(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-05
(45)【発行日】2023-12-13
(54)【発明の名称】細胞選別およびフローサイトメトリのためのシステム、装置および方法
(51)【国際特許分類】
G01N 15/14 20060101AFI20231206BHJP
【FI】
G01N15/14 A
【外国語出願】
(21)【出願番号】P 2021142185
(22)【出願日】2021-09-01
(62)【分割の表示】P 2017567299の分割
【原出願日】2016-06-23
【審査請求日】2021-09-01
(32)【優先日】2015-06-23
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517447219
【氏名又は名称】ナノセレクト バイオメディカル インコーポレイテッド
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ホセ エム. モラチス
(72)【発明者】
【氏名】スン ファン チョー
(72)【発明者】
【氏名】ジェ メイ
(72)【発明者】
【氏名】フィリップ プーンカ
(72)【発明者】
【氏名】コンスタンス アルディラ
(72)【発明者】
【氏名】ヘラルド ネアーズ
(72)【発明者】
【氏名】ウィリアム アライニック
【審査官】福田 裕司
(56)【参考文献】
【文献】国際公開第2015/057159(WO,A1)
【文献】米国特許第07258774(US,B1)
【文献】米国特許出願公開第2009/0260701(US,A1)
【文献】米国特許出願公開第2010/0319469(US,A1)
【文献】米国特許出願公開第2002/0127736(US,A1)
【文献】特開2014-172370(JP,A)
【文献】特開2012-192641(JP,A)
【文献】特開2007-176161(JP,A)
【文献】特開2014-021019(JP,A)
【文献】特表2009-529678(JP,A)
【文献】特表2013-519849(JP,A)
【文献】特表2009-518604(JP,A)
【文献】特開2011-079842(JP,A)
【文献】特開昭58-028091(JP,A)
【文献】特開2014-149822(JP,A)
【文献】国際公開第2013/181453(WO,A2)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 15/14
(57)【特許請求の範囲】
【請求項1】
システムであって、
マイクロ流体チャネル
が加工された基板であって、前記
基板は、選別接合点を備える選別チャンバ、シース流体チャネル、およびサンプル流体チャネルと流体連通
する、
基板と、
前記シース流体チャネルと流体連通するシース蠕動ポンプであって、前記シース蠕動ポンプは、シース流体流速において前記シース流体チャネルを通して流体を送出するように構成される、シース蠕動ポンプと、
前記シース流体チャネルと流体連通するシース流体ダンパであって、前記シース流体ダンパは、前記基板の中に加工され、かつ、前記基板によって画定される
シース流体ダンパチャンバを含み、前記シース流体ダンパは、前記シース流体ダンパチャンバ内にガスを含み、前記シース流体ダンパは、前記
シース流体チャネル内の流体流に応答した前記シース流体ダンパチャンバ内の前記ガスの圧縮および膨張によって前記シース流体流速の変動が低減させられるように構成される、シース流体ダンパと、
前記サンプル流体チャネルと流体連通するサンプル流体蠕動ポンプであって、前記サンプル流体蠕動ポンプは、サンプル流体流速において前記サンプル流体チャネルを通してサンプル流体を送出するように構成される、サンプル流体蠕動ポンプと、
ガスチャンバを含むサンプル流体ダンパであって、前記ガスチャンバは、ガスを含み、
前記ガスチャンバは、前記サンプル流体チャネルに結合され、前記サンプル流体ダンパは、前記サンプル流体チャネルと流体連通
し、前記サンプル流体ダンパは、前記サンプル流体チャネル内の流体流に応答した前記ガスの圧縮および膨張によって前記サンプル流体流速の変動が低減させられるように構成される、サンプル
流体ダンパと
、
前記選別接合点において細胞を選別するアクチュエータと
を備える、システム。
【請求項2】
前記基板は、使い捨て基板であり、前記使い捨て基板はさらに、前記選別チャンバおよび前記シース流体チャネルの少なくとも一部を画定する、請求項1に記載のシステム。
【請求項3】
前記シース
流体ダンパおよび/またはサンプル流体ダンパの少なくとも一部は、前記使い捨て基板上に形成される、請求項2に記載のシステム。
【請求項4】
前記使い捨て基板は、シリコーンを含む、請求項2に記載のシステム。
【請求項5】
前記シース流体流速の前記低減させられた変動は、前記シース流体の平均シース流速の10%未満である、請求項1に記載のシステム。
【請求項6】
前記サンプル流体流速の前記低減させられた変動は、前記サンプル流体の平均サンプル流速の10%未満である、請求項1に記載のシステム。
【請求項7】
前記シース流体ダンパは、前記
シース流体チャネルに沿って直列に配置される
前記シース流体ダンパチャンバのうちの少なくとも2
つを含む、請求項1に記載のシステム。
【請求項8】
前記サンプル流体ダンパは、前記
マイクロ流体チャネルに沿って直列に配置される
前記ガスチャンバのうちの少なくとも2
つを含む、請求項1に記載のシステム。
【請求項9】
前記シース
流体ダンパおよび/またはサンプル流体ダンパは、60mm
3~600mm
3の容積を有する、請求項1に記載のシステム。
【請求項10】
前記シース流体ダンパは、95%を上回って前記シース流体流速の前記変動が低減させられるように構成される、請求項1に記載のシステム。
【請求項11】
前記サンプル流体ダンパは、95%を上回って前記サンプル流体流速の前記変動が低減させられるように構成される、請求項1に記載のシステム。
【請求項12】
前記システムは、選別検証のための機構をさらに備える、請求項1~
11のいずれか一項に記載のシステム。
【請求項13】
前記選別検証のための機構は、前記選別接合点の下流に位置する感知機構を備える、請求項
12に記載のシステム。
【請求項14】
前記感知機構は、複数の下流分岐流体チャネル上に位置する、請求項
13に記載のシステム。
【請求項15】
前記システムは、前記選別検証
のための機構に基づいて前記選別チャンバの機能性を修正するための機構をさらに備える、請求項
12に記載のシステム。
【請求項16】
前記システムは、前記感知機構の下流に位置する弁をさらに備え、前記弁の動作は、前記感知機構によって制御される、請求項
13に記載のシステム。
【請求項17】
細胞選別システム用の使い捨てカートリッジであって、
マイクロ流体チャネルが加工された基板
であって、前記基板は、選別接合点を備える選別チャンバと流体連通
し、前記マイクロ流体チャネルは、流体入口から前記選別チャンバに流体を運搬するように構成され
る、
基板と、
前記流体入口と流体連通するシース流体チャネルと、
前記基板の中に加工されるシース流体ダンパであって、前記シース流体ダンパは、前記基板によって画定される
シース流体ダンパチャンバを含み、前記シース流体ダンパチャンバは、ガスを含み、かつ、前記シース流体チャネル内のシース流体のシース流速の変動を低減させるように、前記シース流体チャネルと流体連通する、シース流体ダンパと、
前記流体入口と流体連通するサンプル流体チャネルと、
前記サンプル流体チャネルと流体連通するサンプル流体ダンパであって、前記サンプル流体ダンパは、前記サンプル流体チャネル内のサンプル流体のサンプル流速の変動を低減させるように構成される、サンプル流体ダンパと
、
前記選別接合点において細胞を選別するアクチュエータと
を備える、使い捨てカートリッジ。
【請求項18】
前記シース流体ダンパは、前記シース流体チャネル内の流体流に応答した前記ガスの圧縮および膨張によって前記シース流体チャネル内の前記シース流体の
前記シー
ス流速の変動が低減させられるように構成される、請求項
17に記載の使い捨てカートリッジ。
【請求項19】
前記サンプル流体ダンパは、
ガスチャンバを含み、前記ガスチャンバは、第2のガスを含み、
前記ガスチャンバは、前記サンプル流体チャネルに結合され、前記サンプル流体ダンパは、前記サンプル流体チャネル内の流体流に応答した前記第2のガスの圧縮および膨張によって前記サンプル流体の前記サンプル流速の変動が低減させられるように構成される、請求項
17に記載の使い捨てカートリッジ。
【請求項20】
前記シース流速の前記変動は、前記シース流体の平均シース流速の10%未満である、請求項
17に記載の使い捨てカートリッジ。
【請求項21】
前記サンプル流速の前記変動は、前記サンプル流体の平均サンプル流速の10%未満である、請求項
17に記載の使い捨てカートリッジ。
【請求項22】
前記シー
ス流体ダンパは、前記シース流体チャネルに沿って直列に配置される
前記シース流体ダンパチャンバのうちの少なくとも2
つを含む、請求項
17に記載の使い捨てカートリッジ。
【請求項23】
前記シー
ス流体ダンパは、95%を上回って前記シー
ス流速の前記変動を低減させるように構成される、請求項
17に記載の使い捨てカートリッジ。
【請求項24】
前記シース
流体ダンパおよび/または
前記ガスチャンバは、60mm
3~600mm
3の容積を有する、請求項
19に記載の使い捨てカートリッジ。
【請求項25】
前記使い捨てカートリッジは、前記選別チャンバの下流に位置する感知機構をさらに備える、請求項
17~
24のいずれか一項に記載の使い捨てカートリッジ。
【請求項26】
前記カートリッジは、選別検証機構に基づいて前記選別チャンバの機能性を修正するための機構をさらに備える、請求項
25に記載の使い捨てカートリッジ。
【請求項27】
前記カートリッジは、前記感知機構の下流に位置する弁をさらに備え、前記弁の動作は、前記感知機構によって制御される、請求項
25に記載の使い捨てカートリッジ。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、2015年6月23日に出願され、”METHODS AND APPARATUS FOR CELL SORTING AND FLOW CYTOMETRY”と題された米国仮出願第62/183,640号に対する優先権を主張するものであり、該米国仮出願の全体の開示は、参照により本明細書中に援用される。
