IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋紡株式会社の特許一覧

<>
  • 特許-グルコース測定用酵素製剤 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-05
(45)【発行日】2023-12-13
(54)【発明の名称】グルコース測定用酵素製剤
(51)【国際特許分類】
   C12Q 1/32 20060101AFI20231206BHJP
   C12M 1/34 20060101ALI20231206BHJP
   C12N 9/04 20060101ALI20231206BHJP
   C12Q 1/54 20060101ALI20231206BHJP
   G01N 27/327 20060101ALI20231206BHJP
   G01N 27/416 20060101ALI20231206BHJP
【FI】
C12Q1/32 ZNA
C12M1/34 E
C12N9/04 D
C12Q1/54
G01N27/327 353R
G01N27/416 338
【請求項の数】 7
(21)【出願番号】P 2017511045
(86)(22)【出願日】2016-04-07
(86)【国際出願番号】 JP2016061370
(87)【国際公開番号】W WO2016163448
(87)【国際公開日】2016-10-13
【審査請求日】2019-03-26
【審判番号】
【審判請求日】2022-02-01
(31)【優先権主張番号】P 2015079812
(32)【優先日】2015-04-09
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003160
【氏名又は名称】東洋紡株式会社
(74)【代理人】
【識別番号】110000796
【氏名又は名称】弁理士法人三枝国際特許事務所
(72)【発明者】
【氏名】歌島 悠
(72)【発明者】
【氏名】岸本 高英
【合議体】
【審判長】長井 啓子
【審判官】福井 悟
【審判官】松本 淳
(56)【参考文献】
【文献】国際公開第2013/118798(WO,A1)
【文献】SATAKE,R.et al.,J.Biosci.Bioeng.,(23 Apr. 2015),Vol.120,No.5,pp.498-503
【文献】UTASHIMA,Y.et al.,日本生物工学会大会講演要旨集,(2013),Vol.65th,p.28
【文献】歌島悠,広島大学大学院生物圏科学研究科生物機能開発学専攻・博士論文,(Mar.2015),pp.1-136
(58)【調査した分野】(Int.Cl.,DB名)
C12Q1/32
JSTPlus/JMEDPlus/JST7580(JDreamIII)
MEDLINE/CAPlus/BIOSIS/WPIDS(STN)
(57)【特許請求の範囲】
【請求項1】
フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含む組成物の製造方法であって、
前記組成物は、10mMのトレハロースおよび1mmol/Lのフェリシアン化カリウムを含む溶液2.9mlに、前記組成物0.1mlを、グルコースデヒドロゲナーゼ活性が500U/mlとなるよう添加して37℃でインキュベーションした際、フェリシアン化カリウムの還元に由来する405nmの吸光度減少が1分あたり3.8mAbs未満であり、及び
前記フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼがMucor RD056860由来の配列番号5のアミノ酸配列を有する酵素であり、当該酵素をクリプトコッカス属を宿主として発現させること、及び発現した当該酵素をクロマトグラフィーで処理してトレハロース加水分解活性を示す画分を分離して前記組成物を得ることを含む、製造方法。
【請求項2】
前記1分あたりの吸光度減少が実質的に検出されない、請求項1に記載の製造方法。
【請求項3】
トレハラーゼ含量が0.76%未満である、フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含む組成物の製造方法であって、
前記フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼがMucor RD056860由来の配列番号5のアミノ酸配列を有する酵素であり、当該酵素をクリプトコッカス属を宿主として発現させること、及び発現した当該酵素をクロマトグラフィーで処理してトレハロース加水分解活性を示す画分を分離して前記組成物を得ることを含み、前記トレハラーゼ含量はトレハラーゼ活性/FADGDH活性×100で計算され、
