IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シルク テクノロジーズ インコーポレイティッドの特許一覧

特許7397009LIDAR出力信号のステアリングにおける位相の制御
<>
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図1
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図2
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図3
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図4
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図5
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図6
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図7
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図8
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図9A
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図9B
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図9C
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図10
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図11
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図12
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図13
  • 特許-LIDAR出力信号のステアリングにおける位相の制御 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-04
(45)【発行日】2023-12-12
(54)【発明の名称】LIDAR出力信号のステアリングにおける位相の制御
(51)【国際特許分類】
   G01S 7/481 20060101AFI20231205BHJP
【FI】
G01S7/481 A
【請求項の数】 26
(21)【出願番号】P 2020567162
(86)(22)【出願日】2019-05-31
(65)【公表番号】
(43)【公表日】2021-10-07
(86)【国際出願番号】 US2019035084
(87)【国際公開番号】W WO2019236430
(87)【国際公開日】2019-12-12
【審査請求日】2022-05-20
(31)【優先権主張番号】16/255,699
(32)【優先日】2019-01-23
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/680,787
(32)【優先日】2018-06-05
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/683,958
(32)【優先日】2018-06-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520437076
【氏名又は名称】シルク テクノロジーズ インコーポレイティッド
(74)【代理人】
【識別番号】110003007
【氏名又は名称】弁理士法人謝国際特許商標事務所
(72)【発明者】
【氏名】フォン、ダゾン
(72)【発明者】
【氏名】ルフィ、ブラッドレー ジョナサン
(72)【発明者】
【氏名】アスガリ、メヘディ
【審査官】佐藤 宙子
(56)【参考文献】
【文献】米国特許第08311374(US,B2)
【文献】特表2017-524918(JP,A)
【文献】特開2015-172540(JP,A)
【文献】米国特許出願公開第2018/0031680(US,A1)
【文献】DOYLEND,J.K. et al.,Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,OPTICS EXPRESS,2011年,Vol.19,No.22,21595-21604
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48- 7/51
G01S 17/00-17/95
(57)【特許請求の範囲】
【請求項1】
基盤上に配置され、及び、各々が出力信号を伝送するように構成され、それぞれが、ファセットで終端する複数のステアリング導波路であって、出力信号が、前記ファセットを通ってチップから出射し、及び、結合し、LIDAR出力信号を形成するように、前記ファセットが配置されている複数のステアリング導波路、および
前記ステアリング導波路の少なくとも一部に配置され、及び、互いに隣接する前記ステアリング導波路上の前記出力信号間の位相差を調整するように構成された位相チューナ、
を有し、
前記ステアリング導波路は、
1μm以上、及び、4μm以下の直径、又は、高さを有し、
前記ステアリング導波路は、
それぞれ、リッジ間に位置する光伝送媒体のスラブ領域から離れて延びる光伝送媒体のリッジを含み、前記スラブ領域の厚さは、該スラブ領域が前記ファセットに近づくにつれて、減少する、LIDARチップ。
【請求項2】
前記ファセットは、前記基盤の上面及び/又は下面に対して垂直であり、及び前記ファセットの面と前記ファセットにおける前記出力信号の伝送方向との間の最小角度が80°~90°の間である
請求項1に記載のLIDARチップ 。
【請求項3】
前記ステアリング導波路の長さは、
直線的に変化する、
請求項1に記載のLIDARチップ。
【請求項4】
システムに含まれる請求項1のチップであって、
前記システムは、さらに、
前記LIDAR出力信号が前記チップから離れる方向を変化させるように前記位相チューナを動作させる電子回路を有する、
LIDARチップ。
【請求項5】
前記ステアリング導波路の少なくとも一部の幅は、
前記位相チューナと前記ファセットとの間で狭くなる、
請求項1に記載のLIDARチップ。
【請求項6】
前記ステアリング導波路の少なくとも一部は、
それぞれ、前記位相チューナを除外する、
請求項1に記載のLIDARチップ。
【請求項7】
前記ファセットは、
隣接するファセット間の分離が、1μm未満であるように配置される、
請求項1に記載のLIDARチップ。
【請求項8】
前記ファセットは、
1.5μmより大きく、及び/又は、30μm未満のピッチで配置される、
請求項1に記載のLIDARチップ。
【請求項9】
前記ステアリング導波路の少なくとも一部は、
それぞれ、テーパを有し、及び
前記テーパは、前記ステアリング導波路が前記ファセットに近づくにつれて、該ステアリング導波路の幅を減少するように構成されている、請求項1に記載のLIDARチップ。
【請求項10】
前記ステアリング導波路は、
前記光伝送媒体のスラブ領域から離れて延伸する前記光伝送媒体のリッジを有し、及び、
前記ファセットに隣接する前記スラブ領域の一部は、
前記スラブ領域が前記ファセットに近づくにつれて、前記スラブ領域の厚さが増大するように、垂直にテーパ付けられている、
請求項1に記載のLIDARチップ。
【請求項11】
前記LIDAR出力信号は、
前記ファセットを通して前記チップを出射する出力信号を結合することにより形成される複数のLIDAR出力信号のうちの1つであり、前記LIDAR出力信号の各々は、異なるレーザ共振器からの光を有している、
請求項1に記載のLIDARチップ。
【請求項12】
前記LIDAR出力信号は、
前記ファセットを通して前記チップを出射する出力信号を結合することにより形成される複数のLIDAR出力信号のうちの1つであり、前記LIDAR出力信号の各々は、異なる波長を有している、
請求項1に記載のLIDARチップ。
【請求項13】
前記スラブ領域の厚さは、
前記厚さTのスラブ領域の部分から厚さtのスラブ領域の減少した厚さの部分まで減少し、
前記厚さT:減少したスラブ領域の厚さ(t)の比は、
1.2:1より大きく、及び/又は、5:1未満である、
請求項1に記載のLIDARチップ。
【請求項14】
前記厚さTのスラブ領域の部分は、
水平にテーパ付けられている、
請求項13に記載のLIDARチップ。
【請求項15】
前記ステアリング導波路は、シングルモードである、
請求項13に記載のLIDARチップ。
【請求項16】
前記厚さTから前記厚さtへの前記スラブ領域の厚さの減少は、
隣接するステアリング導波路の非テーパ部分の間で生じる、
請求項13に記載のLIDARチップ。
【請求項17】
基盤上に配置され、及び、各々が出力信号を伝送するように構成され、それぞれが、ファセットで終端する複数のステアリング導波路であって、出力信号が、前記ファセットを通ってチップから出射し、及び、結合し、LIDAR出力信号を形成するように、前記ファセットが配置されている複数のステアリング導波路、および
前記ステアリング導波路の少なくとも一部に配置され、及び、互いに隣接する前記ステアリング導波路上の前記出力信号間の位相差を調整するように構成された位相チューナ
を有し、
前記ステアリング導波路は、1μm以上、及び、4μm以下の直径、又は、高さを有し、
前記ステアリング導波路は、光伝送媒体のスラブ領域から離れて延びる前記光伝送媒体のリッジを有し、
前記ステアリング導波路間のスラブ領域の部分は、
前記スラブ領域が前記ファセットに近づくにつれて、該スラブ領域の厚さが増大するように、垂直にテーパ付けられている、
LIDARチップ。
【請求項18】
前記ステアリング導波路の長さは、
直線的に変化する、
請求項17に記載のLIDARチップ。
【請求項19】
システムに含まれる請求項17のLIDARチップであって、
前記システムは、さらに、
前記LIDAR出力信号が前記チップから離れる方向を変化させるように前記位相チューナを動作させる電子回路を有する、
LIDARチップ。
【請求項20】
