(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-07
(45)【発行日】2023-12-15
(54)【発明の名称】排水処理システム並びに方法
(51)【国際特許分類】
C02F 1/28 20230101AFI20231208BHJP
【FI】
C02F1/28 F
(21)【出願番号】P 2022566532
(86)(22)【出願日】2020-12-02
(86)【国際出願番号】 JP2020044781
(87)【国際公開番号】W WO2022118382
(87)【国際公開日】2022-06-09
【審査請求日】2023-02-10
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール弁理士法人
(72)【発明者】
【氏名】佐野 理志
(72)【発明者】
【氏名】王 宇
【審査官】片山 真紀
(56)【参考文献】
【文献】国際公開第2015/033455(WO,A1)
【文献】特開平07-185518(JP,A)
【文献】特開2020-163299(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C02F1/00-9/20
(57)【特許請求の範囲】
【請求項1】
複数の工場からの汚水を貯留槽に蓄え、貯留槽からの汚水を固形浄化剤と液体再生剤の組合せで構成される水処理装置により浄化するとともに水処理装置を排水処理設備制御装置により制御するようにされた排水処理システムであって、
前記水処理装置は、前記貯留槽からの汚水を浄化水とする浄化運転を行う固形浄化剤ろ過装置と前記固形浄化剤ろ過装置に吸着された不純物を脱着する再生運転を行う再生装置を含み、
前記排水処理設備制御装置は、前記複数の工場から稼働計画情報を入手して当該工場の汚水の排水量を予測し、予測した排水量の時の前記貯留槽および前記水処理装置の各所の物理量
として、少なくとも前記貯留槽の水位を予測し、
前記貯留槽の水位の予測の結果
、前記貯留槽の越流が予測されるときに前記水処理装置による運転
を前記浄化運転にするタイミングを制御することを特徴とする排水処理システム。
【請求項2】
請求項1に記載の排水処理システムであって、
前記排水量及び前記物理量の推移の予測の結果、前記貯留槽の越流が予測されたときには、越流予測時点において前記水処理装置が前記浄化運転となるように、前記水処理装置を事前に制御しておくことを特徴とする排水処理システム。
【請求項3】
請求項1に記載の排水処理システムであって、
前記排水量の予測の結果、前記排水量が少ない状態が継続するときには前記再生運転の実行時間を短くするように前記水処理装置による運転のタイミングを制御することを特徴とする排水処理システム。
【請求項4】
請求項1に記載の排水処理システムであって、
前記再生運転から前記浄化運転に移行した初期段階において、前記浄化水の濃度が上限値を逸脱するときに前記水処理装置を停止し、活性炭を交換することを特徴とする排水処理システム。
【請求項5】
請求項1に記載の排水処理システムであって、
前記再生運転において、前記再生装置に設けられた液体再生剤の汚染度センサからの汚染濃度が上限値を逸脱するときに前記再生装置を停止し、液体再生剤を交換することを特徴とする排水処理システム。
【請求項6】
請求項1から請求項5のいずれか1項に記載の排水処理システムであって、
前記固形浄化剤が砂であることを特徴とする排水処理システム。
【請求項7】
請求項1から請求項5のいずれか1項に記載の排水処理システムであって、
前記固形浄化剤が吸着剤であることを特徴とする排水処理システム。
【請求項8】
請求項1から請求項5のいずれか1項に記載の排水処理システムであって、
前記固形浄化剤が活性炭であることを特徴とする排水処理システム。
【請求項9】
複数の工場からの汚水を貯留槽に蓄え、貯留槽からの汚水を水処理装置により浄化する排水処理方法であって、
前記水処理装置は、前記貯留槽からの汚水を浄化水とする浄化運転と固形浄化剤に吸着された不純物を脱着する再生運転を行い、
前記複数の工場から稼働計画情報を入手して当該工場の汚水の排水量を予測し、予測した排水量の時の前記貯留槽および前記水処理装置の各所の物理量
として、少なくとも前記貯留槽の水位を予測し、
前記貯留槽の水位の予測の結果
、前記貯留槽の越流が予測されるときに前記水処理装置による運転
を前記浄化運転にするタイミングを定めることを特徴とする排水処理方法。
【請求項10】
請求項9に記載の排水処理方法であって、