前記トレハラーゼ活性は下記のトレハロース加水分解活性測定方法で求めた吸光度減少度(mABS/min)であり、
前記FADGDH活性は、500(U/mL)である、製造方法。

トレハロース加水分解活性測定方法:
反応液(84mmol/L クエン酸ナトリウムバッファー、1mmol/L フェリシアン化カリウム、10mM トレハロース、pH3.5)2.9mlを石英セルにいれ、37℃で5分間予備加温する。そこに15000U/mlのFADGDH0.1mLを加えて混和し(最終的なGDH濃度:500U/ml)、37℃で5分反応させ、この間405nmの吸光度を測定して1分間あたりの吸光度の減少度を算出する(ΔODTEST)。盲検は、GDH溶液の代わりに緩衝液を加えて混和し、同様に37℃5分インキュベートして405nmの吸光度を記録し、その初期直線部分から1分間あたりの吸光度の減少度を算出する(ΔODBLANK)。ΔODTESTよりΔODBLANKを差し引いた数値を、吸光度減少度(mABS/min)とする。
【請求項4】
前記組成物がトレハラーゼを実質的に含有しない、請求項3に記載の製造方法。
【請求項5】
請求項1~4のいずれかに記載の製造方法で製造される組成物を配合することを含む、グルコース測定用センサの製造方法。
【請求項6】
請求項1~5のいずれかに記載の製造方法で製造される組成物を用いて、グルコースを測定する方法。
【請求項7】
請求項6に記載の製造方法で製造されるグルコース測定用センサを用いて、グルコースを測定する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、グルコース測定用酵素を含有する製剤およびその利用に関する。
【背景技術】
【0002】
血中グルコース濃度の測定は、糖尿病患者が適当な血糖コントロールを行うにあたって必要不可欠である。日常的に血糖値をチェックするために使われるのは簡易型の自己血糖測定器(グルコースセンサ)または測定キット等であり、例えば、グルコースオキシダーゼ(以下GODとも記載)もしくはグルコースデヒドロゲナーゼ(以下GDHとも記載)などの酵素を利用したものが知られている。さらに、前記GDHとしては、反応に要する補酵素の違いから、ニコチンアミド依存型、ピロロキノリンキノン(以下PQQとも記載)依存型、フラビンアデニンジヌクレオチド(以下FADとも記載)依存型などが知られている。また、これらのGDHを適当な宿主ベクター系で組み換え生産したり、また、これらのGDHのアミノ酸配列を一部改変して基質特異性や安定性などを向上させたりすることも行われている。(例えば、FAD依存型GDH(以下FADGDHとも記載)として特許文献1-6)
【先行技術文献】
【特許文献】
【0003】
【文献】特許4494978
【文献】特許4292486
【文献】特許4648993
【文献】特開2013-90621
【文献】特開2013-116102
【文献】特許5408125
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記のように、血中グルコース濃度を測定するために種々のグルコース測定用酵素が研究され、これらの酵素を含むグルコース測定用酵素製剤が開発され市販されている。そして、これらの酵素製剤を用いたグルコースセンサが製造されている。しかし、これらのセンサには、使用している製剤に含まれるグルコース測定用酵素の理化学的特性からは予測できない問題点が生ずる場合がある。例えば、本発明者らの検討においては、製造したグルコースセンサの違いによって、実際のサンプル中のグルコース濃度よりも高い測定値が算出される場合があること、あるいは、ブランクアップを生ずる場合があることが問題点として見出された。本発明の目的は、このような問題点を解消することにより、グルコースセンサへの適用性をより高めたグルコース測定用酵素製剤を提供し、正確かつ簡便なグルコース測定を可能にすることである。
【課題を解決するための手段】
【0005】
本発明者らは、グルコース測定用酵素の中から、溶存酸素の影響を受けず、マルトースなどの影響も受けにくいFADGDHを検討対象として採り上げ、高いブランク値を示すグルコースセンサに用いられていたグルコース測定用酵素製剤を使って、ブランク値の高低に影響を与えるグルコースセンサ側の要因(グルコース測定用酵素以外の要因)について検討した。その結果、その要因の一つがグルコースセンサの組成にあることがわかった。中でも、グルコースセンサの製造時にトレハロースが添加されている場合に、高いブランク値を示す傾向があることがわかった。