【0002】
(政府支援)
本発明は、アメリカ国立衛生研究所によって助成された認可番号第R44GM112442のもとでの政府支援によってなされた。政府は、本発明に一定の権利を有する。
【背景技術】
【0003】
蛍光活性化細胞選別(FACS)およびフローサイトメトリ器具は、通常、器具を通して溶液中に懸濁された生物学的サンプルまたは粒子を流動させるためにポンプを利用する。シース流体(典型的には、リン酸緩衝生理食塩水)の第2の流れが、サンプル流の流体力学的集束に一般的に使用される。細胞選別がタイミングに敏感であり得、細胞通過時間が流速に依存するため、これらの流体システムの流速が、満足できる選別性能を達成するように安定していることが望ましい。
【0004】
従来のFACS器具は、キュベットまたはノズルを通してサンプルおよびシース流体を押進させるように、高価かつ精巧な高圧駆動型ポンプシステムに依拠する。これらの圧力駆動型ポンプは、通常、非常に敏感で、嵩張り、高価であり、分析されている細胞の濃度を計算する能力を提供しない。FACSシステム内の従来の圧力駆動型ポンプに関する別の問題は、流体構成要素が、高価すぎるため全ての実験のために交換できず、広範な清掃が、通常、必要とされることである。これは、汚染の危険性および/または行程の合間に器具を清掃ならびにフラッシュする無駄な時間をもたらす。
【0005】
類似問題が、FACS器具内の他のポンプシステムを使用することを困難にする。例えば、サンプルが、通常、高価であり、使い捨てではない、流速センサと接触し、それを汚染するであろうため、流速フィードバックを伴う精巧な圧力駆動型ポンプシステムは、例示的FACSシステムでは使用されない場合がある。シリンジポンプは、シリンジポンプ内の構成要素の全てが容易に処分されることができるため、1つの代替物であることができる。しかしながら、シリンジポンプに関する問題は、ユーザが、ルアー接続をシリンジ上に締結する、シリンジをポンプに締結する、ポンププランジャを調節する、および/または同等物を行う必要があり得るため、使用が、典型的には、複雑かつユーザ集約的であることである。
【発明の概要】
【課題を解決するための手段】
【0006】
いくつかの実施形態では、システムは、選別チャンバと、選別チャンバと流体連通する流体チャネルとを含む。本システムはまた、流体チャネルと流体連通する蠕動ポンプも含む。蠕動ポンプは、流体流速において流体チャネルを通して流体を選別チャンバに送出するように構成される。流体ダンパは、サンプル流体チャネルと流体連通する。流体ダンパは、ガスを含み、流体チャネル内の流体流に応答して、ガスの圧縮および膨張による流体流速の変動を低減させるように構成される。
【0007】
いくつかの実施形態では、細胞選別システム用の使い捨てカートリッジは、基板を含む。使い捨てカートリッジはまた、基板の中に加工される選別チャンバも含む。流体チャネルは、基板の中に加工され、流体入口から選別チャンバに流体を運搬するように選別チャンバと流体連通する。使い捨てカートリッジはさらに、基板の中に加工され、流体チャネルを介した流体入口から選別チャンバまでの流体の流速の変動を低減させるように流体チャネルと流体連通する、流体気泡ダンパを含む。
【0008】
いくつかの実施形態では、マイクロ流体チップをプライミングする方法が開示される。マイクロ流体チップは、マイクロ流体チャネルを介して選別チャンバと流体連通する入口を含む。本方法は、入口およびマイクロ流体チャネルを介して選別チャンバの中に脱ガス液体を導入するステップを含む。脱ガス液体は、選別チャンバの中に閉じ込められたガスを吸収する。
【0009】
以下でより詳細に議論される前述の概念および付加的概念の全ての組み合わせ(そのような概念は、相互に矛盾しないことを前提とする)は、本明細書に開示される本発明の主題の一部と見なされることを理解されたい。特に、本開示の最後に見られる請求される主題の全ての組み合わせは、本明細書に開示される本発明の主題の一部と見なされる。また、参照することによって組み込まれる任意の開示にも見られ得る、本明細書で明示的に採用される専門用語は、本明細書に開示される特定の概念と最も一貫した意味が与えられるべきであることを理解されたい。
本願明細書は、例えば、以下の項目も提供する。
(項目1)
選別チャンバと、
前記選別チャンバと流体連通する流体チャネルと、
前記流体チャネルと流体連通する蠕動ポンプであって、流体流速において前記流体チャネルを通して流体を前記選別チャンバに送出するように構成される、蠕動ポンプと、
ガスを含み、前記流体チャネルと流体連通する流体ダンパであって、前記流体チャネル内の流体流に応答して、前記ガスの圧縮および膨張による前記流体流速の変動を低減させるように構成される、流体ダンパと、
を備える、システム。
(項目2)
前記選別チャンバおよび前記流体チャネルの少なくとも一部を画定する、使い捨て基板をさらに含む、項目1に記載のシステム。
(項目3)
前記流体ダンパの少なくとも一部は、前記使い捨て基板上に形成される、項目2に記載のシステム。
(項目4)
前記使い捨て基板は、シリコーンを含む、項目1に記載のシステム。
(項目5)
前記流体流速の前記低減した変動は、約10%未満である、項目1に記載のシステム。
(項目6)
前記流体流速は、約1μl/分~約1ml/分である、項目1に記載のシステム。
(項目7)
前記流体ダンパは、長方形ガスチャンバ、円筒形ガスチャンバ、卵形ガスチャンバ、および円形ガスチャンバのうちの少なくとも1つを含む、項目1に記載のシステム。
(項目8)
前記流体ダンパは、前記流体チャネルに沿って直列に配置される少なくとも2つのガスチャンバを含む、項目1に記載のシステム。
(項目9)
前記流体ダンパは、約60mm3~約600mm3の容積を有する、項目1に記載のシステム。
(項目10)
前記サンプル流体ダンパは、約95%を上回って前記サンプル流体流速の前記変動を低減させるように構成される、項目1に記載のシステム。
(項目11)
前記流体チャネルは、サンプル流体チャネルであり、前記流体流速は、サンプル流体流速であり、前記蠕動ポンプは、サンプル流体蠕動ポンプであり、
前記選別チャンバと流体連通するシース流体チャネルと、
前記シース流体チャネルと流体連通するシース流体蠕動ポンプであって、シース流体流速において前記シース流体チャネルを通してシース流体を前記選別チャンバに送出するように構成される、シース流体蠕動ポンプと、
第2のガスを含み、前記シース流体チャネルと流体連通するシースダンパであって、前記シース流体チャネル内の流体流に応答して、前記第2のガスの圧縮および膨張による前記シース流体流速の変動を低減させるように構成される、シース流体ダンパと、
をさらに備える、項目1に記載のシステム。
(項目12)
基板と、
前記基板の中に加工される選別チャンバと、
前記基板の中に加工され、流体入口から前記選別チャンバに流体を運搬するように前記選別チャンバと流体連通する、流体チャネルと、
前記基板の中に加工され、前記流体チャネルを介した前記流体入口から前記選別チャンバまでの前記流体の流速の変動を低減させるように前記流体チャネルと流体連通する、流体気泡ダンパと、
を備える、細胞選別システム用の使い捨てカートリッジ。
(項目13)
前記流体気泡ダンパは、ガスを含み、前記流体チャネル内の流体流に応答して、前記ガスの圧縮および膨張による前記流体チャネル内の前記流体の流体流速の変動を低減させるように構成される、項目12に記載の使い捨てカートリッジ。
(項目14)
前記流体は、サンプル流体であり、前記流体チャネルは、サンプル流体チャネルであり、前記流体流速は、サンプル流体流速であり、
シース流体入口から前記選別チャンバにシース流体を運搬するように前記選別チャンバと流体連通する、シース流体チャネルと、
前記シース流体チャネルを介した前記シース流体入口から前記選別チャンバまでの前記シース流体のシース流速の変動を低減させるように前記シース流体チャネルと流体連通する、シース流体気泡ダンパと、
をさらに備える、項目12に記載の使い捨てカートリッジ。
(項目15)
前記シース流体気泡ダンパは、第2のガスを含み、前記シース流体チャネル内の流体流に応答して、前記第2のガスの圧縮および膨張による前記シース流体の前記シース流速の変動を低減させるように構成される、項目14に記載の使い捨てカートリッジ。
(項目16)
前記低減した流速の前記変動は、約10%未満である、項目12に記載の使い捨てカートリッジ。
(項目17)
前記流速は、約1μl/分~約1ml/分である、項目12に記載の使い捨てカートリッジ。
(項目18)
前記流体気泡ダンパは、長方形ガスチャンバ、円筒形ガスチャンバ、卵形ガスチャンバ、および円形ガスチャンバのうちの少なくとも1つを含む、項目12に記載の使い捨てカートリッジ。
(項目19)
前記流体気泡ダンパは、前記流体チャネルに沿って直列に配置される少なくとも2つのガスチャンバを含む、項目12に記載の使い捨てカートリッジ。
(項目20)
前記流体気泡ダンパは、約95%を上回って前記流体流速の前記変動を低減させるように構成される、項目12に記載の使い捨てカートリッジ。
(項目21)
前記流体気泡ダンパは、約60mm3~約600mm3の容積を有する、項目12に記載の使い捨てカートリッジ。
(項目22)
マイクロ流体チップをプライミングする方法であって、前記マイクロ流体チップは、マイクロ流体チャネルを介して選別チャンバと流体連通する入口を含み、
前記入口および前記マイクロ流体チャネルを介して前記選別チャンバの中に脱ガス液体を導入するステップであって、前記脱ガス液体は、前記選別チャンバの中に閉じ込められたガスを吸収する、ステップ
を含む、方法。
(項目23)
パージポートが前記選別チャンバの垂直に上方にあるように、前記マイクロ流体チップを垂直に搭載するステップと、
前記パージポートを介して、前記選別チャンバの中に閉じ込められた前記ガスをパージするステップと、
をさらに含む、項目22に記載の方法。
(項目24)
前記選別チャンバは、約10mm~約30mmの直径と、約2mm~約5mmの深度とを有する、項目22に記載の方法。
【図面の簡単な説明】
【0010】
