(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-04
(45)【発行日】2023-12-12
(54)【発明の名称】表示装置
(51)【国際特許分類】
G05B 19/4063 20060101AFI20231205BHJP
G05B 19/4069 20060101ALI20231205BHJP
B23Q 17/20 20060101ALI20231205BHJP
B23Q 17/00 20060101ALI20231205BHJP
B23Q 17/22 20060101ALI20231205BHJP
【FI】
G05B19/4063 L
G05B19/4069
B23Q17/20 A
B23Q17/00 D
B23Q17/22 F
(21)【出願番号】P 2019199549
(22)【出願日】2019-11-01
【審査請求日】2022-07-20
(73)【特許権者】
【識別番号】390008235
【氏名又は名称】ファナック株式会社
(74)【代理人】
【識別番号】100106002
【氏名又は名称】正林 真之
(74)【代理人】
【識別番号】100165157
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100160794
【氏名又は名称】星野 寛明
(72)【発明者】
【氏名】手塚 淳一
(72)【発明者】
【氏名】内田 裕之
【審査官】亀田 貴志
(56)【参考文献】
【文献】特許第6366875(JP,B1)
【文献】特開2019-152936(JP,A)
【文献】特開2019-175335(JP,A)
【文献】特開平02-017509(JP,A)
【文献】特開2006-263904(JP,A)
【文献】特開平07-152414(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 19/18 - 19/46
B23Q 15/00
B23Q 17/00 - 17/24
(57)【特許請求の範囲】
【請求項1】
ワークの加工面形状を表示する表示装置であって、
工作機械の駆動軸を駆動するモータの指令位置及び実位置のうち少なくとも一方のモータ位置情報を取得するモータ位置情報取得部と、
前記工作機械の駆動軸構成、工具形状及び未加工ワーク形状を含む機械情報を取得する機械情報取得部と、
加工プログラムに基づいてワークを加工するシミュレーションを実行し、前記モータ位置情報取得部で取得された前記モータ位置情報及び前記機械情報取得部で取得された前記機械情報に基づいて加工済ワークの加工面の形状を算出する加工面形状シミュレーション部と、
前記加工プログラムに基づいて実際に加工された加工済ワークの加工面の形状を測定する加工面形状測定部と、
前記加工面形状シミュレーション部で算出された加工面形状及び前記加工面形状測定部で測定された加工面形状を同時に表示する加工面形状表示部と、を備え
、
前記加工面形状表示部は、前記加工面形状シミュレーション部で算出された加工面形状及び前記加工面形状測定部で測定された加工面形状のうちの一の加工面形状の位置、角度及び拡大率のいずれかを変更した場合には、他の加工面形状の位置、角度及び拡大率も連動して変更する表示装置。
【請求項2】
前記加工面形状表示部は、前記加工面形状シミュレーション部で算出された加工面形状及び前記加工面形状測定部で測定された加工面形状を、位置、角度及び拡大率が同一となるように表示する、請求項1に記載の表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表示装置に関する。
【背景技術】
【0002】
工作機械の各駆動軸を駆動するモータの位置制御の精度は、加工結果に大きな影響を与えることが知られている。そのため、例えば工作機械を用いて加工されたワークの加工面不良や形状誤差について、その要因を判別する技術が種々知られている(例えば、特許文献1~3参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第6366875号公報
【文献】特許第5197640号公報
【文献】特開2017-30066号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、モータ位置情報に基づいて算出された加工面形状と、加工済ワークの加工面を実際に測定して得た加工面形状とを直接比較する技術はこれまでのところなく、加工面不良や形状誤差の要因の特定に長時間を要しているのが現状である。
