(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-05
(45)【発行日】2023-12-13
(54)【発明の名称】超並列RNA配列決定による母体血漿のトランスクリプトーム解析
(51)【国際特許分類】
C12Q 1/6869 20180101AFI20231206BHJP
C12Q 1/6809 20180101ALI20231206BHJP
C12N 15/09 20060101ALI20231206BHJP
【FI】
C12Q1/6869 Z
C12Q1/6809 Z
C12N15/09 Z
(21)【出願番号】P 2021110946
(22)【出願日】2021-07-02
(62)【分割の表示】P 2019087705の分割
【原出願日】2014-02-28
【審査請求日】2021-07-14
(32)【優先日】2013-02-28
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】513134487
【氏名又は名称】ザ チャイニーズ ユニバーシティ オブ ホンコン
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100077517
【氏名又は名称】石田 敬
(74)【代理人】
【識別番号】100087871
【氏名又は名称】福本 積
(74)【代理人】
【識別番号】100087413
【氏名又は名称】古賀 哲次
(74)【代理人】
【識別番号】100117019
【氏名又は名称】渡辺 陽一
(74)【代理人】
【識別番号】100150810
【氏名又は名称】武居 良太郎
(74)【代理人】
【識別番号】100134784
【氏名又は名称】中村 和美
(72)【発明者】
【氏名】ロー ユク ミン デニス
(72)【発明者】
【氏名】チウ ロッサ ワイ クン
(72)【発明者】
【氏名】チャン クワン チー
(72)【発明者】
【氏名】チャン ペイヨン
(72)【発明者】
【氏名】ツイ ボー イン
【審査官】上村 直子
(56)【参考文献】
【文献】特表2008-524993(JP,A)
【文献】米国特許出願公開第2008/0233583(US,A1)
【文献】米国特許出願公開第2011/0171650(US,A1)
【文献】米国特許出願公開第2012/0077185(US,A1)
【文献】米国特許出願公開第2012/0164648(US,A1)
【文献】国際公開第2012/028746(WO,A1)
【文献】国際公開第2011/154940(WO,A1)
【文献】特開2019-162121(JP,A)
【文献】PLOS ONE,2013年,Vol.8, No.12, e82638,pp.1-8
【文献】オペレーションズ・リサーチ,2012年,No.7,pp.360-366
【文献】ファルマシア,Vol.46, No.5,2010年,pp.409-413
(58)【調査した分野】(Int.Cl.,DB名)
C12Q 1/68-1/70
C12N 15/00-15/90
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
遺伝子の発現レベルと、各人が健常な胎児を妊娠している1人以上の他の女性対象から決定された対照値とを比較することによって、胎児を妊娠している女性対象における子癇前症を予測するための遺伝子の使用であって、
前記遺伝子がADAM9であり、
前記女性対象における前記遺伝子の発現レベルが、
複数の配列リードを得ること、ここで、前記配列リードは前記女性対象由来の生物試料から得られたセルフリーRNA分子を配列決定することから得られ、
ここで、前記生物試料が、血液、血漿または血清の試料であり、
コンピューターシステム
によって、前記配列リードの参照配列中での位置を同定すること、
前記遺伝子に位置している前記配列リードを計数すること
によって測定され、
前記遺伝子の発現レベルが対照値を超える場合に
、子癇前症と
コンピューターシステムによって予測される、使用。
【請求項2】
前記生物試料が、血漿である、請求項
1に記載の使用。
【請求項3】
前記生物試料が、血清である、請求項
1に記載の使用。
【請求項4】
子癇前症を予測するためのADAM9に加えて1以上の遺伝子が使用され、前記1以上の遺伝子が、ASAH1、TSC22D3、MYADMおよびC7orf53から選ばれる、請求項1~
3のいずれか1項に記載の使用。
【請求項5】
子癇前症を予測するためのADAM9に加えて1以上の遺伝子が使用され、前記1以上の遺伝子が、C12orf76、C19orf59、C19orf79、C21orf7、DDX11L10、DUSP1、GALM、NGFRAP1、SIGLEC1、SIGLEC14、SPARC、TMEM140、TMEM185A、TMEM50A、およびVTRNA1-1から選ばれる、請求項1~
3のいずれか1項に記載の使用。
【請求項6】
前記女性対象中の前記遺伝子の発現レベルを測定することを更に含む、請求項1~
5のいずれか1項に記載の使用。
【請求項7】
胎児を妊娠している女性対象における子癇前症を診断するためのプロセスをコンピューターに実行させるコンピュータープログラムであって、当該プロセスが、
遺伝子の発現レベルと、各人が健常な胎児を妊娠している1以上の他の女性対象から決定された対照値とを比較することを含み、ここで、前記遺伝子はADAM9であり、
前記女性対象における前記遺伝子の発現レベルが、
複数の配列リードを得ること、ここで、前記配列リードは前記女性対象由来の生物試料から得られたセルフリーRNA分子を配列決定することから得られ、
ここで、前記生物試料が、血液、血漿または血清の試料であり、
コンピューターシステム
によって、前記配列リードの参照配列中での位置を同定すること、
前記遺伝子に位置している前記配列リードを計数すること
によって測定され、
前記遺伝子の発現レベルが対照値を超える場合に子癇前症と
予測される、コンピュータープログラム。
【請求項8】
前記生物試料が、血漿である、請求項
7に記載のコンピュータープログラム。
【請求項9】
前記生物試料が、血清である、請求項
7に記載のコンピュータープログラム。
【請求項10】
子癇前症を予測するためのADAM9に加えて1以上の遺伝子が使用され、前記1以上の遺伝子が、ASAH1、TSC22D3、MYADMおよびC7orf53から選ばれる、請求項
7または8に記載のコンピュータープログラム。
【請求項11】
癇前症を予測するためのADAM9に加えて1以上の遺伝子が使用され、前記1以上の遺伝子が、C12orf76、C19orf59、C19orf79、C21orf7、DDX11L10、DUSP1、GALM、NGFRAP1、SIGLEC1、SIGLEC14、SPARC、TMEM140、TMEM185A、TMEM50A、およびVTRNA1-1から選ばれる、請求項
7または8に記載のコンピュータープログラム。
【請求項12】
請求項
7~
11のいずれか1項に記載のコンピュータープログラムを格納するコンピューター読み取り可能媒体;および
当該コンピューター読み取り可能媒体に格納されたプログラムを実行するように構成された1つ以上のプロセッサ
を含む、システム。
【発明の詳細な説明】
【背景技術】
【0001】
関連出願への相互参照
本出願は、名称を「超並列RNA配列決定による母体血漿のトランスクリプトーム解析(Maternal plasma transcriptome analysis by massively parallel RNA sequencing)」とする2013年2月28日出願の米国仮特許出願第61/770,985号の優先権を主張し、この出願は全ての目的において参照することにより本明細書に組み込まれる。
【0002】
背景
母体血漿中の妊娠期特異的な細胞外RNA分子が既に報告されている1。この報告では、単に母体由来の末梢血生検を使用することで、胎児を評価し、妊娠経過をモニタリングするための非侵襲性の試験ツールが提供されている。これまでに、母体血漿RNAを用いた、出生前診断として有望な複数の活用方法が開発されてきた2-8。研究者らは、その適用範囲を異なる状況での胎児障害や妊娠期の病気にも広げるため、さらなるRNAマーカーを懸命に探している。
【0003】
理論上最も単純なRNAマーカー同定法は、母体血漿中の細胞外RNA分子を直接検討することである。しかしながらこの方法は、マイクロアレイ解析やSAGE法(遺伝子発現連鎖解析、serial analysis of gene expression)などのハイスループットなスクリーニング技術では、母体血漿中では通常濃度が低く、部分的に分解している細胞外RNAの検出能力が限定的であることから、容易ではなかった9。代わりに報告されてきたRNAマーカーのスクリーニングの多くでは、胎盤と母体血液細胞の発現プロファイルを比較するという間接的な戦略がとられてきた10。胎盤と比較して母体の血液中に非常に高濃度で発現している転写物の母体血漿試料中での発現だけが、感受性は高いが処理能力の低い系、例えば逆転写ポリメラーゼ連鎖反応(RT-PCR)によってさらに解析されている。これまでのところ、この間接的な方法で同定された血漿RNAマーカーはそれほど多くない。これはおそらく、組織レベルでのマイニング戦略が、母体血漿中に存在する胎盤RNAのレベルに影響を及ぼしている全ての生物学的要因を完全には考慮にいれていないためである。加えて、妊娠に反応して胎盤以外の組織で発現・放出された転写物はこの方法では同定できなかった。そのため、母体血漿の直接的なトランスクリプトームを可能にする、感受性が高く、かつ、ハイスループットな方法が非常に望まれている。
【0004】
同様に、直接的な血漿RNAのプロファイリングは、2個人に由来するRNA分子の混合物が存在する他の状況、例えば臓器移植でも有用な可能性がある。移植受容者の血流には提供者および受容者双方に由来する核酸分子が含まれる。提供者または受容者によるRNA分子のプロファイルの相対的な変化によって、移植した臓器または受容者における移植片拒絶などの病理を明らかにすることができるだろう。
【発明の概要】
【0005】
発明の概要
妊娠している女性対象由来の試料を用いて妊娠関連障害を診断する、アレル比を決定する、血中の転写物に対する母体または胎児の寄与率を決定する、および/または母体または胎児マーカーを同定するための方法、システム、および装置を提供する。いくつかの態様において試料は、母体および胎児由来のRNA分子の混合物を含有している血漿である。
【0006】
RNA分子を解析し(例えば配列を決定し)、複数のリードを得て、これらリードの参照配列中での位置を同定する(例えば配列を整列させることで同定する)。母親または胎児のいずれかの第一のアレルがホモ接合型で、母親と胎児のもう片方の第一のアレルおよび第二のアレルがヘテロ接合の情報遺伝子座(informative loci)を同定する。その後、情報遺伝子座を選別し、選別した情報遺伝子座に位置している(例えば整列して)リードをさらに解析する。いくつかの態様では、第一のアレルと第二のアレルに対応するリードの比を算出し、カットオフ値と比較して妊娠関連障害を診断する。いくつかの態様では、選抜した母体の情報遺伝子座に位置しているリードを使って、試料に含まれる胎児由来のRNAの割合を決定する。いくつかの態様では、第一のアレルと第二のアレルに対応するリードの比を、選別した情報遺伝子座のそれぞれについて算出し、その比をカットオフ値と比較して、その遺伝子座を母体マーカーまたは胎児マーカーと指定する。
【0007】
本方法は出生前診断には限定されず、2個人に由来するRNA分子混合物を含有する全ての生体試料に適用可能である。例えば、臓器移植を受けた患者由来の血漿試料を用いることができる。移植された臓器で発現する転写物は提供者の遺伝子型を反映するため、受容者の血液中でも検出できるレベルの発現が生じる。これら転写物を測定することで、提供者および受容者双方によって発現される遺伝子中の情報遺伝子座を同定することができ、いずれかに由来するアレルの相対的な発現レベルを測定することができる。提供者または受容者のどちらか一方によるアレルの異常な発現レベルにより、移植関連障害を診断することができる。
【0008】
本方法で使用可能な生体試料としては、血液、血漿、血清、尿、唾液および組織試料が挙げられる。例えば、妊娠中の女性の尿中に含まれる胎児の核酸を検出した。腎臓移植受容者の尿が、細胞を伴わない核酸と移植された臓器に由来する細胞を含んでいることを示した。多くの条件でマイクロキメリズムが観察された。マイクロキメリズムとは、特定の個人の臓器や組織などの体内に、別の人物由来の細胞または核酸の元になるものが存在することを指す。マイクロキメリズムは、甲状腺、肝臓、脾臓、皮膚、骨髄、および他の組織の生検で観察された。マイクロキメリズムは過去の妊娠、または輸血によって生じる可能性がある。
【0009】
また、妊娠中の女性対象における妊娠関連障害を診断するための遺伝子の使用も提供する。遺伝子の発現レベルを、健常な胎児を妊娠している1人以上の女性対象から決定した対象の値と比較する。本発明において取り扱う妊娠関連障害には、子癇前症、子宮内での発育不全、侵襲性胎盤形成および早産が含まれる。他の妊娠関連障害としては、新生児の溶血性疾患、胎盤の機能不全、胎児水腫、胎児奇形などの、胎児が死亡の危険性にさらされる可能性のある状態が挙げられ得る。さらに他の妊娠関連疾患としては、HELLP症候群、全身性エリテマトーデスおよび他の母親の免疫疾患など、妊娠合併症を引き起こす状態が挙げられ得る。