前記ステアリング導波路の少なくとも一部の幅は、
前記位相チューナと前記ファセットとの間で狭くなる、
請求項17に記載のLIDARチップ。
【請求項21】
前記ステアリング導波路の少なくとも一部は、
それぞれ、前記位相チューナを除外する、
請求項17に記載のLIDARチップ。
【請求項22】
前記ファセットは、
隣接するファセット間の分離が、1μm未満であるように配置される、
請求項17に記載のLIDARチップ。
【請求項23】
前記ファセットは、
1.5μmより大きく、及び/又は、30μm未満のピッチで配置される、
請求項17に記載のLIDARチップ。
【請求項24】
前記ステアリング導波路の少なくとも一部は、
それぞれ、テーパを有し、及び
前記テーパは、
前記ステアリング導波路が前記ファセットに近づくにつれて、該ステアリング導波路の幅が減少するように構成されている、
請求項17に記載のLIDARチップ。
【請求項25】
前記ファセットは、
前記基盤の上面及び/又は下面に対して垂直であり、及び
前記ファセットの面と前記ファセットにおける前記出力信号の伝送方向との間の最小角度が80°~90°の間である、
請求項17に記載のLIDARチップ。
【請求項26】
前記ステアリング導波路は、シングルモードの導波路である、
請求項17に記載のLIDARチップ。
【発明の詳細な説明】
【関連出願の参照】
【0001】
本出願は、全体として本出願に組み込まれる、米国仮特許出願、出願番号62/680,787号、出願日2018年6月5日、発明の名称「光センサチップ」、及び、米国仮特許出願、出願番号62/683,958号、出願日2018年6月12日、発明の名称「光センサチップ」の利益を主張する。
【技術分野】
【0002】
本発明は、光学デバイスに関する。特に、本発明は、LIDARチップに関する。
【背景技術】
【0003】
ADAS(先進運転支援システム)、及び、AR(拡張現実感)のようなアプリケーションに、経済的に、展開できる3D感知システムに関する商業的需要が高まっている。LIDAR(光検出、及び、測距)センサを用いて、視野内の異なるサンプル領域を、物体によって反射されるであろう1つ以上のLIDAR出力信号で照射し、及び、LIDARシステムに戻る結果としてのLIDAR入力信号を測定することによって、視野の3D画像を構築する。
【0004】
LIDARシステムは、典型的には、視野内の異なるサンプル領域からのLIDAR出力信号を操舵する。LIDARデータ(LIDARシステムと物体との間の距離、及び/又は、視線速度)は、LIDAR出力信号によって照射された異なるサンプル領域に対して生成される。様々な異なるメカニズムを用いて、異なるサンプル領域間のLIDAR出力信号を操舵する。これらのメカニズムのいくつかは、LIDAR出力信号を形成するために、その後、結合される異なる光信号の間の位相差を制御する能力に依存する。
【0005】
LIDARシステムを、シリコン・オン・インシュレータ・プラットフォームのようなプラットフォームを使用するLIDARチップ上に構築できる。しかし、LIDARチップ内の導波路は、望ましくない高いレベルの光損失、及び、位相ノイズを有する可能性があり、及び、伝送できる光パワーの量に制限される。これらのパラメータの制限によって、位相差を用いて、LIDAR出力信号を操舵するメカニズムの性能低下が引き起こされる。その結果、LIDAR出力信号を操舵するための改善されたメカニズムが必要とされている。
【発明の概要】
【0006】
LIDARチップは、光伝送媒体のスラブ領域から離れて延びる前記光伝送媒体のリッジを有する1つ以上のリッジ導波路を有する。リッジは、1μmより大きく4μm未満の幅、及び、1μmより大きく4μm未満の高さを有する。スラブ領域は、0.0μmより大きく3μm未満の厚さを有する。いくつかの例では、チップは、シリコン・オン・インシュレータチップである
【0007】
LIDARチップの他の実施形態は、前記出発LIDAR信号をファセットに導くユーティリティ導波路を有し、そのファセットを通って、出発LIDAR信号は、前記チップから出射する。前記チップは、また、前記ユーティリティ導波路からの前記出発LIDAR信号の一部を除去する制御分岐を有している。前記制御分岐は、前記出発LIDAR信号の前記除去された部分からの光を有する光信号を受信する制御光センサを有している。前記チップは、また、前記ユーティリティ導波路からの前記出発LIDAR信号の第2の部分を除去するデータ分岐を有している。前記データ分岐は、前記出発LIDAR信号の前記第2の部分からの光を有する参照光信号を、前記チップから離れて配置される物体から反射された光を有する比較光信号に結合する光結合部を有している。
【0008】
前記チップの他の実施形態は、ファセットで終端するユーティリティ導波路を有し、そのファセットを通って、出発LIDAR信号は、前記チップから出射する。前記ユーティリティ導波路は、また、前記ファセットを通ってLIDAR入力光信号を受け取るように構成されている。前記LIDAR入力光信号は、前記出発LIDAR信号からの光を有している。前記チップは、また、前記LIDAR入力光信号からの光を有する光信号を受信するように構成された光センサを有するデータ分岐を有している。
【0009】
前記チップの別の実施形態は、ファセットで終端するユーティリティ導波路を有し、そのファセットを通って、出発LIDAR信号の少なくとも一部が、前記LIDARチップから出射する。前記チップは、また、前記ユーティリティ導波路上の前記出発LIDAR信号の強度を減衰させるように構成された光減衰器を有している。
【0010】
前記チップの別の実施形態は、LIDAR入力光信号からの光を有する比較光信号受け取る導波路を有している。前記LIDAR入力光信号は、前記チップから離れて配置される物体によって反射された光を有している。前記チップは、また、前記導波路上の前記比較光信号の強度を減衰させるように構成された光減衰器を有している。
【0011】
前記チップの別の実施形態は、ベース上に配置される複数のステアリング導波路を有している。各前記ステアリング導波路を、出力信号を伝送するように構成している。前記ステアリング導波路は、それぞれ、ファセットで終端する。前記ファセットを、出力信号が、前記ファセットを通ってチップから放射し、及び、結合し、LIDAR出力信号を形成するように配置する。前記チップは、また、前記ステアリング導波路の少なくとも一部に配置される位相チューナを有している。前記位相チューナを、隣接するステアリング導波路の前記出力信号間の位相差を調整するように構成する。前記ステアリング導波路は、1μm以上、4μm以下の直径、又は、高さを有している。
【図面の簡単な説明】
【0012】
図1】LIDARチップの平面図である。
【0013】
図2】シリコン・オン・インシュレータ・ウェハから構成された図1に係るLIDARチップの断面図である。
【0014】
図3】オフチップ・スキャン機構と共に使用される図1のLIDARチップを示す図である。
【0015】
図4】オフチップ・スキャン機構の別の実施形態と共に使用される図1のLIDARチップを示す図である。
【0016】
図5】統合されたスキャン機構を有する図1のLIDARチップの断面図である。
【0017】
図6】LIDAR出力信号を操舵するために、出力信号の間の位相差を使用するように修正されたチップの一部を示す図である。
【0018】
図7】チップから離れてファセットに向かって見ている図6のチップの側面図である。
【0019】
図8】各々がファセットで終端するテーパを含む複数のステアリング導波路を有するチップの平面図である。
【0020】
図9A図8に示したチップの一部の断面の側面図である。断面は、図8に示す線Aに沿って形成されている。
【0021】
図9B図8に示されたチップの一部の斜視図である。
【0022】
図9C図8に示されたチップの一部の斜視図である。
【0023】
図10】増加する長さを有するステアリング導波路の構築に適したステアリング導波路レイアウトを有するチップの一部を示している。
【0024】
図11】ユーティリティ導波路、又は、ステアリング導波管のような導波路の断面図である。
【0025】
図12】導波路高さの関数としての導波路の有効屈折率の変化のグラフである。
【0026】
図13】導波路高さの関数としての導波路における伝送損失のグラフである。
【0027】
図14】強度対角度のグラフである。
【発明を実施するための形態】
【実施例1】
【0028】
LIDARチップは、それぞれが、共通の導波路から、共通の光信号の一部を受光する複数のステアリング導波路を有している。ステアリング導波路は、それぞれ、共通の光信号の受光した部分を、出力信号として、伝送する。ステアリング導波路は、それぞれ、ファセットで終端する。ファセットは、出力信号がファセットを通ってステアリング導波路から出て、そして、結合してLIDAR出力信号を形成するように、配置される 位相チューナは、ステアリング導波路の少なくとも一部に配置される。電子回路は、隣接するステアリング導波路の出力信号の間の位相差を調整するように、位相チューナを動作させる。電子回路は、位相差を調整し、LIDAR出力信号がチップから離れる方向を操舵する。
【0029】
SOI型プラットフォームから構築されたLIDARチップに、般的に、用いられる導波路構造は、しばしば、これらのチップを、LIDARアプリケーションに適用することを難しくし、又は、不可能にする。LIDAR出力信号を正確に形成し、及び、操舵することは、ステアリング導波路アレイの様々な要素間に、一定の位相関係を維持することに依存する。この位相関係は、製造上の制限が、導波路の幅に大きな変動を引き起こすため、現在の導波路構造で維持することは困難である。導波路の幅のこれらの変動は、異なる導波路の実効屈折率に大きな変動を引き起こす。これらの実効屈折率の変化は、位相誤差、及び、位相ノイズの原因である。これらの位相誤差の1つの症状は、小さな寸法を有するステアリング導波路を用いて生成されたLIDAR出力信号におけるサイドローブの存在である。その結果、正しい動作を保証するために、何らかの形態の位相補正を採用する必要がある。本発明者は、シングルモード構成を維持しながら、導波路の寸法を1μm以上に増加することによって、これらの位相誤差が低減されることを見出した。
【0030】
