(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-05
(45)【発行日】2023-12-13
(54)【発明の名称】放射線撮像システム、方法及びプログラム
(51)【国際特許分類】
A61B 6/00 20060101AFI20231206BHJP
【FI】
A61B6/00 320Z
(21)【出願番号】P 2019211708
(22)【出願日】2019-11-22
【審査請求日】2022-11-21
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】林田 真昌
【審査官】井上 香緒梨
(56)【参考文献】
【文献】特開2013-070723(JP,A)
【文献】特開平07-171142(JP,A)
【文献】特開2017-103608(JP,A)
【文献】特開2018-130334(JP,A)
【文献】特開2017-196308(JP,A)
【文献】米国特許出願公開第2015/0359498(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00-6/14
(57)【特許請求の範囲】
【請求項1】
放射線を検出する複数の画素が行列状に配列された放射線検出器と
前記複数の画素が行列状に配列された領域に配置され、前記放射線の照射量に対応する信号を出力する複数の検知用画素と、
入力部と、
処理部と、を備え、
前記処理部に、前記入力部から関心領域を含む撮像条件が入力され、
前記処理部は、
前記撮像条件に基づいて、撮影範囲内に設定された複数の領域にそれぞれ割り当てる、前記関心領域に関連付けられた重みづけ情報を
生成し、前記重みづけ情報を前記対応する信号と演算することによって重みづけを行って前記放射線の照射を制御するための判定情報を生成
し、
前記処理部が前記撮像条件に基づく放射線の照射時間が基準時間より短いと判定したときは、前記複数の領域にそれぞれ割り当てる重みづけ情報を同じ値にすることを特徴とする放射線撮像システム。
【請求項2】
前記判定情報は、前記対応する信号の値を含むことを特徴とする請求項1に記載の放射線撮像システム。
【請求項3】
前記対応する信号は前記複数の領域毎に選択された所定数の検知用画素からの信号を含むことを特徴とする請求項
1又は2に記載の放射線撮像システム。
【請求項4】
前記処理部は前記撮像条件に基づいて前記放射線の照射を停止する条件を生成することを特徴とする請求項
1乃至3のいずれか1項に記載の放射線撮像システム。
【請求項5】
ディスプレイをさらに備え、
前記ディスプレイは、前記撮像条件、撮像条件に関連するサンプル画像及び前記重みづけ情報の少なくともいずれかを表示することを特徴とする請求項
1乃至
4のいずれか1項に記載の放射線撮像システム。
【請求項6】
前記入力部はさらに前記撮像条件を変更するための入力を受け付けることができることを特徴とする請求項
1乃至
5のいずれか1項に記載の放射線撮像システム。
【請求項7】
前記撮像条件は、撮像の目的を含むことを特徴とする請求項
1乃至
6のいずれか1項に記載の放射線撮像システム。
【請求項8】
前記撮像条件は撮影オーダに基づいて生成されることを特徴とする請求項
1乃至
7のいずれか1項に記載の放射線撮像システム。
【請求項9】
放射線を発生する放射線源をさらに備えることを特徴とする、請求項1乃至8のいずれか1項に記載の放射線撮像システム。
【請求項10】
処理部が放射線の照射を制御するための判定情報を生成する方法であって、
撮影範囲内の関心領域に関連付けられ
、前記関心領域を含む撮像条件を受け付けることと、
前記撮影範囲内に設定された複数の領域に割り当てられた重みづけ情報を生成することと
前記撮像条件に基づく放射線の照射時間が基準時間より短いと判定したときは、前記複数の領域にそれぞれ割り当てる重みづけ情報を同じ値にすることと、
放射線の照射量を検知する複数の検知用画素から前記照射量に対応する信号を読み出すことと、
前記重みづけ情報を前記対応する信号と演算することによって前記信号に重みづけを行うことと、
前記重みづけされた信号に基づいて放射線の照射を制御するための判定情報を生成すること、を特徴とする方法。
【請求項11】
放射線撮像システムの処理部で実行されると、前記処理部に
撮影範囲内の関心領域に関連付けられ
、前記関心領域を含む撮像条件を受け付けさせ、
前記撮影範囲内に設定された複数の領域に割り当てられた重みづけ情報を生成させ、
前記撮像条件に基づく放射線の照射時間が基準時間より短いと判定したときは、前記複数の領域にそれぞれ割り当てる重みづけ情報を同じ値にさせ、
放射線の照射量を検知する複数の検知用画素から前記照射量に対応する信号を読み取らせ、
前記重みづけ情報を前記対応する信号と演算することによって前記信号に重みづけをし
前記重みづけした信号に基づいて放射線の照射を制御するための判定情報を生成させる、ことを特徴とするプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線撮像システム、方法及びプログラムに関する。
【背景技術】
【0002】