【図面の簡単な説明】
【0010】
【
図1】
図1は、胎盤および母体の血液細胞における、アレル比B/Aとそれぞれの遺伝子の相対的な発現レベルとが正比例の関係にあることを示している。
【
図2】
図2は、胎盤および母体の血液細胞における、遺伝子の総発現レベルと遺伝子の相対的な発現レベルとの関係を示している。
【
図3】
図3は、妊娠関連障害を診断する方法のフローチャートである。
【
図4】
図4は、RNA-配列決定を行い、リードを整列させた後の結果のまとめを示している。
【
図5】
図5は、RNA-配列決定を行い、リードを整列させた後の結果のまとめを示している。
【
図6A】
図6は、2人の血漿RNAの配列決定のデータを示している。
図6Aは、RNA配列ライブラリーであるM9356P(Ribo-Zero Goldによる前処理あり)とM9415P(Ribo-Zero Gold前処理なし)の配列を決定し、読み取ったリードのGC分布(%)を示している。
【
図6B】
図6は、2人の血漿RNAの配列決定のデータを示している。
図6Bは、M9356PとM9415Pとの間の遺伝子発現プロファイルの相関を示している。
【
図7】
図7は、母体血漿中に含まれる種々のRNA転写物でのRNA-SNPアレル比およびその総血漿濃度を示している。データは、組織中での相対的な発現レベルに対してプロットしたものである(胎盤/血液細胞)。
【
図8】
図8は、情報SNPを含んでいる種々の遺伝子でのRNA-SNPアレル比およびその総血漿レベルを示している。データは、組織中での相対的な発現レベルに対してプロットしたものである(血液細胞/胎盤)。
【
図9】
図9は、母体血漿における胎児特異的なSNPアレルのRNA-SNPアレル比、およびこれらのアレルを含んでいるRNA転写物の発現レベルを示している。
【
図10】
図10は、母体血漿における母体特異的なSNPアレルのRNA-SNPアレル比、およびこれらのアレルを含んでいるRNA転写物の発現レベルを示している。
【
図11A】
図11は、子癇前症のおよび対照の対象における母体特異的SNPアレルに関するデータを示している。
図11Aは、母体特異的SNPアレルを含む情報SNPに関し、症例5641(妊娠第三期に発症する子癇前症)および症例7171(対照)のRNA-SNPアレル比を示す。
【
図11B】
図11は、子癇前症のおよび対照の対象における母体特異的SNPアレルに関するデータを示している。
図11Bは、母体特異的SNPアレルを含む情報SNPの症例5641でのRNA-SNPアレル比および血漿レベルを7171(対照)との比較(倍率)で示している。
【
図12A】
図12は、子癇前症のおよび対照の対象における母体特異的SNPアレルに関するデータを示している。
図12Aは、母体特異的SNPアレルを含む情報SNPの症例5641(妊娠第三期に発症する子癇前症)および症例9356(対照)でのRNA-SNPアレル比を示している。
【
図12B】
図12図12は、子癇前症のおよび対照の対象における母体特異的SNPアレルに関するデータを示している。
図12Bは、母体特異的SNPアレルを含む情報SNPの症例5641におけるRNA-SNPアレル比および血漿レベルを9356との比較(倍率)で示している。
【
図15】
図15は、胎児を妊娠している女性対象における、胎児由来RNAの割合を決定する方法のフローチャートである。
【
図16】
図16は、母体血漿トランスクリプトームの情報SNP解析の結果を示している。
【
図17】
図17は、妊娠後期の母体血漿試料における、アレル特異的な発現の選別を行わなかった場合の、胎児および母体の相対的な寄与率を示している。
【
図18A】
図18は、母体血漿のトランスクリプトームにおける胎児および母体の寄与率を示している。
図18Aは、妊娠初期および妊娠後期の母体血漿における胎児および母体由来転写物の割合を示している。
【
図18B】
図18は、母体血漿のトランスクリプトームにおける胎児および母体の寄与率を示している。
図18Bは、出産前後のアレル数および胎児-アレル比を示している。
【
図19】
図19では、子癇前症のおよび対照の妊娠例で、1つのRNA-SNPに関する胎児および母体の部分的な寄与率を比較している。
【
図20】
図20は、あるゲノム遺伝子座を母体または胎児マーカーと指定する方法のフローチャートである。
【
図22】
図22は、出産後の対象における妊娠関連遺伝子の発現レベルが出産前の対象よりも低下していることを示している。
【
図23】
図23は、131種の妊娠関連遺伝子を用い、血漿試料を階層的に分類した結果を示している。
【
図24A】
図24は、胎盤、母体血液細胞および母体血漿における131種の妊娠関連遺伝子の発現レベルを示している。
図24Aは、妊娠後期2例における、胎盤および母体の血液細胞、ならびに出産前および出産後の母体血漿の遺伝子発現を色分け図で示したものである(ログ
2(転写物レベル))。131種の妊娠関連遺伝子は胎盤で優先的に発現していた。
図24Bは、胎盤および血漿では131遺伝子の発現レベルに正の相関があることを示している(P<0.05、スピアマンの相関)。
【
図24B】
図24は、胎盤、母体血液細胞および母体血漿における131種の妊娠関連遺伝子の発現レベルを示している。
図24Bは、胎盤および血漿では131遺伝子の発現レベルに正の相関があることを示している(P<0.05、スピアマンの相関)。
【
図25】
図25では、血漿を用いた方法および組織を用いた方法で同定した遺伝子の血漿中のRNAに対する胎児および母体の寄与率を比較している。
【
図26】
図26では、RNA-配列決定によって同定した、母体血漿中の子癇前症関連RNA98種を挙げている。妊娠合併症を発症していない妊婦から回収した血漿での発現レベルおよび子癇前症を発症した妊婦での発現レベルを示している。
【
図27】
図27は、症例9415におけるRNAのPAPPA一塩基多型(SNP)部位を配列決定した場合のリード数を示している。Aアレルは共通のアレルで、Gアレルは胎児特異的アレルである。
【
図28】
図28は、症例9415におけるRNAのH19一塩基多型(SNP)部位の配列を決定したときのリード数を示している。
【
図29】
図29は、メチル化感受性制限酵素消化による、母体由来H19のメチル化の検出結果を示している。
【
図30】
図30は、本発明の態様によるシステムおよび方法で使用可能なコンピューターシステム3000の例をブロック図で示している。
【発明を実施するための形態】
【0011】
詳細な説明
I.序論
10年以上も前に、母体の血漿中に、細胞を伴わない胎児由来のRNAが存在することが報告された11。この発見以後現在に至るまで、母体の血漿中に含まれる胎児および胎盤由来の血中RNAを検出するために、多くの研究が行われてきた1、10、12。興味深いことに、血漿での胎盤特異的な転写物の発現レベルと胎盤組織での発現レベルとが正に相関していることが分かり10、このことによって、血漿RNAの解析が、胎盤または胎児の健康および発達をモニターするための、臨床上有効な非侵襲性のツールであることが示された。実際のところ、母体の血中RNAに関する実験から、子癇前症2、13-15、子宮内の発育遅延4および早産8などの妊娠または胎盤に関連する障害、ならびに胎児染色体異数性の非侵襲性試験5、7、16に関する臨床上の応用例が見つかった。このような開発から、出生前障害の分子的評価にRNAバイオマーカーが有望視されている。
【0012】
出生前試験には血漿RNAの解析が有望であるという見方があるにもかかわらず、これまでに確立された母体血漿中の妊娠または胎盤関連転写物の数はごく僅かである。これらに関しては、血漿中のRNAバイオマーカーに関する実験は逆転写(RT)-PCRによって行われてきた1、4、8、10、12、13。RT-PCRは感受性の高い方法であるが、通常は、1回の解析で少数のRNA種しか標的とできない。注目すべきは、これらの研究は、妊娠関連遺伝子の大部分が胎盤に由来するということを前提とし、主に母体血液細胞よりも胎盤での発現レベルが相対的に高い遺伝子に焦点が当てられていたということである。このようなアプローチから、胎盤での発現レベルが高い妊娠関連RNAが同定されてきたが、他の重要な標的をとりこぼしている可能性がある。さらに、血漿RNAの濃度が低いことや完全性が万全でないことを考慮すると9、15、標準的なハイスループットな方法、例えばSAGE法やマイクロアレイ解析は血漿トランスクリプトームの実験に最適であるとは言えない。
【0013】
前述した血漿RNA解析に関する制限は、RNA解析に超並列配列決定(MPS)を活用することで、すなわちRNA-配列決定(RNA-seq)によって解決できる可能性がある17、18。高い感受性と広範な作動域から、RNA-配列決定は、胎盤を含む多数のヒト組織における遺伝子の発現解析に用いられてきた19。さらに、健常人20および妊婦21、22の血漿miRNAを直接プロファイリングした場合のその実行可能性によって、MPSの優位性が示されてきた。それにもかかわらず、全てを網羅する血漿のトランスクリプトームは未だ行われておらず、これば、短いmiRNAよりも長いRNA種の血漿中での安定性が低いことに起因するのであろう23。
【0014】
本研究で我々は、RNA-配列決定を利用すれば、胎児特異的および母体特異的な一塩基多型(SNP)を解析することで、母体の血漿に含まれる胎児由来および母体由来の転写物を検出できること、およびそれらの相対的な寄与率を予測できることを示した。加えて、母体血漿を使って胎盤のアレル特異的な発現パターンをモニタリングすることが可能である。我々はさらに、出産前後の母体血漿を直接試験することで、妊娠関連転写物の同定が可能であることも示した。
II.SNPアレル比による妊娠関連障害の診断方法
【0015】
遺伝子の発現プロファイルを解析することは、個人の疾患の状況を検出するのに有用である。本発明の態様には、2人の別の個人に由来するRNA分子の混合物を解析することで、個々の発現プロファイルを解析するための方法が含まれる。この方法は、どちらか1人に特異的なアレルと2人に共通のアレルの、アレルの相対量を利用するものである。共通のおよび個人特異的なアレルの相対量に基づいて、2人共の遺伝子発現プロファイルを決定することができる。この方法の応用例の1つとしては、胎児および妊婦両方のRNAを含む母体の血漿試料中のRNAを解析することで、胎児の遺伝子発現プロファイルを解析することが挙げられる。別の応用例としては、移植受容者から採取した提供者および受容者双方のRNAを含有している血漿試料における、提供者由来RNAの遺伝子発現プロファイルの解析がある。
【0016】
2個人に由来するRNAを含有している混合物では、混合物に含まれる種々のRNA転写物の総量の解析に基づく試験では、それぞれの個人の発現プロファイルを決定することはできない。なぜならば、それぞれの個人に由来するRNAの全RNAに対する相対的な寄与率を決定することが難しいためである。種々のRNA転写物の相対量は、個人の健康状態のモニタリング、または病状の検出に有用な可能性がある。
【0017】
この方法では、個人に関する直接的な遺伝子型解析またはファミリー解析のいずれかを行うことで、最初に2人それぞれの遺伝子型を決定することができる。例えば、両親の遺伝子型がそれぞれAAおよびTTである場合、胎児の遺伝子型はATになる。
【0018】
以下に示す仮説例は、この方法の原理を例示するものである。目的の遺伝子それぞれのコード領域にはSNPがあり、種々の遺伝子のRNA転写物で多型を認めることができる。例えば、胎児および妊婦の遺伝子型がそれぞれABおよびAAであると仮定すると、Bアレルは胎児特異的で、Aアレルは胎児と母親に共通である。胎盤および母体血液細胞中の種々の遺伝子の相対的な発現レベルを表1に示す。
【0019】
この例では、胎盤および母体血液細胞の寄与率はほぼ等しく、それぞれのRNA転写物の2%ずつが母体血漿中に含まれていると仮定される。言い換えると、ある遺伝子の胎盤での発現レベルが10000であるとすると、この遺伝子のRNA転写物のうち200が母体血漿に寄与する。
図1に示すように、アレル比B/Aと、胎盤および母体の血液細胞に含まれるそれぞれの遺伝子の相対的な発現レベルとの間には、明確に正の相関がある。対照的に、遺伝子の総発現レベルは、母体血液細胞における発現のゆらぎによって影響を受けるため、胎盤での発現との相関は低い(
図2)。
【0020】
【0021】
アレル比解析を使用することの別の利点としては、胎盤における特定の遺伝子の発現レベルが、母体血液細胞における発現レベルに対して正規化されることが挙げられる。発現レベルはそれぞれの遺伝子およびそれぞれの組織間で大きく異なる場合があるため、この正規化によって、それぞれの遺伝子間の比較がより正確なものとなり、また、参照遺伝子、例えばハウスキーピング遺伝子との比較が必須ではなくなる。言い換えると、標準的な遺伝子発現解析では、組織中のある遺伝子の発現レベルは、ハウスキーピング遺伝子との参照を伴って測定されるか、または試料中の全RNAに対する量として測定される。その後、遺伝子発現の異常を同定するためには、被検試料の相対的な値を対照試料の値と比較するのが一般的である。
【0022】