ステアリング導波路の実効屈折率/ユニット幅の変化は、1μm未満の高さで、導波路寸法の強い関数とあるが、この相関性は、1μmを超える直径で、0.0、又は、その近くまで急激に低下する。実効屈折率に関する変化は、信号位相に影響を及ぼすため、直径、又は、幅、及び、高さを、1μmまで増加させると、屈折率の実効屈折率が変化するため、位相損失の量が減少する。さらに、ステアリング導波路を通る信号の伝送損失は、直径、又は、幅、及び、高さが1μmを超えて増加すると、劇的に低下する。これらの結果を考慮して、リッジが、1μmより大きく、及び、4μm未満である直径、又は、高さ、及び、幅を有するように、ステアリング導波路を構成することによって、効果的な位相に基づく操舵を達成できる。いくつかの例では、導波路が、1μmより大きく、及び、4μm未満の直径、又は、高さ、及び、幅を有し、0.0μmより大きく、3μm未満の厚さを有するスラブ領域から離れて延伸するように、ステアリング導波路を構成する。これらの寸法を有するステアリング導波路は、LIDAR出力信号におけるサイドローブの存在に、驚くべき減少を示す。したがって、これらの寸法を使用することによって、ステアリング導波路の使用を可能であり、及び、実用的とするレベルまで、位相ノイズが低減される。
【0031】
さらに、共通導波路は、典型的には、製造上の制限のために、ステアリング導波路と同じ寸法を有している。例えば、少なくともステアリング導波路の高さは、垂直方向に多数のステアリング導波路をテーパ付けすることは困難であるため、典型的には、ステアリング導波路の高さと同じである。共通光信号は、単一の信号に結合される出力光信号からのパワーを有するため、共通導波路は、各ステアリング導波路よりも高いパワーレベルで光を搬送する。例えば、共通導波路は、パワーレベルPで共通光信号を搬送する一方、ステアリング導波路は、典型的には、nをステアリング導波路の数として、約P/Nのパワーレベルを搬送する。しかし、導波路における自己位相変調、交差位相変調、誘導ラマン散乱、及び、2光子吸収の効果は、それぞれ、導波路によって搬送されるパワーが、あるパワー閾値よりも増加するにつれて、導波路の性能に影響を与え始める。導波管の寸法が増加するにつれて、パワー閾値は増加する。一旦、導波路の寸法が、直径、又は、幅、及び、高さが1μmを超えて増加すると、導波路のパワー閾値は、1Wを超えて増加する。多くのLIDARアプリケーションでは、LIDAR出力信号の電力を1W以上のレベルに増加させることが望ましい。例えば、自律車両のようなLIDARアプリケーションにおいて、LIDAR出力信号は、1W以上のパワーレベルを有することができる。したがって、これらの導波路の寸法は、共通導波路が、自己位相変調、交差位相変調、誘導ラマン散乱、及び、2光子吸収からの実質的な影響を受けることなく、1W以上のパワーレベルを有する信号を伝送することを許容する。
【0032】
図1は、レーザ共振器を有するLIDARチップの上面図である。レーザ共振器は、レーザ用の利得媒体(図示せず)を有し、又は、それらを構成できる光源10を有している。チップは、また、光源10からの光信号を受光する共振器導波路12を有している。光源を、凹部13に配置でき、光源のファセットを、共振器導波路12のファセットと光学的に位置合わし、光源、及び、共振器導波路12が光信号を交換できるようにする。共振器導波路12は、光信号を、部分反射装置(14)に搬送する。図示された部分反射装置14は、ブラッグ格子のような光学格子である。しかし、他の部分反射装置14を用いることができ、例えば、ミラーを、エチェレ格子、及び、アレイ導波路格子に結合して用いることができる。
【0033】
部分反射装置14は、光信号の戻り部分を戻り信号として共振器導波路12に戻す。例えば、共振器導波路12は、光信号の戻り部分が利得媒体を通過するように、戻り信号を光源10に戻す。光源10は、戻り信号の少なくとも一部が、共振器導波路12で受光される光信号に加算されるように、構成されている。例えば、光源10は、利得媒体から受光された戻り信号を利得媒体に戻すように反射する、高度な、完全的、又は、部分的反射装置15を有することができる。その結果、部分反射装置14と反射装置15との間で光を共振させ、分布ブラッグ反射器(DBR)レーザ共振器を形成できる。DBRレーザ共振器は、DFBレーザよりも、本質的に狭い線幅、及び、より長いコヒーレンス長を有し、したがって、チップからのLIDAR出力信号を反射する物体がチップから遠く離れて位置するときの性能を改善する。
【0034】
部分反射装置14は、共振器導波路12から受光した光信号の一部を、チップに含まれるユーティリティ導波路16に渡す。ユーティリティ導波路16が部分反射装置14から受光する光信号の部分は、レーザ共振器の出力として作用する。レーザ共振器の出力は、ユーティリティ導波路16上の出発LIDAR信号として作用する。ユーティリティ導波路16は、ファセット18で終端し、及び、出発LIDAR信号をファセット18に搬送する。ファセット18を通って進行する出発LIDAR信号がチップを出て、及び、LIDAR出力信号として作用するように、ファセット18を配置できる。例えば、ファセット18を、チップの縁部に配置し、その結果、ファセット18を通って進行する出発LIDAR信号は、チップを出て、及び、LIDAR出力信号として作用する。
【0035】
LIDAR出力信号は、チップから離れて進み、及び、LIDAR信号の経路の物体によって反射される。反射された信号は、物体から離れて進む。反射された信号の少なくとも一部は、ユーティリティ導波路16のファセット18に戻る。したがって、反射信号の一部は、ファセット18を通ってユーティリティ導波路16に入射し、及び、ユーティリティ導波路16によって導かれたLIDAR入力信号として作用できる。
【0036】
ユーティリティ導波路16は、ファセット18の前にテーパ部分を有することができる。例えば、ユーティリティ導波路16は、ファセット18で終端するテーパ20を有することができる。テーパ20は、ユーティリティ導波路16を、LIDAR入力光、及び、出発LIDAR信号に効率的に結合するために必要なアライメント公差を緩和できる。したがって、テーパ20は、処理のために、うまくチップに戻されるLIDAR入力信号のパーセンテージを増加できる。いくつかの例では、ファセット18が、ユーティリティ導波路16の直線部分の断面の面積の2倍、5倍、又は、10倍の面積を有するように、テーパ20を構成する。図1は、テーパ20を水平テーパとして示しているが、テーパ20は、水平、及び/又は、垂直テーパにできる。水平、及び/又は、垂直テーパは、直線状、及び/又は、曲線状にできる。いくつかの例では、テーパ20は、断熱テーパである。
【0037】
チップは、LIDARデータのために処理される光信号が生成されるデータ分岐24を有している。データ分岐は、ユーティリティ導波路16からの光信号の一部をデータ分岐に移す光カプラ26を有している。例えば、光カプラ26は、ユーティリティ導波路16からの出発LIDAR信号の一部を、参照信号として参照導波路27に結合する。参照導波路27は、参照信号を光結合部28に伝送する。
【0038】
光カプラ26は、また、ユーティリティ導波路16からのLIDAR入力信号の一部を、比較信号として、比較導波路30に結合する。比較信号は、LIDAR入力信号からの光の少なくとも一部を有している。比較信号は、参照光信号からの光を排除できる。比較導波路30は、比較信号を光合成部28に伝送する。
【0039】
図示の光カプラ26は、参照導波路27、及び、比較導波路30に十分に近接してユーティリティ導波路16を配置し、ユーティリティ導波路16からの光を、参照導波路27、及び、比較導波路30に結合する結果である。しかし、他の信号分岐構成要素を用いて、ユーティリティ導波路16からの光信号の一部を参照導波路27、及び、比較導波路30に移すことができる。適切な信号分岐構成要素の例には、これらに限定されないが、y結合器、マルチモード干渉カプラ(MMIs)、及び、集積光サーキュレータが含まれる。
【0040】
光結合部28は、比較信号と参照信号とを合成信号に合成する。参照信号は、出発LIDAR信号からの光を有している。例えば、参照信号は、出発LIDAR信号のサンプルとして作用できる。参照信号は、LIDAR出力信号、及び、LIDAR入力信号からの光を排除できる。これに対し、比較信号光は、LIDAR入力信号からの光を有している。例えば、比較信号は、LIDAR入力信号のサンプルとして作用できる。したがって、比較信号は、チップから離れた物体によって反射されている一方、LIDAR出力信号は、反射されていない。チップ、及び、反射物体が、相対的に移動している場合、比較信号、及び、参照信号は、ドップラー効果に起因する異なる周波数を有する。その結果、比較信号と参照信号との間でうなりが生ずる。
【0041】
光結合部28は、また、得られた複合サンプル信号を第1の検出器導波路36、及び、第2の検出器導波路38上に分割する。第1の検出器導波路36は、複合サンプル信号の第1の部分を、複合サンプル信号の第1の部分を第1の電気信号に変換する第1の光センサ40に伝送する。第2の検出器導波路38は、複合サンプル信号の第2の部分を、複合サンプル信号の第2の部分を第2の電気信号に変換する第2の光センサ42に伝送する。好適な光センサの例には、ゲルマニウム・フォトダイオード(PDs)、及び、アバランチ・フォトダイオード(APDs)が含まれる。
【0042】
光結合部28、第1の光センサ40、及び、第2の光センサ42を、電気データ信号を出力するバランス型光検出器として接続できる。例えば、光結合部28、第1の光センサ40、及び、第2の光センサ42を、信号光電流の直流成分が相殺するように接続でき、検出感度を改善する。第1の光センサ40、及び、第2の光センサ42をバランス型光検出器として接続するための適切な方法には、第1の光センサ40、及び、第2の光センサ42を直列に接続することが含まれる。一例では、第1の光センサ40、及び、第2の光センサ42は、直列に接続されたアバランチ・フォトダイオードである。小さな信号変動の検出には、バランス型光検出が望ましい。
【0043】
好適な光結合部28の一例は、2×2MMI装置のようなマルチモード干渉(MMI)装置である。他の適切な光結合部28は、断熱スプリッタ、及び、指向性カプラを含むが、これらに限定されない。いくつかの実施例では、例示された光結合部28の機能は、2つ以上の光学部品、又は、光学部品の組み合わせによって実施される。