放射線を電荷に変換する変換素子や薄膜トランジスタ等のスイッチ素子、配線が設けられた画素アレイと、駆動回路や読出回路とを組み合わせた放射線撮像装置がある。その一つに放射線源が放射線を照射している間、照射情報を検知する機能を内蔵させたものがある。この機能には、放射線源から放射線が照射される入射開始のタイミングを検知する機能や、放射線の照射量や積算照射量を検知する機能がある。また、この機能により積算照射量を監視し、積算照射量が適正量に達した時点で検出装置が放射線源を制御し照射を終了させる自動露出制御が可能となる。
【0003】
特許文献1には、監視条件に応じて選ばれたセンサの候補の信号値から作成したヒストグラムに基づいて自動露出制御に使用する有効センサを決定することが記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、有効センサを決定しても、どの部位で自動露出を行うかを指定することはできなかった。本発明は、撮像したい部位を適正な線量で画像化するために有利な技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明の放射線撮像システムは、放射線を検出する複数の画素が行列状に配列された放射線検出器と前記複数の画素が行列状に配列された領域に配置され、前記放射線の照射量に対応する信号を出力する複数の検知用画素と、入力部と、処理部と、を備え、前記処理部に、前記入力部から関心領域を含む撮像条件が入力され、前記処理部は、前記撮像条件に基づいて、撮影範囲内に設定された複数の領域にそれぞれ割り当てられる、前記関心領域に関連付けられた重みづけ情報を生成し、前記重みづけ情報を前記対応する信号と演算することによって重みづけを行って前記放射線の照射を制御するための判定情報を生成し、前記処理部が前記撮像条件に基づく放射線の照射時間が基準時間より短いと判定したときは、前記複数の領域にそれぞれ割り当てる重みづけ情報を同じ値にすることを特徴とする。
【発明の効果】
【0007】
本発明により、撮像したい部位を適正な線量で画像化するために有利な技術を提供することができる。
【図面の簡単な説明】
【0008】
【
図1】本発明の実施形態における放射線撮像システムの自動露出制御に関わる構成図。
【
図2】本発明の実施形態における放射線撮像システムのブロック図。
【
図3】本発明の実施形態における放射線撮像フロー図。
【
図4】本発明の実施形態における放射線撮像フロー図。
【
図5】本発明の実施形態における重点部位による重みづけの一例。
【
図6】本発明の実施形態における重点部位による重みづけの演算の一例。
【
図7】本発明の実施形態における重点部位の入力画面の一例。
【
図8】本発明の実施形態における信号値に基づく判定方法の例。
【
図9】本発明の実施形態における放射線検出器の概略回路図。
【
図10】本発明の実施形態における放射線検出器の放射線検知画素の配置を示す図。
【
図11】本発明の実施形態に係るサンプル画像の表示例。
【発明を実施するための形態】
【0009】
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
【0010】
また、自動露出制御(AEC: Auto Exposure Control)に関する説明を主に行うが、本技術をAECに使う放射線量計測(モニタ)に用い、撮像装置自身は放射線の制御を行わなくても構わない。また、本技術は放射線の照射が開始されたことを検知するのに用いても良く、更に放射線の照射の終了を検知するのに用いても構わない。
【0011】
なお、本明細書では、変換素子の構造は、PIN型の構造を用いて説明するが、これに限定されず、MIS型構造であっても構わない。また放射線は、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、含まれるものとする。
【0012】
(実施形態1)
先ず、放射線撮像システム2000の概略について
図1により説明する。放射線撮像システム2000は、放射線を照射する放射線源1005、放射線画像を撮影するための放射線撮像装置200、撮像条件の入力や放射線撮像システム2000の制御を行うコントロールシステム1002を備えている。放射線撮像装置200は、平面基板上に複数の画素が行列状に配置されたフラットパネル検出器(FPD)100と、読み出し回路7、通信部225、ゲート駆動回路6、処理部242、電源回路224を有する。ここで、フラットパネル検出器(FPD)100は、放射線を検出する複数の画素が行列状に配列された放射線検出器として機能する。
【0013】
ゲート駆動回路6は画素から信号を読みだすためにFPD100の、行列状に配置された画素を行毎に選択し、読み出し回路7へ信号を送る。読み出し回路7は読みだされた信号を増幅し、A/D変換してアナログ信号をディジタル信号に変換して通信部を介して通信中継装置1003へ送る。通信中継装置1003は、放射線制御装置1004、放射線撮像装置200及びコントロールシステム1002間の通信を中継する。通信方式は有線でも無線でもよい。また、各ユニット間の通信ディレイや処理ディレイは、通信方式、通信内容、処理内容に応じて管理されている。したがって各ユニットは通信ディレイや処理ディレイを見込んで通信を行うことができる。
【0014】
以下、被写体撮影時のAEC動作についての概略を