本明細書で我々は、遺伝子の発現プロファイルを決定するための手段として、同じ遺伝子に関して、胎児由来のRNAが寄与している相対量を、母親の寄与率に対して正規化する新しいアプローチを提唱する。胎盤または母体臓器中の遺伝子発現が変化している病理学的な状態、例えば子癇前症、早産、母体疾患(例えば全身性エリテマトーデス)の状態では、そのような病的な状況のない妊娠と比較して、その遺伝子の胎児対母体の比も変化すると考えられる。このアプローチは、母体血漿に含まれるRNA転写物で胎児特異的なSNPアレルを共通のアレルと比較することで実施することができる。
【0023】
本アプローチはまた、母体血漿中の様々なRNA転写物について、母体特異的SNPアレルを共通のアレルと比較することでも実施することができる。1つ以上RNA遺伝子転写物のそのようなアレル比のうちの1つ以上が、病理学的な状況ではないと予想されるアレル比と比較して変化している場合に、病理学的な状態を同定することができる。多数の遺伝子座間または複数の遺伝子座間のそのようなアレル比を使うことで、病理学的な状態を同定することができるだろう。非病理学的な状態は、その試験の前または後に得られた正常な、もはや病理的な状態にはない妊娠中のアレル比、またはそれまでに正常な妊娠から得られている既存のデータ、つまりこれまでに得られた参照範囲で表すことができる。
【0024】
本方法で診断することができる妊娠関連障害には、母体および胎児組織における相対的な遺伝子の発現レベルの異常を特徴とするいずれもの障害がふくまれる。これらの障害としては、これらには限定されないが、子癇前症、子宮内での発育不全、侵襲性の胎盤形成、早産、新生児の溶血性疾患、胎盤機能不全、胎児水腫、胎児の奇形、HELLP症候群、全身性エリテマトーデス、および他の母親の免疫疾患が挙げられる。この方法は、母親および胎児由来のRNA分子の混合物を含有している試料中のRNA分子が、母親由来か胎児由来かを区別するものである。従ってこの方法では、混合物中に含まれている特定の遺伝子座または特定の遺伝子に対する、1個人(つまり母親または胎児)の寄与率の変化を、たとえ別の個人の寄与率が変化しなくてもまたは別の個人の寄与率が反対方向に変化したとしても、同定することができる。そのような変化は、組織または個別の組織にかかわらず、その遺伝子の全体的な発現レベルを測定する場合には容易に検出することはできない。本明細書で議論する妊娠関連障害は、胎児での染色体異常、例えば異数性を特徴とするものではない。
【0025】
本方法は、胎盤の遺伝子型情報が前もって得られていなくても実施することができる。例えば、妊婦の遺伝子型は、血液細胞を直接遺伝子型解析にかけることによって決定することができる。その後、血漿試料のRNA転写物を、例えば、これには限定されないが、超並列配列決定によって解析することができる。2種類のアレルを示しているRNA転写物を同定することができる。この転写物の組み合わせでは、母親がホモ接合型の場合、胎児は胎児特異的なアレルと母体アレルのヘテロ接合型を示す。このような状況では、胎児(または胎盤)の遺伝子型情報が前もって得られていなくても、RNAのアレル比解析を実施することができる。加えて、母親はヘテロ接合型であるが胎児がホモ接合型の例も、1:1の比からの偏差によって同定することができる。このような技術は、米国特許第8,467,976号にさらに詳細に記載されている。
A.診断方法
【0026】
いくつかの態様に従う妊娠関連障害の診断法300を
図3に示す。この方法では、胎児を妊娠している女性対象から採取した試料を使用する。試料は母体血漿であってよく、かつ、母体由来および胎児由来のRNA分子の混合物を含有していてもよい。試料は、妊娠の任意の段階にある女性対象から、望ましく得ることができる。例えば、胎児を一人だけ妊娠している妊娠第一期、第二期および第三期にある妊婦を対象とすることができる。妊娠第一期および第二期にある妊婦は「妊娠初期例」、および妊娠第三期にある妊婦を「妊娠後期例」と分類することができる。いくつかの態様では、胎児を出産した後に試料を採取しても、または同一の対象から出産の前後に試料を採取してもよい。妊娠していない女性から得られる試料を対照とすることができる。試料は、出産後いつの時点でも(例えば24時間後に)得ることができる。
【0027】
試料は末梢血から得られるものであってもよい。母体血液試料を望まれるように、例えば血漿からそれぞれの血液細胞を遠心分離することで、処理することができる。血液試料またはその一部に安定化剤を加えてもよく、また、使用するまで試料を保存することもできる。いくつかの態様では、胎児組織の試料、例えば絨毛膜繊毛、羊水、または胎盤組織も採取する。胎児の組織は、以下に記載するように、胎児の遺伝子型を決定するのに使用することができる。胎児組織は出産の前または後に採取することができる。
【0028】
試料が得られたら、次に、母体血液細胞および血漿から、ならびに胎盤試料などの任意の胎児組織からRNAまたはDNAを抽出することができる。胎盤のおよび血液細胞のRNA試料は、例えばRibo-Zero Goldキット(Epicentre)で前処理して、配列決定用のライブラリーを作成する前にリボソームRNA(rRNA)を除去してもよい。
【0029】
方法の工程301では複数のリードが得られる。試料から得られたRNA分子を解析することで、リードが得られる。様々な態様では、配列決定、デジタルPCR、RT-PCR、および質量分析によってリードを得ることができる。配列決定に重点をおいて議論するが、説明する側面は、リードを得るための他の技術にも応用可能である。例えば、それぞれのアレルに対するプローブ(プライマーも含む)を用いて、デジタルPCR(マイクロ流体PCRおよび液滴(droplet)PCRなど)から特定の遺伝子座の種々のアレルに関する知見を得ることができる。プローブを、例えば既存の種々の色素で標識して、互いを区別できるようにすることもできる。同じ実験でまたは別の実験で(例えば、別のスライドもしくはチップで)、種々の標識を付与したプローブが別の遺伝子座を標的とするようにしてもよい。そのような標識を検出することで、増幅されていて、かつ、RNAもしくはcDNA分子に相当しているRNAまたはcDNA分子の有無および/または量が分かる。この場合、そのようなリードは、プローブに対応する遺伝子座のRNAまたはcDNA分子に関する配列情報を提供するものである。「配列リード」に関する記述は同様に、非配列決定技術を含む任意の好適な技術によって得られたリードにも適用される。
【0030】
何らかの適用可能な技術によって、望まれるように配列決定を実施することができる。核酸配列を決定するための技術および方法の例としては、超並列配列決定、次世代配列決定、全ゲノム配列決定、エクソーム配列決定、標的の濃縮を伴うもしくは伴わない配列決定、合成による配列決定(例えば、増幅、クローン増幅、ブリッジ増幅による配列決定、可逆化ターミネーターを用いた配列決定)、ライゲーションによる配列決定、ハイブリダイゼーションによる配列決定(例えば、マイクロアレイ配列決定)、単分子配列決定、リアルタイム配列決定、ナノポア配列決定、ピロシークエンシング、半導体配列決定、質量分析による配列決定、ショットガン配列決定、およびサンガー法による配列決定が挙げられる。いくつかの態様において配列決定は、試料に含まれているRNAから調製したcDNAライブラリーに対する超並列技術によって実施される。cDNAライブラリーは、例えばmRNA-Seq Sample Preparationキット(Illumina)を使って製造業者の説明に従って、またはそれに僅かな変更を加えて、望まれるように合成することができる。いくつかの態様では、血漿cDNAの末端修復工程に、5倍希釈したクレノウDNAポリメラーゼを使用する。QIAquick PCR PurificationキットおよびQIAquick MinEluteキット(Qiagen)をそれぞれ、末端を修復した産物およびアデニル化した産物を精製するのに使用することができる。いくつかの態様では、10倍希釈した対になった末端アダプターを血漿cDNA試料に使用するか、または、AMPure XPビーズ(Agencourt)を使用して、アダプターを結合させた産物の精製工程を2巡行う。HiSeq 2000装置(Illumina)を使用することで、末端が対になった形式のcDNAライブラリーの配列を75bpずつ決定することができる。他の形式もしくは装置を使用することもできる。
【0031】
工程302では、参照配列中のリードの位置を決定する。PCRを利用した技術では、例えば、その配列に対するプローブまたはプライマーに付与されている、検出された標識の色(プローブまたはプライマーはその配列に特異的である)と対応させることで、位置を決定することができる。配列決定技術では、リードの配列と参照配列を整列させることで位置を決定することができる。配列の整列はコンピューターシステムによって遂行することができる。生データの処理(例えば重複の多いリードや質の悪いリードの除去)、データの整列および/またはデータの正規化には、何らかのバイオインフォマティクスに関する処理工程を適用することができる。母体血液細胞、胎盤組織および母体血漿中のRNA転写物のレベルは、100万リード分の1キロベース断片当たりのリード数(fragments per kilobase of exon per million fragments mapped、FPKM)として算出することができる。アレル比を決定する場合にもデータ処理および整列させることができるが、データの正規化は必要ではない。任意の参照配列(例えば、hg19参照ヒトゲノム)および任意のアルゴリズムを用いて整列させることができる。
【0032】
工程301および302を実施する上での1例においては、重複しているリードおよびrRNAのリードを除去した後に、妊娠していない女性の血漿試料について平均した300万の解析済みリードが得られ;妊娠した女性それぞれの血漿試料について平均して1200万の解析済みリードが得られた。組織RNA-配列決定では、胎盤および血液細胞のそれぞれについて、1試料当たり、平均して17300万および4100万の解析済みリードが得られた。RNA-配列決定を整列させるための統計学を
図4および5にまとめた。全ての試料について、配列を決定したリードのGC含量も調べた(
図6Aおよび表2)。
【0033】
【0034】
工程303では、1つ以上の情報遺伝子座を同定する。この工程では、ゲノムに含まれているある遺伝子座について、女性対象と胎児の遺伝子型を決定するまたはそれらについて推測することができ、ならびにこれらの遺伝子型を比較することができる。遺伝子型が、第一の実体にでは第一のアレルに関してホモ接合型で(例えば、AA)、第二の実体では第一のアレルと第二のアレルに関してヘテロ接合型(例えば、AB)である場合、その遺伝子座は情報遺伝子座であると見なされる。第一の実体は妊婦対象または胎児であってよく、第二の実体は妊婦対象および胎児のうち、第一の実体とは違うもう一方である。言い換えると、それぞれの情報遺伝子座について、1個人(母親か胎児のいずれか)はホモ接合体で、もう一方の個人はヘテロ接合である。
【0035】
情報遺伝子座はさらに、どちらの個人がヘテロ接合で、1アレルに寄与しているのがいずれの個人かによって分類することができる。胎児がホモ接合型で、妊婦対象がヘテロ接合の場合、その遺伝子座は情報母体遺伝子座、または同様に母体特異的遺伝子座であると見なされる。妊婦対象がホモ接合型で胎児がヘテロ接合型の場合、その遺伝子座は情報胎児遺伝子座、または同様に胎児特異的遺伝子座と見なされる。工程303で同定される情報遺伝子座は、これら全遺伝子座について同じ個人が第二の実体となっているため、全てが母体特異的遺伝子座または胎児特異的遺伝子座のいずれかである。
【0036】
情報遺伝子座が、単一のヌクレオチドに関して第一のアレルと第二のアレルが異なる一塩基多型つまり「SNP」を表す場合がある。情報遺伝子座はまた、1つのアレルに、その他のアレルと比べて、1つ以上のヌクレオチドが挿入されているまたは欠失している、短い挿入断片または欠失を表す場合もある。
【0037】
いくつかの態様では、妊娠中の女性対象の1つ以上の情報遺伝子座または各情報遺伝子座の遺伝子型を母体組織から得られたゲノムDNAの配列決定によって決定する。母体組織は母体血液細胞であってもまたはいずれの他の種類の組織であってもよい。いくつかの態様では、胎児の1つ以上の情報遺伝子座または各情報遺伝子座の遺伝子型を胎児組織、例えば胎盤、絨毛膜繊毛、羊水から得られたゲノムDNAの配列決定によって決定する。より侵襲性の低い方法が好ましい場合には、配列決定用の胎児DNAは、母体血液試料から得ることもできる。配列決定用のRNA分子を得るのに使用したものと同じ試料が、そのような胎児DNAの供給源であってもよいし、または別の試料を使用することもできる。当然のことながら、胎児の直接的な遺伝子型解析を伴わなくても、情報胎児遺伝子座を同定することができる。例えば、ある1つの遺伝子座の第一のアレルについて、妊娠中の女性対象がホモ接合型であることが決定され、RNA配列決定の結果によって、母体および胎児RNAの混合物中に第二のアレルが存在することが示される場合、この遺伝子座について胎児はヘテロ接合型であると推測することができる。
【0038】