一方で、本発明者らは、トレハロースを添加したグルコースセンサを用いて、ブランク値の高低に影響を与えるグルコース測定用酵素側の要因についても検討した。その結果、グルコース測定用酵素製剤にトレハラーゼがコンタミネーションしている場合に、高いブランク値を示す傾向があることがわかった。
【0006】
本発明者らは、上記の結果を以下のように考察した。
FADGDHを含む酵素製剤(以下、FADGDH製剤とも記載)はその由来生物もしくは宿主生物より精製して得られるため、前記生物に固有の蛋白質を少量ながら含んでいる場合がある。そのような場合において、FADGDHの精製が十分でない場合には前記蛋白質がFADGDH製剤に持ち込まれる可能性があるが、こうした夾雑蛋白質には、グルコースセンサに組み込まれた際などに不具合を生じるものが含まれる可能性も否定できない。例えば前記蛋白質としてある糖質を加水分解する酵素(上記の説明ではトレハラーゼ)が一定量以上含まれているFADGDH製剤を用いたグルコースセンサでグルコースを測定する場合、たとえばサンプル中に存在する前記の糖質加水分解酵素の基質となりグルコースを生成しうるオリゴ糖(上記の説明ではトレハロース)が分解されてグルコースが産生し、これがFADGDHの酸化を受けることで、実際のサンプル中のグルコース濃度よりも高い測定値が算出される可能性があると考えられた。
【0007】
また、グルコースセンサにおいて用いられるFADGDH製剤には種々の目的で添加物が添加されている場合がある。そのような場合において、前記の糖質加水分解酵素がFADGDH製剤に存在し、かつ、グルコースセンサに前記の糖質加水分解酵素の基質となりグルコースを生成しうるオリゴ糖が含まれていれば、前記糖質分解酵素の存在が微量であったとしても、長期保存中に前記オリゴ糖が分解されてグルコースが産生し、これがFADGDHの酸化を受けることで、グルコース測定キットやグルコースセンサのブランクアップを招く可能性があると考えられた。
【0008】
本発明者らは、上記考察に基づいてさらに鋭意検討を重ねた結果、精製純度を高めて各種オリゴ糖加水分解酵素を除いたFADGDH製剤、中でもトレハロース分解活性を抑制したFADGDH含有組成物を作製することにより、偽高値やブランクアップの危険性を回避しうることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は以下のような構成からなる。
項1.
フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ(FADGDH)を含む組成物であって、
10mMのトレハロースおよび1mmol/Lのフェリシアン化カリウムを含む溶液2.9mlに、前記組成物0.1mlを、グルコースデヒドロゲナーゼ活性が500U/mlとなるよう添加して37℃でインキュベーションした際、フェリシアン化カリウムの還元に由来する405nmの吸光度減少が1分あたり20mAbs未満である、FADGDHを含む組成物。
項2.
トレハラーゼ含量が2.0%以下である、フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ(FADGDH)を含む組成物。
項3.
項1または項2に記載の組成物を含む、グルコース測定用センサ。
項4.
項1または項2に記載の組成物を用いて、グルコースを測定する方法。
項5.
項3に記載のグルコース測定用センサを用いて、グルコースを測定する方法。
【発明の効果】
【0010】
本発明により、サンプルへのトレハロースの混入や、添加物としてのトレハロース添加の影響を受けないグルコースデヒドロゲナーゼ組成物(製剤)を提供することが可能となった。また、このような特性を有する製剤は、より正確性の高い測定が可能になるという観点から、グルコース測定用酵素製剤として好ましいものであり、特にグルコースセンサ用酵素製剤として好ましいことから、本発明のグルコース測定用酵素製剤を用いて、より正確性の高いグルコース定量用キットやグルコースセンサを提供することが可能になった
【図面の簡単な説明】
【0011】
図1】各種精製GDHを用いたグルコース定量用組成物の作成とブランクアップ検証。
【発明を実施するための形態】
【0012】
