IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱電機株式会社の特許一覧 ▶ 三菱電機ビルテクノサービス株式会社の特許一覧

<>
  • 特許-空調システム 図1
  • 特許-空調システム 図2
  • 特許-空調システム 図3
  • 特許-空調システム 図4
  • 特許-空調システム 図5
  • 特許-空調システム 図6
  • 特許-空調システム 図7
  • 特許-空調システム 図8
  • 特許-空調システム 図9
  • 特許-空調システム 図10
  • 特許-空調システム 図11
  • 特許-空調システム 図12
  • 特許-空調システム 図13
  • 特許-空調システム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-07
(45)【発行日】2023-12-15
(54)【発明の名称】空調システム
(51)【国際特許分類】
   F24F 11/83 20180101AFI20231208BHJP
   F24F 11/64 20180101ALI20231208BHJP
   F24F 11/84 20180101ALI20231208BHJP
   F24F 140/12 20180101ALN20231208BHJP
【FI】
F24F11/83
F24F11/64
F24F11/84
F24F140:12
【請求項の数】 14
(21)【出願番号】P 2018213891
(22)【出願日】2018-11-14
(65)【公開番号】P2020079689
(43)【公開日】2020-05-28
【審査請求日】2021-11-08
(73)【特許権者】
【識別番号】000006013
【氏名又は名称】三菱電機株式会社
(73)【特許権者】
【識別番号】000236056
【氏名又は名称】三菱電機ビルソリューションズ株式会社
(74)【代理人】
【識別番号】110001461
【氏名又は名称】弁理士法人きさ特許商標事務所
(72)【発明者】
【氏名】玉木 章吾
(72)【発明者】
【氏名】富塚 博
(72)【発明者】
【氏名】鹿野 智裕
(72)【発明者】
【氏名】西村 道生
【審査官】安島 智也
(56)【参考文献】
【文献】特開平08-271011(JP,A)
【文献】特開2003-106731(JP,A)
【文献】特開2009-198021(JP,A)
【文献】国際公開第2017/204287(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F24F 11/00 - 11/89
(57)【特許請求の範囲】
【請求項1】
熱媒体を冷却または加熱する熱源ユニットと、
往管と還管とにより前記熱源ユニットに接続される複数の利用ユニットと、
前記熱媒体を前記往管および前記還管との間で循環させる利用側ポンプと、
複数の前記利用ユニットを流れる熱媒体の合計流量である負荷流量を検出する負荷流量計と、
前記往管および前記還管を流れる前記熱媒体の制御対象量に基づいて、前記利用側ポンプを制御する制御装置と、を備え、
前記制御装置は、
制御目標値を含む運転状態を、異なる負荷流量毎に複数記憶する記憶部を有し、
前記負荷流量計で検出された負荷流量と、前記記憶部に記憶される前記複数の運転状態の負荷流量とを比較して、前記制御対象量の制御目標値を求め、
前記制御対象量が前記制御目標値となるように前記利用側ポンプを制御するものであり、
前記複数の運転状態は、前記複数の利用ユニットの全てが運転されて取得される第1運転状態と、前記複数の利用ユニットのうち1台のみが運転されて取得される第2運転状態とを含み、前記第1運転状態に含まれる制御目標値である第1制御目標値は、運転される前記複数の利用ユニットの全ての利用流量又は利用差圧が目標範囲内となった場合の制御目標値の最小値であることを特徴とする空調システム。
【請求項2】
前記制御対象量は、前記還管に接続される第1往路ヘッダと前記往管に接続される第2往路ヘッダの間の送水差圧、または前記往管の往水圧力であることを特徴とする請求項1に記載の空調システム。
【請求項3】
前記第1運転状態は、前記第1制御目標値および第1負荷流量を含み、
前記第2運転状態は、前記第1運転状態よりも小さい負荷における第2制御目標値および第2負荷流量を含むものであり
前記制御装置は、前記第1負荷流量および前記第2負荷流量に対する前記第1制御目標値および前記第2制御目標値の特性線に基づいて、前記制御目標値を求めることを特徴とする請求項1または2に記載の空調システム。
【請求項4】
前記制御装置は、
前記負荷流量計で検出された負荷流量が前記第1負荷流量より少なく、前記第2負荷流量より多い場合は、前記第1制御目標値と前記第2制御目標値との線形補間により前記制御目標値を求めることを特徴とする請求項3に記載の空調システム。
【請求項5】
前記制御装置は、
前記負荷流量計で検出された負荷流量が前記第1負荷流量以上の場合は、前記第1制御目標値を前記制御目標値とし、
前記負荷流量計で検出された負荷流量が前記第2負荷流量以下の場合は、前記第2制御目標値を前記制御目標値とすることを特徴とする請求項4に記載の空調システム。
【請求項6】
前記複数の運転状態は、試運転時に取得され、前記記憶部に記憶されることを特徴とする請求項1~5の何れか一項に記載の空調システム。
【請求項7】
前記複数の運転状態は、前記複数の利用ユニットのうち、運転している利用ユニットにおける利用制御対象量が利用設定値以上となっている場合に取得されるものであることを特徴とする請求項1~6の何れか一項に記載の空調システム。
【請求項8】
前記利用制御対象量は、前記運転している利用ユニットの利用流量、または利用差圧であることを特徴とする請求項7に記載の空調システム。
【請求項9】
前記複数の利用ユニットは、利用熱交換器と流量調整弁とをそれぞれ含み、
前記第2運転状態の取得時には、前記複数の利用ユニットのうち、前記第1運転状態の取得時に、前記流量調整弁の開度が最も大きい利用ユニットが運転されることを特徴とする請求項に記載の空調システム。
【請求項10】
前記第2運転状態の取得時には、前記複数の利用ユニットのうち、前記第1運転状態の取得時に、利用差圧が最も小さい利用ユニットが運転されることを特徴とする請求項に記載の空調システム。
【請求項11】
前記熱源ユニットは、前記熱媒体を冷却する第1熱源ユニットと、前記熱媒体を加熱する第2熱源ユニットと、を含み、
前記利用側ポンプは、前記第1熱源ユニットに接続される第1利用側ポンプと、前記第2熱源ユニットに接続される第2利用側ポンプと、を含むものであり、
前記空調システムは、
前記第1熱源ユニット、前記第1利用側ポンプ、前記複数の利用ユニットを有する冷却回路と、
前記第2熱源ユニット、前記第2利用側ポンプ、前記複数の利用ユニットを有する加熱回路と、を備え、
前記制御装置は、
前記冷却回路における前記複数の運転状態と、前記加熱回路における前記複数の運転状態と、を予め取得することを特徴とする請求項1~10の何れか一項に記載の空調システム。
【請求項12】
前記複数の利用ユニットは、少なくとも一つの第1利用ユニットと、少なくとも一つの第2利用ユニットとを含み、
前記第1利用ユニットは、前記第1熱源ユニットと前記第2熱源ユニットとの何れかに切替えられて接続される利用熱交換器を含み、
前記第2利用ユニットは、前記第1熱源ユニットに接続される第1利用熱交換器と、前記第2熱源ユニットに接続される第2利用熱交換器と、を含み、
前記制御装置は、
