の各バンドが1eVエネルギーバンドに対応して、シミュレートされた。横軸は、ローランド円150に平行な接線方向の距離であり、縦軸は、サジタル方向の距離である。最も左のプロットでは、バンドの各々は、1つのエネルギーのX線を反射する結晶解析装置120の表面エリアに対応する。中央のバンドは、8048eVのエネルギーを有するX線に対応し、残りのバンドは、8048eV未満のエネルギーを有するX線に対応する。中央縞から数えたバンドの各対は、X線エネルギーの1eVの減少に対応する。図6の、他のプロットは、ローランド円150に対して相対的な様々な場所(例えば、ローランド円150の内側へ200ミリメートル、ローランド円150の内側へ50ミリメートル、ローランド円150の内側へ5ミリメートル、及びローランド円150上)における、分散されたX線126の例示的なX線スペクトル分布を示す。
【0053】
図6に見られるように、分散されたX線126は、サジタル方向に沿って角度的に分散されたX線126を区別するために、サジタル方向に沿って位置付けられた少なくともいくつかの検出素子132を有する、検出器130によって測定することができる(例えば、十分な空間分解能を有する、サジタル方向に沿った複数の検出器素子132を有する、検出器130は、スペクトルを分解することができる)。このようにして、装置100は、十分に高いエネルギー分解能で、有限のX線エネルギー範囲にわたってスペクトルを測定することができる。さらに、スペクトルを測定するための空間分解能は、検出器130が結晶解析装置120の近く(例えば、ローランド円150内)に位置付けられる場合、大幅に緩和することができる。
【0054】
特定の実現では、装置100は、球状に曲がった(例えば湾曲した)Johann結晶解析装置120を備え、これは、所与のX線エネルギー分解能について、サジタル方向には大きなX線収集角度を、しかし接線方向には限られたX線収集角度を提供し得る。球状に曲がったJohann結晶解析装置120は、接線方向にX線エネルギー範囲を分散することができ、分散されたX線126は、接線方向に沿って、角度的に分散されたX線126を測定するように構成された複数の検出素子132を有する検出器130によって測定することができ、高いエネルギー分解能で有限のX線エネルギー範囲にわたるスペクトルを実現する。
【0055】
図7は、本明細書に記載の特定の実現による、例示的な球状に曲がったJohann結晶解析装置120から下流の、分散されたX線126のシミュレーション光線追跡を概略的に示す。図7の例示的な球状に曲がったJohann結晶解析装置120は、300ミリメートルに等しいローランド円半径R、及び600ミリメートルに等しい結晶面曲げ半径2Rを有するのであり、X線源110は、接線方向に±40ミリラジアン及びサジタル方向に±48ミリラジアンの角度内でX線114を放出する点源、並びに8028eV~8048eVの範囲のX線エネルギーの組として、図7の各バンドが4eVエネルギーバンドに対応して、シミュレートされた。横軸は、ローランド円150に平行な接線方向の距離であり、縦軸は、サジタル方向の距離である。最も左のプロットでは、バンドの各々は、1つのエネルギーのX線を反射する結晶解析装置120の表面エリアに対応する。中央のバンドは、8048eVのエネルギーを有するX線に対応し、残りのバンドは、8048eV未満のエネルギーを有するX線に対応する。中央縞から数えたバンドの各対は、X線エネルギーの4eVの減少に対応する。図7の、他のプロットは、ローランド円150に対して相対的な様々な場所(例えば、ローランド円150の内側へ200ミリメートル、ローランド円150の内側へ50ミリメートル、ローランド円150の内側へ5ミリメートル、及びローランド円150上)における、分散されたX線126の例示的なX線スペクトル分布を示す。
【0056】
図7に見られるように、分散されたX線126は、サジタル方向に沿って角度的に分散されたX線126を区別するために、サジタル方向に沿って位置付けられた少なくともいくつかの検出素子132を有する、検出器130によって測定することができる(例えば、十分な空間分解能を有する、サジタル方向に沿った複数の検出器素子132を有する、検出器130は、スペクトルを分解することができる)。このようにして、装置100は、十分に高いエネルギー分解能で、有限のX線エネルギー範囲にわたってスペクトルを測定することができる。さらに、スペクトルを測定するための空間分解能は、検出器130が結晶解析装置120の近く(例えば、ローランド円150内)に位置付けられる場合、大幅に緩和することができる。
【0057】
特定の実現では、装置100は、トロイド状に曲がった(例えば湾曲した)Johansson結晶解析装置120を備え、これは、球状に曲がったJohansson結晶解析装置120のように、所与のX線エネルギー分解能について、接線方向には大きなX線収集角度を、しかしサジタル方向には円筒状に曲がったJohansson結晶解析装置120よりも高いX線収集角度を提供することができる。トロイド状に曲がったJohansson結晶解析装置120は、接線方向とサジタル方向の両方にX線を分散することができ、分散されたX線126は、接線方向に沿って、角度的に分散されたX線126を測定するように構成された複数の検出素子132を有する検出器130によって測定することができ、高いエネルギー分解能で有限のX線エネルギー範囲にわたるスペクトルを実現する。