当業者は、図面が、主に、例証目的のためのものであって、本明細書に説明される本発明の主題の範囲を限定することを意図するものではないことを理解するであろう。図面は、必ずしも一定の縮尺ではない。いくつかの事例では、本明細書に開示される本発明の主題の種々の側面は、異なる特徴の理解を促進するために、図面中で誇張または拡大されて示され得る。図面中、同様の参照文字は、概して、同様の特徴(例えば、機能的類似および/または構造的類似要素)を指す。
【0011】
【
図1】
図1は、サンプル流体およびシース流体を送出するために蠕動ポンプを使用する、細胞選別システムの概略図を図示する。
【
図2】
図2は、実施形態による、ダンパを含む細胞選別システムの概略図を図示する。
【
図3A】
図3Aは、実施形態による、
図2に示される細胞選別システムで使用されることができる、空気ダンパの概略図を図示する。
【
図3B】
図3Bは、実施形態による、
図3Aに示される空気ダンパを使用するシステムの流速を図示する。
【
図4A】
図4Aは、実施形態による、細胞選別システム用の流体チャネルに結合された外部ガスダンパの概略図を図示する。
【
図4B】
図4Bは、実施形態による、外部空気ダンパを使用する例示的システムを図示する。
【
図5】
図5は、実施形態による、サンプルおよびシース流体をマイクロ流体細胞選別システムに送出する蠕動ポンプ用の統合ガスダンパを図示する。
【
図6A】
図6Aは、実施形態による、蠕動ポンプ用のガスダンパを含む、細胞選別カートリッジを図示する。
【
図6B】
図6Bは、実施形態による、蠕動ポンプ用のガスダンパを含む、細胞選別カートリッジを図示する。
【
図7】
図7は、実施形態による、サンプル流体チャネルおよびシース流体チャネルの両方用のオンカートリッジ気泡ダンパを伴う細胞選別カートリッジを図示する。
【
図8A】
図8Aは、実施形態による、細胞選別機と、蠕動ポンプおよびガスダンパを使用することができる閉路マイクロ流体細胞選別機チップとを図示する。
【
図8B】
図8Bは、実施形態による、蠕動ポンプならびにガスダンパを使用することができる、検出および選別チップを含むシステムを図示する。
【
図9】
図9は、実施形態による、ガスダンパの有無別の時間と対比した流速を示すプロットである。
【
図10】
図10Aおよび10Bは、実施形態による、それぞれ、サンプル流体およびシース流体用の外部ガスダンパを用いた、時間と対比した流速のプロットである。
【
図11】
図11A-11Bは、実施形態による、シース流体用のオンカートリッジダンパの有無別の時間と対比した流速のプロットである。
【
図12】
図12A-12Bは、実施形態による、サンプル流体用のオンカートリッジダンパの有無別の時間と対比した流速のプロットである。
【
図13A】
図13Aは、ある実施形態による、マイクロ流体細胞検出器および選別機を図示する。
【
図13B】
図13Bは、実施形態による、オンカートリッジ気泡ダンパとともに蠕動ポンプを使用する選別を図示する、プロットである。
【
図14】
図14は、実施形態による、例示的細胞選別機チップを図示する。
【
図15-1】
図15A-15Bは、実施形態による、通常緩衝剤を用いて
図14の細胞選別機チップをプライミングすることを図示する。
【
図15-2】
図15C-15Dは、実施形態による、脱ガス緩衝剤を用いて
図14の細胞選別機チップをプライミングすることを図示する。
【
図16】
図16は、実施形態による、自動選別較正プロセスを図示するフローチャートである。
【
図17】
図17A-17Bは、実施形態による、粒子選別位置付けおよびタイミングの最適化を図示する。
【発明を実施するための形態】
【0012】
本明細書に開示される実施形態は、概して、フローサイトメトリおよび蛍光活性化細胞選別のためのシステム、装置、ならびに方法に関し、いくつかの実施形態では、随意に、本明細書に開示される1つまたはそれを上回るサブアセンブリと組み合わせて、マイクロ流体ベースのフローサイトメトリおよび蛍光活性化細胞選別(FACS)を包含する、システム、装置、ならびに方法に関する。
【0013】
FACS Aria(BD)のような従来の細胞選別機は、全ての実験のために使い捨てであるように意図されていない、複雑な流体ラインとともに圧力ポンプを使用する。従来の細胞選別機のユーザは、通常、二次汚染を回避するように実験の合間に厳密な洗浄ステップを行う。Tyto Cell Sorter(Miltenyi Biotec)またはOn-chip Sort(On-chip Biotechnologies)のようなマイクロ流体ベースの細胞選別機は、選別のための一貫した流速を有するために圧力もしくはシリンジポンプを使用する。しかしながら、これらのポンプは、より高価である。
【0014】
いくつかの実施形態では、本明細書に開示されるような使い捨てマイクロ流体フローセルおよび流体素子の中へ流体を送出するための蠕動ポンプの使用は、清掃を単純化し、二次汚染の可能性を低減させることができる。蠕動ポンプは、手頃な価格であり、サンプル流体と相互作用する任意の流体ラインの交換の容易性を可能にすることができる。さらに、蠕動ポンプは、既存の圧力ポンプよりも比較的コンパクトであり、それらを殆どの研究室の予算内である比較的安価な器具のために好適にすることができる。
【0015】
図1は、実施形態による、細胞選別システム100を図示する。システム100は、サンプル流体チャネル120およびシース流体チャネル130と流体連通する選別チャンバ110(選別チップまたはカートリッジと称されることもある)を含む。システム100はまた、サンプル流体チャネル120を介してサンプル流体源126から選別チャンバ110にサンプル流体を送出するように構成される、蠕動ポンプ125も含む。本システムはまた、シース流体チャネル130を介してシース流体源136から選別チャンバ110にシース流体を送出するように構成される、蠕動ポンプ135も含む。
【0016】
蠕動ポンプは、ある時は、フローサイトメータおよびFACSシステムにおける分析ならびに選別性能に影響を及ぼし得る、大流量脈動(流速の変動と称されることもある)を生じ得る。BD BiosciencesからのBD AccuriTMC6またはXitogenフローサイトメータ等の(選別機ではなく)卓上フローサイトメータは、ダンパおよびポンプ制御の種々の組み合わせとともに蠕動ポンプを使用する。これは、コスト節約、より容易なインターフェース、および少ない保守において利点を提供することができる。蠕動ポンプを伴う例示的フローサイトメータは、その開示全体が参照することによってその全体として本明細書に組み込まれる、PCT出願第WO2013/181453A2号で開示される。
【0017】
本明細書に開示されるいくつかの実施形態は、細胞選別および/またはマイクロ流体ベースの蛍光活性化細胞選別(FACS)で使用するための使い捨て流体構成要素を伴う蠕動ポンプを対象とする。本明細書に開示されるいくつかの実施形態は、シース流体および/またはサンプル流体を駆動するために蠕動ポンプを使用する、流体システムを対象とする。そのようなシステムでは、サンプルならびにシース流体は、高い粒子選別および/または分析性能を達成するように、一貫した流速においてマイクロ流体細胞選別カートリッジの中へ送達される。一貫した流速は、シースおよびサンプル流体を送達する流体チャネルに結合されることができる(外部ダンパとも称される)か、または選別カートリッジの中へ統合されることができる(統合ダンパもしくはオンカートリッジダンパとも称される)かのいずれかである、流体ダンパを使用して達成される。いくつかの実施形態では、流体ダンパは、空気、希ガス、または適切である任意の他のガス等のガスで充填されることができる。いくつかの実施形態では、流体ダンパは、通常、合成ガスから産生され、一酸化炭素および水素から成る、水性ガス等の非混合性の圧縮性流体で充填されることができる。
【0018】
図2は、実施形態による、蠕動ポンプの流速変動を低減させるように1つまたはそれを上回るダンパを含む、細胞選別システム200の概略図を図示する。システム200は、第1の流体チャネル220(「サンプル流体チャネル」と称されることもある)から第1の流体を受容するように、かつ第2の流体チャネル230(「シース流体チャネル」と称されることもある)から第2の流体(例えば、シース流体)を受容するように構成される、選別チャンバ210を含む。蠕動ポンプ225は、第1の流体チャネル220を介して第1の流体源226から選別チャンバに第1の流体を送出する。第1のダンパ228は、一貫した流量を選別チャンバ210に送達するよう、第1のチャネル220内の流速の変動を低減させるように第1の流体チャネル220に結合される。同様に、別の蠕動ポンプ235は、第2の流体チャネル230を介して第2の流体源236から選別チャンバに第2の流体を送出するように構成され、第2のダンパ238は、第2のチャネル230内の流速の変動を低減させるように第2の流体チャネル230に結合される。
【0019】
動作中に、それぞれ、第1の流体チャネル220および第2の流体チャネル内のダンパ228ならびに238は、ガスで充填されることができる。いくつかの実施形態では、細胞選別に先立って、システム200全体が、ガスでフラッシュされることができる。流体が、次いで、ダンパ228および238内に一部のガスを閉じ込め、過剰なガスを押し出すように、システム200を通して送出されることができる。第1の流体が第1のチャネル220の中で流動しているとき、第1の流体は、第1のダンパ228に進入し、第1のダンパ228内のガスを圧縮することができる。換言すると、第1のダンパ228内のガスの一部は、行き止まりを形成するダンパ228の中に閉じ込められることができる。このようにして、第1のダンパ228は、第1の流体チャネル220内の第1の流体の流動を減速することができる。蠕動ポンプ225から出て行く流体の体積流速が周期的に変動することができるため、第1のダンパ228内の流体体積は、ガスが液体圧力の変化に起因して圧縮または膨張されるにつれて比例して変動することができ、流速の摂動を弱める。第2のダンパ238は、上記で説明されるような第1のダンパ228と同様に機能することができる。
【0020】