図1により説明する。FPD100には放射線の照射量をモニタするための放射線検知素子を備える検知用画素が配置されている。被写体撮影前において、コントロールシステム1002に線量Aで放射線源1005を停止するように情報を設定する。このとき撮影範囲内の関心領域(ROI:Region of Interest)情報の入力を行ってもよい。放射線源1005についての照射時間Bms、管電流CmA、管電圧DkVを入力してもよい。撮影は放射線源1005に付属された曝射スイッチを押して開始されるが、コントロールシステム1002により放射線源1005を制御してもよい。放射線源が曝射を開始した後、X線照射量の積分値が線量A’に到達したとき、放射線源1005に曝射停止信号が送られ、X線照射が停止する。この線量A’は、設定された線量A、X線照射強度の変化、各ユニット間の通信ディレイ、処理ディレイを考慮して算出された値である。また、設定されている照射時間Bmsに到達した場合は、放射線源1005は、曝射停止信号の有無にかかわらず、X線照射を停止する。
【0015】
次に
図2に示す放射線撮像システム2000のブロック図により本実施形態に係るAECについて説明する。コントロールシステム1002は、操作パネル2011、データを処理するための処理部として機能するCPU2010、メモリ部2070、設定された情報や撮像した画像を表示するディスプレイ2012を備えている。コントロールシステム1002では、データはCPUバス2014を介して通信される。本実施形態では、コントロールシステム1002、放射線撮像装置200、放射線制御装置1004とは通信中継装置1003を介して通信をすることができる。コントロールシステム1002、放射線撮像装置200及び放射線制御装置1004にそれぞれ通信部を備え、通信部を介して直接通信を行ってもよい。
【0016】
入力部として機能する操作パネル2011から診断対象の部位となる関心領域などの撮像条件が入力されてコントロールシステム1002に設定される。撮像条件には照射時間Bms、管電流CmA、管電圧DkVが含まれていてもよい。撮像条件はメモリ部2070に記憶される。CPU2010の制御により、撮像条件が放射線制御装置1004および放射線撮像装置200に設定されてもよい。放射線撮像装置200は、多数の画素が行列状に配置されたFPD100を有する。この例では、FPD100の画素が行列状に配置された領域には、遮光画素2050および非遮光画素2051も2次元に配置されている。本実施形態では、放射線源1005から被写体2003に照射された放射線2002はシンチレータにより可視光に変換され、可視光は非遮光画素2051において光電変換され電気信号となる。一方、遮光画素2050はメタルなどで遮光された画素であり、放射線や可視光が当たっても、光電変換がされないように光が遮光されている。遮光画素2050からの信号は暗電流の補正などに使用されうる。
【0017】
次に本実施形態における撮像条件に基づくAEC動作について説明する。のちに説明するようにFPD100の画素が行列状に配置された領域には放射線の線量をモニタするための放射線検知素子を備えた検知用画素も複数個配置されている。放射線撮像装置200からの線量をモニタするための信号及び画像形成のためのディジタル信号は、放射線撮像装置200の通信部225から通信中継装置1003へ送られてコントロールシステム1002に入力される。画像形成のためのディジタル信号はCPU2010の制御により画像処理部2009に送られて、暗電流補正、ゲイン補正、欠損補正等の処理がなされる。一方、操作パネル2011を通してメモリ部2070に設定された撮像条件は、CPU2010により処理されて検知用画素からの信号に重みづけをするための重みづけ情報が生成される。この重みづけ情報はCPU2010の制御により重みづけ部2071に送られて設定される。重みづけ部2071は、検知用画素からの信号(モニタ信号)に対して設定された重みづけ情報に基づいて重みを演算する。重みづけされた信号に基づいてAEC動作が行われる。重み付け情報をディスプレイ2012に表示することができる。また操作パネルから重みを変更できるようにしてもよい。
【0018】
以下、重みづけについて説明する。画素が配置された領域は撮影範囲といえる。撮影範囲は複数の領域(モニタ領域)に分割されている。重みづけはこのモニタ領域毎に行われる。重みを表す重みづけ情報は複数のモニタ領域のそれぞれに割り当てられる。AECを行うときに、各モニタ領域に含まれる検知用画素からの信号値(モニタ信号値)に対して重みづけ情報を演算することにより重みづけが行われる。重みづけは、「重み」*「モニタ信号値」で行うことができる。重みの割り当てと演算については後に詳細に説明する。なお、ここで演算に用いるモニタ信号値は各領域に含まれる検知用画素からの信号値の平均値でもよいし、モニタ領域に含まれる複数の検知用画素の中から選択された所定数の検知用画素からの信号値やその平均値でもよい。
【0019】
重みづけ部2071はモニタ領域毎の重みづけ情報に基づいて、各モニタ領域に含まれる検知用画素からコントロールシステム1002に入力されたモニタ信号値に重みづけをする。信号合成部2081は、重みづけされたモニタ信号値、重みづけされたモニタ信号値の重みづけ平均値に基づいて露出を判定する判定情報を作成できる。ここで重みづけ平均値は、モニタ信号値をa、b、c、・・・、eとし、信号に対応する重みをl、m、n、・・・、pとしたときに(a*l+b*m+c*n+・・・+e*p)/(l+m+n+・・・+p)で表される値とすることができる。
【0020】