【0058】
特定の実現では、X線源110は、電子源と、電子源からの電子によって衝撃を与えられるとX線を生成するように構成された少なくとも1つのアノード標的112(例えば、ミクロンのオーダのサイズを有する)と、を備える、高い効率(例えば、高い輝度)のX線源を備える。標的112は、標的112の電子衝撃によって生成される熱エネルギーを標的112から散逸させるように構成された、熱伝導性基材(例えば、ダイヤモンドを含む)上にあるか又はその中に埋め込むことができる。標的112材料の例は、Cu、Cr、Fe、Co、Ni、Zn、Al、Rh、Mo、Pd、Ag、Ta、Au、W、SiC、MgCl、又は他の金属若しくは金属含有材料が含まれるが、これらに限定されない。本明細書に記載の特定の実現と互換性のあるX線源110の例は、米国特許第10,658,145号、第9,874,531号、第9,823,203号、第9,719,947号、第9,594,036号、第9,570,265号、第9,543,109号、第9,449,781号、第9,448,190号、及び第9,390,881号明細書によって開示されており、これらの各々は、参照によりその全体が本明細書に組み込まれる。
【0059】
特定の実現では、X線源110は、XAS測定のための拡大されたX線エネルギー範囲にわたって連続的な(例えば滑らかな)X線エネルギースペクトルを提供するように構成された異なる材料を有する複数の標的112を備えることができる。特定のそのような実現は、単一標的112から結果として生じるX線114のスペクトルが、拡大されたエネルギー範囲にわたる特性線を含み、かつこれら特性線が、XAS測定に適していない、単一標的材料X線源110の制限を克服することができる。例えば、図8は、タングステン(W)標的112、ロジウム(Rh)標的112、及びモリブデン(Mo)標的112からのシミュレートされたX線スペクトルを示す。7.5keVと13keVとの間のW標的112の特性線の存在は、W標的112からのこのスペクトル領域をXAS測定に適さなくしている。特定の実現では、W標的112と、Rh標的112及びMo標的112のうちの一方又は両方とを備えるX線源110は、1.5keV~7.5keV及び13keV~20keVの範囲のためにW標的112を使用し並びに7.5keV~14keVの範囲のためにRh標的112及び/又はMo標的112を使用することによって、1.5keV~20keVの範囲にわたって、組み合わせられた連続的な(例えば滑らかな)エネルギースペクトルを提供することができる。標的材料の原子番号Zと、電子加速電圧と、に比例するX線生成のためには、Wは、より効率的であるが、W標的112からのX線スペクトルにおける特性線は、7.5keV~14keVのスペクトルを汚染する可能性があるため、Rh及び/又はMo標的112が、このエネルギー範囲のために代わりに使用され得る。
【0060】
特定の実現では、標的112のサイズ及び形状は、結晶解析装置120のパラメータ及び特性に応じて、性能を最適化するように選択される。例えば、円筒状に曲がったJohansson結晶解析装置120については、X線源110は、接線方向に沿って実質的に合わせられた第1の寸法(例えば、3ミクロン~100ミクロンの範囲の幅)及びサジタル方向に沿って実質的に合わせられた第2の寸法(例えば、10ミクロン~4ミリメートルの範囲の長さ)を有する長方形(例えば、線の形状)の標的112を備えることができる。標的112のサイズに起因する、所与の分数のエネルギー分解能ΔE/Eを得るための第1の寸法に対する第2の寸法の比は、(ΔE/E)-1/2・cot(θ)に近似的に等しいのであり得、式中、θはブラッグ角である。別の例では、球状に曲がったJohann結晶解析装置120又は球状に曲がったJohansson結晶解析装置120については、標的112のサイズに起因する、所与の分数のエネルギー分解能ΔE/Eを得るための第1の寸法に対する第2の寸法の比は、(ΔE/E)-1/2・cot(θ)・sin(θ)に近似的に等しいのであり得る。X線源スポットサイズ(例えば、標的112に衝撃を与える電子ビームスポットのサイズ)は、標的112上の電子フットプリントが1つの軸に沿って圧縮されるように出発角度で見たときの、「見かけの」源サイズである(例えば、見かけの源スポットサイズは、6度の出発角度で電子フットプリントのサイズの1/10である)。
【0061】