このようにして、ダンパ228および238は、流速のダイナミックレンジ(または流速の変動の範囲、もしくは流速の変動、および/または同等物)を低減させ得る、機械的低域通過フィルタとして作用することができる。本流速範囲の縮小は、細胞/粒子が、典型的には、サンプル流体と同一の速度において流動しているため、細胞/粒子速度の分布を狭くすることができる。結果として、細胞検出と細胞選別との間の時間遅延が、より確実に導出されることができ、それによって、選別性能を改良する。いくつかの実施形態では、減少した脈動は、サンプル流体流のより限定された流体力学的集束をもたらし得、ひいては、検出システム内の蛍光信号のより高い変動係数(CV)値につながり得る。
【0021】
種々のタイプのガスが、ダンパ228および238の中に充填されることができる。一実施例では、ダンパ228および238は、大気で充填されることができる。別の実施例では、ダンパ228および238は、例えば、希ガス(例えば、ヘリウム、ネオン、アルゴン、キセノン、および/またはそれらの組み合わせ)等のサンプル流体ならびに/もしくはシース流体と反応する傾向がない、1つまたはそれを上回るガスで充填されることができる。ダンパ228および238内のガスの初期圧力は、例えば、約0.1気圧、0.2気圧、0.5気圧、0.8気圧、1気圧、1.2気圧、1.5気圧、またはその間の全ての値および部分的範囲を含む、適切である任意の他の圧力であることができる。
【0022】
いくつかの実施形態では、ダンパ228および238のうちの少なくとも1つは、サンプルならびにシース流体がダンパ228および238に自由に進入することができるように、個別の流体チャネル(220または230)へ開放し得る。いくつかの実施形態では、ダンパ228および238のうちの少なくとも1つは、セパレータによって対応するチャネル220または230から分離されることができる。セパレータは、ダンパ228および238内のいかなるガスも漏出することなく、ダンパ228および238内で体積の膨張ならびに収縮を容易に可能にする、可撓性または柔軟膜を含むことができる。
【0023】
いくつかの実施形態では、ダンパ228および238のうちの1つまたはそれを上回るものは、使い捨て材料で作製されることができる。いくつかの実施形態では、ダンパ228および238は、シリコーンならびに/または繊維ガラス強化シリコーンを含むことができる。いくつかの実施形態では、ダンパ228および238は、アクリル(アクリロイル基、プロプ-2-エノイル、またはアクリリルとも称される)で作製されることができる。いくつかの実施形態では、ダンパ228および238は、ポリジメチルシロキサン(PDMS)を含むことができる。さらに別の実施例では、ダンパ228および238は、ポリ(メチルメタクリレート)(PMMA)を含むことができる。PMMAは、通常、可視光に対して透過性であり、低蛍光を有し、それによって、細胞の光学検出および選別、ならびに細胞の顕微鏡撮像を促進する。いくつかの実施形態では、第1のチャネル220および第2のチャネル230内の管類もまた、使い捨て材料で作製されることができる。
【0024】
図3Aは、本明細書に説明されるような蠕動ポンプを使用して、フローサイトメータの流速変動を低減させるために使用されることができる、例示的ダンパ(参照文字300によって集合的に表される)概略図を示す。ダンパ300は、#1-#8と番号付けられた、8つの例示的な非限定的構成を含む。第1の構成#1は、(例えば、サンプル流体チャネルまたはシース流体チャネルに類似する)流体チャネル310aと、ダンパとして機能するように流体チャネル310aに結合されるガスチャンバ320aとを含む。ガスチャンバ320aは、実質的に正方形の形状を有する。例示的実施形態では、ガスチャンバ320aの容積は、約92mm
3であることができる。第2の構成#2は、流体チャネル310bと、流体チャネル310bに結合されるガスチャンバ320bとを含む。ガスチャンバ320bは、長方形を有する。例示的実施形態では、ガスチャンバ320bは、約369mm
3の容積を有する。第3の構成#3は、流体チャネル310cと、正方形を有する、流体チャネル310cに結合されるガスチャンバ320cとを含む。例示的実施形態では、ガスチャンバ320cは、約184mm
3の容積を有する。これら3つの構成#1-#3に関して、ガスチャンバ320a-320cは、それぞれ、流体チャネル310a-310cにほぼ直接結合される。換言すると、ガスチャンバ320a-320cと対応する流体チャネル310a-310cとの間のコネクタのサイズおよび/または体積は、ごくわずかであり得る。
【0025】
図3Aに示される第4から第6の構成#4-#6は、異なる形状を有するガスチャンバを含む。第4の構成#4は、流体チャネル310dと、流体チャネル310dに結合されるガスチャンバ320dとを含む。ガスチャンバ320dの大部分は、正方形を有するが、ガスチャンバ320dはまた、ガスチャンバ320dの大部分を流体チャネル310dと接続する縮径部分325dも含む。例示的実施形態では、ガスチャンバ320dは、ガスチャンバ310aの容積と同一であり得る、92mm
3の容積を有するが、縮径部分325dは、無視できない容積を有する。同様に、第5の構成#5は、流体チャネル310eと、流体チャネル310eに結合されるガスチャンバ320eとを含む。ガスチャンバ320eは、ガスチャンバ320eの大部分を流体チャネル310eと接続するように縮径部分325eを含む。例示的実施形態では、ガスチャンバ320eは、約369mm
3の容積を有する。第6の構成#6は、流体チャネル310fと、流体チャネル310fに結合されるガスチャンバ320fとを含む。ガスチャンバ320fは、ガスチャンバ320fの大部分を流体チャネル310fと接続するように縮径部分325fを含む。例示的実施形態では、ガスチャンバ320fは、約184mm
3の容積を有する。
【0026】
第7の構成#7は、流体チャネル310gと、直列に流体チャネル310gに結合される2つのガスチャンバ320gとを含む。例示的実施形態では、2つのガスチャンバ320gの全容積は、約368mm3である。一実施形態では、2つのガスチャンバ320gのうちの各ガスチャンバは、ダンパとして機能する。別の実施形態では、2つのガスチャンバ320gは、集合的にダンパとして機能する。第8の構成#8は、流体チャネル310hと、直列に流体チャネル310hに結合される3つのガスチャンバ320hとを含む。3つのガスチャンバ320hの全容積は、約552mm3である。ガスチャンバ320gおよび320hは、例証目的のために、対応する流体チャネル310gおよび310hの同一側に配置される。実践では、ガスチャンバは、流体チャネルの両側で対称または非対称に配置されることができる。加えて、ガスチャンバの数はまた、3を上回り得る(例えば、5個のガスチャンバ、8個のガスチャンバ、10個のガスチャンバ、またはそれを上回る)。
【0027】
ガスチャンバ320a-320hの容積は、実践では、
図3Aに示される容積と異なり得る。例えば、ガスチャンバ320a-320hの容積は、約60mm
3~約600mm
3(例えば、その間の全ての値および部分的範囲を含む、約60mm
3、約80mm
3、約100mm
3、約120mm
3、約150mm
3、約180mm
3、約200mm
3、約240mm
3、約280mm
3、約300mm
3、約350mm
3、約400mm
3、約450mm
3、約500mm
3、約550mm
3、および約600mm
3)であることができる。
【0028】
図3Aに示されるガスチャンバ320a-320hの2次元(2D)断面は、例証目的のために長方形(または正方形)を有する。ダンパ320a-320hの任意の好適な形状が、例えば、結果として生じるフローサイトメータ内の空間の制約および/または選別カートリッジの所望の形状因子に応じて、採用されることができる。例えば、ガスチャンバ320a-320hの2D断面は、卵形、円形、多角形、または当技術分野で公知である任意の他の形状であることができる。3次元(3D)空間では、ガスチャンバ320a-320hは、例えば、円筒形、立方体、球形、または当技術分野で公知である任意の他の好適な形状であることができる。
【0029】
本明細書に説明されるように、ガスチャンバ320a-320hは、対応する流体チャネル310a-310hの中で伝搬する流体の流速変動を低減させることができる。いくつかの実施形態では、ガスチャンバ320a-320hの性能は、ガスチャンバ320a-320hを使用した後の流速変動によって特性評価されることができる。例えば、流速の変動は、平均流速の10%未満(例えば、その間の全ての値および部分的範囲を含む、約10%、約8%、約5%、約3%、約2%、約1%、または1%未満)であり得る。システム300で実装され得る平均流速は、例えば、約1μl/分~約10ml/分(例えば、その間の全ての値および部分的範囲を含む、1μl/分、5μl/分、10μl/分、20μl/分、30μl/分、50μl/分、75μl/分、100μl/分、150μl/分、200μl/分、250μl/分、300μl/分、400μl/分、500μl/分、600μl/分、700μl/分、800μl/分、900μl/分、1ml/分、2ml/分、3ml/分、5ml/分、7.5ml/分、または10ml/分)であることができる。
【0030】
ガスチャンバ320a-320hの性能を特性評価することもできる別のパラメータは、ガスチャンバ320a-320hの使用によって誘発される流速変動の低減である。ガスチャンバ320a-320hは、いかなるガスチャンバも用いていない流速の変動と比較して、80%を上回って(例えば、その間の全ての値および部分的範囲を含む、80%を上回って、85%を上回って、90%を上回って、92.5%を上回って、95%を上回って、97.5%を上回って、98%を上回って、99%を上回って、または99.5%を上回って)流速の変動を低減させるように構成されることができる。例えば、蠕動ポンプ後の流速は、0~200μl/分の間のいずれかであることができ、すなわち、流速の変動は、約200μl/分である。ガスチャンバ320a-320hを使用した後、流速は、約110μl/分~約115μl/分であることができ、すなわち、流速の変動は、97.5%の低減に対応する、約5μl/分である。
【0031】
図3Bは、
