IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ IGNITE株式会社の特許一覧

<>
  • 特許-自動検査機構を有するMEMS表示装置 図1
  • 特許-自動検査機構を有するMEMS表示装置 図2
  • 特許-自動検査機構を有するMEMS表示装置 図3
  • 特許-自動検査機構を有するMEMS表示装置 図4
  • 特許-自動検査機構を有するMEMS表示装置 図5
  • 特許-自動検査機構を有するMEMS表示装置 図6
  • 特許-自動検査機構を有するMEMS表示装置 図7
  • 特許-自動検査機構を有するMEMS表示装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-05
(45)【発行日】2023-12-13
(54)【発明の名称】自動検査機構を有するMEMS表示装置
(51)【国際特許分類】
   B81B 7/02 20060101AFI20231206BHJP
   B81B 3/00 20060101ALI20231206BHJP
   G02B 26/02 20060101ALI20231206BHJP
【FI】
B81B7/02
B81B3/00
G02B26/02 E
【請求項の数】 18
(21)【出願番号】P 2021515112
(86)(22)【出願日】2019-09-20
(65)【公表番号】
(43)【公表日】2022-01-06
(86)【国際出願番号】 US2019052158
(87)【国際公開番号】W WO2020061455
(87)【国際公開日】2020-03-26
【審査請求日】2022-06-21
(31)【優先権主張番号】62/733,782
(32)【優先日】2018-09-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521005487
【氏名又は名称】IGNITE株式会社
(74)【代理人】
【識別番号】100187322
【弁理士】
【氏名又は名称】前川 直輝
(72)【発明者】
【氏名】イシイ フサオ
(72)【発明者】
【氏名】ビクター ストーン
(72)【発明者】
【氏名】鳥飼 俊敬
【審査官】永井 友子
(56)【参考文献】
【文献】米国特許出願公開第2009/0231667(US,A1)
【文献】米国特許出願公開第2015/0002982(US,A1)
【文献】特開2011-039313(JP,A)
【文献】米国特許出願公開第2012/0194207(US,A1)
【文献】特開2016-144261(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B81B 7/02
B81B 3/00
G02B 26/02
(57)【特許請求の範囲】
【請求項1】
基板と、
前記基板に実装された電子回路と、
前記基板に実装され可動素子と、
前記基板に実装され、前記電子回路によって前記可動素子との間に印加される操作電圧により前記可動素子の移動を制御する電極と、
前記基板に実装され、前記可動素子との機械的な接触により前記可動素子の移動を停止させるストッパと、
前記基板に少なくとも部分的に実装され、前記可動素子と前記電極との間に操作電圧が印加されていない場合に前記可動素子と前記ストッパとの間に前記操作電圧よりも低い試験電圧を印加して漏洩電流の有無を判定する自動検査機構とを備える、
ことを特徴とする、微小電気機械システム(MEMS)装置。
【請求項2】
請求項1において、
前記可動素子はヒンジに取り付けられたミラーであり、前記ストッパに面する前記ミラーの裏面は光吸収コーティングを有する、
ことを特徴とする、MEMS装置。
【請求項3】
請求項1または2において、
前記自動検査機構によって前記試験電圧が印加される前に、前記ストッパと前記可動素子とが電気的に絶縁される、
ことを特徴とする、MEMS装置。
【請求項4】
請求項1または2において、
前記可動素子と前記自動検査機構との間に絶縁層をさらに含む、
ことを特徴とする、MEMS装置。
【請求項5】
請求項4において、
前記絶縁層は、シリコン、アルミナ、または窒化アルミニウムのうちの少なくとも1つからなる、
ことを特徴とする、MEMS装置。
【請求項6】
請求項4において、
前記絶縁層は、前記絶縁層の上方の構成要素を前記自動検査機構に接続するビアを備える、
ことを特徴とする、MEMS装置。
【請求項7】
請求項1または2において、
前記ストッパは、タングステン、銅、シリコン、チタン、または窒化チタンのうちの少なくとも1つからなる、
ことを特徴とする、MEMS装置。
【請求項8】
請求項1または2において、
前記可動素子は、ヒンジに取り付けられたミラーであり、前記ストッパと前記ヒンジとの距離は、前記ヒンジと前記ミラーの外周縁部との距離の半分未満である、
ことを特徴とする、MEMS装置。
【請求項9】
請求項1または2において、
前記ストッパの材料の降伏強度は、前記可動素子が前記ストッパに接触した際に前記可動素子に加わる応力よりも大きい、
ことを特徴とする、MEMS装置。
【請求項10】
請求項1または2において、
前記ストッパの断面形状は、四角形、円形、三角形、菱形、または二重三角形である、
ことを特徴とする、MEMS装置。
【請求項11】
請求項1または2において、
前記自動検査機構は、前記漏洩電流を連続的または周期的に計測する、
ことを特徴とする、MEMS装置。
【請求項12】
請求項1または2において、
前記自動検査機構は、前記漏洩電流の変動を計測する、
ことを特徴とする、MEMS装置。
【請求項13】
請求項1または2において、
前記自動検査機構は、前記漏洩電流の絶対値を計測する、
ことを特徴とする、MEMS装置。
【請求項14】
基板と、
前記基板に実装された複数の電子回路と、