【0044】
単一の光センサは、第1の光センサ40、及び、第2の光センサ42に置き換えることができ、及び、データ信号を出力できる。単一の光センサが、第1の光センサ40、及び、第2の光センサ42に置き換わる場合、光結合部28は、光分割機能を有する必要はない。その結果、図示された光光結合部28は、図示の2×1光結合部よりも、2×1光結合部にできる。例えば、図示された光光結合部は、2×1MMI装置にできる。これらの場合、チップは、複合サンプル信号を光センサに伝送する単一の検出器導波路を有している。
【0045】
データ分岐は、比較導波路30に沿って配置されるデータ光減衰器44を有し、データ光減衰器44を操作し、比較導波路30の比較信号を減衰できる。チップは、また、ユーティリティ導波路16に沿って配置される出力光減衰器46を有し、出力光減衰器46操作し、ユーティリティ導波路16上の出発LIDAR信号を減衰できる。データ光減衰器44、及び/又は、出力光減衰器46のための適切な減衰器は、光信号の強度を減衰させるように構成される。光信号の強度を減衰させるように構成された適切な減衰器の例には、キャリア注入ベースのPINダイオード、電気吸収変調器、及び、マッハ・ツェンダ(MZ)変調器が含まれる。
【0046】
チップは、また、比較導波路30からの比較信号の一部をサンプリング導波路52に結合するサンプリング指向性カプラ50を有している。比較信号の結合部分は、サンプリング信号として作用する。サンプリング導波路52は、サンプリング信号をサンプリング光センサ54に伝送する。図1は、サンプリング導波路52への比較信号の一部を伝送するサンプリング指向性カプラ50を示しているが、他の信号分岐構成要素を用い、 比較導波路30からの比較信号の一部をサンプリング導波路52に伝送できる。適切な信号分岐構成要素の例には、これらに限定されるものではないが、y結合器、及び、MMIが含まれる。
【0047】
チップは、レーザ共振器の動作を制御するための制御分岐55を有している。制御分岐は、ユーティリティ導波路16からの出発LIDAR信号の一部を制御導波路57に伝送する指向性カプラ56を有している。出発LIDAR信号の結合部分は、分岐信号として作用する。図1は、出発LIDAR信号の一部を制御導波路57に移動させる指向性カプラ56を示しているが、他の信号分岐構成要素を用い、ユーティリティ導波路16からの出発LIDAR信号の一部を制御導波路57に伝送できる。適切な信号分岐構成要素の例には、y結合器、及び、MMIsが含まれるが、これに限定されるものではない。
【0048】
制御導波路57は、分岐された信号を分割し、次に、分岐された信号の異なる部分を、分岐された信号の部分間の位相差で再合成する干渉計58に、分岐された信号を伝送する。図示の干渉計58は、マッハ・ツェンダ干渉計であるが、他の干渉計を用いることもできる。
【0049】
干渉計58は、制御光信号を干渉計導波路60に出力する。干渉計導波路60は、制御光信号を電気制御信号としての電気信号に変換する制御光センサ61に、制御光信号を伝送する。干渉計信号は、出発LIDAR信号の周波数の関数である強度を有する 例えば、マッハ・ツェンダ干渉計は、フリンジパターンを有する正弦波制御光信号を出力する。出力LIDAR信号の周波数に関する変化は、制御光信号の周波数に関する変化を引き起こす。したがって、制御光センサ61から出力される電気制御信号の周波数は、出発LIDAR信号の周波数の関数である。他の検出メカニズムを、制御光センサ61の代わりに用いることができる。例えば、制御光センサ61は、光結合部28、第1の光センサ40、及び、第2の光センサ42として配置されたバランス型光検出器に置き換えできる。
【0050】
電子回路62は、チップ上の1つ以上の構成要素を動作させることができる。例えば、電子回路62は、光源10、データ光減衰器44、出力光減衰器46、第1の光センサ40、第2の光センサ42、サンプリング光センサ54、及び、制御光センサ61と電気的に通信でき、及び、その動作を制御できる。電子回路62は、チップ外に示されているが、電子回路の全部、又は、一部を、チップ上に含めることができる 例えば、チップは、第1の光センサ40を第2の光センサ42と直列に接続する導電体を有することができる。
【0051】
チップの動作中、電子回路62は、光源10を動作させて、レーザ共振器が、出発LIDAR信号を出力するようにする。次いで、電子回路62は、各サイクルが少なくとも距離データポイントを生成する一連のサイクルを通して、チップを動作させる。各サイクルの間、データ信号は、複数回、サンプリングされる。各サンプルの間に、電子機器は、出発LIDAR信号の周波数を調整する。以下でより詳細に説明するように、電子機器は、時間の関数としての出発LIDAR信号の周波数が電子回路に知られるように、出発LIDAR信号の周波数を制御するために、制御分岐からの出力を使用できる。いくつかの例では、サイクルは、第1のサンプル、及び、第2のサンプルを有している。第1のサンプルの間、電子回路62は、出発LIDAR信号の周波数を増加させることができ、及び、第2のサンプルの間、電子回路62は、出発LIDAR信号の周波数を減少させることができる。例えば、レーザ共振器を、1550nmの波長を有する出発LIDAR信号(及び、それに応じて、LIDAR出力信号)を出力するように構成できる。第1のサンプルの間、電子回路62は、出発LIDAR信号(及び、それに応じて、LIDAR出力信号)の周波数を増加し、波長が1550nmから1459.98nmに減少し、続いて、出発LIDAR信号の周波数を減少し、波長が1459.98nmから1550nmに増加するようにできる。
【0052】
第1のサンプルの間、出発LIDAR信号の周波数を増加するときに、LIDAR出力信号は、チップから離れて進み、そして、LIDAR入力信号としてチップに戻る。LIDAR入力信号の一部は、比較信号になる。LIDAR出力信号、及び、LIDAR入力信号が、チップと反射物体との間を移動している間に、出発LIDAR信号の周波数は増加し続ける。出発LIDAR信号の一部は参照信号となるので、参照信号の周波数は増加し続ける。結果として、比較信号は、光結合部に同時に入射する参照信号よりも低い周波数で、光結合部に入射する。さらに、反射物体がチップから遠く配置されるほど、参照信号の周波数は、LIDAR入力信号がチップに戻る前に、より増加する。したがって、比較信号の周波数と参照信号の周波数との差が大きいほど、反射物体は、チップからさらに離れる。その結果、比較信号の周波数と参照信号の周波数との差は、チップと反射物体との間の距離の関数である。
【0053】
同じ理由で、第2のサンプルの間、出発LIDAR信号の周波数を減少するときに、比較信号は、光結合部に同時に入射する参照信号よりも高い周波数で、光結合部に入射し、及び、第2のサンプル中の比較信号の周波数と参照信号の周波数との間の差も、チップと反射物体との間の距離の関数である。
【0054】
いくつかの例では、チップ、及び、反射物体の相対的な移動もまた比較信号の周波数に影響を及ぼすので、比較信号の周波数と参照信号の周波数との間の差を、ドップラー効果の関数にできる。例えば、チップが、反射物体に向かって、又は、反射物体から離れて移動し、及び/又は、反射物体が、チップに向かって、又は、チップから離れて移動しているとき、ドップラー効果は、比較信号の周波数に影響を及ぼす可能性がある。比較信号の周波数は、反射物体が、チップに向かって、又は、チップから離れて移動している速度、及び/又は、チップが、反射物体に向かって、又は、反射物体から離れて移動している速度の関数であるため、比較信号の周波数と参照信号の周波数との差も、反射物体が、チップに向かって、又は、チップから離れて移動している速度、及び/又は、チップが、反射物体に向かって、又は、反射物体から離れて移動している速度の関数である。したがって、比較信号の周波数と参照信号の周波数との差は、チップと反射物体との間の距離の関数であり、及び、ドップラー効果の関数でもある。
【0055】
複合サンプル信号、及び、データ信号は、それぞれ、比較信号、及び、参照信号を有効に比較する。例えば、光結合部は、比較信号、及び、参照信号を結合し、及び、これらの信号は、異なる周波数を有するので、比較信号と参照信号との間でうなりが生ずる。したがって、複合サンプル信号、及び、データ信号は、比較信号と参照信号との間の周波数差に関連するビート周波数を有し、及び、ビート周波数を用いて、比較信号、及び、参照信号の周波数の差を判定できる。複合サンプル信号、及び/又は、データ信号に関するより高いビート周波数は、比較信号、及び、参照信号の周波数の間に、より高い差を示す。その結果、データ信号のビート周波数は、チップ、及び、反射物体の間の距離の関数であり、及び、ドップラー効果の関数でもある。
【0056】
上述のように、ビート周波数は、2つの未知数、チップと反射物体との間の距離、及び、チップ、及び、反射物体の相対速度(すなわち、ドップラー効果の寄与)の関数である。比較信号と参照信号との間の周波数差の変化(Δf)は、Δf=2Δvf/cで与えられ、ここで、fは、LIDAR出力信号、したがって、参照信号の周波数であり、及び、Δvは、チップ、及び、反射物体の相対速度であり、及び、cは、空気中の光の速度である。多数の異なるサンプルを用いることにより、電子回路62は、2つの未知数を解決できる。例えば、第1のサンプルについて判定されたビート周波数は、未知の距離、及び、ドップラー寄与に関連し、及び、第2のサンプルについて判定されたビート周波数も、未知の距離、及び、ドップラー寄与に関連する。2つの関係を利用することによって、電子回路62は、2つの未知数を解決できる。したがって、ドップラー効果に影響されることなく、チップと反射物体との間の距離を判定できる。さらに、いくつかの例では、電子回路62は、この距離を、ドップラー効果と組み合わせて用いて、チップに向かう、又は、チップから離れる反射物体の速度を判定する。
【0057】
ターゲット、及び、ソースの相対速度がゼロ、又は、非常に小さい場合、ビート周波数に対するドップラー効果の寄与は、本質的には、ゼロである。これらの場合、ドップラー効果は、ビート周波数に、実質的に寄与せず、及び、電子回路62は、第1のサンプルだけを取って、チップと反射物体との間の距離を判定できる。
【0058】