本発明の実施形態の一つは、フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ(FADGDH)を含む組成物であって、10mMのトレハロースおよび1mmol/Lのフェリシアン化カリウムを含む溶液2.9mlに、前記組成物0.1mlを、グルコースデヒドロゲナーゼ活性が500U/mlとなるよう添加して37℃でインキュベーションした際、フェリシアン化カリウムの還元に由来する405nmの吸光度減少が1分あたり20mAbs未満である、FADGDHを含む組成物である。
【0013】
ここで、前記の405nmの吸光度減少は、トレハロースが加水分解されて生じるグルコースがグルコースデヒドロゲナーゼによって酸化されてグルコノラクトンとなる際に並行してフェリシアン化カリウムが還元されてフェロシアン化カリウムとなることによる、405nmにおける吸光度の減少度として表されるものである。前記吸光度減少の測定は、具体的には、後述の「トレハロース加水分解活性測定方法」で表される方法で実施する。以下、この方法で405nmの吸光度減少を測定することを「本発明の試験」とも呼ぶ。前記本発明の試験における吸光度減少が小さいほど、前記組成物においてトレハロース分解活性が低いことを意味する。
【0014】
前記本発明の試験における吸光度減少の程度は、また、前記組成物におけるトレハロース分解酵素(典型的にはトレハラーゼ)の含有量を反映する。すなわち、前記本発明の試験における吸光度減少が小さいほど、前記組成物はFADGDHに対するトレハロース分解酵素の含有割合が低い組成物であることを意味する。
【0015】
すなわち、本発明の別の実施形態の一つは、トレハラーゼ含量が2.0%以下である、フラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ(FADGDH)を含む組成物である。
【0016】
本発明の組成物が備えていなければならない属性の1つは、前記本発明の試験における405nmの吸光度減少が1分あたり20mAbs未満であることである。前記吸光度減少は、より好ましくは1分あたり10mAbs未満であり、さらに好ましくは1分あたり5mAbs未満であり、さらに好ましくは1分あたり4mAbs未満であり、さらに好ましくは1分あたり2mAbs未満であり、もっとも好ましくは吸光度減少が実質的に検出されないことである。
【0017】
すなわち、前記の本発明の組成物の特徴の1つはトレハロース分解酵素の含有量が極めて低いことであるとも表現できる。具体的には、本発明の組成物は、前記の吸光度減少に関する特性のかわりに、「トレハラーゼ含量が2.0%以下である」という特性を有していても良い。
前記トレハラーゼ含量は、より好ましくは1.0%以下であり、さらに好ましくは0.8%以下であり、さらに好ましくは0.76%以下であり、もっとも好ましくはトレハラーゼ含量が実質的に検出されないことである。
【0018】
本発明の組成物が備えていなければならないもう1つの属性は、FADGDHを含むことである。
本発明に用いるFADGDHは、公知の各種FADGDHが使用可能であり特に限定されないが、たとえば糸状菌に由来するものが挙げられる。糸状菌由来のものとしては、たとえばアスペルギルス属由来、ペニシリウム属由来、トリコデルマ属由来、コレトトリカム属由来、ムコール属由来のFADGDHが好適に例示される。より好適にはアスペルギルス属由来、ペニシリウム属由来またはムコール属由来であり、よりさらに好適にはアスペルギルス属由来のGDHが好適に例示される。アスペルギルス属由来の中で、アスペルギルス・オリゼ由来GDH(例えば配列番号1に記載のもの)、あるいはアスペルギルス・テレウス由来GDH(例えば配列番号2に記載のもの)が特に好適な例として挙げられる。あるいは、よりさらに好適にはムコール属由来のGDHが好適に例示される。ムコール属由来の中で、ムコール・サブチリシムス由来GDH(例えば配列番号3に記載のもの)、ムコール・ヒエマリス由来GDH(例えば配列番号4に記載のもの)、あるいはムコール・RD056860由来GDH(例えば配列番号5に記載のもの)が特に好適な例として挙げられる。
【0019】
上記のFADGDHは、様々な宿主で発現させることができる。宿主は特に限定されないが、アスペルギルス属、クリプトコッカス属、酵母などが公知であり、これらの中から適宜選択することが可能である。また、前記の宿主に適用させる発現ベクターについても特に限定されず、公知のものを適宜選択して用いることができる。宿主がアスペルギルスの場合、例えばWO2006/101239の実施例4に記載の方法を参考に製造することができる。また、宿主がクリプトコッカスの場合、例えばWO2013/135663の実施例に記載の方法を参考に製造することができる。宿主が酵母の場合、例えばチゴサッカロマイセス属を宿主とした場合はWO2012/073986の実施例7に記載の方法を参考に製造することができる。