いくつかの態様では、情報遺伝子座を同定するために、母親と胎児は両方とも超並列的な方法による遺伝子型解析にかけられる。配列決定は、エクソームを濃縮した母体血液細胞のゲノムDNAおよび胎盤のゲノムDNA試料を用いて実施することができる。ゲノムDNAは、胎盤組織および母体血液細胞から、QIAamp DNAキットおよびQIAamp Bloodキット(いずれもQiagen)を用い、それぞれの製造業者の説明に従って抽出することができる。エクソームの濃縮および配列決定ライブラリーの調製は、TruSeq Exome Enrichmentキット(Illumina)を使い、製造業者によるプロトコールに従って行うことができる。ライブラリーは、HiSeq 2000装置(Illumina)を使いPE形式で75bpずつ配列決定することができる。
【0039】
工程304では、1つ以上の情報遺伝子座を選別する。本明細書で使用する場合、「選別する」とは、工程303で同定した情報遺伝子座の中から、特定の情報遺伝子座をその後の解析用に選ぶことを意味している。「選別された」情報遺伝子座はそのようにして選ばれた遺伝子座である。選抜は、1つ以上の基準に基づいて行うことができる。その情報遺伝子座がゲノムまたは参照配列中に位置しているということが、そのような基準のうちの1つである。いくつかの態様では、参照配列のエクソンまたは発現する領域に位置している遺伝子座のみをさらに解析する。
【0040】
選別のための別の基準には、工程301で得られ、工程302で参照配列に対して整列させ、遺伝子座に対して整列し各アレルを含む全遺伝子座の中から、配列リードの数で選別するというものがある。いくつかの態様では、選別された情報遺伝子座は少なくとも、第一のアレルを含んでいる予め決めておいた第一の配列リードの数および/または第二のアレルを含んでいる予め決めておいた第二の配列リードの数と関連していなければならない。予め決めておいた数は、1、2またはそれ以上であってよく、また、所望のリード品質もしくは配列決定の深度に対応していてもよい。選別の結果、選別された情報遺伝子座を1つ以上同定する。
【0041】
いくつかの態様では、SNPに対応する情報遺伝子座のみが選別される。方法の一例では、NCBI dbSNP Build 135データベース中に含まれていて、全てエクソンに位置しているおよそ100万個のSNPを解析し、母体および胎児の遺伝子型を利用して、これらおよそ100万のSNPから情報SNPを同定した。情報SNPの図では、「A」が共通のアレルを、「B」が母体または胎児に特異的なアレルを表している。母体特異的SNPアレルに含まれるこのような情報SNPは、所与の遺伝子座について、胎児では「AA」であり、母親では「AB」となる。また、胎児特異的SNPアレルを含むこれら情報SNPは、所与の遺伝子座について、母親では「AA」となり、胎児では「AB」となる。遺伝子型を、研究室内のバイオインフォマティクスに関する一連のデータ処理経路(パイプライン)にかけた。選別には、「A」アレルと「B」アレルの両方がそれぞれ少なくとも1つのリードカウントとして現れた情報SNPのみを解析に含めた。
【0042】
工程305および306では、選別された情報遺伝子座それぞれに対して整列させた配列リードをカウントし、どのアレルを含んでいるかによって分類する。選別された情報遺伝子座それぞれについて、2つの数を決定する:第一の数は、遺伝子座に対して整列しており、かつ、対応する第一のアレル(つまり共通のアレル)を含んでいる配列リードの数であり;第二の数は、遺伝子座に対して整列しており、かつ、対応する第二のアレル(つまり母体または胎児特異的アレル)を含んでいる配列リードの数である。第一の数および第二の数は、望まれるようにコンピューターで算出される。各遺伝子座に関する第一の数と第二の数を合わせたものが遺伝子座に対して整列している配列リードの総数となる。特定の選別された情報遺伝子座の第一の数と第二の数の比を「アレル比」として表すことができる。
【0043】
工程307および308では、選別された情報遺伝子座の第一のアレルの数と第二のアレルの数の和を算出する。工程307では、第一の数の第一の和を算出する。第一の和は、選別された情報遺伝子座について、対応する第一のアレル(つまり共通のアレル)を含んでいる配列リードの総数を表すものである。工程308では、第二の数の第二の和を算出する。この第二の和は、選別された情報遺伝子座について、対応する第二のアレル(つまり母体または胎児特異的アレル)を含んでいる配列リードの総数に相当する。この和は、工程304で同定した選別された情報遺伝子座の全てまたはそのうちのいくつかを使って、望ましいようにコンピューターで算出される。いくつかの態様では、この和に重みを付ける。例えば、特定の染色体由来の遺伝子座の和への寄与率を、これらの遺伝子座に関する第一の数および第二の数にスカラーをかけることによって、増幅または縮小する。
【0044】
工程309では、第一の和と第二の和の比を算出する。この比は、選別された情報遺伝子座に集約された、第一のアレルと第二のアレルの配列リードの総対数を表すものである。いくつかの態様では、この比は単に、第一の和を第二の和で割ることによって算出される。そのような計算からは、母体または胎児特異的アレルの配列リードの積として、共通のアレルに関する配列リードの数が得られる。あるいは、比を第二の和を、第一の和と第二の和の合計で割ることによって算出することもできる。この場合、この比は、全配列リード中の割合としての、母体または胎児特異的アレルの配列リードの数を表す。当業者には比の他の算出方法も明らかである。比を算出するのに用いた第一の和および第二の和は、選別された情報遺伝子座について、共通のおよび特異的なアレルに由来する試料に含まれるRNA(つまり転写物)の量の代用としても役立つ可能性がある。
【0045】
工程310では、工程309で算出した比をカットオフ値と比較し、胎児、母親、または妊婦が妊娠関連障害を有しているか否かを判定する。様々な態様においてカットオフ値は、妊娠関連障害にかかっていない妊娠中の女性対象(つまり対照の対象)より得られた1つ以上の試料から決定することができ、および/または妊娠関連障害を患っている妊娠中の女性対象より得られた1つ以上の試料から決定することもできる。いくつかの態様では、対照の対象より得られた試料について前述したのと同じ方法を実施し、同じまたは重複している一群の選別された情報遺伝子座を解析することで、カットオフ値を決定する。カットオフ値は、障害に罹っていない妊娠について予測される値と障害にかかっている妊娠について予測される値との間にある値に設定することができる。カットオフ値は正常値からの統計的な差に基づくものであってもよい。
【0046】
いくつかの態様では、妊娠中の女性対象について算出された比(工程309)は、遺伝子の特定の群に含まれる選別された情報遺伝子座を利用して算出され、比(つまりカットオフ値)は、遺伝子のうちのいくつかがまたは全てが同じ選別された情報遺伝子座を利用して、対照の対象について算出される。妊娠中の女性対象について算出される比が母体特異的アレルに基づくものであれば、対照の対象について算出されるカットオフ値も母体特異的アレルに基づくものであってよい。同様に、比とカットオフ値の両方が胎児特異的アレルに基づくものである場合もある。
【0047】
比とカットオフ値の比較は、望ましいように実施することができる。例えば比が、任意の量または特定の余分をもって、カットオフ値を超えるまたはカットオフ値を下回る場合に障害を診断することができる。比較には、差を算出することまたは妊娠中の女性対象とカットオフ値との間の別の比を算出することが伴われる場合がある。いくつかの態様では、比較には、特定の遺伝子の共通のアレルと共通でないアレルに関し、妊娠中の女性対象と対照の対象との間で有意な差があるか否かを評価することが含まれる。
【0048】
所望ならば、この方法を使用して、試料に含まれる母体または胎児由来のRNAの割合を予測することができる。この予測は、工程309で算出された比にスカラーをかけることで実施する。スカラーは、ヘテロ接合型の個人における選別された情報遺伝子座の総発現レベルを、第二のアレルの発現に対する相対値として表している。
【0049】
以下の例で、スカラーの適用法について例示する。方法によってカウントされた第二のアレルが胎児特異的なものである場合、工程309で算出される比は、選別された情報遺伝子座の全配列リードの割合として、胎児特異的アレルの配列リードの数を示す場合がある。共通のアレルを含んでいる配列リードのうち、いくつかは母親由来で、いくつかは胎児由来である。胎児における胎児特異的アレルと共通のアレルの相対的な発現レベルが分かっている場合、または予測可能な場合、比を増幅・縮小して、選別された情報遺伝子座の全配列リードに対する胎児由来の割合を予測することができる。
【0050】
いくつかの態様では、胎児のアレルと共通のアレルが大部分の遺伝子座で対照的に発現しており、スカラーはおよそ2であると予測される。他の態様では、スカラーは2からずれ、非対称的な遺伝子発現を考慮に入れる24。そのため、配列リードに対する母体由来の割合は、1から胎児由来の割合を引いたものとなる。選別された情報遺伝子座の第二のアレルが母体特異的な場合にも同様の計算を行うことができる。
【0051】
B.実施例
1.アレル比と血漿濃度との相関
母体血漿試料(在胎期間37週2日)の発現プロファイルを解析し、妊婦の対応する胎盤および母体の血液細胞と比較した。Illumina社のHiSeq 2000装置を用い、これら試料のそれぞれについてRNA超並列配列決定を行った。胎盤および母体血液細胞に関しては、超並列配列決定によるエクソーム配列決定で遺伝子型を解析した。NCBI dbSNP Build 135データベースに含まれており、かつ、エクソンに位置しているおよそ100万のSNPについて解析を行い、母親がホモ接合型(遺伝子型AA)で胎児がヘテロ接合型(遺伝子型AB)の情報SNPを分類した。従って、Aアレが母親と胎児に共通のアレルで、Bアレルが胎児特異的ということになる。
【0052】
母体血漿中の種々のRNA転写物のRNA-SNPアレル比および総血漿濃度を相対的な組織発現レベルに対してプロットした(胎盤/血液細胞)(
図7)。血漿でのRNA-SNPアレル比と相対的な組織発現レベルとの間に明らかな相関があることが認められた(スピアマンR=0.9731679、P=1.126e-09)。しかしながら、総血漿レベルと組織発現との間に相関はなかった(スピアマンR=-0.7285714、P=0.002927)。
【0053】
胎児での発現解析に加えて、この方法を利用して、母体発現のプロファイリングを行うことができる。この条件では、母親がヘテロ接合(遺伝子型AB)で胎児がホモ接合型(遺伝子型AA)の情報SNPを使用することができる。次に、母体特異的なアレルカウントを共通のアレルのカウントで除算することで、RNA-SNPアレル比を算出することができる。
図8では、情報SNPを含んでいる種々の遺伝子のRNA-SNPアレル比および総血漿レベルを相対的な組織発現レベルに対してプロットしている(血液細胞/胎盤)。母体血漿では組織発現レベルとRNA-SNPアレル比との間にはっきりと正の相関があることが認められた(スピアマンR=0.9386、P<2.2e-16)が、組織発現レベルと総血漿転写物レベルの間には相関は認められなかった(スピアマンR=0.0574、P=0.7431)。
【0054】
RNA転写物、そのRNA-SNPアレル比および血漿レベルを
図9および
図10で表として示している。
2.子癇前症および対照の妊娠例に関する母体血漿中のRNA-SNPアレル比の比較
【0055】
2人の妊娠している女性対象の例について、平均して117,901,334の未処理断片が得られた(表3A)。母体特異的SNPアレルを保持している血中転写物のいくつかについてのRNA-SNPアレル比を、妊娠第三期に発症する子癇前症(PET)例の5641、とその在胎期間を合わせた対照例7171とで比較した。
図11Aに示す通り、これら転写物のRNA-SNPアレル比は、PET例および対照例で異なるプロファイルを描いた。重要なことは、
図11Bに示す通り、RNA-SNPアレル比のプロファイルは血漿転写物レベルのプロファイルははっきりと異なるということである。このことは、母体血漿のRNA-SNPアレル比解析を、PET例と正常な妊娠例とを区別するより正確な別の尺度として利用できる可能性があることを示唆している。PET例5641と別の正常妊娠の対照例9356との比較によって例示されているように、情報SNPの数の増加と共に、情報転写物の数もさらに増加する可能性がある(
図12Aおよび12B)。
図11および
図12に示したRNA-SNPアレル比およびRNA転写物の血漿レベルをそれぞれ、
図13および
図14の表にまとめている。
【0056】
【0057】
【0058】
III.胎児または母体のRNA寄与率の決定方法
A.方法
胎児を妊娠している女性対象由来の試料のうち、胎児由来RNAの割合を決定しるための方法1500を
図15に示す。試料は前述の方法300と同様に採取・調製したものであってよい。
【0059】
工程1501では、複数の配列リードが得られる。工程1502では、この配列リードを参照配列と整列させる。これらの工程は上述の工程301および302の同様に実施することができる。
【0060】