動作中、電子回路62は、制御光センサ61から出力される電気制御信号に応答して、出発LIDAR信号の周波数を調整することができる 制御光センサ61から出力される電気制御信号の大きさは、出発LIDAR信号の周波数の関数である。したがって、電子回路62は、制御の大きさに応じて、出発LIDAR信号の周波数を調整できる。例えば、1つのサンプルの間に出発LIDAR信号の周波数を変化させながら、電子回路62は、時間の関数として、電気制御信号の大きさに関する適切な値の範囲を有することができる。サンプルの間の複数の異なる時点で、電子回路62は、電気制御信号の大きさを、サンプルの間の現在の時間に関連する値の範囲と比較できる。電気制御信号の大きさが、出発LIDAR信号の周波数が電気制御信号の大きさの関連付けられた範囲外であることを示す場合、電子回路62は、光源10を動作させて、出発LIDAR信号の周波数を変化させて、それが関連付けられた範囲内に入射するようにできる。電気制御信号の大きさが、出発LIDAR信号の周波数が電気制御信号の大きさの関連付けられた範囲内にあることを示す場合、電子回路62は、出発LIDAR信号の周波数を変化させない。
【0059】
動作中、電子回路62は、サンプリング光センサ54からのサンプリング信号に応じて、出力光減衰器46によって提供される減衰のレベルを調整できる。例えば、電子回路62は、出力光減衰器46を動作させ、第1の信号閾値を超えるサンプリング信号の大きさに応じて、減衰量を増加させ、及び/又は、第2の信号閾値未満であるサンプリング信号の大きさに応じて、出力低下の大きさを減少させる。
【0060】
いくつかの例では、電子回路62は、出力光減衰器46によって提供される減衰のレベルを調整し、レーザ共振器の性能上の逆反射の影響を防止、又は、低減する。例えば、第1の信号閾値、及び/又は、第2の信号閾値は、レーザ共振器の性能上の逆反射の影響を防止、又は、低減するように、任意に選択できる。LIDAR入力信号の一部が戻りLIDAR信号としてレーザ共振器に戻るとき、逆反射が起こる。いくつかの例では、ファセット18を通過するLIDAR入力信号の50%程度が、レーザ共振器に戻る。部分反射装置14に入射する戻りLIDAR信号の出力が、最小出力低下閾値を超えて、部分反射装置14から出射する出発LIDAR信号の出力よりも下回って減少(「出力低下」)しない場合、戻りLIDAR信号は、レーザ共振器の性能に影響を及ぼす可能性がある。図示のチップでは、最小出力低下閾値は約35dB(0.03%)にできる。したがって、戻りLIDAR信号は、部分反射装置14に入射する戻りLIDAR信号の出力が、部分反射装置14から出射する出発LIDAR信号の出力よりも35dB以下である場合に、レーザ共振器の性能に影響を及ぼす可能性がある。
【0061】
電子回路62は、出力光減衰器46を動作させ、例えば、目標物体が非常に近くにある、又は、高い反射性を有している、又は、その両方であるときに、低出力低下の影響を低減できる。図1から明らかなように、減衰のレベルを増大するように出力光減衰器46を動作させることにより、部分反射装置14に入射する戻りLIDAR信号の出力が低減され、及び、部分反射装置14から離れた位置で、戻り出発LIDAR信号の出力が低減される。出力光減衰器46が部分反射装置14から離れて配置されているため、部分反射装置14から出射する出発LIDAR信号の出力は、出力光減衰器46の動作によって、直接的には、影響されない。したがって、減衰のレベルを増大させるように出力光減衰器46を動作させることは、出力低下のレベルを増大する。その結果、電子機器は、光減衰器46を使用して、出力低下を調整できる。
【0062】
さらに、サンプリング信号の大きさは、出力低下に関連付けられる。例えば、サンプリング信号の大きさは、図1から明らかなように、比較信号の出力に関連付けられる。比較信号は、LIDAR入力信号の一部であるため、サンプリング信号の大きさは、LIDAR入力信号の出力に関連付けられる。この結果は、戻りLIDAR信号が、LIDAR入力信号の一部であるので、サンプリング信号の大きさも、戻りLIDAR信号の出力に関連付けられることを意味する。したがって、サンプリング信号の大きさは、出力低下に関連付けられる。
【0063】
サンプリング信号の大きさが出力低下に関連付けられるため、電子回路62は、サンプリング信号の大きさを用いて、出力光減衰器を動作させ、比較信号出力の大きさを目標範囲内に維持できる。例えば、電子回路62は、出力低下の大きさが第1の閾値以下であることを示すサンプリング信号に応じて、出力低下の大きさを増加させるように出力光減衰器46を動作させることができ、及び/又は、電子回路62は、出力低下の大きさが第2の閾値以上であることを示すサンプリング信号に応じて、出力低下の大きさを減少させるように出力光減衰器46を動作させることができる。いくつかの例では、第1の閾値は、最小出力低下閾値以上である。一例では、電子回路62は、第1の信号閾値を超えるサンプリング信号の大きさに応じて、出力低下の大きさを増加させるように出力光減衰器46を動作させ、及び/又は、第2の信号閾値未満のサンプリング信号の大きさに応じて、出力低下の大きさを減少させる。第1の閾値、第2の閾値、第1の信号閾値、及び、第2の信号閾値からなる群から選択された1つ、2つ、3つ、又は、4つの変数の識別を、LIDARチップシステムのセットアップ中の光チップのキャリブレーションから、判定できる。
【0064】
複合光信号の出力が出力閾値を超えると、光センサは、飽和になる可能性がある。光センサが飽和になると、データ信号の大きさは、出力閾値を超えて複合光信号の出力に増加があっても、増加しない最大値に行き当たる。したがって、複合光信号の出力が出力閾値を超えると、データが、失われる可能性がある。動作中、電子回路62は、データ光減衰器44によって提供される減衰のレベルを調整し、その結果、複合光信号の出力は、出力閾値未満に維持される。
【0065】
図1から明らかなように、サンプリング信号の大きさは、比較信号の出力に関連付けられる。したがって、電子回路62は、サンプリング信号からの出力に応じて、データ光減衰器44を動作できる。例えば、電子回路62は、サンプリング信号の大きさが比較信号の出力を示す場合に、データ光減衰器を動作させて、比較信号の減衰量を増加させ、及び/又は、サンプリング信号の大きさが比較信号の出力を示す場合に、データ光減衰器を動作させて、比較信号の減衰量を減少させ。例えば、いくつかの例では、電子回路62は、サンプリング信号の大きさが上側比較閾値以上であるときに、比較信号の減衰を増加させることができ、及び/又は、サンプリング信号の大きさが上側比較信号閾値以下であるときに、電子回路62は、比較信号の減衰を減少させることができる。
【0066】
上述のように、電子回路62は、サンプリング信号に応じて、出力光減衰器46によって提供される減衰のレベルを調整できる。電子回路62は、追加的に、又は、サンプリング信号に応じて、出力光減衰器46によって提供される減衰のレベルを調整する代わりに、サンプリング信号に応じて、データ光減衰器44によって提供される減衰のレベルを調整できる。
【0067】
チップのための適切なプラットフォームには、シリカ、リン化インジウム、及び、シリコン・オン・インシュレータ・ウェハが含まれるが、これらに限定されない。図2は、シリコン・オン・インシュレータ・ウェハから構成されたチップの一部の断面図である。シリコン・オン・インシュレータ(SOI)・ウェハは、基板82と光伝送媒体84との間に、埋め込み層80を有している。シリコン・オン・インシュレータ・ウェハでは、埋め込み層は、シリカである一方、基板、及び、光伝送媒体は、シリコンである。SOIウェハなどの光学プラットフォームの基板は、チップ全体の基盤として機能できる。例えば、図1に示す光学部品は、基板の上面、及び/又は、側面に接して、又は、上に、配置できる。
【0068】
図2に示されたチップの部分は、シリコン・オン・インシュレータ・ウェハから構成されたチップと共に用いられるのに適した導波路構造を有している。光伝送媒体のリッジ86は、光伝送媒体のスラブ領域88から離れて延伸する。光信号は、リッジの頂点と埋め込み酸化物層との間に制限される。
【0069】
リッジ導波路の寸法は、図2で符号付けされている。例えば、リッジは、wで符号付けされた幅、及び、hで符号付けされた高さを有している。スラブ領域の厚さは、符号付けられたTである。LIDARアプリケーションに関して、これらの寸法は、他のアプリケーションで用いられるよりも高いレベルの光電力を用いる必要があるため、他のアプリケーションよりも重要である。リッジ幅(符号付けられたw)は、1μmより大きく、及び、4μm未満であり、リッジ高さ(符号付けられたh)は、1μmより大きく4μm未満であり、スラブ領域の厚さは、0.5μmより大きく3μm未満である。これらの寸法は、導波路の直線部分、又は、実質的な直線部分、導波路の湾曲部分、及び、導波路のテーパ部分に適用できる。したがって、導波路のこれらの部分は、シングルモードとなる。しかし、場合によっては、これらの寸法は、導波路の直線部分、又は、実質的な直線部分に適用される一方、導波路の湾曲部分、及び/又は、導波路のテーパ部分は、これらの範囲外の寸法を有する。例えば、図1に示すユーティリティ導波路16のテーパ部分は、4μmより大きく、及び、4μm~12μmの幅、及び/又は、高さを有することができる。追加的に、又は、代替的に、導波路の湾曲部分は、導波路の湾曲部分における光損失を低減するために、薄くされたスラブ厚さを有することができる。例えば、導波路の湾曲部分は、0.0μm以上、0.5μm未満の厚さで、スラブ領域から離れるように延伸するリッジを有することができる。上記の寸法によって、一般的には、シングルモード構造を有する導波路の直線部分、又は、実質的な直線部分が提供される一方、それらは、結果として、マルチモードであるテーパ部分、及び/又は、湾曲部分にできる。マルチモード・ジオメトリとシングルモード・ジオメトリとの間の結合は、高次モードを実質的に励起しないテーパを使用して行うことができる。したがって、導波路で伝送される信号が、マルチモードの寸法を有する導波路セクションで伝送される場合であっても、シングルモードで伝送されるように、導波路を構成できる。図2の導波路の構造は、共振器導波路12、ユーティリティ導波路16、参照導波路27、比較導波路30、第1の検出器導波路36、第2の検出器導波路38、サンプリング導波路52、制御導波路57、及び、干渉計導波路60からなる群から選択された導波路の全部、又は、一部に適している。