【0020】
本明細書において、FADGDHの活性は、後述の「FADGDH活性測定方法」で表される方法で定義される。
【0021】
上述の、「FADGDHを含み、かつ、前記本発明の試験における405nmの吸光度減少が1分あたり20mAbs未満である組成物」、または、「FADGDHを含み、かつ、トレハラーゼ含量が2.0%以下である組成物」を得る方法としては、特に限定されるものではないが、例えば各種クロマトグラフィーにより、FADGDHを含む組成物からトレハロース加水分解活性を示す画分を分離する方法が挙げられる。利用可能なクロマトグラフィーとしては、たとえばイオン交換クロマトグラフィー、ゲルろ過クロマトグラフィー、疎水性クロマトグラフィー等が挙げられる。これらの中で好適な例としてイオン交換クロマトグラフィー、例えば、陽イオン交換クロマトグラフィーまたは陰イオン交換クロマトグラフィーが挙げられる。前者は、例えば、カルボキシメチル基を結合させた担体を充填したもの(例えばCM-セファロースカラム)などのイオン交換体を用いて行うことができる。後者は、例えば、スルホプロピル基を結合させた担体を充填したもの(例えばSP-セファロースカラム)などのイオン交換体を用いて行うことができる。また、これらの中で、疎水クロマトグラフィーが好適な例として挙げられる。疎水クロマトグラフィーを行うに際して、例えば、Phenyl基を結合させた担体(樹脂など)を充填したもの(例えばフェニルセファロースカラム)が挙げられる。前記の種々のクロマトグラフィーを行う際、フラクション分画を行って、各フラクションのFADGDH活性およびトレハロース加水分解酵素測定を後述の方法に従って実施し、トレハロース加水分解酵素活性の小さいかもしくは検出されないFADGDH画分を集めることにより、本発明の組成物が製造可能である。
【0022】
また、アフィニティークロマトグラフィーを利用する方法も例示される。たとえば、任意の宿主を所望のFADGDHをコードする遺伝子を含んでなるベクター等で形質転換してなる細胞を用いてFADGDHを産生させる際にあっては、該FADGDH遺伝子のN末もしくはC末部分にヒスチジンタグをコードした配列とし、産生した組換えFADGDHをニッケルカラムに特異的に吸着させ、イミダゾールの濃度勾配によって溶出する操作を行うことで、ニッケルカラムと親和性を有しないトレハロース加水分解酵素を分離除去することが可能である。好ましくは、このような操作を2回以上繰り返すことにより、さらなる除去効果が望まれる。あるいは、タグとしてグルタチオン-S-トランスフェラーゼ(GST)、マルトース結合タンパク質(MBP)、HA、FLAGペプチドなどを用いてアフィニティー精製することもでき、同様にトレハロース加水分解活性を除去する効果が期待される
【0023】
前記のクロマトグラフィーの中でも、陽イオン交換クロマトグラフィーが最も好ましい。
【0024】
本発明の組成物は、前記2つの属性を備えていれば、その他の組成は特に限定されない。
例えば、本発明の組成物はグルコース測定用酵素製剤としてグルコースセンサに適用することができるので、センサへの適用を踏まえて種々の物質を含有させることができる。
また、本発明の組成物には、産業利用上、費用対効果などを理由として精製度を抑制することにより、グルコース測定に支障をきたさないと考えられる範囲内で多少の不純物(例えばグルコース測定に影響を与えない酵素)等が含有することが許容される。
【0025】
そのような物質として、メディエータが挙げられる。例えば、キノン類、シトクロム類、ビオロゲン類、フェナジン類、フェノキサジン類、フェノチアジン類、フェリシアン化物、フェレドキシン類、フェロセンおよびその誘導体等が例示されるがこれらに限定されない。より具体的には、ベンゾキノン/ハイドロキノン、フェリシアン/フェロシアン化物(カリウムもしくはナトリウム塩)、フェリシニウム/フェロセンなどが挙げられる。フェナジンメトサルフェート、1-メトキシ-5-メチルフェナジウムメチルサルフェイト、2,6-ジクロロフェノールインドフェノールなどを用いてもよい。その他にも、オスミウム、コバルト、ルテニウムなどの金属錯体を用いることも可能である。さらには、フェレドキシン、チトクロム、チオレドキシン等の生体物質を用いることも可能である。
【0026】