図9は、本明細書に記載の特定の実現による、様々な標的112についての、例示的な円筒状に曲がったJohansson結晶解析装置120から下流の分散されたX線126のシミュレーション光線追跡を概略的に示す。図9の例示的な円筒状に曲がったJohansson結晶解析装置120は、300ミリメートルに等しいローランド円半径R、及び600ミリメートルに等しい結晶面曲げ半径2Rを有するのであり、X線源110は、接線方向に±40ミリラジアン及びサジタル方向に±48ミリラジアンの角度内でX線114を放出するとして、並びに8048eV~8054eVの範囲のX線エネルギーの組として、図9の各バンドが1eVエネルギーバンドに対応して、シミュレートされた。図9の標的112については、接線方向に実質的に沿った第1の寸法は、20ミクロンであり、サジタル方向に沿った第2の寸法の半分は、0(例えば点源)、0.2ミリメートル、1ミリメートル、及び2ミリメートルの間で様々である。横軸は、ローランド円150に平行な接線方向の距離であり、縦軸は、サジタル方向の距離である。点源についての最も上のプロットでは、バンドの各々は、1つのエネルギーのX線を反射する結晶解析装置120の表面エリアに対応する。中央のバンドは、8048eVのエネルギーを有するX線に対応し、残りのバンドは、8048eVよりも高いエネルギーを有するX線に対応する。中央縞から数えたバンドの各対は、X線エネルギーの1eVの増加に対応する。標的112のX線源スポットサイズの他のサイズについての、他の最も上のプロット、バンドは、さほどよく定まってはいないが、しかし最大のシミュレートされたX線源スポットサイズとでさえも区別可能であり、約1eVのエネルギー分解能が依然として達成できることを示している。図9の他のプロットは、ローランド円150に対して相対的な2つの異なる場所(例えば、ローランド円150の内側へ5ミリメートル、及びローランド円150上)における、X線スペクトル分布を示す。
【0062】
図9に見られるように、円筒状に曲がったJohansson結晶解析装置120については、サジタル方向と実質的に合わせられた標的112の第2の寸法は、接線方向と実質的に合わせられた標的112の第1の寸法よりもはるかに大きいのであり得る。分散されたX線126は、サジタル方向に沿って角度的に分散されたX線126を区別するために、サジタル方向に沿って位置付けられた少なくともいくつかの検出素子132を有する、検出器130によって測定することができる(例えば、十分な空間分解能を有する、サジタル方向に沿った複数の検出器素子132を有する、検出器130は、スペクトルを分解することができる)。図9は、エネルギー分解能を所望の値(例えば1eV)に保ちながら、X線源パワーを増加させ及びスループットを向上するために、サジタル方向に沿った標的112のX線源スポットサイズを増加させることができることを示している。例えば、ローランド円150に位置付けられた、高い分解能の、2次元検出器130は、エネルギーバンドがより明確に分離されるから、使用することができる。高い空間分解能を有する検出器130については、拡大されたスポットサイズ及び高いパワーを有するX線源110を、使用することができる。
【0063】
特定の実現では、X線源110は、サジタル平面内で標的112からのX線114を実質的に反射するように構成された、少なくとも1つのかすめ入射ミラーを備えることができる。例えば、標的114は、結晶解析装置120の受入れよりも大きい角度範囲を有する、X線のビーム114を放出することができる。かすめ入射平面ミラーの対を(例えば、X線ビームの各側に1つ)配置して、結晶解析装置120から外れたであろうX線ビームの一部を反射することができる。少なくとも1つのかすめ入射ミラーは、ローランド円150の近くに位置付けられた少なくとも1つの仮想の、X線の源と考えることができ、それは、中心スペクトル獲得と同時に背景を監視するために使用することができる。
【0064】
特定の実現では、空間分解検出器130は、画素アレイ光子計数検出器、直接変換電荷結合素子(charge coupled device:CCD)検出器(例えば、単一光子検出モードで動作するように構成されている)、相補型金属酸化物半導体(complementary metal-oxide-semiconductor:CMOS)検出器(例えば、単一光子検出モードで動作するように構成されている)、及び複数のシリコンドリフト検出器(例えば、互いに対して近く近接して配置されているか、又は互いと一体化されている)からなる群から選択される。例えば、空間分解検出器130は、1次元(one-dimensional:1D)位置感応性検出器(例えばストリップ検出器)、又は2次元(two-dimensional:2D)位置感応性検出器を備えることができる。特定の実現では、十分な空間分解能を有する2次元(2D)空間分解検出器130を大きいX線源スポットサイズで使用して、十分に高いエネルギー分解能を達成することができる。図4は、空間分解検出器130が少なくとも部分的にローランド円150の内側にある、例示的な実現を概略的に示すが、特定の他の実現では、空間分解検出器130は、少なくとも部分的にローランド円150上にあるか、又は少なくとも部分的にローランド円150の外側にある。
【0065】