【0070】
ユーティリティ導波路16とインターフェイスで接続される光源10は、チップから離れており、その後、チップに取り付けられる利得要素にできる。例えば、光源10は、フリップチップ配置を用いてチップに取り付けられる利得要素にできる。
【0071】
フリップチップ配置の使用は、光源10が、シリコン・オン・インシュレータ・ウェハから構成されたチップ上のリッジ導波路とインターフェイス接続されるであろう場合に、適している。シリコン・オン・インシュレータ・ウェハから構成されたチップ上のフリップチップ利得素子とリッジ導波路との間の適切なインターフェイスの例を、それぞれが全体として本出願に組み込まれる、2017年7月11日に発行された米国特許番号9、705、278号、及び、1999年11月23日に発行された米国特許番号第5、991、484号に見つけることができる。この構成は、光源10としての使用に適している。光源10が利得要素である場合には、電子回路62は、利得要素を介して印加される電流のレベルを変化させることによって、出発LIDAR信号の周波数を変更できる。
【0072】
減衰器は、チップから分離しており、その後、チップに取り付けられる構成要素にできる。例えば、減衰器を、フリップチップ配置のチップに取り付けられる減衰器チップに含めることができる。減衰器チップの使用は、データ減衰器、及び、制御減衰器からなる群から選択された減衰器の全部、又は、一部に適している。
【0073】
離れた構成要素上に減衰器を含める代わりに、減衰器の全部、又は、一部をチップに統合できる。例えば、シリコン・オン・インシュレータ・ウェハから構成されたチップ上のリッジ導波路とインターフェイス接続される減衰器の例を、それぞれが全体として本出願に組み込まれる、1999年6月1日に発行された米国特許番号第5、908、305号に見つけることができる。チップと統合された減衰器の使用は、データ減衰器、及び、制御減衰器からなる群から選択された光センサの全て、又は、一部に適している。
【0074】
チップ上の導波路とインターフェイス接続される光センサは、チップから分離しており、その後、チップに取り付けられる構成要素にできる。例えば、光センサは、フォトダイオード、又は、バランチフォトダイオードにできる。好適な光センサ要素の例には、日本の浜松市に所在するHamamatsu製InGaAs PINフォトダイオード、又は、日本の浜松市に所在するHamamatsu製InGaAs APD(アバランチフォトダイオード)が含まれるが、これらに限定されない。これらの光センサを、図1に示すように、チップに集中的に配置できる。或いは、光センサで終端する導波路の全部、又は、一部を、チップの端部に配置されるファセット18で終端させるようにでき、及び、光センサを、ファセット18上のチップの端部に取り付け、光センサがファセット18を通過する光を受光するようにできる。チップとは離れた構成要素である光センサの使用は、第1の光センサ40、第2の光センサ42、サンプリング光センサ54、及び、制御光センサ61からなる群から選択された光センサの全部、又は、一部に適している。
【0075】
離れた構成要素である光センサの代わりに、光センサの全部、又は、一部をチップに統合できる。例えば、シリコン・オン・インシュレータ・ウェハから構成されたチップ上のリッジ導波路とインターフェイス接続される光センサの例を、全体として本出願に組み込まれる、Optics Express Vol.15、No.21、13965-13971(2007)、20012年1月10日に発行された米国特許番号第8,093,080号、2012年8月14日に発行された米国特許番号第8,242,432号、及び、200年8月22日に発行された米国特許番号第6,108,8472号に見つけることができる。チップに統合された光センサの使用は、第1の光センサ40、第2の光センサ42、サンプリング光センサ54、及び、制御光センサ61からなる群から選択された光センサの全部、又は、一部に適している。
【0076】
様々な光学装置プラットフォームと一体化された光学格子構造が、利用できる。例えば、リッジの頂点、及び/又は、リッジの後側に溝を形成することによって、リッジ導波路に、ブラッグ格子を形成できる。
【0077】
いくつかの実施例では、LIDAR出力信号を走査することが望ましい。上記のチップ構造は、LIDARアプリケーションで使用される様々な走査機構との使用に適している。例えば、出発LIDAR信号を、1つ以上の反射装置、及び/又は、1つのよりコリメートされた装置によって受光できる。1つ以上の反射装置を、LIDA出力信号を再誘導、及び/又は、操舵するように構成し、LIDAR出力信号の走査を提供するようにできる。好適な反射装置には、機械的に駆動されるミラー、及び、微小電気機械システム(MEMS)ミラーを含むミラーが含まれるが、これらに限定されない。1つ以上のコリメート装置は、LIDA出力信号のコリメーションを提供し、したがって、ユーティリティ導波路16で受光されるLIDA入力信号の部分を増加できる。好適なコリメート装置には、単一のレンズ、及び、複合レンズが含まれるが、これらに限定されない。
【0078】
図3は、反射装置90、及び、コリメート装置92と共に使用される上述のチップを示している。例えば、レンズは、LIDA出力信号を受光し、及び、LIDA出力信号のコリメーションを提供するコリメート装置として機能する。ミラーは、コリメートされたLIDA出力信号を受光し、及び、コリメートされたLIDA出力信号を所望の方向に反射する反射装置90として機能する。Aで符号づけられる矢印で示されているように、電子回路は、コリメートされたLIDA出力信号を操舵し、及び/又は、コリメートされたLIDA出力信号を走査するように、ミラーを動かすことができる。ミラーの動作は、2次元、又は、3次元にできる。適切なミラーには、機械的に駆動されるミラー、及び、微小電気機械システム(MEMS)ミラーが含まれるが、これらに限定されない。
【0079】
図4は、反射装置90、及び、コリメート装置92と共に使用される上述のチップを示している。例えば、ミラーは、LIDA出力信号を受光し、及び、LIDA出力信号を所望の方向に反射する反射装置90として機能する。Aで符号付けられた矢印で示されているように、電子回路は、LIDA出力信号を操舵し、及び/又は、LIDA出力信号を走査するように、ミラーを動かすことができる。レンズは、ミラーからLIDA出力信号を受光し、及び、LIDA出力信号のコリメーションを提供するコリメート装置92として機能する。レンズを、ミラーの動作とともに動くように構成し、レンズが、ミラーの異なる位置でLIDA出力信号を受信し続けるようにできる。或いは、ミラーの動作を、十分に制限し、レンズが、ミラーの異なる位置でLIDA出力信号を受光し続けるようにできる。ミラーの動作は、2次元、又は、3次元にできる。適切なミラーには、機械的に駆動されるミラー、及び、微小電気機械システム(MEMS)ミラーが含まれるが、これらに限定されない。
【0080】
SOI MEMS(silicon-on-insulator Micro Electro Mechanical System)技術のような技術を、MEMSミラーなどの反射装置をチップに組み込むために、用いることができる。例えば、図5は、ユーティリティ導波路16の長手方向軸を通って得られるチップの一部の断面図である。図示されたチップは、シリコン・オン・インシュレータ導波路上に形成されている。ミラー凹部は、光伝送媒体を通って基盤まで延在する。ミラーは、ユーティリティ導波路からLIDAR出力信号を受光するように、ミラー凹部内に配置される。レンズは、ミラーからLIDAR出力信号を受光し、及び、LIDAR出力信号のコリメーションを提供するコリメート装置92として機能する。レンズを、ミラーの動作とともに動くように構成し、レンズが、ミラーの異なる位置でLIDAR出力信号を受信し続けるようにできる。或いは、ミラーの動作を、十分に制限し、レンズが、ミラーの異なる位置でLIDA出力信号を受光し続けるようにできる。電子回路は、ミラーの動作を1次元、又は、2次元で制御できる。
【0081】
前記チップは、反射装置に加えて、又は、代替装置として、LIDAR出力信号を走査、及び/又は、操舵する代替的な方法を有してもよい。例えば、チップは、出発LIDAR信号を複数の出力信号に吐き出すための構成要素を有してもよい。そして、チップは、異なる出力信号間の位相差を調整し、LIDAR出力信号がチップから離れて進む方向を制御してもよい。出力信号間の位相差のレベルを変化させることにより、LIDAR出力信号を、操舵し、又は、走査できる。
【0082】
図6は、LIDAR出力信号を操舵するために、出力信号間の位相差を用いるように構成されたチップの一部を示す。図6に示されていないチップの部分を、上述のように構成できる。例えば、図6に示すユーティリティ導波路16は、図1に示されるように構成されたチップのユーティリティ導波路16にできる。図6から明らかなように、ユーティリティ導波路16は、上述の共通導波路として機能できる。したがって、出発LIDAR信号は、上述の共通光信号として作用できる。
【0083】
ユーティリティ導波路16は、それぞれがステアリング導波路102上で伝送される複数の出力信号に出発LIDAR信号を分割するスプリッタ100に、出発LIDAR信号を伝送する。各ステアリング導波路102は、ファセット18で終端する。ファセット18は、ファセット18を通ってチップから出射する出力信号が結合し、LIDAR出力信号を形成するように、配置される。
【0084】