【0005】
そこで、モータ位置情報に基づいて算出された加工面形状と、加工済ワークの加工面を実際に測定して得られた加工面形状とを視覚的に直接比較できる技術の提供が望まれている。
【課題を解決するための手段】
【0006】
本開示の一態様は、ワークの加工面形状を表示する表示装置であって、工作機械の駆動軸を駆動するモータの指令位置及び実位置のうち少なくとも一方のモータ位置情報を取得するモータ位置情報取得部と、前記工作機械の駆動軸構成、工具形状及び未加工ワーク形状を含む機械情報を取得する機械情報取得部と、加工プログラムに基づいてワークを加工するシミュレーションを実行し、前記モータ位置情報取得部で取得された前記モータ位置情報及び前記機械情報取得部で取得された前記機械情報に基づいて加工済ワークの加工面の形状を算出する加工面形状シミュレーション部と、前記加工プログラムに基づいて実際に加工された加工済ワークの加工面の形状を測定する加工面形状測定部と、前記加工面形状シミュレーション部で算出された加工面形状及び前記加工面形状測定部で測定された加工面形状を同時に表示する加工面形状表示部と、を備える表示装置である。
【発明の効果】
【0007】
本開示によれば、モータ位置情報に基づいて算出された加工面形状と、加工済ワークの加工面を実際に測定して得られた加工面形状とを視覚的に直接比較できる。そのため、加工面不良や形状誤差の要因を短時間で特定可能となる。
【図面の簡単な説明】
【0008】
【
図1】本実施形態に係る表示装置を備える加工システムの構成を示す機能ブロック図である。
【
図2】本実施形態に係る表示装置の表示画面を示す図である。
【
図3】加工面形状における基準面の算出方法を説明するための図である。
【
図4】加工面形状における基準面上の座標の位置合わせを説明するための図である。
【発明を実施するための形態】
【0009】
以下、本開示の一実施形態について図面を参照して詳細に説明する。
【0010】
図1は、本実施形態に係る表示装置1を備える加工システム100の構成を示す機能ブロック図である。
図1に示されるように、加工システム100は、表示装置1と、数値制御装置2と、サーボ制御装置3と、モータ4と、工作機械5と、を備える。
【0011】
数値制御装置2は、CAM(Computer Aided Manufacturing)で作成された加工プログラムに基づいて、モータ4の位置指令を生成する。この位置指令により規定される位置は、モータ4の指令位置を意味する。また、数値制御装置2は、後述する工作機械5の駆動軸構成、工具形状及び未加工ワーク形状を含む機械情報を、例えばEEPROM等の書き換え可能なメモリに記憶している。
【0012】
サーボ制御装置3は、数値制御装置2からの位置指令と、モータ4に設けられたエンコーダによって検出された位置フィードバックとに基づいて、モータ4の駆動電流を生成する。
【0013】
モータ4は、工作機械5に設けられる。モータ4は、工作機械5における可動部、例えば工具の送り軸やワークの送り軸を駆動するモータを含む。モータ4には、モータ4の回転位置(回転角度)を検出するエンコーダ(不図示)が設けられる。エンコーダによって検出された回転位置は、モータ4の実位置を意味し、位置フィードバックとして利用される。ここで、モータ4の回転位置と工作機械5の可動部の位置とは対応関係にあるため、エンコーダによって検出された回転位置、即ち位置フィードバックは、工具の位置やワークの位置を示す。
【0014】
工作機械5は、例えばボールエンドミル等の工具を用いてワーク(加工対象物)の表面の切削加工を行う機械である。工作機械5の各駆動軸は、モータ4により駆動される。
【0015】
次に、本実施形態に係る表示装置1について詳しく説明する。
本実施形態に係る表示装置1は、例えば、CPU、ROM、RAM等を含むコンピュータ等の演算処理装置によって構成される。
図1では、表示装置1は、数値制御装置2とは別個のコンピュータ等により構成した例を示したが、数値制御装置2と一体に構成されてもよい。
【0016】
図1に示されるように、本実施形態に係る表示装置1は、モータ位置情報取得部11と、機械情報取得部12と、加工面形状シミュレーション部13と、加工面形状測定部14と、加工面形状表示部15と、を備える。
【0017】