図3Aに示される第5(「5番」)および第8の(「8番」)構成における測定された流速を図示する。比較のために、ダンパを伴わないシステム内の流速もまた、
図3Bに含まれる(「独立型」)。3つのシステムは、約12μl/分の類似平均流速を有するが、第5の構成が最も安定した性能(すなわち、誤差バーによって示されるような最少量の流量変動)を有することが分かり得る。いくつかの実施形態では、ダンパ容積が、少なくとも部分的に、脈動抑制のために圧縮および膨張されることができる、閉じ込められたガスの量を判定するにつれて、より大きいダンパ容積が、より良好な性能につながり得る。第5の構成はまた、広範囲の流速(例えば、1μl/分~1ml/分)下で堅調な性能を実証する。
【0032】
図4Aは、実施形態による、蠕動ポンプ後の流速を調整するために外部ダンパを使用するシステム400を図示する。システム400は、流体チャネル420によって送達される流体(例えば、サンプル流体および/またはシース流体)を受容する、標的チップ410を含む。標的チップ410は、選別チャンバ、検出チャンバ、および/または一定の流速において流体を受容する任意の他のデバイスであることができる。蠕動ポンプ425は、2つのチャンバ428を介して標的チップ410に向かって流体を送出する。流体チャネル420はまた、培地を滅菌または浄化するための随意のインラインフィルタ430を含むこともできる。
【0033】
図4Bは、
図4Aで概略的に示される例示的システムを図示する。本実施例では、ダンパ428は、流体継手(例えば、Nordson Medical, Fort Collins, CO)を使用して構築されることができる。より具体的には、オス型ルアー・メス型ルアーねじ山式結合器(LC78-1)のオス型端部は、メス型ルアーラグ式T字形(例えば、FTLT-1)の垂直区画に接続されることができる。同一のオス型ルアー・メス型ルアーねじ山式結合器のメス型端部は、ガスを閉じ込め得るチャンバを作成するよう、オス型ルアー一体型型ロックリングプラグ(例えば、LP4-1)で冠着されることができる。第2の同じ継手アセンブリもまた、第2のガスチャンバを生成するように構築されることができる。オス型ルアースリップ結合器(例えば、MTLCS-1)は、冠着された垂直区画が両方とも上向きの状態で、2つのアセンブリを接続するために使用されることができる。0.2μmのAcrodiscシリンジフィルタ(例えば、4612,PALL Life Sciences, Port Washington, NY)が、組み合わせられたアセンブリの一方の端部に接続されることができる。2つのオス型ルアー一体型ロックリングプラグ・500シリーズ返し(1/16インチ)継手(MTLL004-1)は、結果として生じるアセンブリの両方の遊離端に接続されることができる。フィルタ420を伴わない外部ダンパ428は、サンプル流体に使用されることができる。入口シリコーン管類が、空気ダンパ428のフィルタ端上の返しに接続されることができる一方で、出口シリコーン管類は、空気ダンパ428の出口端上の返しに接続されることができる。
【0034】
図5は、蠕動ポンプによって送達される流体の流速を調整するために1つまたはそれを上回るオンカートリッジダンパを使用する、システム500を図示する。システム500は、サンプルチャネル520からサンプル流体を受容するように、かつシースチャネル530からシース流体を受容するように構成される、カートリッジ510を含む。サンプルチャネル520内の蠕動ポンプ525は、サンプル流体源526からカートリッジ510に向かってサンプル流体を送出し、シースチャネル530内の別の蠕動ポンプ535は、シース流体源536からカートリッジ510に向かってシース流体を送出する。
図5に示されるシステム500は、カートリッジ510がサンプルおよびシース流体の流速を調整するように統合ダンパを含む(例えば、
図6A、
図6B、または
図7参照)という点で、
図1に示されるシステム100と異なる。
【0035】
図6Aは、システム600を図示し、かつ既存の基板設計内の何もない空間がどのようにしてガスダンパを構築する/含むように修正されることができるかを図示する。システム600は、何もない空間が、流体チャネル610および流体チャネル610と流体連通するガスチャンバ620(「エアポケット」)を構築するように加工される、基板601を含む。基板601は、シリコーン、繊維ガラス強化シリコーン、アクリル、PDMS、PMMA、または当技術分野で公知である任意の他の材料等の低コストかつ使い捨ての材料で作製されることができる。一実施例では、ガスチャンバ620は、流体チャネル610に沿ってカートリッジ610の中に成形されることができる。別の実施例では、ガスチャンバ620は、基板601をエッチングすることによって加工されることができる。ガスチャンバ620のパラメータ(例えば、容積、流速変動の低減等)は、
図3Aに示され、上記で説明されるガスチャンバ320a-320hに実質的に類似し得る。
【0036】
図6Bは、
図6Aで概略的に示される統合ダンパを含む、例示的細胞選別カートリッジの写真である。統合ダンパ(オンカートリッジダンパとも称される)を使用することは、付加的外部ガスダンパを加工するのではなくて、チップカートリッジ内の何もない空間を利用することによって、ダンパのサイズおよびコストを削減することができる。統合オンカートリッジガスダンパの動作原理は、上記で説明される外部ダンパと同じであり得、ガスが、流体チャネルの上方のポケットの中に閉じ込められ、流速脈動を弱めるように圧縮する。
【0037】
図7は、例えば、サンプルおよびシース流体等の流体の流速を調整するためにオンチップダンパを使用する、例示的フローサイトメータ700を図示する。サイトメータ700は、選別チャンバ710が加工される、基板701を含む。選別チャンバ710は、サンプルチャネル720から、選別される細胞を含むサンプル流体を受容し、シースチャネル730からシース流体を受容する。サンプルチャネル720は、サンプル流体チャネル720と流体連通するサンプル流体ダンパ728を含む。シースチャネル730は、同様に、シース流体チャネル730と流体連通するシース流体ダンパ738を含む。2つのダンパ728および738(気泡ダンパとも称される)は、基板701によって画定される、何もない空間を含み、したがって、高密集度で基板701に併合する。選別後に、サンプル流体中の異なるタイプの細胞は、出力チャネル740内の3つの異なる出力ポート742a、742b、および742cの中へ指向される。実践では、出力ポートの数(また、選別システム700によって区別されることができる、異なるタイプの細胞の数)は、3を上回り得る、または3未満であり得る。
図7に示されるシステム700は、単一のチップの中に加工され、したがって、高度にコンパクトであり得る。加えて、基板701は、低コストかつ使い捨ての材料で作製されることができ、それによって、行程の合間の広範な清掃を回避する。
【0038】
図8Aは、本明細書に説明されるガスダンパが、サンプルおよびシース流体等の流速を安定させるために採用されることができる、例示的フローサイトメータ800を示す。フローサイトメータ800は、着目細胞を含むサンプル流体801が、シース流体802aおよび802bの2つの流れの間に挟持される、選別チャンバ810を含む。シース流体820aおよび802bならびにサンプル流体801の2つの流れからの圧力比は、主要チャネルに沿った適切な分析ならびに選別のために、一貫し、かつ安定し得る。本圧力比に影響を及ぼし得る一因は、サンプルおよびシース流体の流速であることができる。この目的で、上記で説明されるガスダンパと組み合わせた蠕動ポンプは、一定の流速を達成するよう、サンプル流体801ならびにシース流体802aおよび802bを送達するために使用されることができる。いったん着目細胞が検出されると、選別チャンバは、指定出力チャネル830に向かってサンプル流体801を偏向させるために圧電アクチュエータ802を使用することができる。圧電選別を使用するフローサイトメータのさらなる情報は、その開示全体が参照することによってその全体として本明細書に組み込まれる、米国特許第9,134,221号で見出されることができる。
【0039】
図8Bは、本明細書に説明されるような1つまたはそれを上回るダンパを採用することができる、例示的検出および選別チップ910を図示する。外部チップ901は、検出および選別チップ910を保持し、および/または概して、それに流体的に結合可能である。いくつかの実施形態では、検出および選別チップ910は、外部チップ901から除去可能であり得る。検出および選別チップ910は、異なる細胞が圧電アクチュエータ912によって異なる出力チャネルの中へ指向される、選別接合点913を含む。いくつかの実施形態では、圧電アクチュエータ912は、圧電アクチュエータ912に印加される正電圧に応答して上向きに屈曲し、圧電アクチュエータ912に印加される負電圧に応答して下向きに屈曲することができる。異なる方向に向かって屈曲することによって、圧電アクチュエータ912は、チップ910の異なる出力チャネルの中へチップ910の入力チャネル内の細胞を指向することができる。
【0040】
外部チップ901は、システム900の中へサンプル流体を伝達するサンプル入力ポート920aと、システム900の中へシース流体を伝達するシース入力ポートとを含む。外部チップ901はさらに、例えば、パージ流体がシステム900を清掃した後に、パージ流体を除去するようにパージ出力ポート925を含む。3つの出力ポート930a-930cが、選別接合点913から細胞を受容し、受容された細胞を送達するように、外部チップ901の縁に配置される。出力ポート930は、選別A出力930aと、未選別出力930cと、選別B出力930bとを含む。いくつかの実施形態では、選別A出力930aおよび選別B出力930bは、圧電アクチュエータ912が、それぞれ、上向きおよび下向きに屈曲しているときに、選別接合点から細胞を受容し、未選別出力930cは、圧電アクチュエータ912が印加された電圧を伴わないその自然な状態であるときに細胞を受容することができる。別の言い方をすれば、外部チップ901は、入力ポート920a-920b、パージ出力ポート925、ならびに選別後出力ポート930a-930cを検出および選別チップ910の個別のポートに結合する、その中に形成された流体チャネル(図示せず)を有することができる。交換可能な検出および選別チップ910の使用は、サンプル間汚染を防止することができる。