隣接するステアリング導波路102のファセット18で出力信号間に位相差がないように、スプリッタ100、及び、ステアリング導波路102を構成できる。例えば、スプリッタ100から出射する際に各出力信号が同相であるようにスプリッタ100を構成でき、及び、各ステアリング導波路102は、同じ長さを有することができる。或いは、隣接するステアリング導波路102のファセット18で、出力信号間に小さく直線的に増加する位相差があるように、スプリッタ100、及び、ステアリング導波路102を構成できる。例えば、番号jのステアリング導波路の位相がf+(j-1)fであるように、ステアリング導波路102を構成できる。ここで、jは、1~Nの整数であり、図6に示されるようにステアリング導波路が連続的に番号付けされているときのステアリング導波路に関連付けられた番号を表している。fは、位相チューナ(後述)が位相差に影響を及ぼさないときに、隣接するステアリング導波路間の位相差であり、及び、fは、ステアリング導波路j=1のファセット18における出力信号の位相である。いくつかの例では、ステアリング導波路が直線的に増加する長さ差を有するように、ステアリング導波路を構成することによって、この位相差を達成する。例えば、ステアリング導波路jの長さを、l0+(j-1)Δlで表すことができ、ここで、jは、1~Nの整数であり、図6に示されるようにステアリング導波路が連続的に番号付けされているときのステアリング導波路に関連付けられた番号を表している。Δlは、隣接するステアリング導波路間の長さ差であり、及び、lは、ステアリング導波路j=1の長さである。ステアリング導波路が同じ長さであるとき、Δlの値はゼロであり、及び、fの値はゼロである。適切なΔlには、0μm、又は、5μmより大きく、及び/又は、10μm、又は、15μm未満のΔlが含まれるが、これらに限定されない。適切なfには、oπ、又は、7πより大きく、及び/又は、15π、又は、20π未満のfが含まれるが、これらに限定されない。適切なNには、10、100、又は、1000より大きく、及び/又は、10000、又は、50000未満のNが含まれるが、これらに限定されない。適切なスプリッタには、Y接合器にカスケード接続される、及び、1×2MMIカプラにカスケード接続される星型カプラ含まれるが、これらに限定されない。
【0085】
位相チューナ104を、ステアリング導波路102の少なくとも一部に沿って配置できる。位相チューナ104は、最初、及び、最後のステアリング導波管に沿って配置されるように示されているが、これらの位相チューナは、任意である。例えば、チップは、ステアリング導波路j=1の位相チューナを有する必要はない。
【0086】
位相チューナを動作させ、隣接するステアリング導波路102のファセット18で出力信号間に位相差を生成するように、電子回路を構成できる。電子回路は、ステアリング導波路を横切って直線的に増加するという点で、位相差が一定であるように、位相チューナを動作させることができる。例えば、電子機器は、ステアリング導波路番号jのチューナ誘導位相が(j-1)αであるように、位相チューナを動作させることができ、ここで、jは、1~Nの整数であり、図6に示されるようにステアリング導波路が連続的に番号付けされているときのステアリング導波路に関連付けられた番号を表し、αは、隣接するステアリング導波路間のチューナ誘導位相差である。従って、ステアリング導波路番号jの位相は、f+(j-1)f+(j-1)αである。図6は、説明を簡略化するために、4個のステアリング導波路のみを有するチップを示しているが、チップは、より多くのステアリング導波路を有してもよい。例えば、チップは、4個より多いステアリング導波路、100個より多いステアリング導波路、又は、1000個より多いステアリング導波路、及び/又は、5000個未満のステアリング導波路を有してもよい。
【0087】
位相チューナを動作させ、位相差αの値を調整するように、電子回路を構成できる。位相差αの値を調整することによって、LIDAR出力信号がチップから離れて進む方向(θ)を変化させる。これにより、電子回路は、位相差αを変化させることによって、LIDAR出力信号を走査できる。LIDAR出力信号を走査できる角度の範囲は、Φであり、及び、いくつかの例では、α=0のときのLIDAR出力信号の方向に計測されるΦ=0°を用いて、Φから-Φまで広がる。Δlの値がゼロでない場合、長さ差は、異なる波長の光が異なる方向(θ)でチップから遠ざかるように進むような回折を引き起こす。したがって、チップから離れるにつれて、出発LIDAR信号にいくらかの拡散が存在するだろう。さらに、回折のレベルを変化させることによって、α=0°のとき、出発LIDAR信号がチップから遠ざかって進む角度が変化する。しかし、長さ差(Δl≠0)でステアリング導波路を設けることによって、チップ上のステアリング導波路のレイアウトを簡略化できる。
【0088】
図7は、チップの離れた位置からステアリング導波路のファセットに向かって見ているチップの側面図である。図2にしたがって、ステアリング導波路102を構成する。例えば、は、図2に示されるように、ステアリング導波路102は、wでラベル付けされた幅、及び、hでラベル付けされた高さを有している。スラブ領域の厚さは、tでラベル付けされる。LIDARアプリケーションでは、他のアプリケーションで用いられるも高いレベルの光電力を用いる必要があり、及び、ステアリング導波路のようなアプリケーションにおける相対的な位相を維持する必要があるため、これらの寸法は、他のアプリケーションよりも重要である。(wでラベル付けられた)リッジ幅は、1μmより大きく、4μm未満であり、(hでラベル付けられた)リッジ高さは、1μmより大きく、4μm未満であり、スラブ領域の厚さは、0.0μm、又は、0.05μm以上であり、かつ、3μm未満である。これらの寸法は、導波路の直線、又は、実質的に直線部分、導波路の湾曲部分、及び、導波路のテーパ部分に適用できる。したがって、導波路のこれらの部分は、シングルモードとなる。しかし、いくつかの例では、これらの寸法は、導波路の直線、又は、実質的に直線部分に適用される一方、導波路の湾曲部分、及び/又は、導波路のテーパ部分は、これらの範囲外の寸法を有する。例えば、導波路のテーパ部分は、>4μmであり、及び、4μmから12μmの範囲であってもよい幅、及び/又は、高さを有してもよい。加えてテーパ或いは、導波路の湾曲部分は、導波路の湾曲部分における光損失を低減するために、低減されたスラブ厚さを有してもよい。例えば、導波路の湾曲部分は、0.0μm以上、0.5μm未満の厚さのスラブ領域から離れるように延伸するリッジを有してもよい。上記の寸法は、一般に、シングルモード構造を有する導波路の直線、又は、実質的に直線の部分を提供する一方、それらは、結果として、マルチモードであるテーパ部分、及び/又は、湾曲部分をもたらすことができる。マルチモード・ジオメトリとシングルモード・ジオメトリとの間の結合は、高次モードを実質的に励起しないテーパを使用して行うことができる。したがって、導波路で伝送される信号が、マルチモードの寸法を有する導波路セクションで伝送される場合であっても、シングルモードで伝送されるように、導波路を構成できる。
【0089】
ピッチは、ステアリング導波路のファセット間の距離であり、図7ではPでラベル付けされている。センター-センターで、又は、あるファセット18の側面から、隣接するファセット18の対応する側面までで、ピッチを測定できる。ピッチを低減することによって、LIDAR出力信号を効果的に走査できる角度の範囲が増大する。しかし、ファセットが、互いに接近するにつれて、エバネッセント結合が生じる可能性がある。ファセット18の隣接する側面間の分離(図7においてSで符号づけられる)が、1μmよりも大きいとき、エバネッセント結合が防止され、又は、低減される。隣接するステアリング導波路間の結合を防止し、又は、低減するために、この分離レベルを、ファセットと位相チューナとの間に位置するステアリング導波路の部分にも適用できる。
【0090】
1つ以上のステアリング導波路は、テーパを有することができる。例えば、図8は、ステアリング導波路の少なくとも一部が、それぞれ、ファセット18の1つで終端するテーパ106を有するチップの上面図である。テーパは、ファセット18で終端するように示されているが、テーパは、ファセット18の前で終端してもよい。したがって、テーパとファセット18との間に、ステアリング導波路の非テーパ部分が存在してもよい。図8のテーパ106は、それらがファセットに近づくにつれて、ステアリング導波路の幅を拡大するように示されているが、テーパ106を、それらがファセットに近づくにつれて、ステアリング導波路の幅を縮小するように構成してもよい。ファセットでステアリング導波路の幅を小さくすることによって、異なるステアリング導波路のファセットを互いに接近させる一助にできる。その結果、幅が減少するテーパは、低いピッチレベルを維持できる一方、隣接するステアリング導波路間の結合を防止し、又は、低減する分離レベルを許容する。
【0091】
図8に示すテーパは、水平テーパであるが、テーパは、垂直テーパであってもよい。ファセットの幅は、図7では、wで符号づけられ、及び、ファセットの高さは、図7では、hでラベル付けられている。ファセットの幅(w)が、30、20、又は、10μm未満であり、及び/又は、5、2、又は、1μmよりも大きいようにテーパを構成できる。したがって、テーパとスプリッタ100との間に位置するステアリング導波路の非テーパ部分は、1μmよりも大きく、4μm未満の幅、及び、1μmよりも大きく、4μm未満の高さ、テーパとファセットとの間に位置するステアリング導波路の非テーパ部分、及び/又は、ファセット自体は、1μmよりも大きく、4μm未満の幅、及び、1μmより大きく、4μm未満の高さを有することができる。さらに、又は、或いは、隣接するファセット間の分離が、0.2、0.3、又は、0.4μmより大きく、及び/又は、0.6、0.8、又は、1μm未満である一方、ピッチが、1.5、3、又は、6μmより大きく、及び/又は、10、20、又は、30μm未満であるように、テーパを構成できる。これらの寸法を用いて、及び、1550nmの波長では、60°、30°、又は、20°未満、及び/又は、5°、3°、又は、1°より大きい走査角度範囲(Φ)を達成できる。
【0092】
ファセット18の領域でのスラブ領域の厚さを減少することによって、ファセット18の領域でのステアリング導波路間での光学結合を、減少できる。図9Aは、図8に示されたチップの一部の断面の側面図である。断面は、図8において、Aで符号づけられる線に沿ってとられている。図9Aは側面図であるため、断面の背景にあるチップの特徴も、示されている。例えば、断面は、スラブ領域88を通って取られている。しかしながら、ステアリング導波路102が、スラブ領域88の背景に見ることができる。図9Bは、図8に示されたチップの一部の斜視図である。図9Bに示されたスラブ領域構成を、テーパとの結合に用いることができるが、図9Bに示された画像は、図8に示されているテーパ106を有していない。
【0093】