水溶性の低い化合物をメディエータとして用いる場合、溶解させるために有機溶媒を用いると、酵素自体の安定性を損なったり、酵素活性を失活させたりする可能性がある。そこで、水溶性を高めるために、前記メディエータをポリエチレングリコール(PEG)のような親水性高分子で修飾して使用してもよい。反応系におけるメディエータ(またはその修飾物)の濃度は、1mM~1M程度の範囲が好ましく、5~500mMがより好ましく、10~300mMが更に好ましい。
【0027】
本発明の組成物中には、pHの変動を緩和するための各種緩衝剤を含んでいてもよい。緩衝剤としては特に限定されないが、好ましくはpH5.0~9.0の範囲で設定されるpH条件において緩衝能を有する物質であればよく、リン酸塩の他、フマル酸・マレイン酸・グルタル酸・フタル酸・クエン酸等の各種有機酸、MOPS、PIPES、HEPES、MES、TESなどのGOODの緩衝剤が例示されうるが、これらに限定されない。
【0028】
本発明の組成物中には、FADGDHの保存安定性を高める等の目的で、ウシ血清アルブミン、卵白アルブミン、セリシン等のタンパク質、グルコース以外の糖類、アミノ酸、カルシウム・マグネシウム・亜鉛・マンガン等の金属塩、EDTAに代表されるキレート剤、または、TritonX-100・デオキシコール酸・コール酸・Tween20・Brij35・エマルゲン等の各種界面活性剤等を適宜含んでもよい。
【0029】
また、本発明の別の実施形態として、前記組成物を含むグルコース測定用センサ、または、前記組成物または前記グルコース測定用センサを用いてグルコースを測定する方法、が挙げられる。FADGDHを用いるグルコース測定の原理、および、グルコース測定用センサの構造・動作原理・製造方法・使用方法等については既に当該技術分野において確立されている。よって、当業者であればそれらの知見を本発明に適用してグルコース測定用センサを作製することや、前記組成物または前記グルコース測定用センサを用いてグルコースを測定することが可能であり、その実施態様は特に制限されない。
【0030】
本発明のグルコース測定用センサには、トレハロース分解酵素(典型的にはトレハラーゼ)の含有量が低いため、例えば安定化を目的としてトレハロースを添加することができる。すなわち、本発明のセンサにはトレハロースを含有させることができる。また、本発明のグルコース測定方法は、サンプルおよび/または試薬組成物中にトレハロースが存在する環境の下でも実施することができる。
【0031】
例えば、本発明のグルコース測定用センサは、比色式であってもよく、また電気化学式であってもよい。また該グルコース測定用センサにはグルコースに応答して得られたシグナル強度から血糖値を算出するための演算装置並びに算出された血糖値を表示するためのディスプレイを具備していてもよい。さらに該グルコース測定用センサは、反応層上に検体となる血液もしくは血液の希釈液を滴下するタイプであってもよいが、被検者の皮膚を窄孔し血液を採取するための針及び/または血液を移送させる流路を具備するかまたは装着可能であってもよい。反応層を備えるセンサであればGDHは反応層に含まれることが好ましい。比色式センサの場合はさらに吸光度を測定するための光源ランプおよび光度計を具備していてもよい。電気化学式センサの場合は作用極と対極を有しているかこれら電極上にGDHおよび電子受容体を保持したチップを装着できるタイプであってもよい。電極としては、カーボン電極、金電極、銀電極、白金電極などを用い、この電極上にGDHを固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどを用いる方法があり、電子受容体とともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。典型的には、グルタルアルデヒドを用いてGDHをカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。
【0032】
本発明のセンサによるグルコース濃度の測定は、比色式グルコースセンサの場合にあっては例えば以下のようにして行うことができる。すなわちFADGDH、電子受容体、を少なくとも含む液状もしくは固体状の組成物を保持させておく。ここで、必要に応じてpH緩衝剤、発色試薬を組成物中に含有させる。ここにグルコースを含む試料を加え、一定時間反応させる。この間、還元により退色する電子受容体もしくは電子受容体より電子を受け取ることで重合し生成する色素の最大吸収波長に相当する吸光度をモニタリングする。レート法であれば吸光度の時間あたりの変化率から、エンドポイント法であれば試料中のグルコースがすべて酸化された時点までの吸光度変化より、あらかじめ標準濃度のグルコース溶液により作製したキャリブレーションカーブを元に試料中のグルコース濃度を算出することができる。