【0041】
図9は、蠕動ポンプを使用するシステム内のガスダンパの有無別の測定された流速を図示する。蠕動ポンプ管類がガスダンパを伴わずに選別チップに直接接続されるとき、重度の脈動(「ダンパなし」線)が、流体ラインと直列に下流に配置された流速センサ(例えば、Fluigent, Paris)を用いて観察される。本流速脈動は、0~200μL/分以上に及ぶ。ガスダンパがポンプとチップとの間に接続されるとき、流速脈動範囲は、110~113μL/分まで低下し(「外部ダンパ」線)、流速の変動の有意な低減を実証する。
【0042】
図10A-10Bは、それぞれ、サンプル流体およびシース流体用の外部ガスダンパを用いた、時間と対比した流速のプロットである。シース流体およびサンプル流体流速の両方の反復分析は、ガスダンパを使用するときの脈動の一貫した低減を示す。これらの実験では、シース流体の平均流速は、約120μL/分であり、サンプル流体の平均流速は、約20μL/分である。両方の場合に、流速の結果として生じる変動は、5μL/分未満である。本流速変動の低減は、選別機能の性能を犠牲にすることなく、細胞選別システムが蠕動ポンプを使用することを可能にすることができる。
【0043】
図11A-11Bは、シース流体用のオンカートリッジダンパの有無別の時間と対比した流速のプロットである。オンカートリッジダンパがないと、蠕動ポンプ後のシース流体の流速は、約40サイクル/分の発振周波数において0~約145μL/分の間で発振している。システムの中へオンカートリッジダンパを含むことは、5μL/分未満の変動を伴って、約115μL/分において流速を実質的に安定させる。
【0044】
図12A-12Bは、サンプル流体用のオンカートリッジダンパの有無別の時間と対比した流速のプロットである。オンカートリッジダンパがないと、蠕動ポンプ後のサンプル流体の流速は、約6サイクル/分の発振周波数において0~約35μL/分の間で発振している。加えて、各サイクル内に流速のいくつかの高周波数発振もある。システムの中へオンカートリッジダンパを含むことは、3μL/分未満の変動を伴って、約25μL/分において流速を実質的に安定させる。
【0045】
図13Aは、選別の検証のためのアプローチを図示し、かつ粒子選別接合点1511から下流にある1つまたはそれを上回る分岐流体チャネル1510A-1510Cの中に感知機構(例えば、以下でさらに詳細に説明される参照文字1514A-1514C)を含む、(例えば、システム100の側面に構造的および/または機能的に類似する)マイクロ流体検出器/選別機1500を図示する。いくつかの実施形態では、マイクロ流体検出器内の選別前場所における光学感知および選別後場所における感知(例えば、光学感知、インピーダンスベースの感知、および/または同等物)を使用することの組み合わせは、より効率的なフローサイトメトリ測定のためのより良好な制御された動作を提供するために使用されることができる。図示される実施形態では、選別後感知は、粒子選別接合点1511においてアクチュエータによって行われる所望の粒子選別が適切に実行されるかどうかを検証するために使用されることができる。図示される実施形態では、選別後感知は、選別後弁を動作させるための入力として使用されることができる。
【0046】
いくつかの実施形態では、
図13Aの実施形態は、1つの分岐流体チャネルから光を受光し、および/または1つの分岐流体チャネル内のインピーダンス変動を検出するように、かつ標的粒子がアクチュエータによって1つの分岐流体チャネルの中へ指向されるかどうかを検証するために使用されることができる分岐検証光学信号を生成するように、分岐流体チャネル(例えば、チャネル1510A)のうちの1つに結合される、分岐検証構造(例えば、1514A)を含む。2つまたはそれを上回るそのような分岐検証構造が、いくつかの実施形態で実装されることができる。
図13Aの実施形態では、3つ全ての分岐流体チャネル1510A-1510Cは、そのような検証検出モジュール1514A-1514Cを有する。他の実施形態では、いくつかの分岐は、他の分岐がそのような検証構造を有し得ないときに、それを有することができる。
【0047】
図13Aの例示的実施形態では、光学検出器1520は、少なくとも、粒子検出モジュール1512からの1つまたはそれを上回る光学信号、および検証検出モジュール1514A-1514Cからの分岐検証光学信号を含む、光を受光するように位置する。いくつかの実施形態では、光学検出器は、受光された光に含有される情報を搬送する、検出器信号を生成する。粒子選別機制御モジュール1524内の信号処理機構は、標的粒子がアクチュエータによって1つの分岐流体チャネルの中へ指向されるかどうかを検証するインジケータを生成するように、分岐検証光学信号の情報を抽出する。いくつかの実施形態では、光学ベースの検証またはインピーダンスベースの検証が使用されるかどうかにかかわらず、検証信号は、選別の誤動作の検証に応答して、システム動作を中断し得る(例えば、流入サンプル流およびアクチュエータによる選別動作を停止する)、粒子選別機制御モジュール1524に自動的にフィードバックされることができる。いくつかの実施形態では、アラート信号(例えば、ポップアップ警告および/または点滅光等の視覚信号、ビープ音等の音声信号、ならびに/もしくは同等物)が、選別の誤動作についてマイクロ流体検出器のオペレータに警告するように、粒子選別機制御モジュール1524によって生成されることができる。
【0048】
図13Bは、選別プロセスの種々のステップを示す、オシロスコープトレースである。最初に、蛍光信号の最左ピークが、光学的に検出される。負のピーク瞬間は、選別アクチュエータ(例えば、
図8に示される圧電アクチュエータ)のアクティブ化を示す。最右ピークは、成功した選別の結果としての選別後検証インピーダンス信号である。インピーダンス信号を使用する選別後検証についてのさらなる情報は、参照することによってその全体として本明細書に組み込まれる、PCT出願第PCT/US2013/065111号で見出されることができる。
【0049】
流速脈動が高すぎる場合、わずかな正しい選別事象しか観察されることができない。加えて、進行する粒子の速度は、一貫性が少なくあり得る。したがって、粒子検出と粒子選別作動との間の時間である、選別遅延時間は、それに応じて一貫性が少ない。これは、粒子を加速させるか、または減速させるかのいずれかであり得、それによって、検出事象の数に対する選別事象の数の比として定義されることができる、選別効率を減少させる。例えば、100個の細胞が検出システムによって検出され、50個の細胞が正しい出力チャネルに指向される場合には、選別効率は、50%である。ダンパがないと、選別効率は、不良であり得、約0~約70%の間で著しく変動する。選別性能は、ガスダンパが利用されるときに、蠕動ポンプによって顕著に改良されることができる。
図13は、約90%を上回り、最大約99%の選別効率が、達成され得ることを実証する。
【0050】
殆どのマイクロ流体システムでは、気泡が、信号品質を劣化させる傾向があり、それらの圧縮率に起因して、流体を制御することを困難にし得るため、気泡の完全または実質的に完全な除去が、望ましくあり得る。最適な器具性能のための安定した制御可能な流動ステータスを達成するために、マイクロ流体チップは、典型的には、マイクロ流体チャネル内の任意の気泡を除去するよう、液体で事前充填される(「プライミング」として公知であるプロセス)。液体でチップをプライミングし、分析または細胞選別のために粒子サンプルを流すことに先立って気泡を除去することは、方略的に設計されたマイクロ流体チャネルおよびポートの組み合わせを使用して、達成されることができる。
【0051】
図14は、プライミングの方法を図示するマイクロ流体チップの概略図を示す。チップ1400は、チップ1400内の他の構成要素が配置されることができる、基板1401(または基部)を含む。チップ1400は、2つの流体入口、すなわち、シース流体を送達するシース流体入口1422と、サンプル流体を送達するサンプル流体入口1424とを含む。シース流体およびサンプル流体は、サンプル流体中の異なる細胞が異なる出力チャネル1440の中へ指向される、選別接合点1410に伝達される。選別は、異なる出力チャネル1440に向かってサンプル流体を偏向させることができる、PZTチャンバ1430内の圧電(PZE)アクチュエータによって実施される。いくつかの実施例では、PZTチャンバ1430の直径は、約10mm~約30mm(例えば、10mm、15mm、20mm、25mm、または30mm)であることができ、PZTチャンバ1430の深度は、2~5mm(例えば、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm、および5mm)の間で変動することができる。本チャンバ1430は、数10~数100マイクロメートルである、典型的マイクロ流体チャンバよりも直径および容積が1~2桁大きくあり得る。マイクロ流体チャネルとチャンバおよびその構造との間の寸法不一致に起因して、液体を導入することは、ガスを変位させることによってマイクロ流体チップ1400をプライミングするために十分ではない場合がある。
【0052】
チャンバ1430が中規模寸法を有するため、典型的マイクロ流体と異なり、重力が、流動および充填により大きい影響を与え得る。したがって、チップを垂直に搭載し、PZTチャンバ1430の上にパージポート1450を作成することは、チャンバを完全に充填することに役立つ。PZTチャンバ1430および反対側の液体チャンバは、ガスを放出する流体チャネルを介して接続されることができ、両方のチャンバが液体で完全に充填されることを確実にする。流体チャネルおよびパージポート1450の配向ならびに位置付けは、重力が不要なガスをパージすることを支援することを可能にする。
【0053】
主要流動チャネル、および主要流動チャネルを選別チャンバに接続する縮径部は、PDMS、PMMA、および環状オレフィンコポリマーCOC/環状オレフィンポリマーCOPを含む、主に、殆どのプラスチック材料の不良な湿潤性に起因して、小気泡を生じる傾向があり得る。
図15A-15Bは、本問題を図示する。チップ1400の中へ通常緩衝剤を充填した後、依然としてPZEチャンバ1430の中にいくらかのガスがあり得る。