前記基板上にアレイ状に配置された複数の可動素子と
前記基板に実装され、前記電子回路によって前記可動素子との間に印加される操作電圧により前記可動素子の移動を制御する電極と、
前記基板上に実装され、前記可動素子とそれぞれ関連付けられる複数のストッパであって、前記可動素子に対する機械的接触により前記可動素子の移動を停止させる複数のストッパと、
前記基板上に少なくとも部分的に実装された自動検査機構であって、前記可動素子と前記電極との間に操作電圧が印加されていない場合に、前記複数の可動素子の少なくとも1つと、当該可動素子に関連付けられたストッパとの間に前記操作電圧よりも低い試験電圧を印加して漏洩電流が存在するか否かを判定する自動検査機構とを備える、
ことを特徴とする、微小電気機械システム(MEMS)装置。
【請求項15】
請求項14において、
前記自動検査機構は、
前記試験電圧を印加する電圧源と、
前記漏洩電流の値を計測する電流計と、
前記基板上にアレイ状に配置された複数の配線部分であって、前記電圧源および前記電流計に結合されて、前記複数の可動素子および前記複数のストッパと電気的に結合される複数の配線部分とを備える、
ことを特徴とする、MEMS装置。
【請求項16】
請求項15において、
前記複数の配線部分は、複数のビット線に直交に配置された複数のワード線を備え、前記複数のワード線および前記複数のビット線の各々は、制御部によって個別にアドレス指定可能である、
ことを特徴とする、MEMS装置。
【請求項17】
請求項16において、
前記複数の可動素子はそれぞれ、前記複数のワード線のうちの1つ、または前記複数のビット線のうちの1つと電気的に結合され、
前記複数のストッパはそれぞれ、前記複数のワード線のうち別の1つ、または前記複数のビット線のうちの別の1つと電気的に結合される、
ことを特徴とする、MEMS装置。
【請求項18】
請求項14または15において、
前記複数の可動素子は、複数のミラー素子を備え、前記自動検査機構は、ミラー素子の行、ミラー素子の列、またはミラー素子の列と行の両方について前記漏洩電流を計測する、
ことを特徴とする、MEMS装置。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2018年9月20日に出願された米国仮特許出願第62/733782号に基づく優先権を主張するものであり、その開示内容をここに援用する。
【0002】
本発明は、微小電気機械システム(MEMS)表示装置のピクセルアレイを検査する検査システムを備えたMEMS表示装置に関する。
【背景技術】
【0003】
近年、表示装置には、高精細度テレビジョン(HDTV)における200万画素や、いわゆる4K表示における800万画素など、多数の画素が必要とされることが多い。しかしながら、これらの装置では、画素数が多数のため、各画素が正常に機能しているか否かを検査することは困難である。目視検査システムが開発されている。しかし、このような検査システムでは、暗い部屋、高解像度視覚システム、複雑なソフトウェア、及び、システムを操作して最終的な目視による確認を行う人の検査員が必要となるため、必ずしも有効というわけではない。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示によれば、表示装置を自動的に試験することができる。表示装置には、不良ピクセルの正確なアドレスを提供する自己検査機構が組み込まれてもよい。前記アドレスは、歩留り向上に非常に有用な情報である。
【課題を解決するための手段】
【0005】
MEMS表示装置などのMEMS装置は、基板と、前記基板上の電子回路と、前記基板上に設けられ、前記電子回路によって印加される操作電圧により移動が制御される可動素子と、前記可動素子との機械的接触により前記可動素子の移動を停止させるストッパと、前記可動素子と前記ストッパとの間に試験電圧を印加して漏洩電流の有無を判定する自動検査機構とを備える。前記可動素子は、表示装置のピクセルであるミラー素子を含んでいてもよい。
【0006】
前記MEMS装置および他のMEMS装置の変形例については、以下でさらに詳細に説明する。
【0007】
本開示は、添付の図面と併せて読まれると、以下の詳細な説明から最もよく理解される。一般的プラクティスによれば、図面の種々の特徴は実寸大ではないことを強調しておく。それどころか、様々な特徴の寸法は、明確にするために任意に拡大または縮小されている。さらに、特に明記しない限り、同様の参照番号は同様の要素を示す。
【図面の簡単な説明】
【0008】
図1】実施形態1に係る表示装置として利用可能なMEMS装置の断面図である。
図2図1に示すMEMS装置のミラーがオン状態に変位した際の断面図である。
図3】実施形態2に係る表示装置として利用可能なMEMS装置の断面図である。
図4】実施形態3に係る表示装置として利用可能なMEMS装置の簡略化された斜視図である。
図5図4に示すMEMS装置のミラーがオン状態に変位した際の簡略された側面図である。
図6】実施形態4に係る表示装置として利用可能なMEMS装置のミラーがオン状態に変位した際の簡略化された側面図である。
図7】表示装置のアレイに配置され、本明細書で教示するMEMS装置のミラーおよびストッパに接続されたアレイ状の配線部分を示す回路図である。
図8】本明細書に教示される、使用可能なストッパの断面図の一例を示す図である。
【発明を実施するための形態】
【0009】
図1および図2は、本開示の実施形態1におけるMEMS装置101の断面図である。これらの図や本明細書で参照される他の図は、本開示によるMEMS装置の単一の可動素子を説明するためのものである。しかしながら、本明細書に記載されるMEMS装置は、複数の可動素子を含んでいてもよい。例えば、MEMS装置が表示装置で使用され可動素子がミラーである場合、MEMS装置が数百万個のミラー(例えば、アレイ状に配設される)を含む実装形態も可能である。MEMS装置101、またはそのミラー/ミラー素子は、本明細書において表示装置のマイクロミラーまたはピクセルと称することもある。