前記排水量及び前記物理量の推移の予測の結果、前記貯留槽の越流が予測されたときには、越流予測時点において前記水処理装置が前記浄化運転となるように、前記水処理装置を事前に制御しておくことを特徴とする排水処理方法。
【請求項11】
請求項9または10に記載の排水処理方法であって、
前記固形浄化剤が砂であることを特徴とする排水処理方法。
【請求項12】
請求項9または10に記載の排水処理方法であって、
前記固形浄化剤が吸着剤であることを特徴とする排水処理方法。
【請求項13】
請求項9または10に記載の排水処理方法であって、
前記固形浄化剤が活性炭であることを特徴とする排水処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の工場からの排水を処理する排水処理システム並びに方法に関する。
【背景技術】
【0002】
排水を処理する設備は種々知られているが、例えば特許文献1によれば吸着剤による浄化と液化ガスによる再生により、従来と比較してコンパクトな排水処理設備を実現することができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1の処理設備は、排水の浄化処理と吸着剤の再生処理をコンパクトかつ簡便に行えるという利点があり、今後の排水設備として有望であるが、その前段に別途貯留槽が必要である。
【0005】
貯留槽には工場からの排水を貯留しておくことになるが、特に多数の工場からの排水を受け入れる場合などには、これら複数の工場から排出される水量の変動予測が困難であったため、流入量の平準化を目的に排水処理装置の前段に巨大な貯留槽が必要であった。また,貯留槽は溢水(越流)が許されないので,高水位になると工場の運転を停止する必要があった。
【0006】
以上のことから本発明においては、多数の工場からの排水を受け入れる場合に、貯留槽を小型化可能としながら溢水(越流)を阻止するに好適な排水処理システム並びに方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
以上のことから本発明においては、複数の工場からの汚水を貯留槽に蓄え、貯留槽からの汚水を固形浄化剤と液体再生剤の組合せで構成される水処理装置により浄化するとともに水処理装置を排水処理設備制御装置により制御するようにされた排水処理システムであって、水処理装置は、貯留槽からの汚水を浄化水とする浄化運転を行う固形浄化剤ろ過装置と固形浄化剤ろ過装置に吸着された不純物を脱着する再生運転を行う再生装置を含み、排水処理設備制御装置は、複数の工場から稼働計画情報を入手して当該工場の汚水の排水量を予測し、予測した排水量の時の貯留槽および水処理装置の各所の物理量の推移を予測し、予測の結果に応じて水処理装置による運転のタイミングを制御することを特徴とする。 また本発明においては、複数の工場からの汚水を貯留槽に蓄え、貯留槽からの汚水を水処理装置により浄化する排水処理方法であって、水処理装置は、貯留槽からの汚水を浄化水とする浄化運転と固形浄化剤に吸着された不純物を脱着する再生運転を行い、複数の工場から稼働計画情報を入手して工場の汚水の排水量を予測し、予測した排水量の時の貯留槽および水処理装置の各所の物理量の推移を予測し、予測の結果に応じて前記水処理装置による運転のタイミングを定めることを特徴とする。
【発明の効果】
【0008】
本発明によれば、多数の工場からの排水を受け入れる場合に、貯留槽を小型化可能としながら溢水(越流)を阻止するに好適な排水処理システム並びに方法を提供することができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の実施例に係る排水処理システムの全体構成例を示す図。
【
図2】本発明が適用される活性炭ろ過・再生装置の全体構成例を示す図。
【
図3】排水処理設備制御装置4の具体的な構成例を示す図。
【
図4】プロセス制御部43における処理内容を示すフロー図。
【
図5a】従来における排水処理設備運用事例を示す図。
【
図5b】将来予測を行う本発明による排水処理設備運用事例を示す図。
【
図6a】通常運転時の排水処理設備運用事例を示す図。
【
図6b】予測結果として将来時点であるt6において越流が発生したことを示す図。
【
図6c】越流発生が予測された状態における有効な対応策を示す図。
【
図7b】将来予測を行う本発明によるコスト重視の排水処理設備運用事例を示す図。
【
図8】本発明に係る排水処理システムの運転手順を示す図。
【発明を実施するための形態】
【0010】
以下、本発明の実施例について図面を参照して説明する。