この方法において使用できるメディエータ及び発色試薬としては、たとえば2,6-ジクロロフェノールインドフェノール(DCPIP)を電子受容体として添加し、600nmにおける吸光度の減少をモニタリングすることでグルコースの定量が可能である。また、電子受容体としてフェナジンメトサルフェート(PMS)を、さらに発色試薬としてニトロテトラゾリウムブルー(NTB)を加え、570nm吸光度を測定することにより生成するジホルマザンの量を決定し、グルコース濃度を算出することが可能である。いうまでもなく使用する電子受容体および発色試薬はこれらに限定されない。
なお、メディエータについては、種々の官能基による修飾体を用いるなどして、酵素とともに電極上に固定化させて用いてもよい。
【0033】
また、本発明のセンサによるグルコース濃度の測定は、電気化学式センサの場合にあっては以下のようにして行うことができる。グルコースセンサ上の電極に接続された反応層にFADGDH、電子受容体を含む液状もしくは固体状の組成物を保持させておく。この組成物にはさらにpH緩衝剤等を含んでいてもよい。ここにグルコースを含む試料を加えて反応させ、さらに電極に一定の電圧を印加する。電流をモニタリングし、電圧印加開始から一定時間に蓄積される電流を積算するかあるいは電圧印加開始から一定時間を経過したある時点での電流値を測定する。この値を元に、標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い試料中のグルコース濃度を計算することができる。
【0034】
[FADGDH活性測定方法]
本明細書において、FADGDH活性測定は特に断りのない限り、以下の方法に従って行われる。
反応液(34.9mmol/L PIPES-NaOHバッファー、200mmol/L D-グルコース、3.24mmol/L PMS,0.10mmol/L DCPIP、pH6.5)3.0mLを石英セルにいれ、37℃で5分間予備加温する。そしてGDH溶液0.1mLを加えて混和し、37℃で5分反応させ、この間600nm吸光度を測定する。吸光度変化の直線部分から1分間あたりの吸光度の減少度(ΔODTEST)を算出する。盲検は、GDH溶液の代わりに緩衝液を加えて混和し、同様に37℃5分インキュベートして600nm吸光度を記録し、その初期直線部分から1分間あたりの吸光度の減少度(ΔODBLANK)を算出する。これらの値を以下の式に当てはめて活性値(U/mL)を算出する。なおここでは、基質存在下で1分間に1マイクロモルのDCPIPを還元する酵素量を1Uと定義する。
【0035】
GDH活性(U/mL)=[(ΔODTEST-ΔODBLANK)×3.1×希釈倍率]/(16.8×1.0×0.1)
【0036】
なお、ここで
3.1 :GDH溶液混和後の容量(mL)
16.8 :DCPIPのミリモル分子吸光係数(cm/マイクロモル)
1.0 :光路長(cm)
0.1 :添加するGDH溶液の液量(mL)
である。
【0037】
[トレハロース加水分解活性測定方法]
本発明に規定するトレハロース加水分解活性は、特に断りのない限り以下のとおり測定される。
反応液(84mmol/L クエン酸ナトリウムバッファー、1mmol/L フェリシアン化カリウム、10mM トレハロース、pH3.5)2.9mlを石英セルにいれ、37℃で5分間予備加温する。そこに15000U/mlのFADGDH0.1mLを加えて混和し(最終的なGDH濃度:500U/ml)、37℃で5分反応させ、この間405nmの吸光度を測定して1分間あたりの吸光度の減少度を算出する(ΔODTEST)。盲検は、GDH溶液の代わりに緩衝液を加えて混和し、同様に37℃5分インキュベートして405nmの吸光度を記録し、その初期直線部分から1分間あたりの吸光度の減少度を算出する(ΔODBLANK)。ΔODTESTよりΔODBLANKを差し引いた数値を、オリゴ糖加水分解に起因する吸光度減少度(mABS/min)として評価する。
【0038】
[トレハラーゼ含量測定法]
本明細書において、トレハラーゼ含量(%)は、
トレハラーゼ活性/FADGDH活性 × 100
で、計算される。ここで、トレハラーゼ活性は、上記の「トレハロース加水分解活性測定方法」で求めた吸光度減少度(mABS/min)とする。また、FADGDH活性は、500(U/mL)(上述の活性測定方法における最終的なFADGDH濃度)である。
【0039】