【0010】
MEMS装置101は、基板111を有する。基板111には、少なくとも1つの電子回路が形成されており、本実施例において前記電子回路は1または複数のトランジスタ116、117であり、これらのトランジスタは、以下で説明するように、MEMS装置101の切り替えのための操作電圧を印加することに使用されてもよい。また基板111には層間誘電体112、113、114が形成されている。具体的には、層間誘電体112は、基板111及び電子回路の一部(ここではトランジスタ116、117)に形成されている。層間誘電体113は、層間誘電体112上に形成され、層間誘電体114は層間誘電体113上に形成されている。層間誘電体の数はこれよりも多くても少なくてもよい。本明細書において、層間誘電体を絶縁層と称することもある。層間誘電体114上、すなわち基板から最も遠い層(例えば、トップ)には、エッチング停止層115が形成されている。
【0011】
MEMS装置101は、層間誘電体112、113、114間の電気配線用に、金属層136、137、138、139、140、141と、電極121、122、123とを有する。また、MEMS装置101は、電気配線と電極とを接続するビア127、128、129、130、131、132、133、134、135を有する。より全体的には、MEMS装置101は、エッチング停止層115に実装された1または複数の電極を有しており、これら電極は、層間誘電体によって絶縁された金属層とビアを介して、MEMS装置101の1または複数の電子回路と電気的に接続される。本明細書に教示されるMEMS装置における電極、金属層、ビアの数はMEMS装置101内の電子回路及びこれらの配置に基づいて変更可能である。
【0012】
図1に示すように、ビア127は、エッチング停止層115上に形成される電極121から、層間誘電体114を通って、層間誘電体114上に形成される金属層136への導電経路を提供する。ビア128は、層間誘電体114上に形成される金属層136から、層間誘電体113を通って、層間誘電体112上に形成される金属層137への導電経路を提供する。ビア129は、層間誘電体112上に形成される金属層137から、層間誘電体112を通って、基板111への導電経路を提供する。ビア127、128、129、および金属層136、137を介して、電極121は、基板111、層間誘電体113、および層間誘電体114の接点において電子回路と電気的に配線または接続することができる。
【0013】
同様に、ビア130は、エッチング停止層115上に形成される電極122から、層間誘電体114を通って、層間誘電体114上に形成される金属層138への導電経路を提供する。ビア131は、層間誘電体114上に形成される金属層138から、層間誘電体113を通って、層間誘電体112上に形成される金属層139への導電経路を提供する。ビア132は、層間誘電体112上に形成される金属層139から、層間誘電体112を通って、基板111への導電経路を提供する。ビア130、131、132、および金属層138、139を介して、電極122は、基板111、層間誘電体113、および層間誘電体114の接点において電子回路と電気的に配線または接続することができる。
【0014】
ここで、図1には、電極と電子回路との接続として、電極123と1または複数のトランジスタ116、117の接点との接続が示されている。ビア133は、エッチング停止層115上に形成される電極123から、層間誘電体114を通って、層間誘電体114上に形成される金属層140への導電経路を提供する。ビア134は、層間誘電体114上に形成される金属層140から、層間誘電体113を通って、層間誘電体112上に形成される金属層141への導電経路を提供する。ビア135は、層間誘電体112上に形成される金属層141から、層間誘電体112を通って、1または複数のトランジスタ116、117の接点それぞれへの導電経路を提供する。ビア133、134、135、および金属層140、141を介して、電極123は、層間誘電体113、および層間誘電体114の接点において電子回路と電気的に配線または接続することができる。
【0015】
さらに、MEMS装置101は、電極122に直接形成された、或いは、電極122に実装された別の導電性支持構造に形成されたヒンジ152を有する。導電性支持構造は、本実施例を示す各図に示すように、電極122と同じ材料から形成されていてもよい。MEMS装置101は、ヒンジ152の上側に形成されたミラー素子151を有する。本実施形態および他の実施形態において、ミラー素子は、MEMS装置に組み込むことができる可動素子の一例である。
【0016】
基板111は、単結晶シリコンで形成されている。本実施例において、トランジスタ116、117はCMOSトランジスタであるが、他の電子回路であってもよい。層間誘電体112、113、114は、シリコン、アルミナ、二酸化シリコン(SiO)、窒化アルミニウム、他の適切な絶縁性の材料、または絶縁性材料の組み合わせ等の絶縁材料を含む層間絶縁膜である。
【0017】
金属層136、137、138、139、140、141は、例えば、アルミニウム(Al)、銅(Cu)、又はアルミニウム銅合金(Al-Cu)からなる。
【0018】