前記冷却回路において前記第2利用ユニットのみが運転している場合の前記複数の運転状態と、前記加熱回路において前記第2利用ユニットのみが運転している場合の前記複数の運転状態と、を予め取得することを特徴とする請求項11に記載の空調システム。
【請求項13】
熱媒体を冷却または加熱する熱源ユニットと、
往管と還管とにより前記熱源ユニットに接続される複数の利用ユニットと、
前記熱媒体を前記往管および前記還管との間で循環させる利用側ポンプと、
前記往管および前記還管を流れる前記熱媒体の制御対象量に基づいて、前記利用側ポンプを制御する制御装置と、を備え、
前記制御装置は、
制御目標値を含む運転状態を、異なる負荷毎に複数記憶する記憶部を有し、
前記記憶部に記憶される前記複数の運転状態に基づいて、前記制御対象量の制御目標値を求め、
前記制御対象量が前記制御目標値となるように前記利用側ポンプを制御するものであり、
前記複数の利用ユニットは、利用熱交換器と流量調整弁とをそれぞれ含み、
前記複数の運転状態は、前記複数の利用ユニットの全てが運転されて取得される第1運転状態と、前記複数の利用ユニットのうち1台のみが運転されて取得される第2運転状態とを含み、
前記第2運転状態の取得時には、前記複数の利用ユニットのうち、前記第1運転状態の取得時に、前記流量調整弁の開度が最も大きい利用ユニットが運転されることを特徴とする空調システム。
【請求項14】
熱媒体を冷却または加熱する熱源ユニットと、
往管と還管とにより前記熱源ユニットに接続される複数の利用ユニットと、
前記熱媒体を前記往管および前記還管との間で循環させる利用側ポンプと、
前記往管および前記還管を流れる前記熱媒体の制御対象量に基づいて、前記利用側ポンプを制御する制御装置と、を備え、
前記制御装置は、
制御目標値を含む運転状態を、異なる負荷毎に複数記憶する記憶部を有し、
前記記憶部に記憶される前記複数の運転状態に基づいて、前記制御対象量の制御目標値を求め、
前記制御対象量が前記制御目標値となるように前記利用側ポンプを制御するものであり、
前記複数の運転状態は、前記複数の利用ユニットの全てが運転されて取得される第1運転状態と、前記複数の利用ユニットのうち1台のみが運転されて取得される第2運転状態とを含み、
前記第2運転状態の取得時には、前記複数の利用ユニットのうち、前記第1運転状態の取得時に、利用差圧が最も小さい利用ユニットが運転されることを特徴とする空調システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱源ユニットで加熱または冷却された熱媒体により、室内空気を温調する空調システムに関するものである。
【背景技術】
【0002】
従来、熱源ユニットにおいて水などの熱媒体の温度を調節し、利用ユニットに送水することで、利用ユニットに流れる空気に熱を伝え、室内を温調する空調システムが提案されている。このような空調システムにおいて、例えば特許文献1では、利用ユニットである各負荷機器におけるバルブ差圧に基づいて、熱源機から負荷機器への冷温水の送水圧を設定することが提案されている。
【0003】
具体的には、特許文献1に記載の制御装置は、各負荷機器におけるバルブ差圧を取得し、取得したバルブ差圧から最小差圧を抽出する。そして、抽出した最小差圧が予め定められた値以上となるように、熱源機から負荷機器への冷温水の送水圧を設定する。これにより、例えば、末端の負荷機器が低負荷であり、他の負荷機器での負荷要求が大きい場合、負荷要求が大きい負荷機器のバルブ差圧が最小差圧となれば、この最小差圧が所定の値以上となるように熱源機から負荷機器への冷温水の送水圧が設定される。その結果、末端の負荷機器の低負荷時に、負荷要求が大きい他の負荷機器の差圧が不足するという問題を生じさせることなく、低負荷時の二次ポンプの消費電力の削減を図ることができる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2009-236465号公報(図3
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載されるように送水圧を制御する場合、通常の冷却または加熱運転中に、制御装置が、制御間隔毎に全ての負荷機器におけるバルブ差圧を取得しなければならない。そのため、各負荷機器と制御装置との間の通信量が増加する。特に、熱媒体に水を用いた空調システムは、大型ビルなどに設置されるセントラル空調に使用されることが多く、多くの負荷機器が用いられる。この場合は、通信量の増加により、制御装置の処理負担が増加するとともに、制御の遅延を招く恐れがある。
【0006】
本発明は上記のような課題を解決するものであり、通信量の増加を招くことなく、負荷状況に応じた制御を行うことができる空調システムを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の空調システムは、熱媒体を冷却または加熱する熱源ユニットと、往管と還管とにより熱源ユニットに接続される複数の利用ユニットと、熱媒体を往管および還管との間で循環させる利用側ポンプと、複数の利用ユニットを流れる熱媒体の合計流量である負荷流量を検出する負荷流量計と、往管および還管を流れる熱媒体の制御対象量に基づいて、利用側ポンプを制御する制御装置と、を備え、制御装置は、制御目標値を含む運転状態を、異なる負荷流量毎に複数記憶する記憶部を有し、負荷流量計で検出された負荷流量と、記憶部に記憶される複数の運転状態の負荷流量とを比較して、制御対象量の制御目標値を求め、制御対象量が制御目標値となるように利用側ポンプを制御するものであり、複数の運転状態は、複数の利用ユニットの全てが運転されて取得される第1運転状態と、複数の利用ユニットのうち1台のみが運転されて取得される第2運転状態とを含み、第1運転状態に含まれる制御目標値である第1制御目標値は、運転される複数の利用ユニットの全ての利用流量又は利用差圧が目標範囲内となった場合の制御目標値の最小値である
【発明の効果】
【0008】
本発明によれば、記憶される複数の運転状態に基づいて、制御対象量の制御目標値を求め、制御対象量が制御目標値となるように利用側ポンプを制御することで、制御間隔毎に利用ユニットの運転状態を受信する必要がない。そのため、利用ユニットの台数が多い場合でも、通信量の増加を招くことなく、負荷状況に応じた制御を行うことができる。
【図面の簡単な説明】
【0009】
図1】実施の形態1における空調システムの概略構成図である。
図2】実施の形態1における空調システムの制御ブロック図である。
図3】実施の形態1における運転状態取得処理のフローチャートである。
図4】実施の形態1における第1運転状態取得処理のフローチャートである。
図5】実施の形態1における第1運転状態の一例である。
図6】実施の形態1における第2運転状態取得処理のフローチャートである。
図7】実施の形態1における送水圧制御のフローチャートである。
図8】実施の形態1における目標差圧値の決定方法を説明する図である。
図9】実施の形態2における空調システムの概略構成図である。
図10】実施の形態2における第1運転状態取得処理のフローチャートである。
図11】実施の形態2における第2運転状態取得処理のフローチャートである。
図12】実施の形態3における空調システムの概略構成図である。
図13】実施の形態3における運転状態取得処理のフローチャートである。
図14】変形例1における目標差圧値の決定方法を説明する図である。
【発明を実施するための形態】
【0010】
以下、図面に基づいて本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
【0011】
実施の形態1.