以下、本発明を具体的に実施例として示すが、本発明は以下の実施例に限定されるものではない。
【実施例
【0040】
<実施例1>
FADGDHを含む組成物の取得
グルコース測定用酵素製剤として複数のFADGDHを含む組成物を評価するために、複数のFADGDHを様々な宿主で発現させた組成物を用意した。取得した組成物について、前記で示すFADGDH活性測定法によって、粉末重量当たりのFADGDH活性を測定した。さらに、各組成物のFADGDHの濃度を調節して、前記で示すオリゴ糖分解活性測定を行った。
また、各組成物のトレハラーゼ活性を前記の方法でそれぞれ測定し、トレハラーゼ含量を前記の方法でそれぞれ計算した。
結果を表1に示す。
表1において、「FADGDH1」は、宿主がAspergillus oryzae、由来がAspergillus oryzae(配列番号1)である。
表1において、「FADGDH2」は、宿主がAspergillus oryzae、由来がAspergillus terreus(配列番号2)である。
表1において、「FADGDH3」は、宿主がCryptococcus sp.S-2(寄託番号FERM BP-10961)、由来がMucor subtilissimus(配列番号3)である。
表1において、「FADGDH4」は、宿主がCryptococcus sp.S-2、由来がMucor hiemalis(配列番号4)である。
表1において、「FADGDH5」は、宿主がCryptococcus sp.S-2、由来がMucor RD056860(配列番号5)である。
表1において、「FADGDH6」は、上記の「FADGDH5」を陽イオン交換カラム(カルボキシメチル基を結合させた担体を充填したCM-セファロースカラム)に吸着させクロマトグラフィーにより溶出させたものである。
【0041】
【表1】
【0042】
表1に示すように、各組成物において、オリゴ糖分解活性が検出されるものと検出されないものが存在する(差がある)ことが明らかとなった。また、各組成物において、トレハラーゼ含量に差があることが明らかとなった。さらに、オリゴ糖分解活性とトレハラーゼ含量には相関が見られ、トレハラーゼ含量が高くなるとオリゴ糖分解活性も高くなる傾向にあることがわかった。
また、表1の「FADGDH6」は、同じく表1の「FADGDH5」を陽イオン交換カラムクロマトグラフィー(CM-セファロースカラムを用いた。)によって分画精製したものであり、FADGDHを所定の方法によって精製することで、オリゴ糖分解活性を除去することが可能であり、また、トレハラーゼ含量を低減させることが可能であった。
【0043】
<実施例2>
各種のFADGDHを含む組成物を用いたグルコース測定用試薬組成物の作成とブランクアップ検証
まず、グルコース測定用試薬として、以下の組成からなる溶液(pH=7.0)を作製した(対照組成)。
1mM クエン酸
50mM フェリシアン化カリウム
800U/ml FADGDHを含む組成物(実施例1にしめすもの)
1% トレハロース
上記溶液を作製後に、37℃で3時間置いたものを用いて、グルコースセンサを作製した。グルコースセンサの作製は、まず、5μLの0.5% CMC(カルボキシルメチルセルロース)溶液を3電極を具備するディスポーサブルチップ(DEP-CHIP、バイオデバイステクノロジーズ社製)の作用極・対極・参照極上に滴下し、50℃10分の加温処理を行って乾燥させ、さらにその上に、上記で混合、作製したグルコース測定用試薬5μLを滴下することでセンサチップとした。このセンサチップを専用ソケットを介してポテンショ/ガルバノスタットに接続し、電極上の組成物に生理食塩水5μLを添加して+0.3Vの電圧を印加して電流応答値をモニタリングした。
結果を表2および図1に示す。表2では、電流応答値の測定結果を、実施例1で取得した各FADGDHのオリゴ糖分解活性およびトレハラーゼ含量と並べて示した。
【0044】
【表2】
【0045】
表2および図1に示すとおり、オリゴ糖分解活性が少ない、または、トレハラーゼ含量が低いグルコース測定用試薬組成物は、組成中のトレハロースの加水分解に起因すると推定されるブランクアップを低減することが可能となることが見出された。すなわち、本発明のグルコース測定用FADGDH製剤を提供することにより、センサ組成中やサンプル中に含まれるトレハロースの影響を低減しうることが明らかとなった。
【産業上の利用可能性】
【0046】
本発明は、血糖値測定用試薬、血糖センサ並びにグルコース濃度定量キットとしての供給が可能である。
図1
【配列表】
0007397568000001.app