電極121、122、123は、タングステン(W)またはビアと同じ材料からなる。各ビア127、128、129、130、131、132、133、134、135は、MEMS装置101の少なくとも一層を貫通して延在する貫通孔として形成されており、導電性材料(本実施例ではタングステン(W))が充填されている。さらに、製造工程において、ビア127、130、133、及びエッチング停止層115との間にはギャップ124、125、126が形成されることがある。これらギャップは、後に使用されるエッチング液がこれらギャップに浸透し構造に損傷を与える可能性があり問題となる。この問題を軽減するために、ビア127の半径をrとし、エッチング停止層115が、電極121によって覆われる距離xが、rの2倍超であることが望ましい。エッチング停止層上に実装される各電極についても、エッチング停止層を貫通するビアの半径rとエッチング停止層に実装される電極の長さ、または距離xとの関係が同様であることが望ましい。
【0019】
電極122などの電極がエッチング停止層115などのエッチング停止層に実装されている構造において、その関係は、上述のとおり電極がエッチング停止層を覆う距離xがrの2倍超である。これに代えて、本明細書に記載される他の実施形態(例:図3、6)のように、エッチング停止層が、電極の一部または全体を覆う構造としてもよい。つまり、電極は当該電極が実装される表面に沿った長さ、サイズ、または寸法(例えば、長さ、幅、半径)が、当該電極が電気的に接続されるビアの半径の少なくとも2倍であると言うこともできる。
【0020】
すなわち、例えば、エッチング停止層115を覆う電極121、122、123は、それぞれが接続されるビアの半径の2倍以上の大きさを有することが望ましい。これにより、エッチング液の蒸気が、(i)電極121、122、123およびエッチング停止層115を貫通すること、および(ii)ギャップ124、125、126を通して層間誘電体114を腐食することを防止する。
【0021】
ヒンジ152は、ミラー素子151を支持する変形可能な部材である。ヒンジ152は、例えば非晶質シリコンやポリシリコンなどの材料からなる。
【0022】
ミラー素子151は、光源からの光を反射可能な部材である。ミラー素子151は、チタン、タングステン等からなる支持層と、アルミニウム、金、銀等の反射率の良い材料、またはこれらの組み合わせからなるミラー層とを有してもよい。ミラー素子の裏面(例えば、ストッパに向く底面)は、TiNなどの光吸収コーティングを有してもよい。
【0023】
ミラー素子151は電極123に静電吸着され、ヒンジ152が変形することにより傾斜する。これは、電子回路によって(例えば、基板111上の配線部分および/または本実施例ではトランジスタ116、117のうちの1つ以上を含む電気的接続の他の組み合わせを介して)可動素子(例えば、ミラー素子151)と電極123との間に電圧を印加することから生じ得る。電圧によって吸着力が発生する。電子回路によって印加される電圧は、例えば、約20~30ボルトであってもよい。この位置(以下で説明する図2に示す)は、ミラー素子151またはMEMS装置101のオン状態とも称す。
【0024】
1または複数の機械的ストッパ153、154は、エッチング停止層115を通ってミラー素子151の(例えば、底面)表面に向かって延在する。本実施例において、2つの機械的ストッパ153、154が、基板111の面に対してヒンジ152の両側に配置されている。ただし、1つまたは2つより多く含まれてもよい。図示される機械的ストッパ153、154はそれぞれ、基板111の実装面および各層に対して平行に延在するミラー素子151の既定の、または非励起位置に対して垂直に延在する単一の部材である。機械的ストッパ153、154は、ヒンジ152と同じ材料から形成されていてもよい。機械的ストッパ153、154は、タングステン、銅、シリコン、チタン、または窒化チタンのうちの少なくとも1つからなってもよい。機械的ストッパ153、154の材料は特に限定されないが、後述するように電圧が印加された際に通電可能であり、ヒンジ152の変形によって加えられる可動素子(ここではミラー素子151)との衝突応力よりも高い降伏強度を有するものであればよい。本実施例および他の実施例では、ストッパは、基板上に直接実装されているが、完全に基板まで延在する必要はなく、代わりに、配線部分、ビア、金属層、またはそれらの任意の組み合わせを介して、後述する自動検査機構に結合されてもよい。
【0025】
図2に示すように、ミラー素子151は、ストッパ153と接触することによって、絶縁層で覆われていない電極123と接触しないようになっている。追加として、または代替として、ミラー素子151は、ストッパ154と接触することによって、絶縁層で覆われていない電極121と接触しないようになっている。すなわち、電極121、123上方に実装される機械的ストッパ153、154の高さは、ヒンジ152の変形によってミラー素子151が大きく傾いてMEMS装置の他のいずれの部分とも接触することのない高さとなっている。これにより、例えば、電気的短絡を防止することができる。ストッパ153または154などのストッパは、基板111の最上層から垂直に延在することができる。ストッパの高さおよび/または幅は、最上層の面に沿ったヒンジ152からのストッパの距離、ミラー素子151のサイズ(例えば、直径)、基板111の各層に設けられた電極もしくは他の構造の距離、またはこれらの特徴のいずれかの組み合わせによって異なる場合がある。ストッパ153、154とミラー素子151のヒンジ152との間の距離は、ヒンジ152とミラー素子151の外周縁部との距離の半分未満であってもよい。機械的ストッパ153、154はヒンジ152と同じ材料から形成される場合、機械的ストッパ153、154もわずかに変形することができるが、この変形は無視してもよく、または機械的ストッパ153、154の高さ(場合によっては幅)を決定する際に検討してもよい。
【0026】