特定の実現では、空間分解検出器130の検出素子132(例えば、画素、完全な検出器)は、少なくとも1つの次元において(例えば、0.2eV~3eVの範囲の)所定のエネルギー分解能及び(例えば、3eV~200eVの範囲の)所定のエネルギー範囲を提供するように構成された、空間的な寸法を有する。例えば、検出素子132は各々、3ミクロン~200ミクロンの範囲の接線方向に沿ったサイズ、及び3ミクロン~5000ミクロンの範囲のサジタル方向に沿ったサイズを有することができる。特定の実現では、各検出素子132が、(例えば、XANES測定についての)検出器130における分散されたX線126のビーム拡散の3eV未満(例えば、0.5eV~3eVの範囲内)に対応するように、又は(例えば、EXAFS測定についての)検出器130における分散されたX線126のビーム拡散の10eV未満(例えば、1eV~10eVの範囲内)に対応することができるように、検出素子132は、互いから空間的に分離される。例えば、高いスループットを達成するために、装置100は、検出器130によって同時に測定されるM個のスペクトルモード(例えばエネルギーバンド)を同時に有しながら検出器130によってカバーされる広さを有するX線スペクトルを利用するように構成され、ここでMは、検出器130におけるスペクトルカバレッジを、検出素子132ごとのエネルギーバンド幅で除算したものによって与えられる。例えば、検出器130における200eVのスペクトルカバレッジ、及び検出素子132ごとの2eVのエネルギーバンド幅については、Mは100に等しい。特定の実現では、検出素子132は、毎秒10個の光子を超える計数速度において線形性を有する(ほとんどのシリコンドリフト検出器は、毎秒50万個の光子までしか線形ではない)。
【0066】
特定の実現では、空間分解検出器130は、結晶解析装置120からの分散されたX線126の分布を測定するように構成される。例えば、円筒状に曲がったJohansson結晶解析装置120については、検出素子132は、サジタル方向に沿って角度的に分散されたX線126を測定するように構成され得る。別の例では、球状に曲がったJohann結晶解析装置120については、検出素子132は、接線方向に沿って角度的に分散されたX線126を測定するように構成され得る。別の例では、球状に曲がったJohann結晶解析装置120については、検出素子132のうちの少なくともいくつかは、接線方向に沿って角度的に分散されたX線126を測定するように構成され得る。この例では、各検出器素子132のサイズは、小さいのであり得、接線方向の検出素子サイズ(D1)は、2・R・sin(θ)・ΔE/E≧cot(θ)・D1で表され、標的112上のX線源スポットのサジタル方向に沿ったサイズ(S2)は、2・R・sin(θ)・(ΔE/E)1/2≧S2で表され、式中、Rはローランド円半径であり、θはブラッグ角である。特定の実現では、検出器130の中心は、ローランド円150上に位置付けられる。検出素子132のサジタル方向に沿ったサイズ(D2)は、S2よりも小さいのであり得る。
【0067】
特定の実現では、検出素子132は、関心のあるエネルギー範囲の外側の、XAS測定を劣化させるX線を抑制(例えば拒絶)するために、(例えば、装置100のユーザによって選択されるか、又はコンピュータベースのコントローラによって自動的に選択される)少なくとも1つの調整可能なエネルギー閾値を有する。例えば、より高次の高調波は、測定されたスペクトルにおいて10%の背景信号寄与を生成し得、これは、スループットを約3倍低下させ得る。特定の実現では、検出素子132は、調整可能な第1のX線エネルギーより高いX線126の測定を抑制しながら、調整可能な第1のX線エネルギーより低いX線エネルギーを有するX線126を測定するように構成される。このようにして、検出素子132は、結晶解析装置120によって回折される、より高次の高調波を抑制(例えば拒絶)することができ、それによって、測定されるXASスペクトルの質を向上する。より高いエネルギーのX線の測定を抑制することの別の利益は、X線源110を、より高いX線束及びスループットのために、より高い加速電圧で動作させることができることである。別の例では、ブラッグの法則を満たす低いエネルギーのX線(例えば、結晶解析装置120からの反射されたX線、試料162からの蛍光X線)は、検出器130によって受けられ得、背景信号に寄与し得る。特定の実現では、検出素子132は、調整可能な第2のX線エネルギーより低いX線126の測定を抑制しながら、調整可能な第2のX線エネルギーより高いX線エネルギーを有するX線126を測定するように構成される。このようにして、検出素子132は、背景信号と、良質なXASスペクトルを提供することとに寄与する、低いエネルギーのX線を抑制(例えば拒絶)することができる。特定の実現では、検出素子132は、調整可能な第1のX線エネルギーと、調整可能な第2のX線エネルギーの両方を有する。
【0068】
特定の実現では、検出器130は、結晶解析装置120と検出素子132との間にアパーチャを備える。例えば、アパーチャは、検出器130のエネルギー分解能を制御可能に調節するために、(例えば、装置100のユーザによって、コンピュータベースのコントローラによって)調節可能なサイズを有するように構成され得る。別の例では、検出器130によって受けられるX線126の形状が、ローランド円150上の成分の中心合せを確実にするように、アパーチャは、構造化され(例えば、開口部のパターンを有し)得る。検出素子132が大きい寸法を有し、かつ標的112上のX線源スポットの接線方向のサイズが大きい、特定の実現では、検出素子132の前方の小さなアパーチャを使用して、小さな検出器寸法を達成することができる。