工程1503では、1つ以上の情報母体遺伝子座を同定する。それぞれの情報母体遺伝子座は、胎児では対応する第一のアレルについてホモ接合型であり、妊娠中の女性対象では対応する第一のアレルと対応する第二のアレルがヘテロ接合型である。従って、第一のアレルは母親と胎児に共通のアレルであり、第二のアレルは母体特異的である。情報母体遺伝子座は前述の工程303について記載したのと同様に同定することができる。
【0061】
工程1504では、工程304と同様に、情報母体遺伝子座を選別して1つ以上の選別された情報母体遺伝子座を同定する。次いで工程1505~1511で、個々の選別された情報母体遺伝子座のレベルで配列リードを処理する。工程1505および1506では、選別された情報母体遺伝子座それぞれについて第一の数と第二の数を決定する。工程1505で第一の数を、遺伝子座に対して整列していて、かつ、対応する第一のアレルを含んでいる配列リードの数として決定する。第二の数は、遺伝子座に対して整列していて、かつ、対応する第二のアレルを含んでいる配列リードの数として、工程1506で決定する。工程1505および1506は上述の工程305および306と同様に実施することができる。
【0062】
工程1507では、情報母体遺伝子座それぞれについて、第一の数と第二の数の和を算出する。この和が遺伝子座に対して整列している配列リードの総数と等しくなる場合もある。工程1508では、第二の数を和で除算することによって母体比を算出する。母体比とは、第二の(母体特異的)アレルを含む特定の遺伝子座に対して整列している全配列リードの割合である。
【0063】
工程1509では、スカラーを決定する。スカラーは、対応する第二のアレルと比較したときの、妊娠中の女性対象における、選別された情報母体遺伝子座の総発現レベルを表すものである。2つのアレルの妊娠している女性対象における発現が対称であることが分かっているかまたは対称だと予測される場合には、スカラーはおよそ2である。他の態様ではスカラーは2からはずれ、非対称的な遺伝子発現を考慮するものであってもよい。大部分の遺伝子座は対照的に発現するため、対称性の予測が確認される。
【0064】
工程1510では、母体比にスカラーをかけて母体寄与率を得る。母体寄与率とは、選別された情報母体遺伝子座での、母親由来の配列リードの割合(またはその延長線上で、試料中のRNAの割合)を表す。1から母体寄与率を引いたものが胎児寄与率、つまり胎児由来の配列リードの割合となる。工程1511では、選別された情報母体遺伝子座に関する胎児寄与率を算出する。
【0065】
工程1512では、試料に占める胎児由来RNAの割合を決定する。この割合は、選別された情報母体遺伝子座に関する胎児寄与率の平均である。いくつかの態様では、この平均に、例えば選別された情報母体遺伝子座について算出した和で重みを付ける。重み付きの平均を算出することで、工程1512で決定された割合は、試料中の種々の遺伝子座または遺伝子の相対的な発現レベルを反映する場合がある。
【0066】
試料に占める胎児由来RNAの割合を、配列決定のデータが得られている選別された情報母体遺伝子座のうちの1つ、大部分、または全てについて算出することができる。当然のことながら、この割合は、特定の妊娠中の女性対象の試料を採取した時点での血中トランスクリプトームを反映するものである。妊娠の経過に従って、試料を様々な時点で対象から得た場合には、方法1500で同定される選別された情報母体遺伝子座の組み合わせは試料毎に変化する可能性があり、同様に、これらの遺伝子座について決定した胎児由来RNAの割合も変わり得る。試料に占める胎児由来RNAの割合は、妊娠の年齢や他の要因を管理したとしても、対象ごとに変化する可能性があり、また、妊娠関連障害を有する対象と健康な対象との間でも変化する可能性がある。従って、割合をカットオフ値と比較することで、そのような障害を診断することができる。
【0067】
いくつかの態様では、1人以上の健常対象由来の試料を使い、方法1500を実施してカットオフ値を決定する。いくつかの態様では、割合が、任意の量または特定の余分をもって、カットオフ値を超えるまたはカットオフ値を下回る場合に診断する。比較には、差を算出することまたは、妊娠中の女性対象における胎児由来RNAの割合とカットオフ値との比を算出することが伴われる場合がある。いくつかの態様では、比較には、妊娠中の女性対象における胎児由来RNAの割合と、妊娠期が同等で健常な妊娠女性で見られる割合との間に有意な差があるか否かを評価することが含まれる。
【0068】
情報胎児遺伝子座を解析することで、試料に占める胎児由来RNAの割合を決定することもできる。情報胎児遺伝子座のそれぞれについて、最初に胎児比(第二の(胎児特異的)アレルを含んでいる配列リードの数を配列リードの総数で割った値)を算出することで、この割合を予測することができる。そうすると胎児寄与率は、胎児におけるその2つのアレルの相対的な発現レベルを表しているスカラーを胎児比にかけたものとなる。従って、情報胎児遺伝子座を同定すること、それらの遺伝子座を選別すること、選別された遺伝子座それぞれについて胎児寄与率を算出すること、および選別された遺伝子座の胎児寄与率の平均を求めることで、方法1500の変異形態を実施することが可能である。所望ならば、方法1500による胎児由来RNAの割合の決定には、選別された情報母体遺伝子座に関して算出された胎児寄与率と選別された情報胎児遺伝子座に関して算出された胎児寄与率との平均を求めることを含めてもよい。種々の遺伝子座についての配列リード数の違いを反映させるため、ここで算出された平均に、母体もしくは胎児特異的遺伝子座がより重くなるように、あるいは望まれるように、重みを付けることができる。
B.実施例
1.母体血漿に含まれる胎児由来および母体由来転写物の同定および予測
【0069】
遺伝子型に関するデータに基づいて、少なくとも1つの情報SNPを有する遺伝子として定義した情報遺伝子を最初に同定した。妊娠初期の2例について、胎児および母体の寄与率の相対的な割合を解析するのに、総数が6,714および6,753の情報遺伝子がそれぞれ利用可能であった(
図16および17)。妊娠後期の2例では、胎児および母体の寄与率の相対的な割合を解析するのに、総数7,788および7,761の情報遺伝子がそれぞれ利用可能であった。母体血漿での胎児寄与率の相対的な割合を測定するために、胎児特異的アレルをカバーする少なくとも1つのRNA-配列決定リードが母体血漿試料中に存在していたRNA転写物を分類した。妊娠初期および妊娠後期のそれぞれについて、そのような胎児由来転写物の割合は3.70%および11.28%であった。同様のアプローチにより、母体特異的SNPアレルを使って血中の母体寄与率の相対的な割合を調べ、これが、妊娠初期と後期のそれぞれで76.90%および78.32%であると予想した(
図18A)。
2.PETおよび対照妊娠例におけるRNA-SNPに対する胎児および母体寄与率の比較
【0070】
PET(子癇前症)例5641とその在胎期間を合わせた対照例7171の両方から、GNAS転写物に対する胎児および母体寄与率の割合を調べた。GNASの転写物には、症例5641では遺伝子座rs7121に胎児特異的SNPアレルを含む情報SNP部位があり;症例7171の同じSNP部位には母体特異的SNPアレルが存在した。症例5641のこのSNP部位に対する胎児および母体寄与率の割合はそれぞれ、0.09および0.91であると算出された。一方、症例7171の同じSNP部位に対する胎児および母体寄与率の割合はそれぞれ0.08および0.92であった(
図19)。対照例の7171と比較すると、この転写物では、胎児寄与率の割合が12.5%増加し、母体寄与率の割合が1.09%低下していた。興味深いことに、症例5641と7171を比較すると、この転写物のFPKMが21%上昇していることが検出された。
IV.ゲノム遺伝子座を母体または胎児マーカーに指定するための方法
A.方法
【0071】
ゲノム遺伝子座を母体または胎児マーカーとして指定するための方法2000を
図20に示す。この方法は、胎児を妊娠している女性対象より得られた試料を解析することを伴う。試料は母体血漿であって、かつ、母体由来のRNA分子と胎児由来のRNA分子の混合物を含んでいるものであってよい。試料は上述の方法300と同様に採取・調製することができる。
【0072】
工程2001では、複数の配列リードが得られる。工程2002では、この配列リードを参照配列と整列させる。これらの工程は上で工程301および302について記述したものと同様に実施することができる。
【0073】
工程2003では、1つ以上の情報遺伝子座を同定する。それぞれの遺伝子座は、第一の実体では対応する第一のアレルがホモ接合型で、第二の実体では対応する第一のアレルと対応する第二のアレルのヘテロ接合型である。第一の実体は妊娠中の女性対象または胎児であり、第二の実体は、妊娠中の女性対象および胎児のうち、第一の実体とは別の一方である。情報遺伝子座は上述した工程303と同様に同定することができる。
【0074】
工程2004では、工程304と同様に情報遺伝子座を選別し、1つ以上の選別された情報遺伝子座を同定する。いくつかの態様では、SNPである情報遺伝子座だけを選別にかける。方法の一例では、母体血漿中で、「A」アレルを含む少なくとも1つの配列リードと「B」アレルを含む1つの配列リードが存在した情報SNPが、選別された情報遺伝子座に含まれた。
【0075】
次に工程2005~2008で、配列リードを個々の選別された情報遺伝子座のレベルで処理する。工程2005および2006では、選別された情報遺伝子座それぞれの第一の数と第二の数を決定する。工程2005では、遺伝子座に対して整列していて、かつ、対応する第一のアレルを含んでいる配列リードの数として第一の数を決定し、工程2006で、遺伝子座に対して整列していて、かつ、対応する第二のアレルを含んでいる配列リードの数として第二の数を決定する。工程2005および2006は上で議論した工程305および306と同様に実施することができる。
【0076】
工程2007では、選別された情報遺伝子座のそれぞれについて、第一の数と第二の数の比を算出する。この比は、第一のアレルと第二のアレルを含んでいる配列リード(および、その延長で試料中に含まれる転写物)の相対量を表すものである。いくつかの態様では、この比は単に、第一の数を第二の数で割ることで算出される。このような計算によって、母体または胎児特異的アレルの配列リードの倍率として、共通アレルの配列リードの数が得られる。この比、またはその逆数をアレル比と考えることができ、SNP遺伝子座についてはRNA-SNPアレル比と見なすことができる。
【0077】
いくつかの態様では、母体特異的SNPアレルを含む情報SNPについて、それぞれのSNPに関するRNA-SNPアレル比を母体特異的アレル:共通のアレルとして算出する。一方で、胎児特異的SNPアレルを含む情報SNPについては、RNA-SNPアレル比を胎児特異的アレル:共通のアレルとして算出することができる。データの正規化が必須な遺伝子の発現解析とは異なり、RNA-SNPアレル比の解析にはデータの正規化は必須ではなく、導入される偏りも少ない。2つ以上のSNPを含む転写物については、それぞれの情報SNP部位についてRNA-SNPアレル比を算出することができ、転写物1つ当たりの平均RNA-SNPアレル比をコンピューターで算出することができる。
【0078】
工程2007では、その他に、第二の数を第一の数と第二の数の和で割ることで比を算出することもできる。この場合の比は、その遺伝子座に関する全配列リードに占める、母体または胎児特異的アレルの配列リード数の割合となる。「A」および「B」アレルの点において比は、
Bアレル比=Bアレルカウント/(Aアレルカウント+Bアレルカウント)
と表すことができる。理論的には、胎児または母親のいずれかのみに由来する血漿転写物では、アレル特異的発現がないと仮定した場合、Bアレル比は0.5になるはずである。比を算出するための他の方法も当業者には明らかであろう。
【0079】
工程2008では、比がカットオフ値を超えた場合、選別された情報遺伝子座をマーカーに指定する。いくつかの態様では、カットオフ値は約0.2~約0.5である。いくつかの態様では、カットオフ値は0.4である。方法の一例では、胎児または母体の寄与率が高いRNA転写物に関するBアレル比のカットオフ値を0.4以上に設定した。このカットオフ値には、RNA-配列決定リードのポワソン分布と無作為な試料抽出を考慮に入れた。いくつかの態様では、比がカットオフ値を超えた場合、「B」アレルの寄与率が高いと言える。
【0080】
特定の情報遺伝子座においてアレル比が高いということは、(i)ヘテロ接合型の個人において第二のつまり「B」アレルの発現が「A」アレルの発現よりも高いこと(アレルが非対称に発現していること)、(ii)母体血漿に含まれている遺伝子座に対して整列している全RNAのうち、大部分がヘテロ接合型の個人に由来すること、あるいは(i)と(ii)の両方であることを示している可能性がある。アレル比が高いことはまた、情報遺伝子座に関連する遺伝子が病的に過剰発現している場合、妊娠関連障害を示している可能性もある。従って、本方法のいくつかの態様には、選別された情報遺伝子座が第二の実体(つまりヘテロ接合型の個人)に関するマーカーとして指定できるか否かに基づいて妊娠関連障害を診断することも含まれる。そのような診断をくだすという点では、アレル比との比較に用いられるカットオフ値は、健常な妊婦対象より得られた血漿試料の転写物レベルに基づくものであってもよい。
【0081】