【0054】
図15C-15Dは、脱ガス緩衝剤を使用してマイクロ流体チップ1400をプライミングする方法を図示する。チャンバを充填するように流体を導入した後に、任意の残留気泡を除去するために、脱ガス緩衝剤が、装填されることができ、ポンプが、チップ1400の中へ緩衝剤を指向することができる。代替として、ポンプとチップとの間のラインは、「インライン」脱ガス装置を有し得る。プライミング液体は、器具の中へ装填する前にガスを抜かれる、またはポンプとチップとの間に配置され得る「インライン」真空を使用してガスを抜かれることができる。脱ガス液体がマイクロ流体チャネルと選別PZTチャンバとの間の縮径部の領域に導入されるとき、任意の閉じ込められたガスが、流体の中へ溶解し、チップが、
図15Dに図示されるように液体で完全に充填される。
【0055】
従来の粒子選別方法は、流れを液滴に分解するために圧電変換器を使用する。これらの液滴が離脱するにつれて、粒子(例えば、細胞)が、それらのうちのいくつかに含有されることができる。液滴が形成されると、液滴は、正または負のイオンで帯電されることができる。液滴の流れは、次いで、荷電液滴が偏向され、試験管/ウェルの中へ収集されることができるように、一対の荷電プレート(例えば、±5000Vにおいて帯電される)を通過する。
【0056】
流動選別の一側面は、したがって、電荷を正しい滴(すなわち、所望の粒子を有するもの)に印加し、他のものに印加しないことである。こうするために、「時間遅延」または「選別遅延」と呼ばれるパラメータが、精密に調節されるはずである。従来の細胞選別機では、時間遅延または選別遅延は、粒子が、分析点から、それを含有する滴が流れから離脱する点まで移動するために要する時間である。時間遅延は、分析点と選別点との間の距離、流速、滴の生成速度、帯電頻度等を含むが、それらに限定されない、いくつかの要因によって判定される。時間遅延が適切に調節されない場合、選別純度および効率は、悪影響を受け得る。加えて、ユーザは、リアルタイムで選別結果を監視することが可能ではない場合がある。代わりに、ユーザは、選別情報を取得するように、選別されたサンプルを収集し、サイトメータを用いて分析する必要がある。これは、従来の細胞選別機が、通常、コア施設内で十分な訓練を受けた技術者のみによって動作される1つの理由であることができる。
【0057】
しかしながら、本明細書に開示されるような粒子選別機は、閉ループ粒子選別を行うために使用されることができる。
図14に示されるシステムでは、時間/選別遅延は、粒子が光学的に検出されるときと、粒子が選別接合点に到達するとき(この場合、3つの選別チャネルのうちの1つの中へ粒子を偏向させるようにトリガされるアクチュエータ)との間の時間である。これは、選別アクティブ化をトリガする信号として散乱光および/または放射蛍光(1つまたはそれを上回る光検出器によって検出される)を使用することができる。オンチップ圧電(PZT)アクチュエータは、チップ選別接合点において流量移動を過渡的に変化させることによって粒子を選別する。粒子選別機は、選別ステータスを確認する妥当性確認信号を取得するために、電気的方法(例えば、インピーダンス測定)および/または光学的方法を使用する。加えて、プロセッサ(電子ハードウェア)は、選別効率を増加させ、リアルタイムで選別ステータスを監視するように、光学検出信号、PZTトリガ信号、および妥当性確認信号に関するタイミングを調節する方法を実装する。
【0058】
デジタル選別遅延が、任意の軽微なY軸整合差、軽微な製造差、または軽微な流速差を補償するために使用されることができる。Y軸における整合は、検出領域におけるその上流検出に続いて、粒子がマイクロ流体選別接合点内にあるときに、PZT選別アクチュエータが正確な時間にアクティブ化されるべきであるため、適切な選別タイミングに影響を及ぼし得る。適切な選別遅延はまた、マイクロ流体チップ加工の不完全性およびPZT性能の変動に起因して、チップ間で変動し得る。概して、所与のチップの所望の選別遅延は、所与の流速について一定のままである。
【0059】
加工不完全性および性能変動に対処するために、選別システムは、1つの固定選別遅延値の代わりに、距離および速度情報に基づいて選別遅延の範囲を定義することができる。続いて、本システムは、本選別遅延値の範囲を通してステップをとることができる。例えば、本システムは、1つの選別遅延値、またはステップにつきわずか1マイクロ秒だけ分離される選別遅延値を通してステップをとることができる。ある場合には、本システムは、粗い較正のために、より大きいステップ(例えば、10マイクロ秒)をとり、より精密な較正のために、より小さいステップ(例えば、1マイクロ秒)をとることができる。
【0060】
各ステップにおいて、本システムは、PZTトリガ事象の総数と比較して選別確認信号の割合として定義される、選別効率を取得するように、数10、数100、または数1000個、もしくはそれを上回る粒子を測定する。選別検証信号は、選別チャネル内の下流で測定される電気または光学信号であることができる。一実施例は、マイクロ流体チップ内の流体チャネルの下流で金電極を使用することである。電極は、電場を提供するために使用される。粒子が本電場を横断して進行するとき、本システムは、チャネルを通って流動する粒子によって引き起こされる電気信号(例えば、インピーダンス信号)の変調を促進する。
【0061】
いったん本システムが、ある距離範囲(例えば、100μm~250μm)のループ計算を終了すると、ユーザに達成された選別効率を通知する。本選別正確度が許容閾値を上回る場合、本システムは、選別正確度を生じた選別遅延を設定し、実際のサンプル行程に備えて本システムをリセットし、較正プロセスが完了したことをユーザに通知する。別様に、本システムは、より広い選別遅延範囲で較正プロセスを繰り返すようにユーザを促す。(例えば、3回の試行後に)所望の選別正確度が達成されない場合、本システムは、チップを交換し、本自動較正試験を繰り返すようにユーザに通知する。
【0062】
図16は、上記で説明される自動選別遅延較正の方法を図示する。方法1600は、自動選別遅延較正を開始するステップ1610から始まり、その後に、より低い選別遅延値が現在の検索範囲内に設定される、ステップ1620が続く。ステップ1630では、検出および選別システムが、動作され、選別正確度およびトリガ正確度が、記録される。記録された選別正確度およびトリガ正確度は、ステップ1640のように、最大選別正確度を生じる選別遅延の値を見出すために使用されることができる。ステップ1650では、信号は、それが満足できるかどうかを判定するように調査される。満足できない信号に応答して、方法1600は、自動選別遅延が繰り返される、または選別チップが交換される、ステップ1660に進む。一方で、ステップ1650において満足できる信号に応答して、方法1600は、最大選別正確度を生じる選別遅延が設定される、ステップ1670に進む。加えて、本システムはまた、実際のサンプル行程のために設定されることもでき、それによって、較正を完了する。
【0063】
図17A-17Bは、粒子選別位置付けおよびタイミングの最適化を図示する。
図17Aは、チャネルのY軸上の位置の関数としての選別効率のプロットである。
図17Bは、サンプル流体を伝搬する流体チャネル1710と、指定出力チャネル1730に向かってサンプル流体中の細胞を指向するPZTアクチュエータ1720とを含む、選別接合点1700の概略図を示す。流体チャネル1710は、位置がPZTトリガの精密なタイミングを制御するように最適化される、Y軸領域と呼ばれる領域1715を含む。
図17Aに示されるプロットに基づいて、マイクロ流体チップを設定するように最大選別効率を生じる、位置を選定することができる。
【0064】
種々の発明の実施形態が、本明細書に説明および図示されているが、当業者は、本明細書に説明される機能を果たす、および/または結果ならびに/もしくは利点のうちの1つまたはそれを上回るものを取得するための種々の他の手段および/または構造を容易に想定し、そのような変形例ならびに/もしくは修正はそれぞれ、本明細書に説明される発明の実施形態の範囲内であると見なされる。より一般的には、当業者は、本明細書に説明される全てのパラメータ、寸法、材料、および構成が、例示的であるように意図され、実際のパラメータ、寸法、材料、および/または構成が、本発明の教示が使用される、1つもしくは複数の具体的用途に依存するであろうことを、容易に理解するであろう。当業者は、日常的にすぎない実験を使用して、本明細書に説明される具体的な発明の実施形態の多くの均等物を認識する、または確認できるであろう。したがって、前述の実施形態は、一例のみとして提示され、添付の請求項およびその均等物の範囲内で、発明の実施形態が、具体的に説明および請求されるものとは別様に実践され得ることを理解されたい。本開示の発明の実施形態は、本明細書に説明される各個々の特徴、システム、物品、材料、キット、および/または方法を対象とする。加えて、そのような特徴、システム、物品、材料、キット、および/または方法が、相互に矛盾しない場合、2つもしくはそれを上回るそのような特徴、システム、物品、材料、キット、および/または方法の任意の組み合わせが、本開示の範囲内に含まれる。
【0065】
上記の実施形態は、多数の方法のうちのいずれかで実装されることができる。例えば、本明細書に開示される技術を設計および作製することの実施形態は、ハードウェア、ソフトウェア、またはそれらの組み合わせを使用して、実装されてもよい。ソフトウェアで実装されるとき、ソフトウェアコードは、単一のコンピュータの中に提供されるか、または複数のコンピュータの間で分配されるかにかかわらず、任意の好適なプロセッサもしくはプロセッサの集合上で実行されることができる。
【0066】
さらに、コンピュータは、ラックマウント式コンピュータ、デスクトップコンピュータ、ラップトップコンピュータ、またはタブレットコンピュータ等のいくつかの形態のうちのいずれかで具現化されてもよい。加えて、コンピュータは、携帯情報端末(PDA)、スマートフォン、または任意の他の好適な携帯用もしくは固定電子デバイスを含む、概して、コンピュータと見なされないが、好適な処理能力を伴う、デバイスで具現化されてもよい。
【0067】