【0069】
特定の実現では、装置100を使用して、従来のXASシステムと比較して改善された態様で、透過モードXASスペクトルを測定する。例えば、従来のXASシステムを使用して、XAS測定について望まれるX線エネルギー範囲(例えば、XANES測定については50~100eV、EXAFS測定については300~1000eV)をカバーするための角度範囲にわたって結晶解析装置の角度を走査することによって、完全な透過モードXAS測定を実行することができる。対照的に、本明細書に記載の特定の実現によれば、XAS測定は、互いに部分的にオーバーラップするエネルギー範囲を有する複数の狭いスペクトル(例えば、XAS測定のための所望のエネルギー範囲よりも各々狭い、有限のエネルギー範囲)を同時に収集することによって行うことができる。これらの複数のスペクトルを正規化し、適切に一緒に組み合わせて、完全なXAS測定値を形成することができる。特定の実現では、オーバーラップするエネルギー範囲を有する複数のスペクトルを、収集することは、オーバーラップするエネルギー範囲を有する収集される2つのスペクトル間の、X線源の強度の変動を最小化するために使用され得る。
【0070】
別の例では、装置100を使用して、従来のEXAFSシステムよりも高い分解能で、EXAFSスペクトルを提供することができる。本明細書に記載の特定の実現によれば、(例えば、より高いエネルギー分解能のために、結晶解析装置120の材料と結晶原子面112のミラー指数とを選択することによって)放射ライン幅に等しいか又はそれより良好なエネルギー分解能でプレエッジ領域内及びXANESスペクトル領域内で、並びにより粗いエネルギー分解能(例えば、3~10eV)であるがしかしより高いX線束で完全なEXAFSスペクトル領域内(例えば、吸収端から離れたスペクトル領域内)で、XASスペクトルを収集することができる。スペクトルによる完全なEXAFSのスペクトル領域は、スペクトルを生成するための適切な強度の正規化及びスティッチングを伴って、プレエッジ及びXANES領域で置き換えることができる。
【0071】
図10は、本明細書に記載の特定の実現による、XAS測定のために構成された例示的な装置100を概略的に示す。特定のそのような実現では、装置100は、接線方向に小さいX線源スポットサイズを有する標的112を備えるX線源110と、円筒状に曲がったJohansson結晶解析装置120と、接線方向及びサジタル方向のうちの少なくとも1つに空間的に分解する複数の検出素子132を有する、空間分解検出器130とを備える。X線源110の標的112は、直線形状(例えば、3ミクロン~50ミクロンの範囲の接線方向に沿ったサイズ、及び20ミクロン~4000ミクロンの範囲のサジタル方向に沿ったサイズ)を有することができ、X線源110は、複数の標的材料を備えることができる。円筒状に曲がったJohansson結晶解析装置120は、Si、Ge、又は石英の単結晶を備えることができ、(例えば、15度~40度の範囲の)低いブラッグ角で使用することができ、50ミリメートル~1000ミリメートルの範囲のローランド円半径Rを有することができ、及び接線方向とサジタル方向の両方に100ミリメートル以下の結晶サイズを有することができる。空間分解検出器130は、1次元(1D)又は2次元(2D)とすることができ、及びサジタル方向に沿って少なくともいくつかの検出素子132を備えることができる。検出素子132は、XAS測定X線エネルギー範囲に対してより高いか又はより低いエネルギーを有するX線を抑制(例えば拒絶)するための、少なくとも1つのエネルギー閾値を有することができる。
【0072】
図10はまた、2つの異なる位置である(a)点源標的112及び楕円形源標的112についてのローランド円150上並びに(b)ローランド円150の内側へ50ミリメートルにおける、空間分解検出器130についての、円筒状に曲がったJohansson結晶解析装置120から下流の分散されたX線126のシミュレーション光線追跡を概略的に示す。円筒状に曲がったJohansson結晶解析装置120は、(300ミリメートルに等しいローランド円半径R、及び600ミリメートルに等しい結晶面曲げ半径2Rを有する)図5のもの、並びに8047eV~8054eVの範囲のX線エネルギーの組であり、図10の各バンドは、1eVエネルギーバンドに対応し、中央のバンドは、8048eVのエネルギーを有するX線に対応する。図10の3つのプロットの横軸は、ローランド円150に平行な接線方向の距離であり、縦軸は、サジタル方向の距離であり、寸法は、ミリメートル単位である。図10に見られるように、X線エネルギー拡散は、空間分解検出器130の長寸法である、サジタル方向に沿っている。十分に小さいサイズの検出素子132を使用することによって、サブeV分解能が達成される。楕円形源については、ローランド円150に位置付けられた空間分解検出器130は、2次元(2D)とすることができ、ローランド円150内に位置付けられた空間分解検出器130は、1次元(1D)とすることができる。
【0073】