いくつかの態様において方法2000は、試料に含まれている特定の選別された情報遺伝子座のRNA(母体または胎児由来)の割合を予測するためにも用いることができる。このような予測は、工程2007で算出された比にスカラーをかけることで行われる。スカラーは、ヘテロ接合型の個人におけるその遺伝子座における総発現レベルを、第二のアレルの発現との相対値として表すものである。
【0082】
説明のために、本方法でカウントされた第二の(「B」)アレルが胎児特異的なものだとすると、その場合、上述したように算出されるBアレル比は、このアレルの配列リードの数を、選別された情報遺伝子座の全配列リードに占める割合として表すものとなる。共通の(「A」)アレルを含んでいる配列リードのうち、いくつかは母親由来で、いくつかは胎児由来である。胎児における胎児特異的アレルと共通アレルの相対的な発現レベルが分かっている場合、または予測可能な場合、その遺伝子座の全配列リードに占める胎児寄与率の割合を予測するために、Bアレル比を増幅・縮小して得ることができる。胎児で「A」アレルと「B」アレルが同等に発現している場合、スカラーはおよそ2になる。そのため、その遺伝子座の配列リードに対する母体寄与率の割合は、1から胎児寄与率の割合を引いたものとなる。選別された情報遺伝子座の「B」アレルが母体特異的なときにも、同様の計算を行うことができる。
【0083】
B.実施例:高い胎児および母体寄与率
上述したようにBアレルのカットオフ値を0.4とすると、妊娠初期(つまり妊娠第一期および第二期)では、血中転写物のうちの0.91%が胎児寄与率の高いものであることが分かった。このパーセンテージは妊娠後期(つまり妊娠第三期)には2.52%に上昇した。反対に、妊娠初期および妊娠後期の転写物のそれぞれ42.58%および50.98%については、母親の寄与率が高いことが分かった(
図16、17、および18A)。
【0084】
V.妊娠関連障害を診断するための遺伝子の使用
A.妊娠関連遺伝子
妊娠関連遺伝子を同定するための方法も提供する。この方法には、複数の第一の配列リードと複数の第二の配列リードを得ることが含まれる。第一の配列リードは、妊娠女性の血漿試料より得られたRNA分子の配列決定から得られる。第二の配列リードは、妊娠していない女性の血漿試料より得られたRNA分子の配列決定から得られる。第一の配列リードと第二の配列リードを参照配列と整列させ、一連の候補遺伝子を指定する。
【0085】
本方法によれば、次に、配列リードを利用して、妊娠女性と妊娠していない女性から得た試料中にふくまれるそれぞれの候補遺伝子の発現レベルを決定する。具体的には、候補遺伝子のそれぞれについて、第一の配列リードを利用して候補遺伝子に相当する第一の数を決定し;および、第二の配列リードを利用して候補遺伝子に相当する転写物の第二の数を決定する。転写物の第一の数と転写物の第二の数は正規化してもよい。その後、転写物の第一の数を転写物の第二の数で割ることで、候補遺伝子の転写物比を算出する。転写物比をカットオフ値と比較する。転写物比がカットオフ値を超える場合に、候補遺伝子を妊娠関連遺伝子として同定する。
【0086】
本方法のいくつかの態様では、転写物の第一の数の正規化は、転写物の第一の数を第一の配列リードの総数でスケーリング(増幅・縮小)することに相当する。同様に、転写物の第二の数の正規化は、転写物の第二の数の第二の配列リードの総数によるスケーリングに相当する場合がある。他の態様では、候補遺伝子それぞれの転写物の第一の数の正規化は、その候補遺伝子の転写物の第一の数を全候補遺伝子に関する第一の転写物の総数でスケーリングすることに相当する。候補遺伝子それぞれの転写物の第二の数の正規化が、その候補遺伝子の転写物の第二の数を全候補遺伝子に関する第二の転写物の総数でスケーリングすることに相当する場合もある。
【0087】
本方法では基本的に、妊娠していない女性と比較して、妊娠している女性でその遺伝子がより高いレベルで発現していて、その他の遺伝子は双方で同レベルである場合に、遺伝子を妊娠関連遺伝子であると同定する。妊娠している女性と妊娠していない女性は同一人物であってもよい、つまり、出産前と出産後の個人より得られた試料をそれぞれ、第一の配列リードと第二の配列リードの材料とすることができる。
【0088】
我々は、胎児特異的アレルを保持している血中RNA転写物のうちのいくつかが、出産後、母体血漿から完全に消失したことを明らかにした(
図18B)。母体血漿中のこれらの転写物は胎児特異的だったと見なした。一方、母体特異的アレルのうちのいくつかも、出産後に検出できなくなった。従って我々は、妊娠関連遺伝子と命名した、妊娠している間に発現の向上を示した遺伝子を、出産前および出産後の母体血漿におけるそれらの有無を直接比較することで、見いだした。妊娠第三期の妊婦の出産前の血漿中で検出され、分娩後の血漿レベルがいずれの例においても2分の1以下に低下した遺伝子を妊娠関連遺伝子と定義した。データの正規化と遺伝子の差次的発現の解析にバイオインフォマティクスのアルゴリズムを用い、131の妊娠関連遺伝子のリストを編集した(
図21)。これらの遺伝子のうち15の遺伝子は、妊娠中の母体血漿に特異的であることが既に報告されていた
1、2、4、5、9、10、12。1段階リアルタイムRT-PCRにより、我々はさらに、出産前の母体血漿中に多く含まれている5つの新規妊娠関連転写物、つまり妊娠第三期の女性より得られたさらに10種の血漿試料からSTAT1、GBP1およびHSD17B1を、ならびに別のコホートの妊娠第三期の女性より得られた10種の血漿試料からKRT18およびGADD45Gを同定した(
図22)。
【0089】
これら131の遺伝子と妊娠との関連を評価するために、全ての血漿試料について階層的クラスター分析を行った。妊娠中の女性(つまり妊娠初期および妊娠後期)より得られた血漿試料と現在妊娠していない女性(つまり非妊娠対照および出産後の対象)より得られた血漿試料との間には明らかな違いが認められた(
図23)。
【0090】
興味深いことに、これら131遺伝子の2例の妊娠後期女性より得られた血漿試料中での発現パターンと、対応する胎盤および母体の血液細胞での発現パターンを比較すると、胎盤と出産前の血漿試料との間、および母体血液細胞と分娩後の血漿試料との間に密接な類似点が認められた(
図24A)。この観察結果は、大部分の妊娠関連遺伝子が母体の血液細胞よりも胎盤で優先的に発現しているという主張を支持するものである。さらに、これら妊娠関連転写物の胎盤および母体血漿での発現レベルの間には正の相関が認められた(P<0.05、スピアマンの相関)(
図24B)。
【0091】
B.胎盤および母体血液での差次的遺伝子発現
出産前後の母体血漿試料を使った直接的な実験から、妊娠関連遺伝子のパネルの一覧を作成することができたが、同時に、胎盤および血液細胞に関して行ったRNA-配列決定のデータを比較のために探索した。これまでに報告されているように、妊娠関連遺伝子の発現は胎盤で高く母体血液細胞では低いと仮定して
10、15、組織を用いた解析では、任意に、20倍の差をカットオフの最小値に設定した。この組織を用いた解析から、合計で798の候補遺伝子の可能性のある遺伝子を得て、これらについて母体血漿中での胎児寄与率と母体寄与率の割合を算出した。全トランスクリプトームの割合(
図18A)と比較して、相対的に割合の高い、主に胎児由来の遺伝子群を同定した(
図25)。しかしながら、主に胎児由来の遺伝子がより高い割合で同定できることから、血漿を用いた戦略の方が組織を用いた戦略よりも優れていた(
図25)。
【0092】
C.疾患または障害に関連する遺伝子
本明細書ではまた、妊娠関連障害に関連がある遺伝子を同定する方法も提供する。この方法は、複数の第一の配列リードと複数の第二の配列リードを得ることを含む。第一の配列リードは、健常な妊婦より得られた血漿試料中のRNA分子の配列を決定した結果得られるものであり、第二の配列リードは、妊娠関連障害を患っている、または妊娠関連障害に罹っている胎児を妊娠している妊婦より得られた血漿試料中のRNA分子の配列を決定した結果得られるものである。第一の配列リードと第二の配列リードを参照配列と整列させ、一連の候補遺伝子を指定する。
【0093】
この方法により、次に、配列リードを利用して、2人の妊婦より得られた試料に含まれている各候補遺伝子の発現レベルを決定する。具体的には、それぞれの候補遺伝子について、第一の配列リードを使って候補遺伝子に相当する転写物の第一の数を決定し、第二の配列リードを使って候補遺伝子に相当する転写物の第二の数を決定する。転写物の第一の数と転写物の第二の数は正規化してもよい。その後、候補遺伝子についての転写物比を、転写物の第一の数を転写物の第二の数で割ることで算出する。転写物比を参照値と比較する。転写物比が参照値から離れていれば、その候補遺伝子を障害に関連がある遺伝子と同定する。
【0094】
本方法のいくつかの態様では、転写物の第一の数の正規化は、転写物の第一の数を第一の配列リードの総数でスケーリングすることに相当する。同様に、転写物の第二の数の正規化は、転写物の第二の数の第二の配列リードの総数によるスケーリングに相当する場合がある。他の態様では、候補遺伝子それぞれの転写物の第一の数の正規化は、その候補遺伝子の転写物の第一の数を全候補遺伝子に関する第一の転写物の総数でスケーリングすることに相当する。候補遺伝子それぞれの転写物の第二の数の正規化が、その候補遺伝子の転写物の第二の数を全候補遺伝子に関する第二の転写物の総数でスケーリングすることに相当する場合もある。
【0095】
妊娠関連障害と関連がある遺伝子を同定するための本方法によれば、いくつかの態様では、参照値は1である。いくつかの態様では、転写物比と参照値の比が、カットオフ値を超えているかまたは下回っている場合に、転写物比が参照値から離れている。いくつかの態様では、転写物比と参照値との差がカットオフ値を超えている場合、転写物比は参照値から離れている。
【0096】
この方法では基本的に、その遺伝子の発現レベルに、障害を示している妊婦と障害を示していない妊婦との間で有意な差があり、それ以外の遺伝子の発現は同等な場合に、その遺伝子を妊娠関連障害関連遺伝子と同定する。
【0097】
胎児の障害と妊娠関連障害の診断およびモニタリングはこれまで、母体血漿中に含まれている疾患に関連のあるRNAを使って行われてきた。例えば、コルチコトロピン放出ホルモン(CRH)mRNAの母体血漿レベルが子癇前症の非侵襲性の検出および予測に有用であることが分かっている
2、3。母体血漿中のインターロイキン1受容体様1(IL1RL1)mRNAを検出することも、自然早産になる女性の同定に有用であることが示されている
8。また、胎児の成長や子宮内での発育不全を非侵襲的に評価する目的で、成長関連母体血漿RNAマーカーパネルの探索も行われてきた
4。本試験で我々は、健常な妊婦と、子癇前症などの妊娠合併症、子宮内での発育不全、早産および胎児異数性のある女性の母体血漿のトランスクリプトームを直接比較することで、新規疾患関連血中RNAマーカーが同定できるだろうということについて論じる。このアプローチの実行可能性を示すために、子癇前症を発現した3人の妊婦および在胎期間の一致した合併症を発症していない7人の妊婦より得られた母体血漿試料についてRNA-配列決定を行った。我々は、子癇前症の妊婦の血漿で有意な増加を示した98の転写物を同定した(
図26)。この新たに同定した子癇前症関連転写物は、疾患の予測、予後判定、およびモニタリングに有用な可能性がある。
【0098】
この技術を活用することで、早産の予測およびモニタリングすることができる。またこの技術は、切迫した胎児死亡の予測にも利用することができる。さらにこの技術は、問題となっている遺伝子が胎児または胎盤の組織で転写され、かつ、転写物が母体血漿中で検出可能であれば、遺伝子の変異によって引き起こされる疾患の検出にも利用することができる。
【0099】
血漿のRNA-配列決定は他の臨床上の状況にも応用することができる。例えば、本試験で開発された血漿のRNA-配列決定法は、血漿中のRNA濃度が異常になっていることが報告されている13、14癌などの他の病状の解析にも有用な可能性がある。例えば、治療前後の癌患者の血漿トランスクリプトームを比較することで、非侵襲性の診断的使用のための腫瘍関連血中RNAマーカーを同定してもよい。
VI.特定の遺伝子に関するアレル発現パターン
【0100】
アレルの発現パターンを調べるにはRNA-配列決定が利用されてきた25。我々は、所与の遺伝子のアレル発現パターンは、RNA転写物が組織から血中に放出された場合にも保持されているため、血漿からこれを検出することができるだろうと推論した。本試験では、2つのRNA転写物、つまり妊娠特異的遺伝子のPAPPAとインプリンティングされている母体発現遺伝子のH1926、27についてアレルカウントを解析した。
【0101】
PAPPA遺伝子については、胎児特異的SNPアレルを含むSNPであるrs386088を解析した(
図27)。出産後の血漿試料にはPAPPAのRNA-配列決定リードが含まれておらず、このことは、この遺伝子が本当に妊娠特異的であることを示していた
4。特に、出産前の母体血漿と胎盤のRNA試料との間で、胎児-アレルリードカウントの割合に統計的に有意な差は見られなかった(P=0.320、χ
2検定)。このことは、母体血漿から得られたデータが、胎盤におけるPAPPAの両アレル発現パターンを反映していたことを示している。