図1は、実施の形態1における空調システム100の概略構成図である。空調システム100は、ビルなどの商業建物に設置され、室内空気を温調することができるシステムである。
【0012】
<システム構成>
図1に示すように、空調システム100は、熱源ユニット301と、熱源側ポンプ9と、利用側ポンプ1と、バイパス弁2と、複数の利用ユニット302A、302B、302Cおよび302Dとを備える。なお、以下の説明において複数の利用ユニット302A、302B、302Cおよび302Dを区別しない場合、「利用ユニット302」と称することがある。熱源ユニット301、熱源側ポンプ9、利用側ポンプ1、バイパス弁2、および利用ユニット302は、配管で接続され、熱媒体回路を構成する。熱媒体回路内には、熱源側ポンプ9および利用側ポンプ1によって熱媒体が循環される。本実施の形態における熱媒体は、水である。空調システム100では、室内に設置された吸込口からダクトを介して室内空気が利用ユニット302に供給され、利用ユニット302で温調された空気がダクトを介して吹出口から室内に供給されることで、室内空気が温調される。
【0013】
熱源ユニット301は、熱媒体回路を循環する熱媒体を加熱または冷却する、例えば空気熱源ヒートポンプである。熱源ユニット301は、例えば屋上などの室外に設置される。熱源ユニット301の配管出口には、設置場所の熱媒体温度を検出する温度センサ205が設けられる。
【0014】
熱源側ポンプ9は還路ヘッダ16から第1往路ヘッダ14までの熱源側における熱媒体の搬送を担うものである。熱源側ポンプ9は、渦巻き式のポンプであり、熱源ユニット301の運転動作によりON/OFF制御される。また、還路ヘッダ16に接続される配管8には、熱媒体の負荷流量を検出する負荷流量計202が設けられる。負荷流量は、熱媒体回路に含まれる利用ユニット302を流れる熱媒体の合計流量である。
【0015】
利用側ポンプ1は、第1往路ヘッダ14から利用ユニット302を経由して還路ヘッダ16までの空調負荷側における熱媒体の搬送を担うものである。利用側ポンプ1は、渦巻き式のポンプであり、インバータ(図示せず)に接続され、空調システム100の運転状態により回転数が制御される。
【0016】
バイパス弁2は、第2往路ヘッダ15の圧力を調整するものであり、第1往路ヘッダ14と第2往路ヘッダ15との間の送水差圧が、後述する目標差圧値より大きくなった際に、開度が制御される。また、第1往路ヘッダ14と第2往路ヘッダ15の間には、送水差圧を検出する差圧計201が設けられる。
【0017】
複数の利用ユニット302A、302B、302Cおよび302Dは、ビル建物内の機械室などに設置される、例えばエアーハンドリングユニットである。本実施の形態では、4台の利用ユニット302を備える構成としたが、3台以下または5台以上であってもよい。複数の利用ユニット302Aは、配管3、4A、4B、4Cおよび4Dを含む往管と、配管8、7A、7B、7Cおよび7Dを含む還管とにより熱源ユニット301に接続される。
【0018】
複数の利用ユニット302A、302B、302Cおよび302Dは、それぞれ利用熱交換器5A、5B、5Cおよび5Dと、流量調整弁6A、6B、6Cおよび6Dと、を備える。なお、以下の説明において利用熱交換器5A、5B、5Cおよび5Dを区別しない場合「利用熱交換器5」と称し、流量調整弁6A、6B、6Cおよび6Dを区別しない場合「流量調整弁6」と称することがある。
【0019】
利用熱交換器5A、5B、5Cおよび5Dは例えばフィンチューブ型の熱交換器であり、熱媒体と空気との間で熱交換を行う。利用熱交換器5A、5B、5Cおよび5Dの吸込側には、設置場所の空気温度を検出する温度センサ204A、204B、204Cおよび204Dがそれぞれ設置される。
【0020】
流量調整弁6A、6B、6Cおよび6Dは、例えば電動二方弁であり、開度を連続的に変更することができる。流量調整弁6A、6B、6Cおよび6Dの出口には、熱媒体の利用流量を計測する利用流量計207A、207B、207Cおよび207Dがそれぞれ設けられる。利用流量は、利用ユニット302A、302B、302Cおよび302Dをそれぞれ流れる熱媒体の流量である。また、利用熱交換器5A、5B、5Cおよび5Dの入口と流量調整弁6A、6B、6Cおよび6Dの出口との間には、熱媒体の利用差圧を検出する差圧計206A、206B、206Cおよび206Dがそれぞれ設けられる。利用差圧は、利用ユニット302の入口における熱媒体の圧力と出口における熱媒体の圧力の差である。
【0021】
また、空調システム100は、送水制御装置303と、複数の利用ユニット302A、302B、302Cおよび302Dにそれぞれ設けられる利用制御装置313A、313B、313Cおよび313Dと、モニター装置323とを備える。図2は、実施の形態1における空調システム100の制御ブロック図である。図2では、利用制御装置313A、313B、313Cおよび313Dのうち、利用制御装置313Aのみを図示し、利用制御装置313B、313Cおよび313Dについては図示を省略している。利用制御装置313B、313Cおよび313Dの構成は、利用制御装置313Aと同じである。
【0022】
送水制御装置303は、熱源側ポンプ9、利用側ポンプ1およびバイパス弁2を制御して、熱媒体の流水状態を調節する制御装置である。送水制御装置303は、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)、もしくはこれらの組み合わせで構成される。送水制御装置303は、送水測定部102と、送水演算部103と、送水制御部104と、送水記憶部105と、送水通信部106と、送水入力部107とを有する。
【0023】
送水測定部102は、負荷流量計202、差圧計201および温度センサ205によって検出された各測定値を取得し、送水演算部103に出力する。送水演算部103は、入力された情報に基づき、制御対象量、制御目標値および種々の制御パラメータを演算し、送水制御部104に出力する。送水制御部104は、制御対象量、制御目標値および制御パラメータに基づいて、熱源側ポンプ9、利用側ポンプ1およびバイパス弁2を制御する。送水測定部102、送水演算部103、送水制御部104は、送水制御装置303のCPUによりプログラムが実行されることで実現される機能部、または個別もしくは一つのハードウェアで実現されるものである。
【0024】
送水記憶部105は半導体メモリなどによって構成され、設定値および制御目標値などを記憶する。また、送水記憶部105は、後述する複数の運転状態を記憶する。複数の運転状態は、第1運転状態と第2運転状態とを含む。また、送水通信部106は、無線通信モジュールなどによって構成され、無線によってモニター装置323との間で各種情報を送受信する。なお、送水通信部106は、モニター装置323と有線通信を行う有線通信モジュールであってもよい。送水入力部107は、送水通信部106で受信した各種情報の送水制御装置303への入力を受け付ける。
【0025】
利用制御装置313Aは、流量調整弁6Aを制御する制御装置である。利用制御装置313Aは、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)、もしくはこれらの組み合わせで構成される。利用制御装置313Aは、利用測定部112と、利用演算部113と、利用制御部114と、利用記憶部115と、利用通信部116と、利用入力部117とを有する。
【0026】
利用測定部112は、温度センサ204Aによって検出された測定値を取得し、利用演算部113に出力する。利用演算部113は、入力された情報に基づき、種々の制御パラメータを演算し、利用制御部114に出力する。利用制御部114は、制御パラメータに基づいて、流量調整弁6Aを制御する。利用測定部112、利用演算部113および利用制御部114は、利用制御装置313AのCPUによりプログラムが実行されることで実現される機能部、または個別もしくは一つのハードウェアで実現されるものである。
【0027】
利用記憶部115は半導体メモリなどによって構成され、設定値および制御目標値などを記憶する。また、利用通信部116は、無線通信モジュールなどによって構成され、無線によってモニター装置323との間で各種情報を送受信する。なお、利用通信部116は、モニター装置323と有線通信を行う有線通信モジュールであってもよい。利用入力部117は、利用通信部116で受信した各種情報の利用制御装置313Aへの入力を受け付ける。
【0028】