特定の実現では、円筒状に曲がったJohansson結晶解析装置120を備える図10の装置100は、次の条件、2・R・sin(θ)・ΔE/E≧cot(θ)・S1及び2・R・sin(θ)・(ΔE/E)1/2≧S2を満たすことによって、(ΔE/E)-1の所与のエネルギー分解能力を達成するように構成され、式中、Rはローランド円半径であり、θはブラッグ角であり、S1及びS2は、それぞれ接線方向及びサジタル方向に沿った、標的112のX線源スポットサイズである。サジタル方向に沿った、円筒状に曲がったJohansson結晶解析装置120の幅は、N・S2に等しいとすることができ、円筒状に曲がったJohansson結晶解析装置120は、エネルギー分解能ΔEのN倍(例えば、Nは、2~100の範囲内)に近似的に等しいX線エネルギー範囲にわたって、サジタル方向に沿ってX線126を受け、及び分散するように構成され得る。サジタル方向に沿った検出素子132の数は、N以上であり得る。空間分解検出器130は、結晶解析装置120から下流(例えば、距離Dが2R(例えば、ローランド円半径Rの2倍)未満の範囲内であり、結晶解析装置120の下流側から距離Dに位置付けることができる。ローランド円150に位置付けられた空間分解検出器130については、接平面内の検出素子132のサイズは、(例えば、より良好な信号対雑音比について)比較に値するものであり得、又は(測定される漂遊X線に起因して、潜在的により低い信号対雑音比を有して)S1よりも大きいのであり得る。S1よりも大きい検出素子132については、空間分解検出器130は、測定される漂遊X線の数を抑制(例えば、拒絶、低減)するために、空間分解検出器130の上流側(例えば、結晶解析装置120と検出素子132との間)にスリットアパーチャを備えることができる。
【0074】
図11は、本明細書に記載の特定の実現による、XAS測定のために構成された別の例示的な装置100を概略的に示す。特定のそのような実現では、装置100は、接線方向に大きいX線スポットサイズを有する標的112を備えるX線源110と、円筒状に曲がったJohansson結晶解析装置120と、少なくともサジタル方向に、空間的に分解する、複数の検出素子132(例えば、2~2000個)を有する、空間分解検出器130とを備える。X線源110の標的112は、直線形状(例えば、3ミクロン~50ミクロンの範囲の接線方向に沿ったサイズ、及び20ミクロン~4000ミクロンの範囲のサジタル方向に沿ったサイズ)を有することができ、X線源110は、複数の標的材料を備えることができる。円筒状に曲がったJohansson結晶解析装置120は、Si、Ge、又は石英の単結晶を備えることができ、(例えば、15度~40度の範囲の)低いブラッグ角で使用することができ、50ミリメートル~1000ミリメートルの範囲のローランド円半径Rを有することができ、及び接線方向とサジタル方向の両方に100ミリメートル以下の結晶サイズを有することができる。空間分解検出器130は、1次元(1D)又は2次元(2D)とすることができ、及びサジタル方向に沿って少なくともいくつかの検出素子132を備えることができる。検出素子132は、XAS測定X線エネルギー範囲に対してより高いか又はより低いエネルギーを有するX線を抑制(例えば拒絶)するための、少なくとも1つのエネルギー閾値を有することができる。
【0075】
特定の実現では、円筒状に曲がったJohansson結晶解析装置120を備える図11の装置100は、次の条件、2・R・sin(θ)・ΔE/E≧cot(θ)・D1及び2・R・sin(θ)・(ΔE/E)1/2≧S2を満たすことによって、(ΔE/E)-1の所与のエネルギー分解能力を達成するように構成され、式中、Rはローランド円半径であり、θはブラッグ角であり、D1は、接線方向に沿った検出素子132のサイズであり、S2は、標的112上のX線源スポットのサジタル方向に沿ったサイズである。サジタル方向に沿った、円筒状に曲がったJohansson結晶解析装置120の幅は、N・S2に等しいとすることができ、円筒状に曲がったJohansson結晶解析装置120は、エネルギー分解能ΔEのN倍(例えば、Nは、2~100の範囲内)に近似的に等しいX線エネルギー範囲にわたって、サジタル方向に沿ってX線126を受け、及び分散するように構成され得る。サジタル方向に沿った検出素子132の数は、N以上であり得る。空間分解検出器130は、結晶解析装置120から下流(例えば、距離Dが2R(例えば、ローランド円半径Rの2倍)未満の範囲内であり、結晶解析装置120の下流側から距離Dに位置付けることができる。空間分解検出器130であって、その中心がローランド円150に位置付けられた空間分解検出器130については、サジタル方向に沿った検出素子132のサイズD2は、S2よりも小さいとすることができる。D1が2・R・sin(θ)・ΔE/E/cot(θ)よりも大きい、検出素子132については、空間分解検出器130は、測定される漂遊X線の数を抑制(例えば、拒絶、低減)するために、空間分解検出器130の上流側(例えば、結晶解析装置120と検出素子132との間)に、かつスリットアパーチャの長寸法をサジタル方向に沿って合わせて、スリットアパーチャを備えることができる。
【0076】