【0102】
我々は最近、母体血漿DNAのバイサルファイト(亜硫酸水素塩)DNA配列決定によって、インプリンティングされている母体発現H19遺伝子の胎盤および母体血液細胞におけるDNAメチル化のパターンを検出できたことを報告した
28。本試験で我々は、H19遺伝子のゲノムインプリンティングの状態をRNAレベルで探索できるか否かについてさらに調べた。まず、H19遺伝子のエクソン1にあるSNP部位、rs2839698に注目した。このSNPは母体特異的アレル、つまり胎児ではAAで母親ではAGとなるアレルである。
図28に示すように、出産後の母体血漿からはG-アレルだけが検出された(
図28)。このような単一アレルパターンは、インプリンティング対照領域にあるrs4930098 SNP部位のメチル化されていないG-アレルと連鎖するものであった(
図29)。出産前の母体血漿ではG-アレルが見られたが、胎盤由来のA-アレルも検出された(
図28)。母体特異的アレルを保持する他の3つのSNP部位、つまりrs2839701、rs2839702およびrs3741219でも同様のアレルパターン、つまり、出産前の母体血漿では両アレル性で、出産後の母体血漿では単一アレル性のアレルパターンが認められた(
図28)。これらのSNP部位に見られる母体特異的アレルは同じ母体ハプロタイプに属し、メチル化されず、その結果転写されていると考えられた。とりわけ、H19のRNAが母体血液細胞では発現していなかったことは(
図28)、血漿中に含まれるH19のRNA分子が、血液細胞ではなく、母体の組織/器官に由来するものであることを示唆している。H19が発現していることが報告されている非胎盤のおよび非胎児の組織には、副腎、骨格筋、子宮、脂肪細胞、肝臓および膵臓がある
29。
【0103】
VII.考察
本研究で我々は、RNA-配列決定を利用することで、母体血漿中のトランスクリプトーム活性の全体的な概要を示すための技術を開発することを目的とした。我々はこれまでに、1つまたは複数の胎児特異的遺伝子座を標的とすることで、母体血漿に含まれている胎児DNAの割合を示した。これは、胎児ゲノム全体が、母体血漿中でも均一に存在しているためである30。血中のDNAとは異なり、母体血漿中の胎児由来RNA転写物の割合の測定は、胎児および母体組織での差次的な遺伝子発現、ならびに血中への放出によってその割合が複雑になっているため、単純ではない。母体血漿に関するRNA-配列決定を実施し、胎児と母親との間の多形の差を調べることによって、我々は、胎児由来の血漿転写物の割合を予測することができた。予想通り、血漿トランスクリプトームにおいては母体由来の転写物が優勢であったが、人初期および妊娠後期の母体血漿に含まれている血中転写物のうち、それぞれ、3.70%および11.28%が胎児由来であった。これらの胎児由来転写物には、胎児と母親の双方に由来するRNA分子ならびに胎児のみに由来するRNA分子が含まれる。さらに、妊娠初期および妊娠後期の母体血中転写物のうち、胎児のみに由来するRNA分子はそれぞれ0.90%および2.52%であることを見いだした。このような胎児特異的遺伝子が妊娠後期でより多く存在していることは、おそらく、妊娠が経過するに従って胎児および胎盤の大きさが増大することと相関しているのだろう。
【0104】
本試験で我々は、胎盤では妊娠特異的PAPPA遺伝子の平衡したRNAアレルの発現が見られ、母体血漿では、母体で発現するインプリンティングされたH19遺伝子の単一アレルの発現が観察され得ることを示した。これらのデータから、アレルの発現パターンを解析するための非侵襲性の試料源として母体血漿が使用できる可能性が示唆される。
【0105】
出産前および出産後の母体血漿試料に含まれているRNA転写物を定量的に比較することにより、我々は、分娩後の血漿試料ではそれらの発現が低下していることからも明らかなように、妊娠期に発現が上昇した131遺伝子の一覧を編集した。予想通り、これら遺伝子のプロファイルを使用して、妊娠している女性と妊娠していない女性の血漿試料を区別することができた。このように出産前と出産後の母体血漿試料を直接比較することで、母体血液細胞と比較して胎盤で必ずしも非常に高いレベルで発現しているとは限らないことがこれまでの研究で示されている10、15妊娠関連遺伝子を、ハイスループットな様式で選別することができた。要するにこの直接的な血漿検査法は、胎盤組織および血液細胞のトランスクリプトームを事前にプロファイリングすることを伴わない、血中の妊娠関連RNA転写物を発見するための別の手段となる。
【0106】
ここまで、RNA-配列決定が血漿トランスクリプトームのプロファイリングをするための実行可能な方法であることを示してきたが、いくつかの技術的な問題はさらに改善できる。第一に、配列決定のためのプロトコールをさらに最適化することで、特に、非常に多く転写されるrRNAやグロブリン遺伝子を血漿から除去することで、血漿のRNA-配列決定から得られる情報をさらに増やすことができる可能性がある。第二に、我々は参照転写物にのみ焦点を当ててきたが、個々のイソ型についてはまだ探索を行っていない。今後の研究には、配列決定リードの深度を増すことで、新規転写物の検出およびスプライシング変異体やそれらのイソ型
31-33の差次的解析も含めることができるだろう。第三に我々は、遺伝子型解析で絨毛膜繊毛と羊水を使い切ってしまったため、妊娠初期の試料に含まれる胎児由来および母体由来転写物の割合の解析ではASEによる選別を行わなかった。それにも関わらず、妊娠後期においては、ASEによる選別が、母体血漿中に含まれている胎児および母体寄与率の高い遺伝子の同定に顕著な影響を与えなかったことを示した(
図16および17)。
【0107】
まとめると、我々は、RNA-配列決定技術を使うことで、母体の血漿に含まれている胎児由来転写物の割合を測定し、血中の妊娠関連遺伝子を同定することができることを示した。この試験は、母体血漿のトランスクリプトームの全体像をより網羅的に理解し、従って、妊娠関連疾患に関わるバイオマーカー候補の同定を促進するための手段を整備した。我々はこの技術、が妊娠または胎盤に関連する疾患、さらには癌34などの他の病気を分子的に診断するための新しい手段を切り開くものになるだろうと考えている。
【0108】
VIII.移植
前述の通り、本明細書に記載の方法は移植にも応用可能である。移植のための方法は胎児解析に用いたのと同様な様式で進めることができる。例えば、移植した組織の遺伝子型を得ることができる。態様では、移植した組織でヘテロ接合型であり、宿主生物(例えば男性または女性)でホモ接合方の遺伝子座を同定することができる。また態様では、移植した組織がホモ接合型で、宿主生物(例えば男性または女性)がヘテロ接合型の遺伝子座を同定することもできる。同じ比をコンピューターで算出し、カットオフ値と比較して障害があるか否かを決定することもできる。
【0109】
IX.コンピューターシステム
本明細書で言及するコンピューターシステムはいずれも、好適な数のサブシステムを使用し得る。コンピューター装置3000に含まれるそのようなサブシステムの例を
図30に示している。いくつかの態様では、コンピューターシステムは単一のコンピューター装置を含み、この場合、サブシステムはコンピューター装置の構成要素であってよい。他の態様では、コンピューターシステムは複数のコンピューター装置を含み、コンピューター装置はそれぞれがサブシステムであって、内部コンポーネントを有している。
【0110】
図30に示しているサブシステムはシステムバス3075を介して相互に接続している。その他のサブシステム、例えば印刷装置3074、キーボード3078、記憶装置3079、モニター3076(ディスプレーアダプター3082に接続されている)なども示している。周辺機器および入力/出力(I/O)装置(I/O制御装置3071に接続されている)は、任意の数の当該分野で知られている手段、例えばシリアルポート3077によってコンピューターシステムに接続することができる。例えば、シリアルポート3077または外部インターフェース3081(例えばイーサーネット、Wi-Fiなど)を使用して、コンピューターシステム3000を、インターネット、マウス入力装置、またはスキャナーなどの広域ネットワークに接続することができる。システムバス3075を使った相互接続により、中央処理装置3073は各サブシステムとの通信およびシステムメモリー3072または記憶装置3079(例えば、ハードドライブなどの固定ディスクまたは光学ディスク)からの指示の実行の制御が可能になり、ならびに、各サブシステム間での情報のやりとりが可能になる。システムメモリー3072および/または記憶装置3079は読み込み可能なメディアを内蔵していてもよい。本明細書で言及するデータは全て、ある構成要素から別の構成要素に出力することができ、また、利用者に対して出力することができる。
【0111】
コンピューターシステムは複数の同じ構成要素またはサブシステムを含む場合があり、これらは例えば、外部インターフェース3081または内部インターフェースによって接続されている。いくつかの態様では、コンピューターシステム、サブシステム、または装置は、ネットワーク越しに通信している場合もある。そのような例では、1つのコンピューターはクライアントで別のコンピューターはサーバーであって、いずれもが同じコンピューターの一部分であってもよいと考えることができる。クライアントとサーバーはそれぞれが複数のシステム、サブシステムまたは構成要素を含んでいてもよい。
【0112】
本発明の態様はいずれも、ハードウェア(例えばアプリケーションに特異的な集積回路またはフィールド・プログラマブル・ゲート・アレイ)および/またはモジュラー式または統合式に通常プログラム可能なプロセッサを備えたコンピューターソフトウェアを使った制御理論の形式で実装することが可能であると理解される。本明細書で使用されるプロセッサには、同じ集積チップ上にあるマルチコア・プロセッサ、または単一の回路基板上にあるかもしくはネットワークで繋がれた複数の処理装置が含まれる。当業者は本明細書で提供する技術や教示に基づいて、ハードウェアおよびハードウェアとソフトウェアの組み合わせを用いて本発明の態様を実行するための別の手段および/または方法を理解・認識することができるだろう。
【0113】
本出願に記載のソフトウェアの構成要素または機能はいずれも、プロセッサによって実行されるソフトウェアコードであって、例えば、Java、C++またはPerl等の好適なコンピューター言語のいずれかを使用し、例えば、標準的なまたは目的に沿った技術によってプログラムされたソフトウェアコードとして実装してもよい。ソフトウェアコードは記憶および/または送信用の一連の指示またはコマンドとして読み込み可能なメディアに保存されていてもよい。好適なメディアとしては、ランダム・アクセス・メモリ(RAM)、読み出し専用メモリ(ROM)、ハードドライブもしくはフロッピーディスクなどの磁気媒体、またはコンパクトディスク(CD)もしくはDVD(デジタル多用途ディスク)などの光媒体、フラッシュメモリなどが挙げられる。コンピューターで読み込み可能なメディアは、そのような記憶または送信装置のいかなる組み合わせであってもよい。
【0114】
そのようなプログラムは、様々なプロトコールに共通の有線、光学および/または無線のネットワーク、例えばインターネットに適応している搬送波信号を用いてコードおよび送信してもよい。つまり、そのようなプログラムでコードされたデータ信号を使って本発明の態様によるコンピューターで読み込み可能なメディアを作成してもよい。プログラムコードでコードされているコンピューターで読み込み可能なメディアを互換性のある装置とともに梱包してもよく、または他の装置とは別個に提供してもよい(例えば、インターネット上でのダウンロードによって)。そのようなコンピューターで読み込み可能なメディアはいずれも、単一のコンピューター製品(例えばハードドライブ、CD、もしくはコンピューターシステム全体)に置くことまたは組み込むこともでき、システムもしくはネットワーク上の複数のコンピューター製品に置くこともまたは組み込むこともできる。コンピューターシステムには、モニター、印刷装置、または本明細書で言及したいずれかの結果を利用者に提供するための他の好適なディスプレーを含めることもできる。
【0115】
本明細書に記載の方法はいずれも完全にまたは部分的に、1つ以上のプロセッサを含むコンピューターシステムを利用して実施してもよく、工程を実行するようにコンピューターシステムを構成することができる。従って態様は、本明細書に記載の方法のいずれかにおける工程を実行するように構成されたコンピューターシステムに関する場合があり、コンピューターシステムは、それぞれの工程またはそれぞれの工程群を実施する異なる構成要素を含む場合がある。工程に番号を付けて示しているが、本明細書の方法の工程は、同時にまたは異なる順序で実施することができる。加えて、これらの工程の一部分を、他の方法に由来する他の工程の一部分と共に使用してもよい。また、工程のうちの全てまたは一部は随意選択であってもよい。加えて、いずれかの方法のうちのいずれかの工程は、モジュール、回路、またはこれらの工程を実施するための他の手段を利用して実施することができる。
【0116】
特定の態様の具体的な項目は、本発明の態様の精神および範囲から逸脱することなく、任意の好適な様式で組み合わせることができる。しかしながら、本発明の他の態様は、それぞれ個別の側面、またはこれら個別の側面の特定の組み合わせに関する具体的な態様に関する場合もある。