モニター装置323は建物に設置されている機器の運転状態を表示し、異常がないかをチェックするための中央監視システムの一部に搭載されるものである。これにより、建物管理者が運転状態を監視できる。モニター装置323は、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)、もしくはこれらの組み合わせで構成される。なお、建物が小規模の場合は、モニター装置323は、スタッフルームに設置のデスクトップPCに搭載されてもよい。また、外部保守業者が定期メンテナンスで自由に使えるように、モニター装置323をノートPCまたはタブレットPCに搭載してもよい。
【0029】
モニター装置323は、モニター記憶部125と、モニター通信部126と、モニター表示部128と、モニター入力部127とを有する。モニター記憶部125は、半導体メモリなどによって構成され、試運転時の利用ユニット302の運転状態を記憶する。モニター通信部126は、無線通信モジュールなどによって構成され、無線によって送水制御装置303および利用制御装置313A、313B、313Cおよび313Dとの間で各種情報を送受信する。なお、モニター通信部126は、有線通信を行う有線通信モジュールであってもよい。モニター表示部128は、液晶ディスプレイなどで構成され、送水通信部106と利用通信部116から送信された運転情報を、モニター通信部126を介して受信し、利用者に対して表示する。モニター入力部127は、キーボードまたはタッチパネルなどで構成され、利用者からの操作指示を受け付ける。
【0030】
<運転動作>
次に空調システム100の通常運転時の運転動作について説明する。通常運転は、何れか一つ以上の利用ユニット302が冷房運転を実施する場合に開始される冷却運転と、何れか一つ以上の利用ユニット302が暖房運転を実施する場合に開始される加熱運転とを含む。以下では、利用ユニット302Aと302Bとが冷却運転を実施し、利用ユニット302Cと302Dとが停止している場合の運転状態について、図1を参照して説明する。空調システム100の熱媒体回路を流れる熱媒体は、熱源側ポンプ9により搬送され、熱源ユニット301にて冷却される。ここで、熱源側ポンプ9の回転数は運転状態によらず一定速(固定値)とされる。また、熱源ユニット301は、温度センサ205により検出される熱源出口水温が設定水温(例えば7℃)となるように熱源ユニット301の制御装置(図示せず)により制御される。
【0031】
熱源ユニット301にて冷却された熱媒体は、第1往路ヘッダ14に流入し、配管10または利用側ポンプ1へと分流される。利用側ポンプ1に流入した熱媒体は押し出された後、第2往路ヘッダ15にて、バイパス弁2または配管3に分配される。ここで、利用側ポンプ1の回転数およびバイパス弁2の開度は、熱媒体の制御対象量が制御目標値となるように、送水制御装置303に制御される。本実施の形態では、差圧計201によって検出される第2往路ヘッダ15と第1往路ヘッダ14との間の送水差圧が制御対象量であり、目標差圧値(例えば200kPa)が制御目標値である。目標差圧値は、試運転時に予め取得され、送水記憶部105に記憶される第1運転状態および第2運転状態に基づいて決定される。目標差圧値の決定方法については、後ほど詳述する。
【0032】
バイパス弁2に流入した熱媒体は、バイパス弁2を通過後に第1往路ヘッダ14で第1往路ヘッダ14に流入する熱媒体と合流する。一方、配管3に流入した熱媒体は、配管4Aおよび4Bに流入し、利用熱交換器5Aおよび5Bにて室内から供給された空気を冷却する。そして、利用熱交換器5Aおよび5Bを流出した熱媒体は、流量調整弁6Aおよび6Bをそれぞれ通過した後、配管7Aおよび7Bを通過して、配管8で合流する。流量調整弁6Aおよび6Bは、温度センサ204で検出される吸込温度が室内設定温度と等しくなるように制御される。流量調整弁6Cおよび6Dは、利用ユニット302Cおよび302Dが停止となっているため、全閉開度(例えば開度0%)となっている。
【0033】
その後、合流した熱媒体は、配管8を通過し、還路ヘッダ16にて配管10を流れる熱媒体と合流して、熱源側ポンプ9へ流入し、熱媒体回路内を循環する。なお、何れか一つ以上の利用ユニット302にて暖房運転となった場合に開始される加熱運転についても熱媒体の流れは同様である。
【0034】
<試運転>
本実施の形態では、図2に示しているとおり、送水制御装置303と利用制御装置313A、313B、313Cおよび313Dとの間で通信を行うものではない。すなわち、本実施の形態では、通常運転中は、利用ユニット302の負荷流量などの運転状態を送水制御装置303は取得できない。このような構成において、利用ユニット302の運転状態に応じて、熱媒体回路を制御するための手法について以下に説明する。
【0035】
上記のように、通常運転時には、送水制御装置303と利用制御装置313A、313B、313Cおよび313Dとの間で運転状態の通信は行われない。そのため、本実施の形態では、空調システム100の初期設置時、または半年もしくは1年毎などの定期点検時に作業者により試運転を実施する。そして、モニター装置323によって、試運転時における運転状態を、送水制御装置303および利用制御装置313A~313Dから取得する。なお、利用ユニット302の運転状態は、利用制御装置313A、313B、313Cおよび313Dそれぞれの利用通信部116から送信し、モニター通信部126にて受信し、作業者がモニター表示部128で表示確認できる。そして、モニター装置323は、試運転時に取得した運転状態を送水制御装置303へ送信し、送水制御装置303は、運転状態に基づいて通常運転時の熱媒体の搬送制御を行う。
【0036】
なお、通常運転時においては、利用ユニット302の流量調整弁6では、吸込温度が室内設定温度と等しくなるように制御されているが、試運転時には、利用制御対象量が利用設定値以上となるように制御される。本実施の形態では、利用流量計207A、207B、207Cおよび207Dによって検出される利用ユニット302の利用流量が利用制御対象量であり、利用流量の目標値である目標利用流量値が利用設定値である。
【0037】
図3は、実施の形態1における運転状態取得処理のフローチャートである。本処理は、試運転時において、モニター装置323により実行される。本処理では、まず、第1運転状態を取得するための第1運転状態取得処理が行われる(S1)。第1運転状態は、利用ユニット302を流れる熱媒体量が多い場合、すなわち高負荷時における運転状態である。第1運転状態は、第1制御目標値T1および第1負荷流量M1を含む。第1運転状態取得処理については、後ほど詳述する。
【0038】
続いて、第2運転状態を取得するための第2運転状態取得処理が行われる(S2)。第2運転状態は、利用ユニット302を流れる熱媒体量が少ない場合、すなわち低負荷時における運転状態である。第2運転状態は、第2制御目標値T2および第2負荷流量M2を含む。第2運転状態取得処理については、後ほど詳述する。
【0039】
そして、取得した第1運転状態と第2運転状態とが送水制御装置303に送信され(S3)、本処理を終了する。第1運転状態と第2運転状態とは、モニター通信部126から送水通信部106に送信され、送水入力部107を介して送水制御装置303に入力され、送水記憶部105に記憶される。
【0040】
図4は、実施の形態1における第1運転状態取得処理のフローチャートである。本処理では、まず、熱媒体回路に接続されている全ての利用ユニット302が運転される(S10)。ここでは、利用ユニット302A、302B、302Cおよび302Dが冷却運転される。次に、目標範囲が設定される(S11)。目標範囲は、目標利用流量値の許容範囲を示すものであり、モニター装置323のモニター入力部127から入力され、モニター通信部126から各利用制御装置313A、313B、313Cおよび313Dの利用通信部116へ送信される。そして、利用入力部117を介して、利用記憶部115に記憶される。例として、利用ユニット302の仕様で決まる定格流量が目標利用流量値として設定される。
【0041】
次に、目標差圧値が設定される(S12)。目標差圧値は、差圧計201によって検出される第2往路ヘッダ15と第1往路ヘッダ14との間の送水差圧の目標値である。ここでは、任意の値が目標差圧値として設定される。例えば、利用側ポンプ1の仕様に応じた設計時の目標差圧を目標差圧値として設定してもよい。
【0042】
そして、全ての利用ユニット302における利用流量が目標範囲内となっているか否かが判断される(S13)。そして、利用ユニット302のうち、利用流量が目標範囲内となっていないものが一つでもある場合は(S13:NO)、目標差圧値が補正される(S14)。ここでは、例えば所定の補正値だけ目標差圧値が減少される。そして、全ての利用ユニット302における利用流量が目標範囲内になるまで、目標差圧値が補正される。