設定手段2082からはモニタ領域毎の線量の最小値、最大値、平均値に対する閾値などが設定される。設定は操作パネル2011から行われてもよい。撮像条件に基づく値をCPU2010が設定してもよい。閾値判定部2072は、閾値判定部2072に設定されたAECを判定するための判定式と信号合成部2081で作成された判定情報に基づいて照射線量を判定し、放射線の照射を制御するための判定情報を生成する。判定式は照射を終了する条件に基づいて設定できる論理式で表現されてもよい。なお、重みづけ部2071は、モニタ領域内の複数の検知用画素から所定数の検知用画素を代表として選択し、代表からの信号値に対して重みづけの演算を行ってもよい。この場合はすべての検知用画素に対して重みづけするよりも演算処理の負担を軽減できる。選択された検知用画素の中からさらに必要な位置にある検知用画素を絞り込む手段を用意し、検知用画素を選択してもよい。ここで、信号合成部2081、重みづけ部2071および閾値判定部2072は、処理部であるCPU2010の機能の一部であってもよく、これらの処理を行う構成を処理部と呼んでもよい。なお、ここではコントロールシステム1002で重みづけとAECの判定を行う例を説明した。しかし、これらの機能を放射線撮像装置200が備えてもよい。放射線撮像装置200に複数のモニタ領域に対応する重みづけ情報を入力して、モニタ領域毎の検知用画素からの信号に対して対応する重みを演算して判定情報を作成し、判定式に基づいてAECを行うようにしてもよい。あるいは放射線撮像装置200からは重みづけされた信号を出力するようにしてもよい。
【0021】
関心領域に関する情報を使った重みづけとAECの判定の概略について
図3により説明する。撮影前に関心領域に関する情報(関心領域情報)が操作パネル2011から撮影者により入力される(S301)。入力は病院内のシステムから行われてもよい。関心領域は、撮像範囲を複数の領域に分割したうちの診断対象が含まれる領域とするとよい。AECを行うときの線量判定は、複数に分割された撮影範囲のそれぞれからのモニタ信号値に重みづけ部2071により重みづけ情報を演算して行われる(S302)。重みづけの演算はモニタ領域毎のすべてのモニタ信号値に対してするのではなく、モニタ領域毎の検知用画素から所定数の検知用画素を代表として選定し、選定された検知用画素からのモニタ信号値に対して行ってもよい。あるいは重みづけ部2017はモニタ領域の複数の検知用画素からのモニタ信号値の平均値について重みづけを行ってもよい。次に、重みづけされたモニタ信号値に基づいて信号合成部2081により判定情報を生成する(S303)、閾値判定部2072は、判定情報を、モニタ信号値の最大値、最小値、閾値に基づいて設定された判定式と比較する。判定情報が、判定式の照射停止の条件を満たす場合は、放射線の照射を停止するための停止信号を放射線制御装置1004に送信し、照射を停止する。重みづけ部2071、信号合成部2081、閾値判定部2072の行う処理はメモリ部2070に格納されたプログラムに基づいてCPU2010が実行してもよい。
【0022】
次に撮影オーダに基づく動作についてコントロールシステム1002が行う例を
図4により概略を説明する。撮影オーダは病院内のシステム又は撮影者により放射線撮像システムに入力される(S401)。撮影オーダには、検査内容を含む検査情報が含まれている。この検査情報には、放射線撮影を行う場合の撮影対象の部位や撮影目的などが含まれる。その他に撮影時に使用するパラメータ情報、撮影の実施方法に関する情報、撮影環境についての情報を含んでいてもよい。撮影オーダに含まれる情報に基づいて、撮影対象の部位と目的を放射線撮像システムに指示できる。部位は診断対象に応じて決めればよい。撮影目的は定期健康診断などと入力する。
【0023】
撮影オーダの入力時に撮影オーダに付随された情報や前回撮影時の情報などや、さらに特にこの領域を撮影対象としたいといった追加情報を入力してもよい。撮影オーダには関心領域の情報が含まれていてもよい。撮影オーダや追加情報の入力方法としては、撮影範囲、撮影目的を示す単語を入力する方法やサンプル画像を表示させて画像の所定の箇所を選択して入力する方法がある。また、複数の撮影領域を表示させて選択させる方法でもよい。これら入力された情報が撮像条件になる。撮像条件に基づいてCPU2010は重点的に露出を測定して制御する箇所である重点測光領域を判定する。
【0024】
放射線撮像システム2000が撮影動作を開始すると(S403)、放射線の照射の前にCPU2010は撮像条件に基づいて照射時間を判定する(S404)。放射線の照射時間は、放射線源1005の仕様や目的により変わりうる。例えば、小さな出力の放射線源であれば、100ms~1000ms程度の照射で画像を取得できるように設計されているが、大きな出力の放射線源であれば、1ms~10ms程度の照射で画像を取得することができうる。CPU2010が、照射時間が基準時間よりも短いと判定した場合(S404でYES)は、CPU2010はシンプルな重みづけの式と判定式を準備し(S405)、放射線源を制御して照射を開始し(S406)、シンプルなAECを行う。シンプルなAECでは重みづけ部2071はモニタ信号値に均等な重みづけを行う。信号合成部2081は重みづけされたモニタ信号値に基づいて判定情報を生成する(S407)。閾値判定部2072は、判定情報を判定式により判定し(S412)、閾値を超えた場合はCPU2010へその旨を通知する。通知を受けてCPU2010は放射線を停止するために必要な停止信号を生成して(S413)、放射線制御装置1004へ照射の停止を指示する。指示を受けて放射線制御装置1004は放射線源による照射を停止し(S414)撮影を終了する(S415)。