【0117】
本発明の例示的な態様に関するこれまでの記載は、例を示し、説明する目的で提示したものである。これらは完全なものでも、記載した形態に本発明を限定するものでもなく、前述の教示を考慮すれば多数の修正形態および変更形態が可能である。態様は、本発明の原理およびその実用化を最もよく説明するための選択・記載されたものである。従って、当業者が様々な態様において本発明を最もよく実施することができ、また、想定される特定の使用に適している様々な変更を施すことができる。
【0118】
「1つ」、「1種」または「この」という記載は、そうではないことが具体的に示されていない限り、「1つ以上」を意味することを意図している。
【0119】
本明細書で言及した全ての特許、特許出願、出版物、および記述は、全ての目的のために参照することによりその全体が本明細書に組み込まれる。いずれも先行技術であるとは認められない。
【0120】
X.参考文献
1. Ng EKO, Tsui NBY, Lau TK, Leung TN, Chiu RWK, Panesar NS, Lit LC, Chan KW, Lo YMD. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci U S A 2003; 100: 4748-53.
2. Ng EKO, Leung TN, Tsui NBY, Lau TK, Panesar NS, Chiu RWK, Lo YMD. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin Chem 2003; 49: 727-31.
3. Farina A, Sekizawa A, Sugito Y, Iwasaki M, Jimbo M, Saito H, Okai T. Fetal DNA in maternal plasma as a screening variable for preeclampsia. A preliminary nonparametric analysis of detection rate in low-risk nonsymptomatic patients. Prenat Diagn 2004; 24: 83-6.
4. Pang WW, Tsui MH, Sahota D, Leung TY, Lau TK, Lo YM, Chiu RW. A strategy for identifying circulating placental RNA markers for fetal growth assessment. Prenat Diagn 2009; 29: 495-504.
5. Lo YMD, Tsui NBY, Chiu RWK, Lau TK, Leung TN, Heung MM, Gerovassili A, Jin Y, Nicolaides KH, Cantor CR, Ding C. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med 2007; 13: 218-23.
6. Tsui NBY, Akolekar R, Chiu RWK, Chow KCK, Leung TY, Lau TK, Nicolaides KH, Lo YMD. Synergy of total PLAC4 RNA concentration and measurement of the RNA single-nucleotide polymorphism allelic ratio for the noninvasive prenatal detection of trisomy 21. Clin Chem 2010; 56: 73-81.
7. Tsui NBY, Wong BCK, Leung TY, Lau TK, Chiu RWK, Lo YMD. Non-invasive prenatal detection of fetal trisomy 18 by RNA-SNP allelic ratio analysis using maternal plasma SERPINB2 mRNA: a feasibility study. Prenat Diagn 2009; 29: 1031-7.
8. Chim SS, Lee WS, Ting YH, Chan OK, Lee SW, Leung TY. Systematic identification of spontaneous preterm birth-associated RNA transcripts in maternal plasma. PLoS One 2012; 7: e34328.
9. Wong BCK, Chiu RWK, Tsui NBY, Chan KCA, Chan LW, Lau TK, Leung TN, Lo YMD. Circulating placental RNA in maternal plasma is associated with a preponderance of 5' mRNA fragments: implications for noninvasive prenatal diagnosis and monitoring. Clin Chem 2005;51: 1786-95.
10. Tsui NBY, Chim SSC, Chiu RWK, Lau TK, Ng EKO, Leung TN, Tong YK, Chan KCA, Lo YMD. Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J Med Genet 2004; 41: 461-7.
11. Poon LL, Leung TN, Lau TK, Lo YMD. Presence of fetal RNA in maternal plasma. Clin Chem 2000; 46: 1832-4.
12. Go AT, Visser A, Mulders MA, Blankenstein MA, Van Vugt JM, Oudejans CB. Detection of placental transcription factor mRNA in maternal plasma. Clin Chem 2004; 50: 1413-4.
13 Smets EM, Visser A, Go AT, van Vugt JM, Oudejans CB. Novel biomarkers in preeclampsia. Clin Chim Acta 2006; 364: 22-32.
14. Purwosunu Y, Sekizawa A, Koide K, Farina A, Wibowo N, Wiknjosastro GH, et al. Cell-free mRNA concentrations of plasminogen activator inhibitor-1 and tissue-type plasminogen activator are increased in the plasma of pregnant women with preeclampsia. Clin Chem 2007; 53: 399-404.
15. Miura K, Miura S, Yamasaki K, Shimada T, Kinoshita A, Niikawa N, et al. The possibility of microarray-based analysis using cell-free placental mRNA in maternal plasma. Prenat Diagn 2010; 30: 849-61.
16. Ng EKO, El-Sheikhah A, Chiu RWK, Chan KC, Hogg M, Bindra R, et al. Evaluation of human chorionic gonadotropin beta-subunit mRNA concentrations in maternal serum in aneuploid pregnancies: a feasibility study. Clin Chem 2004; 50: 1055-7.
17. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5: 621-8.
18 .Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008; 321: 956-60.
19. Kim J, Zhao K, Jiang P, Lu ZX, Wang J, Murray JC, Xing Y. Transcriptome landscape of the human placenta. BMC Genomics 2012; 13: 115.
20. Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, et al. The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS One 2012; 7: e51009.
21. Li H, Guo L, Wu Q, Lu J, Ge Q, Lu Z. A comprehensive survey of maternal plasma miRNAs expression profiles using high-throughput sequencing. Clin Chim Acta 2012; 413: 568-76.
22 .Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, Tuschl T. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A 2013; 110: 4255-60.
23. Chim SSC, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RWK, Lo YMD. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008; 54 :482-90.
24. Pickrell JK et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 2010; 464: 768-772.
25. Smith RM, Webb A, Papp AC, Newman LC, Handelman SK, Suhy A, et al. Whole transcriptome RNA-Seq allelic expression in human brain. BMC Genomics 2013; 14: 571.
26 .Frost JM, Monk D, Stojilkovic-Mikic T, Woodfine K, Chitty LS, Murrell A, et al. Evaluation of allelic expression of imprinted genes in adult human blood. PLoS One 2010; 5: e13556.
27. Daelemans C, Ritchie ME, Smits G, Abu-Amero S, Sudbery IM, Forrest MS, et al. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet 2010; 11: 25.
28. Lun FMF, Chiu RWK, Sun K, Leung TY, Jiang P, Chan KCA, et al. Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA. Clin Chem 2013; 59: 1583-94.
29. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009; 10: R130.
30. Lo YMD, Chan KCA, Sun H, Chen EZ, Jiang P, Lun FMF, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2010; 2: 61ra91.
31. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25: 1915-27.
32. St Laurent G, Shtokalo D, Tackett MR, Yang Z, Eremina T, Wahlestedt C, et al. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 2012; 13: 504.
33. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res 2012; 22: 2008-17.
34. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta 2007; 1775: 181-232.