【0043】
そして、全ての利用ユニット302における利用流量が目標範囲内となった場合(S13:YES)、最小目標差圧値が探索される(S15)。ここでは、ステップS13を満たす目標差圧値の許容範囲における最小値が探索される。具体的には、最初にステップS13を満たした時の目標差圧値を許容範囲における上限と仮定し、目標差圧値をステップS14における所定の補正値よりも小さい補正値だけ減少させて、ステップS13が満たされるか否かを判断する。そして、ステップS13を満たさなくなる直前の目標差圧値を最小目標差圧値とする。
【0044】
そして、探索された最小目標差圧値が第1制御目標値T1としてモニター記憶部125に記憶される(S16)。また、最小目標差圧値となったときに負荷流量計202で検出された負荷流量が第1負荷流量M1としてモニター記憶部125に記憶される(S17)。そして、このときの利用ユニット302A、302B、302Cおよび302Dの流量調整弁6A、6B、6Cおよび6Dの開度がモニター記憶部125に記憶される(S18)。その後、本処理を終了する。
【0045】
図5は、実施の形態1における第1運転状態の一例である。負荷または目標利用流量に対して抵抗の大きい流路ほど、熱媒体を流すために流量調整弁6の開度を大きくする必要がある。そのため、流量調整弁6の開度が大きいほど、熱媒体が流れにくく負荷または目標利用流量に対して抵抗の大きい流路ということになる。第2運転状態処理では、複数の利用ユニット302のうち、負荷ないし抵抗が最も大きい1台のみを運転させ、第2運転状態を取得する。
【0046】
なお、利用ユニット302の運転台数が1台になると、全台運転している場合よりも負荷流量は少なくなる。ここで、利用ユニット302を全台運転にして、各利用ユニット302の目標利用流量値を少なくすることで、少ない負荷流量を再現する方法もある。ただし、負荷流量が同等の場合、利用ユニット302を全台運転すると、1台あたりの利用熱交換器5に流れる熱媒体の流量は少なく、利用熱交換器5にかかる差圧が小さくなるため、送水差圧が小さい場合でも、負荷流量は目標値に到達する。一方、運転する利用ユニット302を1台とすると、利用熱交換器5に流れる熱媒体の流量が多くなり、利用熱交換器5にかかる差圧が大きいため、送水差圧を大きくしないと負荷流量が目標値に到達しない。以上のことから、利用ユニット302の全台運転で送水差圧を取得すると、1台運転時に必要となる負荷流量が得られなくなり、空調冷熱が不足するため、利用ユニット302の運転台数を変更して負荷流量に対する送水差圧の状態を取得することが望ましい。
【0047】
図6は、実施の形態1における第2運転状態取得処理のフローチャートである。まず、複数の利用ユニット302のうち、第1運転状態の取得時に、流量調整弁6の開度が最も大きい利用ユニット302のみを冷却運転とし、そのほかの利用ユニット302を停止させる(S20)。以下では、モニター記憶部125に図5に示す情報が記憶されている場合を例に説明する。この場合は、利用ユニット302Aが冷却運転され、利用ユニット302B、302Cおよび302Dは停止される。なお、複数の利用ユニット302のうち、第1運転状態の取得時に、流量調整弁6の開度が最も大きい利用ユニット302が複数ある場合は、そのうちの何れか1台のみを運転させる。
【0048】
そして、第1運転状態取得処理と同様に、目標範囲が設定され(S21)、目標差圧値が設定される(S22)。例えば、第1運転状態の第1制御目標値T1を目標差圧値として設定してもよい。そして、運転している利用ユニット302Aにおける利用流量が目標範囲内となっているか否かが判断される(S23)。そして、利用ユニット302Aにおける利用流量が目標範囲内となっていない場合は(S23:NO)、目標差圧値が補正される(S24)。ここでは、例えば、所定の補正値だけ目標差圧値が減少される。そして、利用ユニット302Aにおける利用流量が目標範囲内となるまで、目標差圧値が補正される。
【0049】
利用ユニット302Aにおける利用流量が目標範囲内となった場合(S23:YES)、最小目標差圧値が探索される(S25)。ここでは、第1運転状態取得処理のステップS15と同様に、ステップS23を満たす目標差圧値の許容範囲における最小値が探索される。そして、探索された最小目標差圧値が第2制御目標値T2としてモニター記憶部125に記憶される(S26)。また、最小目標差圧値となったときに負荷流量計202で検出された負荷流量が第2負荷流量M2としてモニター記憶部125に記憶される(S27)。その後、本処理を終了する。
【0050】
<通常運転>
図7は、実施の形態1における送水圧制御のフローチャートである。本処理は、送水制御装置303によって、空調システム100の通常運転中に実施される。本処理では、まず、負荷流量計202により負荷流量が検出される(S30)。そして、検出された負荷流量が第2運転状態の第2負荷流量M2より大きいか否かが判断される(S31)。ここで、負荷流量が第2負荷流量M2以下の場合(S31:NO)、第2運転状態の第2制御目標値T2が目標差圧値とされる(S32)。
【0051】
一方、負荷流量が第2負荷流量M2より大きい場合(S31:YES)、取得した負荷流量が第1運転状態の第1負荷流量M1より小さいか否かが判断される(S33)。ここで、負荷流量が第1負荷流量M1以上の場合(S33:NO)、第1運転状態の第1制御目標値T1が目標差圧値とされる(S34)。一方、負荷流量が第2負荷流量M2より大きく、第1負荷流量M1より小さい場合(S33:YES)、下記の式から目標差圧値が求められる(S35)。
目標差圧値=(T1-T2)/(M1-M2)×(負荷流量-M2)+T2
【0052】
そして、差圧計201によって検出される第2往路ヘッダ15と第1往路ヘッダ14との間の送水差圧が目標差圧値となるように、利用側ポンプ1の回転数およびバイパス弁2の開度が制御される(S36)。その後、運転を終了するか否かが判断され(S37)、運転を終了するまで、ステップS30からS36までの処理が繰り返される。
【0053】
図8は、実施の形態1における目標差圧値の決定方法を説明する図である。図8の縦軸は目標差圧値を示し、横軸は負荷流量を示す。図8に示すように、負荷流量が第2運転状態の第2負荷流量M2以下の場合は、目標差圧値は第2運転状態の第2制御目標値T2に固定される。また、負荷流量が第2運転状態の第2負荷流量M2よりも多く、第1運転状態の第1負荷流量M1よりも少ない場合は、目標差圧値は第1運転状態の第1制御目標値T1と、第2運転状態の第2制御目標値T2との線形補間値として求められる。さらに負荷流量が第1運転状態のときの第1負荷流量M1以上の場合は、目標差圧値は第1運転状態の第1制御目標値T1に固定される。
【0054】
このように、本実施の形態では、負荷状況に応じて目標差圧値が設定されるため、低負荷時などの負荷流量が少ない場合には、送水差圧が小さくなるよう制御され、利用側ポンプ1の消費電力を減少させることができる。また、設計状態では、通常は、余裕をみて実査地の送水差圧値よりも高めに設定(設計送水差圧値)されているものであるが、本実施の形態の制御を実施することで、実際の送水差圧状態を考慮して運転動作を行なえるので利用側ポンプ1の消費電力が小さくなる。また、第2運転状態は、1台の利用ユニット302のみを運転した状態であり、負荷流量が十分に少ない場合まで制御に反映することができる。すなわち、本実施の形態では、負荷に応じて制御目標値を補正することができるため、利用側ポンプ1の消費電力を減少することができる。
【0055】
また、本実施の形態では、負荷の異なる複数の運転状態を試運転時に予め取得して記憶しておくことで、通常運転時において、送水制御装置303が各利用ユニット302から運転状態を受信しなくても、負荷流量に応じた熱媒体の搬送制御を行うことができる。これにより、利用ユニット302の台数が多い場合でも、送水制御装置303の通信量の増加を抑制でき、送水制御装置303の処理負担が軽減され、制御の遅延なども抑制できる。また、試運転時の運転状態の取得をモニター装置323で行うことにより、送水制御装置303と利用制御装置313A~313Dの間の配線などの通信設備も不要になる。その結果、配線工事および通信コストの増加を抑制できる。さらに、試運転を行って第1運転状態と第2運転状態を取得することで、配管の長さなど、実際の施工状態を反映した運転状態を取得することができる。
【0056】
実施の形態2.