図3は、本開示の実施形態2におけるMEMS装置201の断面図である。MEMS装置201は、基板211を有する。基板211には、少なくとも1つの電子回路が形成されており、本実施例において前記電子回路は1または複数のトランジスタ216、217である。図1および図2のトランジスタ116、117と同様、トランジスタ216、217は、CMOSトランジスタであってもよく、またはMEMS装置201の切り替えのための操作電圧を印加することに使用可能な他の電子部品や回路であってもよい。また基板211には層間誘電体212、213、214が形成されている。具体的には、層間誘電体212は、基板211および電子回路の一部(ここではトランジスタ216、217)に形成されている。層間誘電体213は、層間誘電体212上に形成され、層間誘電体214は層間誘電体213上に形成されている。層間誘電体の数はこれよりも多くても少なくてもよく、層間誘電体212、213、214は、層間誘電体112、113、114と同じ材料から形成されていてもよい。層間誘電体214上、すなわち基板から最も遠い層(例えば、トップ)には、エッチング停止層215が形成されている。
【0027】
MEMS装置201は、層間誘電体212、213、214間の電気配線用に、金属層236、237、238、239、240、241と、電極221、222、223とを有する。また、MEMS装置201は、電気配線と電極とを接続するビア227、228、229、230、231、232、233、234、235を有する。ビア227、228、229、金属層236、237、および電極221はそれぞれ、前述のビア127、128、129、金属層136、137、および電極121と同じ材料からなり、同様に配置されていてもよい。ビア230、231、232、金属層238、239、および電極222はそれぞれ、前述のビア130、131、132、金属層138、139、および電極122と同じ材料からなり、同様に配置されていてもよい。ビア233、234、235、金属層240、241、および電極223はそれぞれ、前述のビア133、134、135、金属層140、141、および電極123と同じ材料からなり、同様に配置されていてもよい。
【0028】
MEMS装置201は、電極222に直接形成された、或いは、電極122上に実装された別の電極に形成されたヒンジ252と、ヒンジ252の上側に形成されたミラー素子251とを有する。ヒンジ252は、前述のヒンジ152と同じ材料を用いて同様に形成されていてもよく、ミラー素子251は前述のミラー素子151と同一のものであってもよい。1または複数の機械的ストッパ253、254が含まれる。機械的ストッパ253は、機械的ストッパ153と同様に配置およびサイズに決定されてもよい。機械的ストッパ254は、機械的ストッパ154と同様に配置およびサイズに決定されてもよい。
【0029】
電極221、222、223は、Al、Al-Cu合金等からからなる。電極221、222、223は、層間誘電体214上に形成されている。電極221、222、223は、層間誘電体214と段差を形成する。エッチング停止層115は層間誘電体114を覆っており、電極121、122、123がエッチング停止層115に形成されている図1図2の配置とは対称的に、本実施形態においてエッチング停止層215は、電極221、222、223および層間誘電体214を覆うように階段状となっている。実施形態2と本実施形態1との主な差異は、エッチング停止層215が電極221、222、223を覆っているという点にある。
【0030】
ミラー素子251は電極223に静電吸着され、ヒンジ252は、図1に関して説明したものと同様に、電子回路によって印加される電圧を使用した変形によって傾斜する。ミラー素子251は、実施形態1と同様に、印加される電圧に応じて、ストッパ253、ストッパ254、またはストッパ253およびストッパ254の両方に接触することにより傾斜が規制される。ミラー素子251は、電極223を覆うエッチング停止層215との接触が防止される。エッチング停止層215はミラー素子251が電極223に直接接触することを防止する。エッチング停止層215は、窒化アルミニウム(AlN)または酸化アルミニウム(AI)からなる絶縁膜であるため、電気的短絡を防止することができる。
【0031】
図4は、本開示の実施形態3に係るMEMS装置401の簡略化された斜視図である。図4は、MEMS装置401の特定の要素のみが示されているので簡略化されている。MEMS装置401は、MEMS装置101の変形例である。基板及び全ての層間誘電体は省略され、印加される操作電圧によってMEMS装置の可動素子の移動を制御するために使用されるトランジスタなどの電子回路も全て省略されている。図4に示すMEMS装置401は、素子として、2つの電極421、422を含む。電極421、422は、上述の電極121、122、123などの電極の形成に使用される1または複数の材料から形成されてもよい。電極421、422は、図1のMEMS装置101同様、エッチング停止層上に直接実装されてもよい。しかしながら、本実施例では、電極421、422は、図1の層間誘電体112、113、114(図4には図示せず)などの層間誘電体によってエッチング停止層415から離間して実装されている。エッチング停止層415は、基板上に積層された他の層間誘電体上に形成されてもよい。エッチング停止層415は、前述のエッチング停止層と同様、MEMS装置401の製作(製造、構築等)において、エッチング停止層415上の犠牲層をエッチングする際に、エッチング停止層415の下の構造を当該エッチングから保護する。
【0032】
MEMS装置401は複数のビア427を有し、図4では、そのうちの2つのみに符号が付されている。ビア427は、図1のビア127、128、129、130、131、132、133、134、135などの上述のビアと同じ材料で形成することができる。ビア427は、電気配線と電極とを接続する。例えば、ビア427は、エッチング停止層415の下の金属層(金属層136、137、138、139等)、および/または、電子回路(1または複数のトランジスタ116、117等)に電極421、422を電気的に接続する。