【0025】
照射時間が基準時間よりも長いとCPU2010により判定された場合は(S404でNO)、CPU2010は撮像条件に基づき、モニタ領域の位置とFPD100に配置された検知用画素の位置とを照合する(S408)。この照合によりモニタ領域の位置とFPD100に配置された検知用画素の位置とが紐づけられる。次にCPU2010は撮像条件に基づいてモニタ領域の検知用画素からの信号に対する重み(重みづけ情報)及び照射の停止を判定するための判定式を生成する(S409)。ここで重みは、撮影者が操作パネル2011から重みづけ部2071に対して領域毎に設定してもよい。放射線源1005が放射線の照射を開始すると(S410)、重みづけ部2071は重みづけ情報に基づいて対応する領域に含まれる検知用画素からのモニタ信号値に重みづけの演算を行う。信号合成部2081は重みづけされたモニタ信号値に基づいて判定情報を生成する(S411)。閾値判定部2071は判定情報の値が判定式の閾値(条件)を超えるか否かを判定し(S412)、閾値を超えた場合はCPU2010へ閾値を超えたことを通知する。通知を受けてCPU2010は放射線の照射を制御するための停止信号を生成する(S413)。CPU2010は停止信号に基づいて放射線制御装置1004を制御して、放射線の照射を停止し撮影を終了する(S414,S415)。照射の停止を判定するための判定式については後に詳しく説明する。これらの処理はコントロールシステム1002で行っても撮像装置200で行ってもよい。また処理の一部を撮像装置200で行うこともできる。また信号合成部2081、重みづけ部2071や閾値判定部2072の全部の処理又は一部をCPU2010が行ってもよい。なお、このフローは適宜、順番を入れ替えてもよく、S404を、S401とS402との間又はS402とS403との間に行ってもよい。またS408をS402に続いて行ってもよい。また、照射時間が基準時間よりも短い場合も照合を行って、モニタ領域とFPD100に配置された検知用画素とを関連付けるとよい。なお基準時間は放射線源の仕様やCPU2010の処理時間に応じて決めることができうる。
【0026】
撮影範囲にあるモニタ領域のうちの特に診断したい重点部位に対する重みづけの例を
図5により説明する。AECの対象となるモニタ領域については、ここでは5領域を例に用いて説明するが、3×3の9領域であったり、5×5の25領域であったり、固有の場所に撮影の対象領域を配置したりしても構わない。関心領域や撮影目的などの撮像条件に基づいて、モニタ領域のモニタ信号値に対する重みづけの値とパターンを決定する。例えば図の上段に示すように上半身のパターンをディスプレイに表示しておき、目的に応じて、選択肢の中から指示手段により関心領域となる対象部位を選択するようにしてもよい。
【0027】
ケースNo.1のように撮像条件に胸部一般検診が含まれる場合は、胸部全体が関心領域となる。関心領域に関連する重みは全体に同じ値になる。5つのモニタ領域からのそれぞれのモニタ信号値に対して均等に重みを演算して得られた値に基づいてAECを行う判定情報を得るようにするとよい。ケースNo.2のように撮像条件に気胸の検査が含まれる場合には、関心領域として肺野が選択される。この場合は関心領域に関連する箇所の重みを重くしてもよい。モニタ領域A、B、D、Eの重みを8とし、モニタ領域Cの重みを2として、それぞれの領域で得られるモニタ信号値に重みを演算して判定情報を生成するとよい。ケースNo.3のように心臓肥大の検査をする場合は心臓のある部分のモニタ領域の重みを他の部分よりも大きくしてもよい。この例では、モニタ領域A、B、C、Dの重みを1とし、モニタ領域Eの重みを9としている。矢印で示すような、特定の箇所に着目した検査、手術後の経過観察の場合などでは特定の領域についての重みづけを大きくするようにもできる。なお、
図5の例ではモニタ領域が5つだが、モニタ領域はもっと多くてもよいし、シンプルにしてもよい。また、
図5に示すようにディスプレイ2012に設定された重みの値を表示して撮影者が重みを確認したり、操作パネル2011から重みを修正できるようにしてもよい。
【0028】
重みづけの計算例を
図6により説明する。ここでは撮像条件から判定された照射時間が基準時間よりも長いか短いかに応じて重みづけを普通に行うかシンプルにするかどうか判定する例を示している。この例では、単位時間あたりの照射量が強く、照射時間が短い場合はモニタ信号値に対してシンプルに均一な重みづけを行う。単位時間当たりの照射量が弱く、照射時間を長くできる場合はモニタ領域のそれぞれのモニタ信号値に対して領域毎に割り当てられた重みを演算して重みづけを行う。
【0029】
重みづけにより、同じ画素値(信号値)の画像について、重みづけ後の判定情報に含まれる値は異なる。照射時間が短い場合の例を
図6(a)により説明する。照射時間が短くても強い放射線が照射された場合には、画像化が可能なFPD100のダイナミックレンジを超えて放射線が照射される可能性がある。一般にFPD100は飽和線量以上の放射線が照射された場合、画素から得られた信号から画像を形成することは困難である。そこで照射時間が基準時間よりも短い場合は、例えば、全モニタ領域のモニタ信号値の平均を判定情報に用いて閾値との比較を行って照射の終了を判定するとよい。この場合は演算を簡単することができるので、演算時間が短くても判定情報を得られるようにでき、過剰な放射線の照射を低減できる。