モータ位置情報取得部11は、工作機械5の各駆動軸を駆動するモータ4の指令位置及び実位置のうち、少なくとも一方のモータ位置情報を取得する。具体的には、モータ4の指令位置は、数値制御装置2から取得される。また、モータ4の実位置は、サーボ制御装置3から取得される。
【0018】
機械情報取得部12は、工作機械5の駆動軸構成、工具形状及び未加工ワーク形状を含む機械情報を取得する。具体的には、これら機械情報は、数値制御装置2から取得される。あるいは、ユーザが表示装置1に対して直接入力して設定することでも取得可能である。
【0019】
加工面形状シミュレーション部13は、上述のCAMで作成された加工プログラムに基づいて、ワークを加工するシミュレーションを実行する。また、加工面形状シミュレーション部13は、モータ位置情報取得部11で取得されたモータ位置情報と、機械情報取得部12で取得された機械情報とに基づいて、加工済ワークの加工面の形状を算出する。
【0020】
具体的には、加工面形状シミュレーション部13は、加工プログラム及び工作機械5の各駆動軸のモータ位置情報に基づいて工具経路を算出し、工具形状及び未加工ワーク形状に基づいて3次元的な加工形状をシミュレーションする。該シミュレーションの結果から、加工後のワークの加工面形状を取得する。
【0021】
加工面形状測定部14は、上述のCAMで作成された加工プログラムに基づいて実際に加工された加工済ワークの加工面形状を測定して取得する。測定機器としては、加工面形状を測定できるものであればよく、例えば、従来公知の表面粗さ計等を用いて測定された測定結果から、加工済ワークの加工面形状の取得が可能である。
【0022】
加工面形状表示部15は、加工面形状シミュレーション部13で算出された加工面形状と、加工面形状測定部14で測定された加工面形状とを、同時に表示する。ここで、
図2は、本実施形態に係る表示装置1の表示画面を示す図である。
図2に示されるように、本実施形態に係る表示装置1は、指令位置に基づいたシミュレーションにより得られた加工面形状と、実位置に基づいたシミュレーションにより得られた加工面形状と、加工面形状測定部14による測定により得られた実際の測定結果に基づいた加工面形状と、を同時に一つの表示画面に表示可能である。
【0023】
図2に示される各加工面形状は、一例として、縦3mm×横6mmの大きさを有するある領域を斜め上方から見た画像である。いずれの加工面形状も、基準面に対する表面の凹凸の大きさが-3μm~3μmの間で色分けして表示したものである。
【0024】
好ましくは、加工面形状表示部15は、各加工面形状を、位置、角度及び拡大率が互いに同一となるように表示する。即ち、各加工面形状は、各基準面上のX軸とY軸の向きと原点位置が位置合わせされている。これにより、各加工面形状の比較が容易となっている。
【0025】
またさらに好ましくは、加工面形状表示部15は、3つの加工面形状のうちの一の加工面形状の位置、角度及び拡大率のいずれかを変更した場合には、残りの他の加工面形状の位置、角度及び拡大率も連動して変更表示する。例えば、一の加工面形状の位置、角度及び拡大率のいずれかを、ユーザがマウス操作やタッチパネル操作等により変更した場合には、自動的に残りの他の加工面形状も変更表示され、いずれの加工面形状も同一の位置、角度及び拡大率となるように構成されている。
【0026】
なお、加工面形状シミュレーション部13で算出された加工面形状として、指令位置に基づいた加工面形状と実位置に基づいた加工面形状の両者を、加工面形状測定部14で測定して得られた加工面形状と同時に表示する例を
図2に示したが、これに限定されない。上記両者のうちの一方のみと、加工面形状測定部14で測定された加工面形状とを同時に表示するものであってもよい。
【0027】
ここで、加工面形状シミュレーション部13で算出された加工面形状と、加工面形状測定部14で測定された加工面形状とを、位置合わせして表示する方法について、
図3及び
図4を参照して説明する。
図3は、加工面形状における基準面の算出方法を説明するための図である。
図4は、加工面形状における基準面上の座標の位置合わせを説明するための図である。
【0028】
加工面形状シミュレーション部13で算出された加工面形状と、加工面形状測定部14で測定された加工面形状とを位置合わせして表示するためには、各加工面形状の基準面を算出する必要がある。そのため、対象となる加工面上の点群から、基準面の方程式を算出する方法について説明する。先ず、加工面上の点Pn(Xn,Yn,Zn)、基準面d=aX+bY+cZと定義したときに、加工面上の点Pnから基準面dまでの距離lnは、以下の式(1)で表される。