【0033】
さらに、MEMS装置401はヒンジ452を有する。ヒンジ452は、(例えば、図1示されるように電極122およびヒンジ152によって)電極上に直接形成されていてもよく、電極上に実装された別の導電性支持構造上のいずれかに形成されてもよく、またはエッチング停止層415を貫通して延在するビア427等のビアに形成されてもよい。ミラー素子451は、ヒンジ452の上側に形成される。ミラー素子451は、ミラー素子151、251と同じ材料を含むことができる。図4には、ストッパ453、454も示されている。ストッパ453、454は、ストッパ153、154と同じ材料から形成されていてもよい。ストッパ453、454は、ヒンジ452および電極421、422に対して、上述したような位置および高さに形成されてもよく、すなわち、これにより、ミラー素子451は、ストッパ153と接触することによって電極421と接触することが防止される、および/または、ミラー素子451は、ストッパ454と接触することによって電極422と接触することが防止される。
【0034】
図5図4に示すMEMS装置401のミラー素子451がオン状態に変位した際の簡略化された側面図である。すなわち、電子回路によってミラー素子451と電極421、422の一方との間に操作電圧が印加されると、ヒンジ452にたわみが生じる。本実施例において、ストッパ454は、ミラー素子451が電極422に接触することを防止する。
【0035】
図5はまた、ミラー素子451がその電極からの静電力によって傾斜し、ストッパ(この例ではストッパ454)で停止する際の、ミラー素子451に結合された自動検査機構500の例を示す。自動検査機構500は、電圧源と、電流を検出する電流検出装置とを含むが、電流を計測する電流計測装置が含まれていてもよい。本実施例では、電池502によって電圧が印加され、電流計504によって電流が計測される。
【0036】
自動検査機構500の同様の部位は、実施形態4に係るMEMS装置601の簡略化された側面図である図6においても示されており、当該図においてMEMS装置601のミラー素子651は、オン状態に変位している。MEMS装置601は、MEMS装置201の変形例である。すなわち、MEMS装置601は、基板(基板211と同様)と、1または複数の層間誘電体(層間誘電体212、213、214と同様)と、1または複数の電子回路(トランジスタ216、217と同様のトランジスタなど)と、1または複数の金属層(金属層236、237、238、239、240、241と同様)とを含む。明瞭性のために、これらの要素は図6には示されていない。
【0037】
MEMS装置601は、MEMS装置601が1または複数の電極(ここでは少なくとも2つの電極621、622)を含むという点で、図3のMEMS装置201と同様である。エッチング停止層615は、エッチング停止層215と同様、MEMS装置601の製作(製造、施工等)において、エッチング停止層615の上の犠牲層をエッチングする際に、エッチング停止層615の下の構造を当該エッチングから保護する。電極621、622は、電極221、222、223などの上述の電極を形成するために使用される1または複数の材料から形成されてもよい。MEMS装置201の構造と同様に、電極621、622はエッチング停止層615の下にある。しかしながら、本実施例では、電極621、622は、図2の層間誘電体214(図4には図示せず)などの層間誘電体に埋め込まれており、平坦な(滑らかな、連続的、平面状など)表面を形成することができる。そして、エッチング停止層615は電極621、622および周囲の層間誘電体の上に形成される。
【0038】
電気絶縁体であるエッチング停止層の下に電極を埋め込むことによって、図3および図6の構造は、電極とミラーとの間の短絡の可能性がより少なく、図1および図4の構造よりも有利である。さらに、製造における工程数を削減することができる。
【0039】
MEMS装置601は複数のビア627を有し、図6では、そのうちの2つのみに符号が付されている。ビア627は、図1のビア227、228、229、230、231、232、233、234、235などの上述のビアと同じ材料で形成することができる。ビア627は、電気配線と電極とを接続する。例えば、ビア627は、エッチング停止層615の下の金属層(金属層236、237、238、239等)、および/または、MEMS装置601の動作を制御する電子回路(1または複数のトランジスタ216、217等)に電極621、622を電気的に接続する。
【0040】
さらに、MEMS装置601はヒンジ652を有する。ヒンジ652は、(例えば、図3示されるように電極222およびヒンジ252によって)電極上に直接形成されていてもよく、電極上に実装された別の導電性支持構造上のいずれかに形成されてもよく、またはエッチング停止層615を貫通して延在するビア627等のビアに形成されてもよい。ミラー素子651は、ヒンジ652の上側に形成される。ミラー素子651は、ミラー素子151、251と同じ材料を含んでいてもよい。また、図6には、ストッパ653、654が示されている。ストッパ653、654は、ストッパ253、254と同じ材料から形成されていてもよい。ストッパ653、654は、ヒンジ652および電極621、622に対して、上述したような位置および高さに形成されてもよく、すなわち、これにより、ミラー素子651は、エッチング停止層615と接触することが防止される。
【0041】