【0030】
説明のためにこの例では、各モニタ領域A、B、C、D、Eのモニタ信号値が、A:2000、B:2000、C:400、D:300、E:300とする。このときモニタ領域に割り当てられた重みは同じ値なので、全モニタ領域のモニタ信号値の平均値は、1000=(2000+2000+400+300+300)/5となる。
【0031】
次に照射時間が基準時間よりも長い場合の例を
図6(b)に示す。照射時間が長い場合には、演算時間に余裕が生まれるため、重点部位に照射される線量を測定することにより撮像条件に基づいてモニタ領域に適切なAECをすることが可能である。ここでは肺野を重点部位とし、他のモニタ領域には関心が薄い場合を想定する。
【0032】
この例では、各モニタ領域に、
図6(a)と同一の画素値(信号値)になる線量が到達しているとする。モニタ信号値は
図6(a)と同様に、A:2000、B:2000、C:400、D:300、E:300である。重みづけを、A:5、B:5、C:1、D:1、E:1とする。したがって全モニタ領域の信号の重みづけ平均値は、1615=(2000*5+2000*5+400*1+300*1+300*1)/(5+5+1+1+1)となる。
図6(a)の信号値の平均値と
図6(b)の信号値の平均値とを比較すると、
図6(b)のケースは
図6(a)のケースに比べて、同じ放射線量を照射した場合において、平均値が大きく異なる。重みづけした場合は、判定情報に対して、より大きな重みづけがされた部分の線量による影響が大きい。
【0033】
この比較からいえることは、
図6(a)のケースでは、重点部位のある領域(重点測光領域)の放射線量は、
図6(a)のケースに比べて1.6倍程度大きな放射線量でないと放射線の照射を停止する条件に達しないことである。
図6(b)のケースでは、肺野に必要な放射線量に達した場合に判定情報に基づいて照射を停止することができるため、
図6(a)のケースに比べて0.6倍程度の放射線量で放射線を停止するために必要な情報を生成することができる。つまり、重点部位に対して他のモニタ領域よりも大きい重みをもたせることにより、重点部位について適切な放射線量で放射線源を制御することが可能となる。なお、本実施例の記載においては、5つのモニタ領域を例に説明したが、本発明の適用可能な範囲は、全画素数以下の個数であるモニタ領域に用いることが可能である。
【0034】
本実施形態における撮像のための撮像条件を入力する際にディスプレイ2012に表示される撮像条件の例を画面703の一例を
図7に示す。画面703内のウインドウ707に、モニタ領域毎に露光限界を設定するか否かを示すON、OFFや優先度を表示している。またウインドウ707には撮影対象の部位が名称で示されており、その中から重点測光領域を選択できる。優先度を画面上で直感的に入力することみより重みを設定できるようにしている。マウスやキーボードを使って表示された項目を選択できるようにしてもよい。また、臨床画像例や図を表示しておき、タッチパネルまたはマウス等を用いて重点部位を指定できるようにしてもよい。画面上で指示する利点は、実際に放射線が照射される位置を指定可能であるため直接的な入力ができることや、撮影者が直観的に入力できることである。撮影者の指示によりディスプレイ2012に設定された撮像条件を表示できるようにしてもよい。なお、表示や入力の方法はこれに限定されない。
【0035】
撮影者は必ずしも診断する者とは限らない。このため重点部位の設定方法の自由度が高い場合、撮影者の設定と診断者の指示との間で認識のずれが発生して重点部位の選択を誤る可能性がある。そこで、重点部位や重みを単語で表示して選択できるようにしたり、数値(座標)で入力できる手段を使うと、選択肢や数字を「見える化」できるために認識のずれが少なくできる。これにより撮影者と診断者が同じ者でなくても再現性良く撮像ができるというメリットがある。ディスプレイ上で入力する手段には、重点部位などを言葉で表示して重みづけを選択する手段や単語を入力する手段も実装しておき、設置時や撮影時に入力方法を選択することができるようにしてもよい。
【0036】
重みづけ情報に基づいて判定情報を生成し、判定情報と判定式に基づいて照射の停止を判定する例について
図8により説明する。ここではAECの判定は重みづけされたモニタ信号値の合成された値と各モニタ領域のモニタ信号値の設定された上限又は下限の閾値等に基づいて行われるようにしている。なお、上限及び下限の閾値を設定する理由は、重みづけ後のモニタ信号値の平均を使うだけだと、黒つぶれや白つぶれが起きる可能性があるためである。上限又は下限の閾値をAECに使うことにより、線量が多すぎて飽和領域が発生する可能性を低減でき、また逆に線量が少なすぎてX線量子ノイズが支配的になる可能性を低減することができる。撮像する目的等に応じて上限又は下限の一方のみを使うことができる。また、複数のモニタ領域のモニタ信号値を合成して全体としての判定を行うことにより、全体に渡り適切な画像を得ることができうる。
【0037】