【0029】
【0030】
各加工点からの距離の二乗の総和Lが最小となる平面を基準面とする。即ち、以下の式(2)で表されるLが最小となるa,b,c,dを求める。
【0031】
【0032】
具体的には、行列Aを以下の式(3)のように定義し、この行列Aを特異値分解(SVD)することにより、基準面を算出する。
【0033】
【0034】
最小の特異値σに対応するベクトルvが、求める基準面の法線ベクトルとなる。そのため、v=(a,b,c)が定まれば、以下の式(4)により基準面dを算出できる。
【0035】
【0036】
以上、点群の座標値から基準面を算出する方法について説明したが、これに限定されるものではない。例えば、理想とする加工面を外部から設定し、これを基準面としてもよい。
【0037】
次いで、上述のようにして基準面を算出した後、算出した基準面上に新たに座標系(X軸とY軸)を定める。また、加工点から基準面上に正射影した点(x,y)における凹凸情報zを表す関数を、以下の式(5)のように定義する。
【0038】
【0039】
そして、例えば表面粗さ計等の測定機器により加工面の凹凸情報を実測する際に、モータ位置情報に基づく基準面上のX軸及びY軸の向きと原点位置を合わせて測定する。これにより、各加工面形状の位置合わせが可能となる。
【0040】
本実施形態によれば、以下の効果が奏される。
本実施形態に係る表示装置1では、工作機械5の駆動軸を駆動するモータ4の指令位置及び実位置のうち少なくとも一方のモータ位置情報を取得するモータ位置情報取得部11と、工作機械5の駆動軸構成、工具形状及び未加工ワーク形状を含む機械情報を取得する機械情報取得部12と、加工プログラムに基づいてワークを加工するシミュレーションを実行し、モータ位置情報取得部11で取得されたモータ位置情報及び機械情報取得部12で取得された機械情報に基づいて加工済ワークの加工面の形状を算出する加工面形状シミュレーション部13と、加工プログラムに基づいて実際に加工された加工済ワークの加工面の形状を測定する加工面形状測定部14と、加工面形状シミュレーション部13で算出された加工面形状及び加工面形状測定部14で測定された加工面形状を同時に表示する加工面形状表示部15と、を備える構成とした。
これにより、モータ位置情報に基づいて算出された加工面形状と、加工済ワークの加工面を実際に測定して得られた加工面形状とを視覚的に直接比較できる。そのため、加工面不良や形状誤差の要因を短時間で特定可能となる。例えば、加工不良や形状誤差が生じている場合において、各加工面形状に大きな差異が認められない場合には、加工プログラムに問題があると推定でき、各加工面形状いずれも差異が認められる場合には、工具等に問題があると推定できる。また、指令位置に基づく加工面形状のみに差異が認められる場合には、モータ4の位置制御に問題があると推定でき、加工面形状測定部14で測定された加工面形状にのみ差異が認められる場合には、工具等に問題があると推定できる。従って、短時間で調整可能となるモータ制御の調整による効果を、実加工せずに容易に確認できる。
【0041】
また本実施形態では、加工面形状表示部15が、加工面形状シミュレーション部13で算出された加工面形状及び加工面形状測定部14で測定された加工面形状を、位置、角度及び拡大率が同一となるように表示するよう構成した。これにより、各加工面形状の比較がより容易となり、加工面不良や形状誤差の要因をより短時間で特定可能となる。
【0042】
また本実施形態では、加工面形状表示部15が、加工面形状シミュレーション部13で算出された加工面形状及び加工面形状測定部14で測定された加工面形状のうちの一の加工面形状の位置、角度及び拡大率のいずれかを変更した場合には、他の加工面形状の位置、角度及び拡大率も連動して変更するよう構成した。これにより、両者の比較がさらに容易となり、加工面不良や形状誤差の要因をさらに短時間で特定可能となる。
【0043】
なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。
【符号の説明】
【0044】
1 表示装置
2 数値制御装置
3 サーボ制御装置
4 工作機械
11 モータ位置情報取得部
12 機械情報取得部
13 加工面形状シミュレーション部
14 加工面形状測定部
15 加工面形状表示部