図6の簡略化された側面図には、オン状態に変位した際のMEMS装置601のミラー素子651が示されている。すなわち、電子回路(上述のトランジスタおよび接続された電子機器など)によってミラー素子651と電極との間に電圧が印加することにより、ヒンジ652のたわみが生じる。本実施例において、ストッパ654は、ミラー素子651が電極622に接触することを防止する。
【0042】
上述した実施形態における「オフ状態」とは、ミラー素子151、251、451、または651がストッパと接触していない状態である。例えば、ミラー素子151、251、451、651が、図1および図4に示される配置のように、基板と各層に対して実質的に平行である非励起状態が、オフ状態に対応する。
【0043】
図2図4、および図6から分かるように、ヒンジを変形させる(例えば、電極からの)操作電圧による静電力によって傾斜してストッパに接触する。そして、ミラーのヒンジを中心とした回転が停止する。操作電圧が除去されると、ミラーはヒンジの機械力によって中立位置(オフ状態)に戻るはずである。但し、コンタミ、破損したヒンジ等に起因する不良ピクセル(例えば、MEMS装置の個々の可動素子)がある場合、当該不良ピクセルが原因で、可動素子(例えば、ミラー素子)が中立位置に戻ることができない。ミラーが移動できないMEMS装置は不良品である。
【0044】
不良のあるMEMS装置を検出することが望ましい。これは初期の工場検査において行われることが望ましい。さらに、自動車用のディスプレイなど、用途によっては、リアルタイム検査を必要とする場合がある。通常動作時では、ストッパの電位はミラーの電位と同じである。ミラーと電極との間に操作電圧が印加されていない場合(すなわち、MEMS装置がオフ状態であると想定される場合)、ミラーとストッパとの間に試験電圧を印加することにより、漏洩電流の有無を確認することができる。試験電圧は、ヒンジが変形してミラーを移動させることがないように、操作電圧より低くなければならないが、短絡の際に計測可能な漏洩電流が発生するのに充分な高さでなければならない。すなわち、漏洩電流が存在すると、少なくとも1点の接触でミラーがストッパに固着する可能性がある。これは、試験電圧を印加する際に、ミラーの電位とストッパの電位とがもはや同じではないことに起因する。オフ状態において漏洩電流が存在するということは、MEMS装置が不良品であることになる。試験電圧は、いくつかの実施例において、約0.5ボルト以上1ボルト以下である。
【0045】
この試験に使用することができる自動検査機構は、電圧源と電流検出装置(例えば、電流計測装置)とを含む。図5および図6の本実施例では、自動検査機構500は、電圧源としての電池502と、電流検出装置としての電流計504とを含む。自動検査機構は、任意のMEMS装置と共に使用することができ、図7の構成部品を含むこともできる。図7は、MEMS装置のミラーおよびストッパに接続された配線部分のアレイを示す回路図である。
【0046】
MEMS装置は、表示装置のアレイに配置され、簡略化された形態で示されている。すなわち、図7のMEMS装置の各々は、MEMS装置101、MEMS装置201、MEMS装置401、MEMS装置601のうちのいずれか1つであってもよく、若しくは、1または複数のストッパが組み込まれた別のMEMS装置であってもよい。第1のMEMS装置は、ミラー751A、ヒンジ752A、およびストッパ753A、754Aによって表されている。第2のMEMS装置は、ミラー751B、ヒンジ752B、およびストッパ753B、754Bによって表されている。第3のMEMS装置は、ミラー751C、ヒンジ752C、およびストッパ753C、754Cによって表されている。第4のMEMS装置は、ミラー751D、ヒンジ752D、およびストッパ753D、754Dによって表されている。4つのMEMS装置が2x2のアレイ状に配置されているが、任意の数のMEMS装置が異なる次元のアレイに配置されてもよい。アレイ状に配置する際に、MEMS装置は、共通の基板と、それぞれのミラーおよび電気的接続を支持するための少なくともいくつかの層間誘電体とを共有することができる。またMEMS装置は、上述の操作電圧を提供する電圧源を共有してもよい。
【0047】
MEMS装置は、配線部分に電気的に結合される。図7では、ワード線の形態の配線部分800A、800Bは、水平線(すなわち、行)上のミラーに接続される。具体的には、ミラー751Aおよび751Bはそれぞれ、ノード802Aおよび802Bを介してワード線800Aに接続され、ミラー751Cおよび751Dはそれぞれ、ノード802Cおよび802Dを介してワード線800Bに接続される。
【0048】
ビット線の形態の配線部分900A、900B、900C、900Dは、列(すなわち、垂直)内のストッパに接続される。具体的には、ストッパ754Aおよび754Cはそれぞれ、ノード902Aおよび904Aを介してビット線900Aに接続され、ストッパ753Aおよび753Cはそれぞれ、ノード902Bおよび904Bを介してビット線900Bに接続され、ストッパ754Bおよび754Dはそれぞれ、ノード902Cおよび904Cを介してビット線900Cに接続され、ストッパ753Bおよび753Dはそれぞれ、ノード902Dおよび904Dを介してビット線900Dに接続される。
【0049】