各ステアリング導波路102は、スラブ領域88から延伸する。スラブ領域88がチップのファセット、及び/又は、側面に近づくと、スラブ領域88の厚さが減少する。例えば、スラブ領域は、スラブ領域88内に少なくとも途中まで延伸する凹部108を有している。図9に示すように、凹部108がスラブ領域88を通って途中まで延伸しているとき、凹部108の底部の光伝送媒体84は、スラブ領域の光伝送媒体84と連続することができ、したがって、スラブ領域88の低減された部分として作用する。図9において、スラブ領域の厚さは、Tで符号づけられ、及び、低減されたスラブ領域の厚さは、tでラベル付けられている。ファセットの間から選択された1つ以上の位置での、低減されたスラブ領域の適切な厚さは、0.0μm以上、0.2μm、又は、0.5μm未満の厚さを有するが、これに限定されない。スラブ領域厚さ(T):低減されたスラブ領域厚さ(t)の比が1.2:1、2:1、又は、4:1より大きく、及び/又は、10:1、又は、5:1未満であるように、チップを構成できる。
【0094】
スラブ領域は、ファセットの近くで、垂直に、及び/又は、水平にテーパ付けることができる。例えば、図9Cは、図8に示されたチップの一部の斜視図である。ファセットに隣接するスラブ領域の部分は、スラブ領域がファセットに近づくにつれて、スラブ領域の厚さが増大するように、垂直にテーパ付けされている。図面を簡略化するために、図9Cに、テーパ106は、示されていない。しかし、スラブ領域の垂直の、及び/又は、水平のテーパを、図8に示されるようなステアリング導波路102のテーパ106、又は、ファセットに近づくにつれて狭くなるテーパ106との接合に用いることができる。したがって、図9Cに示されるスラブ領域の垂直テーパを、ステアリング導波路のテーパ106領域間に配置できる。このような構成により、光損失を低減できる。
【0095】
いくつかの例では、ステアリング導波路102は、ステアリング導波路102の長さが直線的に増加するように設計される。例えば、ステアリング導波路jの長さを、l+(j-1)ΔLで表すことができ、ここで、jは1からNまでの整数であり、及び、図6に示すように、ステアリング導波路が順番に番号付けされているときのステアリング導波路に関連付けられた数を表しており、ΔLは、隣接するステアリング導波路間の長さ差であり、及び、Lは、ステアリング導波路j=1の長さである。上述のように、長さ差は、f+(j-1)f+(j-1)αによって表されるステアリング導波路番号jの位相になる。
【0096】
長さ差は、異なる波長の光が異なる方向(θ)でチップから離れて進むような回折を引き起こす。この波長依存回折によって達成され得る角度と位相チューナ104を調整することによって達成され得る角度との組み合わせは、LIDAR出力信号を走査できる角度の範囲、Φを増大する。例えば、上記のようなステアリング導波路構成では、30μmまでの出力導波路のピッチを用いて、40°、50°、又は、60°より大きく、及び/又は、70°、80°、又は、90°未満の走査角度範囲(Φ)を実現できる。適切なΔLは、0、又は、100μmより大きく、及び/又は、200、又は、300μm未満のΔLを含むが、これらに限定されない。適切なNは、100、又は、1000よりも大きく、及び/又は、10,000、又は、50,000未満のNを含むが、これらに限定されない。
【0097】
LIDAR出力信号に含めることができる波長の範囲を増大させるために、チップは、図1のチップのレーザ共振器の代わりに、複数の異なるレーザ共振器、及び、マルチプレクサを有することができる。マルチプレクサは、各レーザ共振器から出力を受け取り、及び、出力を結合し、図1のユーティリティ導波路1によって受光される出力LIDAR信号を形成できる。電子回路は、異なる波長のLIDAR出力信号がチップから、順次、出力されるように、レーザ共振器を、順次、動作できる。電子回路は、異なる波長のLIDAR出力信号を、順次、走査するために、位相チューナを動作できる。或いは、電子回路は、LIDAR出力信号が複数の異なるレーザ共振器からの光を有するように、2つ以上のレーザ共振器を、同時に、動作できる。電子回路は、複数の異なるレーザ共振器からの光を有するLIDAR出力信号を走査するために、位相チューナを動作できる。値ΔLは異なる波長の異なるパーセンテージであるため、異なる波長を有するLIDAR出力信号は、異なる方向にチップから離れて進む。
【0098】
図6に示すステアリング導波路のレイアウトは、同じ長さ、又は、実質的に同じ長さを有するステアリング導波路の構成に適している。しかし、他のステアリング導波路のレイアウトも可能である。例えば、図10は、増加する長さを有するステアリング導波路の構築により適するステアリング導波路レイアウトを有するチップの一部を示している。
【0099】
ファセットでのステアリング導波路における出力信号の伝送方向が、装置の平面、基板の上面、及び/又は、基板の下面と実質的に平行であるように、ステアリング導波路を構成できる。いくつかの例では、上記ファセット18は、ベース、及び/又は、基板の上面、及び/又は、基板の下面に対して、垂直、又は、実質的に垂直である。加えて、又は、或いは、ファセットの面と、ファセットでの出力信号の伝送方向との間の最小角度が、80°と90°との間になるように、ファセット18を構成できる。例えば、図11は、ユーティリティ導波路16、又は、ステアリング導波路102のような導波路の断面であり、角度θは、ファセットと、出力信号の伝送方向との間の最小角度を表している。角度の適切な値は、10°、9°、又は、8°より大きく、及び/又は、7°、6°、又は、5°未満であるが、これらに限定されない。
【0100】
実施例1
【0101】
シリコン・オン・インシュレータ・ウェハ上に図2に従って構成された導波路を、導波路の有効屈折率/幅の変化を判定するために、シミュレートした。図12は、得られた屈折率変化を導波路高さの関数として示している。図12は、屈折率変化のレベルは、1μmを超える高さで、導波路直径(高さ)の強い関数となるが、直径(高さ)が、1μmを過ぎると、相関性は、急激にゼロの近くまで低下することを示している。
【0102】
実施例2
【0103】
導波路を、シリコン・オン・インシュレータ・ウェハ上に図2に従って構成し、及び、伝送損失について試験した。図13は、得られた伝送レベルを、導波路高さの関数として示している。導波路高さが1μmを通過すると、伝送損失レベルは、次第に弱くなる。図13で明らかな急激な弱化が、y軸上に示されたdB次元に関連付けられた対数スケールによって、低減されているようである。
【0104】
実施例3
【0105】
第1の導波路を、シリコン・オン・インシュレータ・ウェハ上に図2に従って構成した。第1の導波路は、3μmの高さ、3μmの幅、及び、0.25μmのスラブ厚さを有していた。強度対ビーム操舵角度に関する結果を、図14に示す。0.5μmの高さを有する同じ導波路構造を使用するときに存在するサイドローブは、図14では、明確ではない。
【0106】
適切な位相同調には、キャリア注入用のPINダイオード、熱調整用のヒータ、又は、半導体光増幅器(SOAs)が含まれるが、これらに限定されない。シリコン・オン・インシュレータ・ウェハから構成されたチップのリッジ導波路と一体化された位相チューナの例を、全体とし本出願に組み込まれる、1998年5月22日に出願された米国特許出願番号第09/083,395号、1998年6月1日に発行された米国特許第5,908,305号に見つけることができる。位相チューナは、チップから分離し、及び、チップに取り付けられる構成要素であってもよい。例えば、位相チューナを、フリップチップ配置でチップに取り付けられる位相チューナチップに含めることができる。離れた構成要素に位相チューナを含める代わりに、位相チューナの全部、又は、一部を、チップに統合できる。
【0107】
適切な電子回路には、アナログ電気回路、デジタル電気回路、プロセッサ、マイクロプロセッサ、デジタル信号プロセッサ(DSPs)、フィールドプログラマブルゲートアレイ(FPGAs)、コンピュータ、マイクロコンピュータ、又は、上述した動作、監視、及び、制御機能を実行するのに適した組み合わせが含まれるが、これらに限定されない。いくつかの例では、コントローラは、動作、制御、及び、監視機能の実行中に、コントローラによって実行される命令を有するメモリへアクセスする。電子回路は、一つの部品として、一つの場所に図示されているが、電子回路は、互いに独立し、及び/又は、異なる位置に配置された複数の異なる構成要素を含むことができる。さらに、上述したように、開示された電子回路の全て、又は、一部を、チップと統合された電子回路を有するチップ上に含めることができる。
【0108】
レーザ共振器は、チップ上に配置されているとして示されているが、レーザ共振器の全部、又は、一部を、チップから離れて配置できる。例えば、ユーティリティ導波路16は、出発LIDAR信号が、チップから離れたレーザ共振器からユーティリティ導波路16に入射する際に通過する第2のファセットで終端できる。
【0109】
チップは、図示された構成要素に加えて、構成要素を有することができる。一例として、光減衰器(図示せず)を、第1の検出器導波路36、及び、第2の検出器導波路38に沿って配置できる。電子回路は、これらの減衰器を動作させ、その結果、第1の光センサ40に到達する複合サンプル信号の第1の部分の出力を、第2の光センサ40に到達する複合サンプル信号の第2の部分の出力と同じか、又は、ほぼ同じにできる。電子回路は、複合サンプル信号の第1の部分の出力レベルを示す第1の光センサ40からの出力、及び、複合サンプル信号の第2の部分の出力レベルを示す光センサ42からの出力に応じて、減衰器を動作できる。
【0110】
データ分岐24の代替の構成、及び/又は、動作を採用できる。例えば、全体として本出願に組み込まれる、2018年5月15日に出願された米国仮特許出願番号62/671,913号は、データ分岐24の代替の構成、及び、データ分岐24からデータを生成するための代替の方法を開示する。
【0111】
本発明のその他の実施形態、組合せ、及び、修正は、これらの教示に鑑みて当業者に、容易に、生じるであろう。したがって、本発明は、上記の明細書、及び、添付図面と合わせて検討したときの実施形態、及び、修正をすべて含む、以下の特許請求の範囲によってのみ限定される。

図1
図2
図3
図4
図5
図6
図7
図8
図9A
図9B
図9C
図10
図11
図12
図13
図14