また、コンピュータは、1つまたはそれを上回る入力および出力デバイスを有してもよい。これらのデバイスは、とりわけ、ユーザインターフェースを提示するために使用されることができる。ユーザインターフェースを提供するために使用されることができる出力デバイスの実施例は、出力の視覚提示のためのプリンタまたは表示画面と、出力の可聴提示のためのスピーカまたは他の音声発生デバイスとを含む。ユーザインターフェースに使用されることができる入力デバイスの実施例は、キーボードと、マウス、タッチパッド、およびデジタル化タブレット等のポインティングデバイスとを含む。別の実施例として、コンピュータは、音声認識を通して、または他の可聴形式で入力情報を受信してもよい。
【0068】
そのようなコンピュータは、企業ネットワーク等のローカルエリアネットワークまたは広域ネットワーク、およびインテリジェントネットワーク(IN)もしくはインターネットを含む、任意の好適な形態の1つまたはそれを上回るネットワークによって、相互接続されてもよい。そのようなネットワークは、任意の好適な技術に基づいてもよく、任意の好適なプロトコルに従って動作してもよく、無線ネットワーク、有線ネットワーク、または光ファイバネットワークを含んでもよい。
【0069】
本明細書で概説される(例えば、上記で開示される結合構造および回折光学要素を設計して作製する)種々の方法またはプロセスは、種々のオペレーティングシステムもしくはプラットフォームのうちのいずれか1つを採用する、1つまたはそれを上回るプロセッサ上で実行可能であるソフトウェアとしてコード化されてもよい。加えて、そのようなソフトウェアは、いくつかの好適なプログラミング言語および/またはプログラミングもしくはスクリプト作成ツールのうちのいずれかを使用して書かれてもよく、また、フレームワークまたは仮想マシン上で実行される実行可能機械言語コードもしくは中間コードとしてコンパイルされてもよい。
【0070】
この点に関して、種々の発明の概念が、1つまたはそれを上回るコンピュータもしくは他のプロセッサ上で実行されると、上記で議論される本発明の種々の実施形態を実装する方法を行う、1つまたはそれを上回るプログラムでエンコードされる、コンピュータ可読記憶媒体(または複数のコンピュータ可読記憶媒体)(例えば、コンピュータメモリ、1つまたはそれを上回るフロッピー(登録商標)ディスク、コンパクトディスク、光ディスク、磁気テープ、フラッシュメモリ、フィールドプログラマブルゲートアレイもしくは他の半導体デバイス内の回路構成、または他の非一過性の媒体もしくは有形コンピュータ記憶媒体)として具現化されてもよい。1つまたは複数のコンピュータ可読媒体は、その上に記憶された1つまたは複数のプログラムが、上記で議論されるような本発明の種々の側面を実装するために1つまたはそれを上回る異なるコンピュータもしくは他のプロセッサ上にロードされることができるように、可搬型であり得る。
【0071】
「プログラム」または「ソフトウェア」という用語は、上記で議論されるような実施形態の種々の側面を実装するようにコンピュータもしくは他のプロセッサをプログラムするために採用されることができる、任意のタイプのコンピュータコードまたはコンピュータ実行可能命令のセットを指すために、一般的な意味において本明細書で使用される。加えて、一側面によると、実行されると本発明の方法を行う、1つまたはそれを上回るコンピュータプログラムは、単一のコンピュータもしくはプロセッサ上に常駐する必要はないが、本発明の種々の側面を実装するように、いくつかの異なるコンピュータまたはプロセッサの間でモジュール様式において分配され得ることを理解されたい。
【0072】
コンピュータ実行可能命令は、1つまたはそれを上回るコンピュータもしくは他のデバイスによって実行される、プログラムモジュール等の多くの形態であってもよい。概して、プログラムモジュールは、特定のタスクを行う、または特定の抽象データ型を実装する、ルーチン、プログラム、オブジェクト、コンポーネント、データ構造等を含む。典型的には、プログラムモジュールの機能性は、種々の実施形態では、所望に応じて組み合わせられてもよい、または分散されてもよい。
【0073】
また、データ構造は、任意の好適な形態でコンピュータ可読媒体の中に記憶されてもよい。例証を簡単にするために、データ構造は、データ構造内の場所を通して関連するフィールドを有することが示されてもよい。そのような関係は、同様に、フィールド間の関係を伝えるコンピュータ可読媒体内の場所を伴うフィールドのために記憶を割り当てることによって、達成されてもよい。しかしながら、任意の好適な機構が、データ要素間の関係を確立するポインタ、タグ、または他の機構の使用を通すことを含み、データ構造のフィールド内の情報間の関係を確立するために使用されてもよい。
【0074】
また、種々の発明の概念が、1つまたはそれを上回る方法として具現化されてもよく、その実施例が提供されている。方法の一部として行われる行為は、任意の好適な方法で順序付けられてもよい。故に、例証的実施形態では順次行為として示されるが、いくつかの行為を同時に行うことを含み得る、図示されるものと異なる順序で行為が行われる、実施形態が構築されてもよい。
【0075】
本明細書で定義および使用されるような全ての定義は、辞書の定義、参照することによって組み込まれる文献の定義、および/または定義された用語の通常の意味よりも優先されると理解されるべきである。
【0076】
本明細書で使用されるような不定冠詞「a」および「an」は、対照的に明確に示されない限り、「少なくとも1つ」を意味すると理解されるべきである。参照数値指示に関連して本明細書で使用されるような「約」、「およそ」、および「実質的に」という用語は、その参照数値指示の最大でプラスマイナス10%まで参照数値指示を意味する。例えば、「約50」単位または「およそ50」単位という用語は、45単位~55単位を意味する。そのような変動は、製造公差または他の実用的考慮事項(例えば、測定器具と関連付けられる公差、許容人為的誤差、もしくは同等物等)に起因し得る。
【0077】
明細書で使用されるような「および/または」という語句は、そのように結合された要素の「いずれか一方または両方」、すなわち、ある場合には接合的に存在し、他の場合においては離接的に存在する要素を意味すると理解されるべきである。「および/または」で列挙される複数の要素は、同じように、すなわち、そのように結合された要素のうちの「1つまたはそれを上回る」と解釈されるべきである。「および/または」節によって具体的に識別される要素以外に、具体的に識別される要素に関係しようと、無関係であろうと、他の要素が、随意に存在してもよい。したがって、非限定的実施例として、「Aおよび/またはB」の言及は、「~を備える」等の制約のない用語と併せて使用されると、一実施形態ではAのみ(随意に、B以外の要素を含む)、別の実施形態ではBのみ(随意に、A以外の要素を含む)、さらに別の実施形態ではAおよびBの両方(随意に、他の要素を含む)等を指すことができる。
【0078】
本明細書で使用されるように、「または」は、上記で定義されるような「および/または」と同一の意味を有すると理解されたい。例えば、リスト内の項目を分離するとき、「または」もしくは「および/または」は、包括的である、すなわち、少なくとも1つの包含であるが、また、いくつかの要素または要素のリストのうちの1つを上回るもの、随意に、付加的な列挙されていない項目を含むと解釈されるものとする。対照的に明確に示される、「~のうちの1つのみ」または「~のうちの正確に1つ」等の「のみ」の用語、もしくは請求項で使用されるときに、「~から成る」は、いくつかの要素または要素のリストのうちの正確に1つの要素の包含を指すであろう。一般に、本明細書で使用されるような用語「または」は、「いずれか」、「~のうちの1つ」、「~のうちの1つのみ」、または「~のうちの正確に1つ」等の排他性の用語が先行するときに、排他的代替物(すなわち、「両方ではなく一方または他方」)を示すとしてのみ解釈されるものとする。「本質的に~から成る」は、請求項で使用されるとき、特許法の分野で使用されるようなその通常の意味を有するものとする。
【0079】
本明細書で使用されるように、「少なくとも1つ」という語句は、1つまたはそれを上回る要素のリストを参照して、要素のリストの中の要素のうちのいずれか1つまたはそれを上回るものから選択される少なくとも1つの要素を意味するが、要素のリスト内に具体的に列挙されたあらゆる要素のうちの少なくとも1つを必ずしも含まず、要素のリストの中の要素の任意の組み合わせを排除しないと理解されるべきである。本定義はまた、具体的に識別されるこれらの要素に関係しようと、無関係であろうと、「少なくとも1つ」という語句が指す、要素のリスト内で具体的に識別される要素以外の要素が、随意に、存在し得ることも許容する。したがって、非限定的実施例として、「AおよびBのうちの少なくとも1つ」(もしくは同等に「AまたはBのうちの少なくとも1つ」、もしくは同等に「Aおよび/またはBのうちの少なくとも1つ」)は、一実施形態では、いずれのBも存在しない、随意に、1つを上回るものを含む、少なくとも1つのA(および随意に、B以外の要素を含む)、別の実施形態では、いずれのAも存在しない、随意に、1つを上回るものを含む、少なくとも1つのB(および随意に、A以外の要素を含む)、さらに別の実施形態では、随意に、1つを上回るものを含む、少なくとも1つのA、および随意に、1つを上回るものを含む、少なくとも1つのB(および随意に、他の要素を含む)等を指すことができる。
【0080】
「comprising(~を備える)」、「including(~を含む)」、「carrying(~を含む)」、「having(~を有する)」、「containing(~を含有する)」、「involving(~を伴う)」、「holding(~を保持する)」、「composed of(~から構成される)」、および同等物等の全ての移行句は、制約がない、すなわち、「~を含むが、それに限定されない」を意味すると理解されるべきである。米国特許商標庁の米国特許審査手続便覧の第2111.03節に記載されている通り、「consisting of(~から成る)」および「consisting essentially of(本質的に~から成る)」という移行句のみが、それぞれ、制約的または半制約な移行句であるものとする。