実施の形態2の空調システム200について説明する。実施の形態2は、利用ユニットの構成において、実施の形態1と相違する。以下では、実施の形態1との相違点について説明する。
【0057】
<システム構成>
図9は、実施の形態2における空調システム200の概略構成図である。実施の形態2の空調システム200は、複数の利用ユニット302A、302B、302Cおよび302Dに替えて、複数の利用ユニット305A、305B、305Cおよび305Dを備える。利用ユニット305A、305B、305Cおよび305Dは、ビル建物内の機械室などに設置される、例えばファンコイルユニットである。なお、以下の説明において複数の利用ユニット305A、305B、305Cおよび305Dを区別しない場合「利用ユニット305」と称することがある。
【0058】
複数の利用ユニット305A、305B、305Cおよび305Dは、それぞれ利用熱交換器5A、5B、5Cおよび5Dと、流量調整弁13A、13B、13Cおよび13Dと、を備える。なお、以下の説明において流量調整弁13A、13B、13Cおよび13Dを区別しない場合「流量調整弁13」と称することがある。流量調整弁13A、13B、13Cおよび13Dは、電磁弁であり、利用ユニット305の冷却運転ON/OFFに対応して、利用制御装置313の利用制御部114により開路または閉路となるものである。また、本実施の形態では、利用流量計207A、207B、207Cおよび207Dは省略される。
【0059】
また、実施の形態2では、利用ユニット305の流量調整弁13は、電動二方弁ではないため、通常運転時および試運転時の両方において、利用制御対象量が利用設定値以上となるように制御される。本実施の形態では、差圧計206A、206B、206Cおよび206Dによって検出される利用差圧が利用制御対象量であり、利用差圧の目標値である目標利用差圧値が利用設定値である。目標利用差圧は各利用ユニット305の機器仕様と負荷流量から決定される。
【0060】
図10は、実施の形態2における第1運転状態取得処理のフローチャートである。まず、熱媒体回路に接続されている全ての利用ユニット305が運転される(S40)。ここでは、利用ユニット305A、305B、305Cおよび305Dが冷却運転される。次に、目標差圧値が設定される(S41)。目標差圧値は、差圧計201によって検出される第2往路ヘッダ15と第1往路ヘッダ14との間の送水差圧の目標値である。ここでは、任意の値が目標差圧値として設定される。例えば、利用側ポンプ1の仕様に応じた設計時の目標差圧を目標差圧値として設定してもよい。
【0061】
そして、全ての利用ユニット305における利用差圧が目標範囲内となっているか否かが判断される(S42)。ここで、目標範囲は、目標利用差圧値の許容範囲を示すものである。そして、利用ユニット305のうち、利用差圧が目標範囲内でなっていないものが一つでもある場合は(S42:NO)、目標差圧値が補正される(S43)。ここでは、例えば所定の補正値だけ目標差圧値が減少される。そして、全ての利用ユニット305における利用差圧が目標範囲内となるまで、目標差圧値が補正される。
【0062】
そして、全ての利用ユニット305における利用差圧が目標範囲内となった場合(S42:YES)、最小目標差圧値が探索される(S44)。ここでは、実施の形態1のステップS15と同様に、ステップS42を満たす目標差圧値の許容範囲における最小値が探索される。
【0063】
そして、探索された最小目標差圧値が第1制御目標値T1としてモニター記憶部125に記憶される(S45)。また、最小目標差圧値となったときに負荷流量計202で検出された負荷流量が第1負荷流量M1としてモニター記憶部125に記憶される(S46)。そして、第1運転状態取得時の利用ユニット305A、305B、305Cおよび305Dの利用差圧がモニター記憶部125に記憶される(S47)。その後、本処理を終了する。
【0064】
図11は、実施の形態2における第2運転状態取得処理のフローチャートである。まず、複数の利用ユニット305のうち、第1運転状態の取得時に、利用差圧が最も小さい利用ユニット305のみを冷却運転とし、そのほかの利用ユニット305を停止させる(S50)。以下では、利用ユニット305Aが冷却運転され、利用ユニット305B、305Cおよび305Dは停止される場合を例に説明する。なお、複数の利用ユニット305のうち、第1運転状態の取得時に、利用差圧が最も小さい利用ユニット305が複数ある場合は、そのうちの何れか1台のみを運転させる。
【0065】
そして、第1運転状態取得処理と同様に、目標差圧値が設定される(S51)。ここでは、例えば、第1運転状態の第1制御目標値T1を目標差圧値として設定してもよい。そして、運転している利用ユニット305Aにおける利用差圧が目標範囲内となっているか否かが判断される(S52)。そして、利用ユニット305Aの利用差圧が目標範囲内となっていない場合は(S52:NO)、目標差圧値が補正される(S53)。ここでは、例えば所定の補正値だけ目標差圧値が減少される。そして、運転している利用ユニット305Aの利用差圧が目標範囲内となるまで、目標差圧値が補正される。
【0066】
運転している利用ユニット305Aにおける利用差圧が目標範囲内となった場合(S52:YES)、最小目標差圧値が探索される(S54)。ここでは、実施の形態1のステップS15と同様に、ステップS52を満たす目標差圧値の許容範囲における最小値が探索される。そして、探索された最小目標差圧値が第2制御目標値T2としてモニター記憶部125に記憶される(S55)。また、最小目標差圧値となったときに負荷流量計202で検出された負荷流量が、第2負荷流量M2としてモニター記憶部125に記憶される(S56)。その後、本処理を終了する。
【0067】
実施の形態2においても、実施の形態1と同様に、予め取得した運転状態に応じて目標差圧値が設定されるため、低負荷時などの負荷流量が少ない場合には、送水差圧が小さくなるよう制御され、利用側ポンプ1の消費電力を減少させることができる。また、送水制御装置303が各利用ユニット305から運転状態を受信しなくても、負荷流量に応じた熱媒体の搬送制御を行うことができるため、利用ユニットの台数が多い場合も、通信量の増加を抑制することができる。
【0068】
実施の形態3.