【実施例1】
【0011】
図1は、本発明の実施例に係る排水処理システムの全体構成例を示している。排水処理設備1は、上流側の貯留槽2と活性炭ろ過・再生装置3により構成され、一般的には計算機により構成される排水処理設備制御装置4により制御される。なお貯留槽2には、複数の工場5からの汚水が流入して貯留されており、水処理装置である活性炭ろ過・再生装置3は汚水を固形浄化剤である活性炭を用いて汚水を浄化して浄化水として放流する。また活性炭ろ過設備の性能劣化によりその再生処理を行い、再生により生じた吸着物(汚染物)は適宜回収される。活性炭ろ過・再生装置3は、詳細構成を
図2に示し後述するように、貯留槽2からの汚水を浄化水とする浄化運転を行う活性炭吸着装置31(固形浄化剤ろ過装置)と活性炭吸着装置31に吸着された不純物を脱着する再生運転を行う再生装置32により構成される。
【0012】
排水処理設備制御装置4は、活性炭ろ過・再生装置3における再生のタイミング、浄化のタイミング、活性炭交換のタイミング、液体再生剤の交換・補充のタイミング、吸着物回収のタイミングなどを制御している。本発明の排水処理設備制御装置4は、これらの処理のために複数の工場5の稼働計画情報Sg1の他に、気象情報(雨情報)Sg2、濃度センサ6からの汚水濃度情報Sg3、活性炭ろ過・再生装置3内の再生装置32に設けられたDME汚染度センサ7からの汚染情報S4,濃度センサ8からの浄化水濃度情報Sg5を入力して、タイミングなどを決定している。
【0013】
活性炭ろ過・再生装置3は、例えば
図2のように構成されている。
図2の活性炭ろ過・再生装置3は、処理槽22、ポンプ21、凝縮器29、蒸発器28並びに複数のバルブV(V11からV15)を主たる構成要素としており、貯留槽2から処理槽22(活性炭吸着装置31)に至る経路により活性炭ろ過処理を行い、処理槽22から、蒸発器28、凝縮器29、ポンプ21を介して再度処理槽22に至る経路により構成する再生装置32により、処理槽22の再生処理を行う。
【0014】
上記構成によりまず,通常の汚水処理モード(浄化モード)では,バルブV11,V12,V15が閉められ,バルブV13,V14は開かれた状態で運用する。貯留槽2からの汚水は処理槽22に充填された吸着剤と接触とすることで,不純物が吸着剤に吸着され,処理槽の出口からは不純物を含まない浄化水が得られる。この状態で運用を続けると,吸着飽和に達し不純物が漏出してしまうため,不純物が漏出する前に一時的に運用を停止し,吸着剤の再生モードに移行する。移行時には処理槽から水が除去されるが,吸着剤には水と不純物が付着したままとなっている。
【0015】
吸着剤の再生モードでは,バルブV11,V12が開かれ,バルブV13,V14は閉じられた状態で運用する。吸着剤を再生する液体再生剤には,常温常圧では気体である物質Aとして例えば液化ジメチルエーテル(DME)を使用する。物質Aは再生モードの流通経路内において飽和蒸気圧で保持され,一部は液化した状態で存在している。また,図中に温度と圧力の変化を記載している。これは使用する物質Aによって異なる値を示すものであるが,エネルギーの流れを説明するために記載した一例である。
【0016】
まず,液化物質Aは凝縮器29の下部から抜き出され,ポンプ21によってバルブV11を通り処理槽22に送液される。処理槽22では送り込まれた液化物質Aに吸着剤が浸される。このとき,吸着剤に吸着されていた不純物は,液化物質Aと親和性が高いために脱着され,水と共に液化物質Aに溶け出す。次いで,水と不純物を溶存した液化物質Aはバルブ12を通して蒸発器28に送液される。蒸発器28では,液化物質Aが気化するための潜熱分のエネルギーが供給され,沸点が最も低い液化物質Aだけが気化し,不純物と水は残存する事になる。気化した物質Aは凝縮器29に送られ,冷却される事で物質Aは液化する。ここで得られた液化物質Aは再度処理槽22に送液され,再度吸着剤からの不純物の脱着に使用される。
【0017】
上記の物質Aの状態変化のサイクルを必要に応じて複数回繰り返すことで,吸着剤に付着した不純物の大半は脱着する。脱着が完了した時点で,バルブV12を閉め,ポンプ1の逆回転もしくは別途準備した引き抜きポンプにより処理槽22から液化物質Aを引き抜いた後,バルブ15を開いて処理槽22を減圧もしくは大気開放することで,吸着剤に付着している液化物質Aは気化するので,吸着能力を回復した新品に近い再生吸着剤が得られる。
【0018】