ワード線800A、800Bは、個別にアドレス指定可能に行ドライバに接続されてもよい。同様に、ビット線900A、900B、900C、900Dは、個別にアドレス可能に列ドライバに接続されてもよい。列ドライバおよび行ドライバは、制御部に接続されてもよい。明示的に示されていないが、制御部(または別個の制御部)は、電圧源の印加および電流計測装置による計測を時間調整するために、自動検査機構500の電圧源および電流検出装置に結合されてもよい。図示の配置では、制御部は、列をアドレス指定して電圧源を、当該電圧源を有するMEMS装置のストッパに結合し、行をアドレス指定して電流検出装置を、関連するミラーに結合し、漏洩電流があれば当該漏洩電流を検出(および任意で計測)することができる。ワード線が接地され、MEMS装置のうちの特定の1組のミラーおよびストッパについて、ビット線に試験電圧が印加され、ピクセル内のミラーがストッパに固着されると、ビット線とワード線との間に一般的に電子機器の感度に基づく最小値を上回る電流が観察される。例えば、ワード線800Aがアドレス指定され、ビット線900Dがアドレス指定されて試験電圧が印加される場合、最小値を上回る検出電流は、ミラー751Bがストッパ753Bに固着されていることを示す。
【0050】
図7の回路を含む自動検査機構500は、この試験を異なる時間および異なる時間間隔で行うことができる。試験は連続的に行われてもよい。例えば、ミラーがオン状態からオフ状態に戻るようにMEMS装置が非通電状態となるたびに、ヒンジの機械的ばね作用が可能となる所定時間経過後に試験を行うことができる。試験は定期的に行われてもよい。例えば、MEMS装置は、10回のオン-オフサイクル毎に試験されてもよい。
【0051】
図示される例における自動検査機構500は、DC源、すなわち電池502を含む。その結果、電流計504によって計測される漏洩電流は、計測される漏洩電流の絶対値となる場合がある。自動検査機構500はまた、MEMS装置がオフ状態にある期間に経時的に計測を繰り返すことによって漏洩電流の変動を計測してもよい。
【0052】
この機構は、欠陥の位置をピンポイントで示すことができる。本実施例では、ストッパが縦列に接続され、ミラーが横列に接続されているが、逆も可能である。さらに、電圧源および電流計測装置は、電圧源がミラーに結合され、電流計測装置がストッパに結合されるように配置されてもよい。他の構成も可能であり、漏洩電流の発生に対してMEMS装置を個別に識別することができるようにしてもよい。いくつかの実施例において、アレイを改変して、2つ以上のMEMS装置が同時に試験されるようにすることができる。すなわち、MEMS装置の行、MEMS装置の列、またはMEMS表示装置の一部を形成するMEMS装置の行と列の両方に対して漏洩電流を計測することも可能である。これにより、表示装置が多数のミラーを含む場合に、試験されるグループ内の個々の不良品を識別しないことを引き換えに、試験時間を短縮することができる。
【0053】
図7の配線部分およびノードは、基板111、211などのMEMS装置の基板表面上に形成されてもよい。自動検査機構のこの電気回路は、任意の導電性材料で形成されてもよく、図1図3に関して説明したように、層間誘電体を使用して絶縁された金属層およびビアを介してミラーおよびストッパに接続することができる。列ドライバ、行ドライバ、および制御部は、共通の基板上に実装されてもよく、または別々に実装されたものであってもよい。
【0054】
ミラーとストッパとの間の付着力を最小にするために、これらの接触は最小限に抑えるべきである。図8は本明細書に教示される、使用可能なストッパの断面図の例を示す。図示される例では、ストッパ153、154、253、254、453、454、653、654は、円形断面1002を有する略円筒形である。この形状は、製造が容易なこともあり一部には有用である。但し、ミラー151、251、451、651は、それらの底面(支持面、裏面等)が略平面であるため、点接触によってミラーとストッパとの接触が低減する。例えば、三角柱は、三角形断面1004の点が、ミラーの傾斜方向およびストッパの位置と一致するMEMS装置の外周縁部を指すように配置された場合、単一の接触点を提供する。例えば、三角柱で形成されたストッパ654は、その三角形断面1004が、図8に示される方向に向いている一方、三角柱で形成されたストッパ653は、その三角形断面1004が、図8の鏡像となる方向を向いている。同様に、四角形断面1006を有する直方体を使用することができるが、この直方体は、対向する角がミラーの傾斜方向に沿ってMEMS装置のそれぞれの外周縁部を指すように配置される。例えば、直方体(またはより一般的には四角柱)で形成されたストッパ653、654のそれぞれは、図8に示される向きの四角形(または菱形)断面1006を有する。これに対して、直方体を回転させると、ミラーが四角形断面1006の縁部全体と接触することになる。ミラーのサイズに応じて、2つ以上の接触点を使用することができる。例えば、二重の三角柱はそれらの縁部が、単一の三角柱に関して上述したものと同様に配置した場合、断面1008が2つの接触点を含むこととなる。ストッパの形状については、他の変形例も可能である。
【0055】
ミラーと、ヒンジと、1または複数のストッパと、電極とを有し、ミラーが電極に提供された静電力によって移動して、ストッパで停止するMEMS装置に対して、ミラーとストッパとが付着力により固着した不良ピクセルを検査することができる。この付着力は「スティクション」と呼ばれる。MEMS表示装置の不良ピクセルは、通常、ストッパに対するミラーの付着によって引き起こされる。ミラーとストッパとが電気的に絶縁されていれば、電圧を印加して電流を確認することにより、ミラーとストッパとの接触を確認することができる。正確な位置は、線上のミラーをワード線に接続し、列内のストッパをビット線に接続し、ビット線とワード線との間の漏洩電流を観測することによって確認できる。
【0056】
特定の実施形態に基づいて本発明を説明してきたが、この開示を限定として解釈されるべきでないことを理解されたい。本開示を読んだ後、当業者であれば様々な変更や修正が明らかとなるであろう。したがって、添付の特許請求の範囲は、その範囲内にあるすべての変更および修正を包含するものと解釈されることが意図される。

図1
図2
図3
図4
図5
図6
図7
図8