実施の形態3の空調システム300について説明する。実施の形態3は、冷却回路と加熱回路とを備える点において、実施の形態1と相違する。以下では、実施の形態1との相違点を中心に説明する。
【0069】
<システム構成>
図12は、実施の形態3における空調システム300の概略構成図である。図12に示すように、空調システム300は、第1熱源ユニット301および第2熱源ユニット301hと、第1熱源側ポンプ9および第2熱源側ポンプ9hと、第1利用側ポンプ1および第2利用側ポンプ1hと、第1バイパス弁2および第2バイパス弁2hと、複数の第1利用ユニット302A、302Bと、複数の第2利用ユニット304Cおよび304Dとを備える。なお、以下の説明において複数の第2利用ユニット304Cおよび304Dを区別しない場合「第2利用ユニット304」と称することがある。
【0070】
第1熱源ユニット301、第1熱源側ポンプ9、第1利用側ポンプ1、第1バイパス弁2、第1利用ユニット302および第2利用ユニット304は、配管で接続され、冷却回路を構成する。また、第2熱源ユニット301h、第2熱源側ポンプ9h、第2利用側ポンプ1h、第2バイパス弁2h、第1利用ユニット302および第2利用ユニット304は、配管で接続され、加熱回路を構成する。第1熱源ユニット301、第1熱源側ポンプ9、第1利用側ポンプ1、第1バイパス弁2および第1利用ユニット302の構成は、実施の形態1と同じである。
【0071】
第2熱源ユニット301hは、熱媒体回路を循環する熱媒体を加熱する空気熱源ヒートポンプである。第2熱源ユニット301hの配管出口には、設置場所の熱媒体温度を検出する温度センサ205hが設けられる。第2熱源側ポンプ9hは、第1熱源側ポンプ9と同じ構成を有し、還路ヘッダ16hから第1往路ヘッダ14hまでの熱源側における熱媒体の搬送を担うものである。また、還路ヘッダ16hに接続される配管8hには、負荷流量を検出する負荷流量計202hが設けられる。
【0072】
第2利用側ポンプ1hは、第1利用側ポンプ1と同じ構成を有し、第1往路ヘッダ14hから第1利用ユニット302および第2利用ユニット304を経由して還路ヘッダ16hまでの空調負荷側における熱媒体の搬送を担うものである。第2バイパス弁2hは、第1バイパス弁2と同じ構成を有し、第2往路ヘッダ15hの圧力を調整するものであり、第1往路ヘッダ14hと第2往路ヘッダ15hとの間の送水差圧が、目標差圧値より大きくなった際に、開度が制御される。また、第1往路ヘッダ14hと第2往路ヘッダ15hの間には、送水差圧を検出する差圧計201hが設けられる。
【0073】
第2利用ユニット304Cおよび304Dは、熱媒体回路が2系統の4管式となっており、冷水による空気の冷却と温水による空気の加熱が独立して行われるようになっている。第2利用ユニット304Cおよび304Dは、配管3、4Cおよび4Dを含む往管と、配管8、7Cおよび7Dを含む還管とにより第1熱源ユニット301に接続される。また、第2利用ユニット304Cおよび304Dは、配管3h、4Chおよび4Dhを含む往管と、配管8h、7Chおよび7Dhを含む還管とにより第2熱源ユニット301hに接続される。
【0074】
第2利用ユニット304Cおよび304Dは、それぞれ冷却回路に接続される第1利用熱交換器5Cおよび5Dと、第1流量調整弁6Cおよび6Dと、加熱回路に接続される第2利用熱交換器5Chおよび5Dhと、第2流量調整弁6Chおよび6Dhと、を備える。第2流量調整弁6Chおよび6Dhの出口には、熱媒体の利用流量を計測する利用流量計207Chおよび207Dhがそれぞれ設けられる。また、第2利用熱交換器5Chおよび5Dhの入口と第2流量調整弁6Chおよび6Dhの出口との間には、差圧を検出する差圧計206Chおよび206Dhがそれぞれ設けられる。さらに、第2利用ユニット304Cおよび304Dは、利用制御装置313Chおよび313Dhを備える。利用制御装置313Chおよび313Dhの構成は、実施の形態1における利用制御装置313A、313B、313Cおよび313Dと同じである。
【0075】
第1利用ユニット302は、熱媒体回路が1系統となっているため、加熱回路からの温水と冷却回路からの冷水を選択的に切替えて流せるように、開閉弁11、11h、12および12hが設けられる。開閉弁11、11h、12および12hは、電磁弁である。第1利用ユニット302に冷水を流す場合は、開閉弁11および12を開路とし、開閉11hおよび12hを閉路とする。一方、温水を流す場合は開閉弁11および12を閉路とし、開閉弁11hおよび12hを開路とする。開閉弁11、11h、12および12hの開閉は、夏期または冬期の変わり目に手動で切り替えてもよい。
【0076】
空調システム300では、冷温水を同時に利用できる第2利用ユニット304を備えることで、冷却回路の利用熱交換器5Cおよび5Dにて除湿を行った上で、加熱回路の第2利用熱交換器5Chおよび5Dhにて温度を調整し、温調空気を吹出すことができる。これにより、例えば高密度に在室した人が体を動かしているジムにおいて、夏期に除湿量を多く必要とする場合においても、除湿のために冷却され過ぎた空気を室内に吹出すことがなくなる。また、冬期には、会議室などで利用ユニット302を加熱回路に接続して暖房しつつ、他の部屋で冷房を行うことができる。
【0077】
図13は、実施の形態3における運転状態取得処理のフローチャートである。まず、冷熱回路にて、全ての利用ユニット、すなわち第1利用ユニット302および第2利用ユニット304を操作対象に、図3に示す運転状態取得処理を実施する(S60)。次に、冷却回路にて第2利用ユニット304のみを操作対象に、図3に示す運転状態取得処理を実施する(S61)。このようにする理由は、冬期は、第1利用ユニット302は冷却運転とならないが、第2利用ユニット304は冷却運転となる場合があるためである。
【0078】
次に、加熱回路にて、全ての利用ユニット、すなわち第1利用ユニット302および第2利用ユニット304を操作対象に、図3に示す運転状態取得処理を実施する(S62)。次に、加熱回路にて第2利用ユニット304のみを操作対象に図3に示す運転状態取得処理を実施する(S63)。このようにする理由は、夏期は、第1利用ユニット302は加熱運転とならないが、第2利用ユニット304は加熱運転となる場合があるためである。
【0079】
本実施の形態の運転状態取得処理を行うことで、以下の4組の運転状態が予め取得される。
(1)冷却回路の全利用ユニットを操作対象とした第1運転状態および第2運転状態
(2)冷却回路の第2利用ユニット304のみを操作対象とした第1運転状態および第2運転状態
(3)加熱回路の全利用ユニットを操作対象とした第1運転状態および第2運転状態
(4)加熱回路の第2利用ユニット304のみを操作対象とした第1運転状態および第2運転状態
【0080】
本実施の形態によれば、年間を通して冷却運転と加熱運転とを実施する第2利用ユニット304を含む場合においても、負荷流量が不足することなく、制御対象量を設定することができる。さらに、夏期と冬期とで必要となる負荷流量に応じて制御目標値を設定できるため、第1利用側ポンプ1および第2利用側ポンプ1hの消費電力を削減することができる。また、送水制御装置303は、利用制御装置313と運転状態を通信することなく、負荷流量に応じて送水差圧などを制御することができるため、通信量の増加を抑制することができる。
【0081】