本実施例では,物質Aの循環にポンプ1を使用しているが,圧縮機でもその機能を代替できる。ただし,圧縮機は気体を循環させる物であるため,本実施例において使用する場合は,蒸発器28の下流かつ凝縮器29の上流に設置すれば良い。
【0019】
図3は、排水処理設備制御装置4の具体的な構成例を示している。排水処理設備制御装置4は、一般的には計算機により構成されるものであり、ここでは計算機で実行する処理機能により便宜的に表現している。排水処理設備制御装置4における処理機能は、排水量予測部41、物理量検出部42、プロセス制御部43により構成され、さらにプロセス制御部43を構成するにあたり図示の実施例では学習機能を利用する例を示しておりこの場合に、学習器45、データベース44、司令部46を含んで構成されている。なお、プロセス制御部43は、一般的な制御理論により実現されるものであってもよい。
【0020】
排水処理設備制御装置4内の排水量予測部41では、貯留槽2に汚水を排出している複数の工場5における稼働計画情報Sg1をそれぞれ入手し、稼働計画情報Sg1から当該工場の排水量を予測し、全工場からの総排水量を予測している。なお、一般的には稼働計画情報Sg1と当該工場の排水量の間には、何らかの相関があるが、使用する機器の特性や用法(例えば工場内に貯留槽を有しており、バッチ処理的に排水する場合など)、季節的な要因などによる変動要因が存在することもあり、これらの関連を把握する意味では、いわゆる学習機能を適用してより正確な排水量の予測ができる装置構成とするのがよい。ただし、本発明では予測ができればよく、予測の具体的な実現手法を限定するものではない。
【0021】
この場合の稼働計画情報Sg1は、翌日のような短期情報でも、あるいは週、月単位での中・長期情報でもよいが、後述するところの活性炭ろ過・再生装置3における再生処理時間T以上の時間が確保できることが望ましい。これは排水の浄化処理をろ過装置の再生処理に切り替え、さらに排水の浄化処理の再開に至るまでの時間T以上の将来における稼働計画を含む稼働計画情報Sg1を必要とすることを意味している。
【0022】
物理量検出部42は、各種センサから濃度、水位、流量、温度などを検知する。なお、
図1では、濃度、汚染度のセンサ6,7,8のみを例示して表示しているが、これ以外にも貯留槽2の水位を検知する水位センサ、貯留槽2に流入しあるいは流出する流量を検知する流量センサ、活性炭ろ過・再生装置3内の温度を検知する温度センサなどが備えられ、適宜物理量検出部42に伝送されて以降の処理に利用されている。
【0023】
プロセス制御部43は、学習機能を利用するときの構成を例示しているが、本発明は学習機能の利用に限定されるものではない。要するにプロセス制御部43では、
図4に例示する以下の処理が実現される必要がある。
図4は、プロセス制御部43における処理内容を示すフロー図であり、この処理の一部に学習機能を利用することが有用である場合がある。
【0024】
図4のフローの最初の処理ステップS1では、排水量予測部41で予測した将来時点における排水量予測値、物理量検出部42で検出した現在時点における各種物理量、降水量予測値、および物理量についての許容値(制限値)を取り込む。処理ステップS2では、排水量予測値の各予測時点における各物理量を推定予測する。なおこの処理は、物理量間の因果関係を用いて算出してもよく、或は学習機能を利用してもよい。
【0025】
処理ステップS3、S4、S5では、物理量として、特に監視すべき浄化水の汚染濃度、貯留槽2の水位予測値、処理層22の汚染度がそれぞれの許容値を超過することを確認する。許容値を逸脱しないと判断される場合(No側)には、処理ステップS2にもどり、上記処理を継続実行し、許容値を逸脱すると判断される場合(yes側)には、処理ステップS6,S7,S8に移動し、それぞれの状態に応じた適切な対応策を講じることになる。
【0026】
なおここで、浄化水の汚染濃度と処理層22の汚染度は現在時点または将来時点における値であり、貯留槽2の水位は将来時点における予測値とするのがよい。つまり、浄化水の汚染濃度と処理層22の汚染度の許容値からの逸脱は、現在時点での監視結果(あるいは将来時点での予測結果)を現在時点(あるいは将来時点)の制御に反映し、貯留槽2の水位は将来時点における予測結果に基づく予測制御(制御実行時点が将来時点)を実行するのがよい。なお上記以外の物理量として、流入水の濃度管理があるが、これについて実施例4で説明するように、貯留槽2の水位と同様に予測制御を適用するのがよい。
【0027】