図8(a)は撮影オーダが胸部/一般検診の場合の判定の一例を示す説明図である。撮影者は、胸部/一般検診の撮影オーダを受けると撮影上注意すべきチェックポイントを元に撮影対象とする部位に関する領域をコントロールシステム1002へ入力する。本図では、例えば、本来は画像を読むときの視線の動きを説明するパターンであるが、画像に「小」、「三」及び「J」の形状が重なったパターンが入力された例で説明する。入力は画面からタッチパネルやマウスを使って行うことができる。入力されたパターンを元に、画像の全体に関心があると判定されると、全モニタ領域A、B、C、D、Eの全てに均等の重み「5」を設定する。また、全モニタ領域A、B、C、D、Eにおいて、上限値及び下限値を設定することで、各モニタ領域において線量が多すぎて画像が飽和したり、線量が少なすぎて画像に対してノイズが支配的になることを避けて撮影することが可能となる。なお、A、B、C、D、Eの各モニタ信号値は照射時間の経過と共に、単調増加するものとする。また、複数の領域に対する重みが同じ場合は、重みづけの演算は単純に平均をとるだけでよい。
【0038】
この例では、5つのモニタ領域からモニタ信号値A~Eについての判定条件は、(1) min<A<max、(2)min<B<max、(4)min<C<max、(4)min<D<max、(5)min<E<maxとする。全体としての判定条件は、(6)(A+B+C+D+E)/5 >閾値、とする。これら(1)から(6)の各条件が照射を停止する判定の基準とできる。これらの条件を論理式に合成して判定式とするとよい。
図8(a)には、判定情報が上記(1)から(6)のAND条件を満たす場合に照射を停止するよう放射線制御装置を制御する場合を示す。他の判定式としては、白つぶれを防ぐために、モニタ信号値A~Eの1つでもmaxを超えるか、(6)の条件が満たされた場合は、放射線を停止するために必要な情報を出力するように判定式を生成するようにしてもよい。判定式は、デフォルトではすべての条件のANDを行うようにしておき、他の判定式はオプションとして選択できるようにしてもよい。
【0039】
図8(b)は、撮影対象が小児の場合を示す説明図である。撮影者は、撮影オーダを受けると撮影上注意すべきチェックポイントを元に関心領域に関連する重点測光領域を入力する。重点測光領域は、入力部の画像から入力されても良いが、本実施形態では、「小児/上半身」と単語で入力された場合で説明する。小児は身体の大小差が大きいので、身長/体重/年齢/体格などを付帯情報として追加入力できるようにするとよい。また、撮影目的が外傷の診断なのか、疾病の診断なのかを入力できるとより適切な撮影ができる。
【0040】
撮影目的や関心領域などの情報によって撮影したい範囲を絞り込む場合、FPD100の全領域で線量が画像化可能な値である必要がない場合がある。
図8(b)では、モニタ領域Cの重みを大きく「9」とし、撮影する対象の領域を絞り込んでいる。モニタ領域A、B、D、Eの重みは「1」に設定されている。この例のようにモニタ領域Cで適切な画像を取得できればよい場合は、モニタ領域A、B、D、Eに関しては飽和以上の線量がFPD100に到達しても構わない場合がある。この例では、モニタ領域A、B、D、Eでは露光限界の上限値の設定を「OFF」としてもよい。
【0041】
この例では、判定条件は、各モニタ領域からのモニタ信号値A~Eについて、(1) min<A、(2)min<B、(3)min<C<max、(4)min<D、(5)min<E、(6)(A+B+9*C+D+E)/5 >閾値、とする。この場合も、判定情報が(1)から(6)のすべての条件を満たした場合に放射線の照射を停止するのがよい場合は、論理式としては(1)から(6)のANDになる。なお、本実施形態の記載において5つのモニタ領域を例に説明したが、本発明の適用可能な範囲は、全画素数以下の個数である信号領域にも用いることが可能である。領域の個数は必要に応じて設定してよい。
【0042】
次に放射線撮像装置200について
図9により説明する。ここでは、画素が行列状に配置される画素領域に5行5列の画素が設けられている例を示すが、その数はこれに限定されるものではない。画素領域には放射線画像を撮像するための画素2がマトリックス状に配置されている。さらに、画素領域の一部には画素2の代わりに線量を検知するための検知用画素1が配置される。検知用画素1は、放射線が照射されている期間中に照射量をモニタするほかに、放射線の照射の開始と終了を検出するために使用されてもよい。検知用画素1は制御配線16によりスイッチのゲートが駆動されて読み出しが制御される。画像形成用の画素2は制御配線13により読み出しが制御される。検知用画素1で発生した信号は検知信号線3から読出し回路7に転送され、信号量が読み取られる。検知用画素1からの情報を取得することで、検知用画素1の近傍の、画素2が配置された領域内に照射された放射線線量をモニタできる。制御配線16を制御して所定の行を選択し、検知用画素1からのモニタ信号を読み取る検知信号線を選択することにより線量をモニタするモニタ領域を選択できる。制御配線13と検知信号線3を選択することにより重点測光領域とモニタ領域の照合を行ってモニタ信号を読み出すことができる。
【0043】