特定の実現では、装置100は、接線方向に小さいX線スポットサイズを有する標的112を備えるX線源110と、球状に曲がったJohansson結晶解析装置120と、少なくともサジタル方向に、空間的に分解する、複数の検出素子132(例えば、2~2000個)を有する、空間分解検出器130とを備える。X線源110の標的112は、3ミクロン~50ミクロンの範囲の接線方向に沿ったサイズ、及び20ミクロン~1000ミクロンの範囲のサジタル方向に沿ったサイズを有することができ、X線源110は、複数の標的材料を備えることができる。球状に曲がったJohansson結晶解析装置120は、Si、Ge、又は石英の単結晶を備えることができ、50ミリメートル~1000ミリメートルの範囲のローランド円半径Rを有することができ、及び接線方向とサジタル方向の両方に100ミリメートル以下の結晶サイズを有することができる。空間分解検出器130は、1次元(1D)又は2次元(2D)とすることができ、及びサジタル方向に沿って少なくともいくつかの検出素子132を備えることができる。検出素子132は、XAS測定X線エネルギー範囲に対してより高いか又はより低いエネルギーを有するX線を抑制(例えば拒絶)するための、少なくとも1つのエネルギー閾値を有することができる。
【0077】
特定の実現では、球状に曲がったJohansson結晶解析装置120を備える装置100は、次の条件、2・R・sin(θ)・ΔE/E≦cot(θ)・S1及び2・R・sin(θ)・(ΔE/E)1/2≧S2を満たすことによって、(ΔE/E)-1の所与のエネルギー分解能力を達成するように構成され、式中、Rはローランド円半径であり、θはブラッグ角であり、S1及びS2は、それぞれ接線方向及びサジタル方向に沿った、標的112上のX線源スポットのサイズである。空間分解検出器130は、結晶解析装置120から下流(例えば、距離Dが2R(例えば、ローランド円半径Rの2倍)未満の範囲内であり、結晶解析装置120の下流側から距離Dに位置付けることができる。検出素子132は、接線方向に沿って空間分解検出器130によって受けられる分散されたX線126を測定するように構成され得る。特定の実現では、空間分解検出器130は、接線方向に沿って合わせられた検出素子132を有する、結晶解析装置120の近く(例えば、ローランド円150内)に位置付けられた1次元(1D)位置感応性検出器であり、一方、特定の他の実現では、空間分解検出器130は、ローランド円150の近く(例えば、ローランド円150上)に位置付けられた2次元(2D)位置感応性検出器である。
【0078】
図12は、本明細書に記載の特定の実現による、XAS測定のために構成された別の例示的な装置100を概略的に示す。特定のそのような実現では、装置100は、X線源110と、球状に曲がったJohann結晶解析装置120と、複数の検出素子132を有する、空間分解検出器130とを備える。図12はまた、2つの異なる位置である(a)ローランド円150上及び(b)ローランド円150の内側へ200ミリメートルにおける、空間分解検出器130についての、球状に曲がったJohann結晶解析装置120から下流の分散されたX線126のシミュレーション光線追跡を概略的に示す。球状に曲がったJohann結晶解析装置120は、300ミリメートルに等しいローランド円半径R、及び600ミリメートルに等しい結晶面曲げ半径2Rを有する。図12のバンドのX線エネルギーの組は、8028eV~8052eVの範囲内であり、図12の各バンドは、1eVエネルギーバンドに対応し、中央のバンドは、8048eVのエネルギーを有するX線に対応する。ローランド円150上に位置付けられた空間分解検出器130については、X線エネルギーの範囲の分散は、約400ミクロン上のみであり、測定されたXASスペクトルのエネルギー分解能を劣化させるスペクトルぼやけが、生じる可能性がある。ローランド円の内側へ200ミリメートルに位置付けられた、空間分解検出器130については、対応するX線エネルギー分散は、数ミリメートルにわたって伸びており、画素化される検出器を使用して分解されることができる。エネルギー分散は、特定の実現では、ローランド円150上の焦点から十分に遠くに(例えば、ローランド円150の内側、又はローランド円150の外側のいずれかに)空間分解検出器130を配置することによって達成される。
【0079】
特定の実現では、試料162に照射されるX線エネルギーは、試料162の場所に応じて様々であり得る。図13Aは、本明細書に記載の特定の実現による、X線源110と結晶解析装置120との間に試料162を有するように構成された例示的な装置100の、接平面及びサジタル平面を概略的に示す。図13Bは、本明細書に記載の特定の実現による、結晶解析装置120と空間分解検出器130との間に試料162を有するように構成された例示的な装置100の、接平面及びサジタル平面を概略的に示す。図13A及び図13Bの例示的な装置100については、空間分解検出器130の検出素子132は、試料162のそれぞれの領域に対応するX線吸収を測定することができる。特定の実現では、十分に大きい範囲にわたってX線エネルギーを走査することによって、試料162のスペクトル画像を得ることができる(例えば、X線イメージング分光法)。
【0080】