以上が本発明の実施の形態の説明であるが、本発明は、上記の実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々に変形することができる。まず、上記実施の形態では、送水制御装置303における制御対象量を送水差圧とし、制御目標値を目標差圧値としたが、これに限定されるものではない。例えば、制御対象量を往管の往水圧力とし、制御目標値を目標圧力としてもよい。なお、往水圧力とは第2往路ヘッダ15の圧力のことである。この場合は、第2往路ヘッダ15に圧力センサが設け、往水圧力を検出し、往水圧力が目標圧力となるように制御する。これにより、送水制御装置303が往水圧力により熱媒体の搬送制御を行う場合も、本発明を適用できる。
【0082】
また、上記実施の形態では、試運転時における運転状態取得処理は、モニター装置323によって行われる構成としたが、これに限定されるものではなく、送水制御装置303で行う構成としてもよい。この場合も、通常運転時における運転状態の取得は不要となるため、通信量の増加を抑制することができる。
【0083】
また、上記実施の形態1では、2つの運転状態から制御目標値を求める構成としたが、これに限定されるものではなく、複数の運転状態を取得すればよい。例えば、実施の形態1では、4台の利用ユニット302を備えるため、4つの運転状態を取得し、4つの運転状態に基づいて制御目標値を求めてもよい。具体的には図6において第2運転状態を記憶した後、モニター記憶部125に記憶される流量調整弁6の開度が大きい2つの利用ユニット302のみで冷却運転を行う。つまり、図5の例の場合は、利用ユニット302Aおよび302Dの2台運転で図6に示す第2運転状態取得処理と同じ処理を実施し、第3運転状態を取得して記憶する。さらに、モニター記憶部125に記憶される流量調整弁6の開度が大きい3つの利用ユニット302のみで冷却運転を行って第4運転状態を取得する。つまり、図5の例の場合は、利用ユニット302A、302Dおよび302Bの3台運転で図6に示す第2運転状態取得処理と同じ処理を実施し、第4運転状態を取得して記憶する。
【0084】
そして、モニター装置323は、取得した第1運転状態、第2運転状態、第3運転状態および第4運転状態を送水制御装置303に送信する。図14は、変形例1における目標差圧値の決定方法を説明する図である。図14の縦軸は目標差圧値を示し、横軸は負荷流量を示す。図14に示すように、負荷流量が第2運転状態の第2負荷流量M2以下の場合は、目標差圧値は第2運転状態の第2制御目標値T2に固定される。また、負荷流量が第2運転状態の第2負荷流量M2よりも多く、第1運転状態の第1負荷流量M1より少ない場合は、目標差圧値は、第1運転状態、第2運転状態、第3運転状態および第4運転状態を通過する特性線上の値とされる。さらに負荷流量が第1運転状態の第1負荷流量M1以上の場合は、目標差圧値は第1運転状態の第1制御目標値T1に固定される。
【0085】
本変形例によれば、4つの運転状態の特性線により、制御目標値を決定することで、実施の形態1のように、最大値(第1運転状態)と最小値(第2運転状態)の2点に基づく線形補間により決定する場合よりも、制御目標値を低く設定することができる。その結果、利用側ポンプ1の消費電力をさらに低減することができる。
【0086】
また、図4に示す実施の形態1の第1運転状態取得処理におけるステップS13では、全ての利用ユニット302の利用流量値が目標範囲内となったことを条件として、最小目標差圧値を探索する構成としたが、これに限定されるものではない。例えば、何れかの利用ユニット302の利用流量値が目標利用流量値となった場合に、最小目標差圧値を探索する構成としてもよい。この場合は、何れかの利用ユニット302の利用流量値が目標利用流量値である、という条件を満たす目標差圧値の最小値が、最小目標差圧値とされる。同様に、図10に示す実施の形態2の第1運転状態取得処理においても、ステップS42に替えて、何れかの利用ユニット302の利用差圧が目標利用差圧値となった場合に、最小目標差圧値を探索する構成としてもよい。この場合は、何れかの利用ユニット302の利用差圧が目標利用差圧値である、という条件を満たす目標差圧値の最小値が、最小目標差圧値とされる。当該変形例によると、第1運転状態取得処理の処理時間を削減することができる。
【0087】
また、図4に示すステップS13~S15に替えて、「全ての利用ユニット302の利用流量値≧目標利用流量値」を満たさなくなる直前の目標差圧値を最小目標差圧値としてもよい。言い換えると、いずれか一つの利用ユニット302の利用流量値が目標利用流量値未満となった場合の目標差圧値を、最小目標差圧値としてもよい。同様に、図10に示すステップS42~S44に替えて、「全ての利用ユニット302の利用差圧≧目標利用差圧値」を満たさなくなる直前の目標差圧値を、最小目標差圧値としてもよい。
【0088】
また、図6に示す実施の形態1の第2運転状態取得処理におけるステップS23では、運転している利用ユニット302の利用流量値が目標範囲内となったことを条件として、最小目標差圧値を探索する構成としたが、これに限定されるものではない。例えば、図6のステップS23~S25に替えて、「運転している利用ユニット302の利用流量値≧目標利用流量値」を満たさなくなる直前の目標差圧値を最小目標差圧値としてもよい。言い換えると、運転している利用ユニット302の利用流量値が目標利用流量値未満となった場合の目標差圧値を、最小目標差圧値としてもよい。同様に、図11に示す実施の形態2の第2運転状態取得処理においても、ステップS52~S54に替えて、「運転している利用ユニット302の利用差圧≧目標利用差圧値」を満たさなくなる直前の目標差圧値を最小目標差圧値としてもよい。
【0089】
さらに、実施の形態1では、目標差圧値の初期値として設計値を採用し、図4に示すステップS14において目標差圧値を減少させる構成としたが、これに限定されるものではない。例えば、目標差圧値を任意の値とし、「全ての利用ユニット302の利用流量値>目標範囲」の場合は目標差圧値を減少させ、「いずれかの利用ユニット302の利用流量値<目標範囲」の場合は、目標差圧値を増加させてもよい。同様に、図6図10および図11に示すステップS24、S43およびS53においても、目標差圧値を増減させてもよい。
【符号の説明】
【0090】
1、1h 利用側ポンプ、2、2h バイパス弁、3、3h、4A、4B、4C、4Ch、4D、4Dh、7A、7B、7C、7Ch、7D、7Dh、8、8h、10、10h 配管、5、5A、5B、5C、5Ch、5D、5Dh 利用熱交換器、6、6A、6B、6C、6Ch、6D、6Dh 流量調整弁、9、9h 熱源側ポンプ、11、11h、12、12h 開閉弁、13A、13B、13C、13D 流量調整弁、14、14h 第1往路ヘッダ、15、15h 第2往路ヘッダ、16、16h 還路ヘッダ、100、200、300 空調システム、102 送水測定部、103 送水演算部、104 送水制御部、105 送水記憶部、106 送水通信部、107 送水入力部、112 利用測定部、113 利用演算部、114 利用制御部、115 利用記憶部、116 利用通信部、117 利用入力部、125 モニター記憶部、126 モニター通信部、127 モニター入力部、128 モニター表示部、201、201h 差圧計、202、202h 負荷流量計、204、204A、204B、204C、204D、205、205h 温度センサ、206A、206B、206C、206Ch 206D、206Dh 差圧計、207A、207B、207C、207Ch、207D、207Dh 利用流量計、301、301h 熱源ユニット、302、302A、302B、302C、302D、304、304C、304D、305、305A、305B、305C、305D 利用ユニット、303 送水制御装置、313、313A、313B、313C、313Ch、313D、313Dh 利用制御装置、323 モニター装置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14