放射線撮像装置200で自動露出制御(AEC)を行う場合は、処理部242でコントロールシステム1002からの重みづけ情報や判定式を受け付けて、処理部242がAECの判定するようにしてもよい。処理部242はモニタ領域の位置と重点部位の位置との照合を行い、領域毎の放射線の線量を測定する。その後、処理部242は重みづけ情報を使って判定情報を生成し、判定式と比較し、予め設定された照射量に到達する時間を計算する。処理部242は通信や処理で生じるディレイを考慮して停止信号を、通信部225を介して通信中継装置1003へ送信する。送信された停止信号は通信中継装置1003を経由し、放射線制御装置1004を制御して放射線の照射を停止する。
【0044】
放射線撮像装置200の画素領域に配置された検知用画素1について
図10により説明する。この例では、FPD100の画素領域は9つのモニタ領域A~Iに分けられている。それぞれの領域に複数の検知用画素1が配置されており、モニタ領域毎に照射される線量が検知できるよう検知用画素の駆動が制御される。検知用画素1から読み出されるモニタ信号は読み出し回路7を通じて処理部242に転送される。処理部242は放射線の照射量をモニタし、AEC動作時には検知用画素1からのモニタ領域毎のモニタ信号を外部のシステムへ出力できる。また撮像装置200でAECを行う場合はモニタ信号に基づいて線量が適正量になる時間で放射線の照射を停止するよう、放射線制御装置1004へ指示することができる。
【0045】
以上に述べたように、本発明により、自動露出のために線量を検出する領域と被写体の部位との関連付けができるので、診断したい領域の画像化に有利であり、撮影者や患者の負担を低減できる。
【0046】
(実施形態2)
次に、実施形態2について説明する。本実施形態では、撮影の準備として、事前に、放射線を照射する撮像条件のチェックを目的とするサンプル画像の表示を行う。以下では、実施形態1と相違する部分について主に説明する。
【0047】
図11は、本実施形態における撮像条件を決定するのを支援するための、放射線撮像システムの入力装置と表示装置の一例を示した図である。
図11(a)に撮像条件の決定の概略フローを示す。撮影者は、関心領域を含む撮像条件に関する情報を入力する。放射線撮像システム2000は、撮像条件に基づく重みづけの結果、放射線の照射が停止したときに得られる画像を予測してサンプル画像としてディスプレイに表示する。サンプル画像は、予め記憶されているモデル画像に対して撮影を行おうとしている条件に基づく演算処理をして生成してもよい。あるいは同じような条件で以前に撮影した画像をサンプル画像として表示してもよい。撮影者はサンプル画像を見て、撮像条件は適切かどうかを判断する。撮影者は必要があれば、関心領域に関する情報や撮影線量に関する情報などの撮像条件や領域の重み、判定式を変更して再入力できる。再入力による結果は再びディスプレイに表示されるので、撮影者は撮像条件等を再評価できる。
【0048】
サンプル画像の表示例を
図11(b)、
図11(c)に示す。
図11(b)は、設定値では飽和領域が発生することを表している。
図11(c)は粒状感のある画像を示している。これらの表示例のように撮影した場合に「飽和」したり、「粒状感」があるなどの注意が表示されるようにしてもよい。サンプル画像の元になる画像(モデル画像)は、例えば撮影者の年齢、性別、体格、撮影部位等を入力し、表示された類似の撮影画像から選択できるようにしてもよい。選択されたモデル画像に対して、関心領域などの撮像条件を元に重みづけしてAECを行った場合に撮影される画像をシミュ―レーションしてサンプル画像として表示できるようにする。サンプル画像を見ることで、ある領域が飽和してつぶれる、あるいは被写体のある領域の粒状感が高くなるなどの情報を撮影前に知ることができる。撮影者はプレ撮影することなく、撮影画像の全体感を得ることができるため、必要に応じて、照射線量の変更や関心領域の変更が可能となる。本実施形態により、撮影ミスや入力ミスなどに起因する撮影のやり直しや再撮影の低減することができる。
【0049】
次に本発明による放射線撮像装置のX線診断システムへの応用例を
図12により説明する。放射線源1005であるX線チューブ6050で発生したX線6060は患者あるいは被験者6061の胸部6062を透過し、放射線撮像装置6040のシンチレータへ入射する。この入射したX線には患者6061の体内部の情報が含まれている。X線の入射に対応してシンチレータは発光し、この光を光電変換して、電気的情報を得る。この情報はディジタルに変換され信号処理手段となるイメージプロセッサ6070により画像処理され制御室の表示手段となるディスプレイ6080で観察できる。 また、この情報は電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存することができ、遠隔地の医師が診断することも可能である。また記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。
【0050】
(その他の実施例)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
【0051】
本発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
【符号の説明】
【0052】
6:ゲート駆動回路 7:読み出し回路 100:放射線検出器 200:放射線撮像装置 224:電源回路 225:通信部 242:処理部 1002:コントロールシステム 1003:通信中継装置 1004:放射線制御装置 1005:放射線源 2000:放射線撮像システム