一般的に使用される用語は、理解を容易にするために、特定の実現のシステム及び方法を説明するために使用されるが、これらの用語は、それらの最も広い合理的な解釈を有するように、本明細書において使用される。本開示の様々な態様は、例示的な例及び実現に関して説明されているが、開示された例及び実現は、限定するものとして解釈されるべきではない。「できる(can)」、「できる(could)」、「し得る(might)」、又は「してもよい(may)」などの、条件の言葉は、別途具体的に記載されるのでもなく使用される文脈内で別途理解されるのでもない限り、特定の特徴、要素、及び/又はステップを特定の実現は含むが他の実現は含まないことを、伝えることを一般に意図している。したがって、そのような条件の言葉は、特徴、要素、及び/又はステップが1つ以上の実現のために何らかの点で必要とされることを含意することを、一般に意図していない。特に、「備える(comprises)」及び「備える(comprising)」という用語は、要素、構成要素、又はステップに非排他的に言及すると解釈されるべきであり、参照される要素、構成要素、又はステップが、存在し、若しくは利用され、又は明示的に参照されていない他の要素、構成要素、若しくはステップと組み合わされ得ることを示す。
【0081】
「X、Y、及びZのうちの少なくとも1つ」という句などの、接続的な言葉は、別途具体的に記載されるのでない限り、事項、用語などがX、Y、又はZのいずれかであり得ることを、伝えるために一般に使用される文脈内で理解されるべきである。したがって、そのような接続的な言葉は、特定の実現がXのうちの少なくとも1つ、Yのうちの少なくとも1つ、及びZのうちの少なくとも1つの存在を必要とすることを含意することを、一般に意図していない。
【0082】
「近似的に(approximately)」、「約(about)」、「略(generally)」、及び「実質的に(substantially)」という用語などの、本明細書で使用される、程度の言葉は、依然として所望の機能を実行するか又は所望の結果を達成する、記載された値、量、又は特性に近い、値、量、又は特性を表す。例えば、「近似的に(approximately)」、「約(about)」、「略(generally)」、及び「実質的に(substantially)」という用語は、記載された量の±10%以内、±5%以内、±2%以内、±1%以内、又は±0.1%以内の量を指す場合がある。別の例として、「略平行(generally parallel)」及び「実質的に平行(substantially parallel)」という用語は、厳密に平行から±10度、±5度、±2度、±1度、又は±0.1度だけ逸脱する値、量、又は特性を指し、「略垂直(generally perpendicular)」及び「実質的に垂直(substantially perpendicular)」という用語は、厳密に垂直から±10度、±5度、±2度、±1度、又は±0.1度だけ逸脱する値、量、又は特性を指す。本明細書に開示される範囲はまた、任意の及びすべてのオーバーラップ、サブ範囲、及びそれらの組合せを包含する。例えば「まで(up to)」、「少なくとも(at least)」、「よりも大きい(greater than)」、「未満(less than)」、「間(between)」などの、言葉は、記載された数字を含む。本明細書で使用される場合、「a」、「an」、及び「said」の意味は、文脈が明らかに別途指示するのでない限り、複数の参照を含む。構造及び/又は方法は、本明細書では、順序の形容詞(例えば、第1、第2など)によってラベル付けされた要素の観点から説明されているが、順序の形容詞は、単に、1つの要素を別の要素から区別するためのラベルとして使用され、順序の形容詞は、これら要素の順序を示すためにも、それらの使用の順序を示すためにも、使用されない。
【0083】
以上、様々な構成について説明した。本明細書に開示された実現は相互に排他的ではなく、様々な配置で互いに組み合わせることができることが、理解されるべきである。これらの具体的な構成を参照して本発明を説明してきたが、説明は、本発明を例示することを意図しており、限定するものであることを意図していない。本発明の正しい趣旨及び範囲から逸脱することなく、当業者には様々な修正及び用途が思い浮かび得る。したがって、例えば、本明細書に開示された任意の方法又はプロセスにおいて、方法/プロセスを作り上げている行為又は動作は、任意の適切なシーケンスで実行されてもよく、任意の特定の開示されたシーケンスに必ずしも限定されない。上記で説明した様々な実現及び例からの特徴又は要素を互いに組み合わせて、本明細書に開示された実現と互換性のある、代替的な構成を生み出してもよい。実現の様々な態様及び利点が、適切な場合に説明されている。必ずしもすべてのそのような態様又は利点が任意の特定の実現によって達成されない場合があることが、理解されるべきである。したがって例えば、様々な実現は、本明細書で教示又は示唆され得る通りの他の態様又は利点を必ずしも達成することなく、本明細書で教示される通りの1つの利点又は利点の群を達成又は最適化する態様で行われ得ることが、認識されるべきである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13A
図13B