処理ステップS6,S7,S8での対応策は、個別にあらかじめ設定されていてもよいが、特に貯留槽2の水位の逸脱事象は将来時点における予想事象であることから、現時点から予想事象発生時点までの間に多くの次善処置を講じることが可能である。特に学習機能を利用する場合には処理ステップS7において、過去事例などを総合的に勘案した適切な対応策の提案が可能である。
【0028】
本発明に係る排水処理設備制御装置4の利用場面として、これを半自動とし、或は全自動とすることが考えられる。半自動である場合には、支援装置として構成し、処理ステップS6,S7,S8における対応策あるいは処理ステップS7における学習結果などをその他の情報とともに、管理者に視覚的に提示して、その判断を仰ぐものである。なお、半自動とする場合に、浄化水の汚染濃度と処理層22の汚染度の将来予測結果を管理者に提示しておき、近い将来に対応が必要となることを周知しておくという用法も有用である。全自動とする場合には、処理ステップS9において、この判断結果を活性炭ろ過・再生装置3の操作端であるバルブVや汚水の供給ラインに設置されたポンプ(図示せず)に伝達し、これを制御する。
【0029】
なお処理ステップS6における対応策の例は、再生運転に移行してその完了後に浄化運転を再開するという通常動作のものである。処理ステップS8における対応策の例は、DME交換、補充をする、あるいは活性炭交換を行うという通常動作のものである。これに対し、処理ステップS7における対応策は、本発明に特有のものであり詳細内容を後述する。
【0030】
図5aは、本発明を用いない、従来における排水処理設備運用事例を示している。この例では、貯留槽2の水位、浄化水流量、流入量、浄化水汚染濃度の時系列的な変化事例を示しており、浄化運転・再生運転後に運転停止し、再度浄化運転・再生運転・運転停止を繰り返し実行することを典型的なパターンとして運用するものとする。
【0031】
この説明例の中では、処理ステップS3,S4で示したところの浄化水汚染濃度と貯留槽2の水位が許容値との比較監視対象となっている例をとりあげている。これによれば浄化水汚染濃度が許容値を逸脱するタイミングで浄化運転から再生運転に切り替わっており、再生完了後は運転停止期間を確保したうえで浄化運転に復帰している。
【0032】
これに対し、貯留槽2から活性炭ろ過・再生装置3への汚水の送水を停止している時刻t1の活性炭再生処理時に、貯留槽2への工場5からの汚水が増加して、貯留槽2で汚水の越流が発生したものとする。
図5aは、従来における排水処理設備運用事例であり、あくまでも現在時刻の監視とその制御に基づいて行った結果であるので、この越流を阻止することはできない。
【0033】
他方、本発明により複数の工場5の稼働計画情報Sg1を用いた将来予測を行っている場合には、
図5bのように対応することが可能である。
図5bの前提として、現在時刻は例えばt0時点であり、
図5aの時点t1までの各物理量などの変化事象は予測されているものである。
【0034】
この場合に、本発明に係る排水処理設備制御装置4が採用しえるステップS7の対応策は、時刻t1において浄化運転を行うことで貯留槽2への工場5からの汚水が増加する事象のタイミングにおいて、汚水処理可能な体制としておくことである。またその前提として、浄化水汚染濃度が浄化運転から再生運転への切り替え条件になっていることから、時刻t1以前に1回の浄化運転と1回の再生運転と1回の運転停止の組操作を完了させておき、時刻t1では浄化水汚染濃度が低くなっている体制としておくことである。具体的な運用では運転停止期間を短縮して確保した時間内で1回の浄化運転と1回の再生運転と1回の運転停止の組操作を完了させておくことである。浄化水汚染濃度が低い状態であれば、貯留槽2の水位を低下させ、越流の可能性を防止するに足る当面の期間は確保できることになる。
【0035】
以上のことから明らかなように、
図4のステップS7の対応策は、貯留槽2で汚水の越流が発生したとする予測結果に対して、事前に1回の浄化運転と1回の再生運転と1回の運転停止の組操作を完了させ汚水の越流予測時刻には、浄化運転中、できれば浄化運転開始直後とすることである。
【0036】
図5a,
図5bでは、越流が予測される時刻t1に再生運転にもっていくようにその前段での制御を行うことを示しているが、この具体的な対応策を活性炭汚染度との関係で実現する具体的な手法例について
図6a,
図6b,
図6cを用いて説明する。
【0037】
図6aは、通常運転時の排水処理設備運用事例を示している。この例では、貯留槽2の水位、浄化水流量、流入量、活性炭汚染度の時系列的な変化を、水位上限、活性炭汚染度上限とともに表しており、浄化運転・再生運転後に運転停止し、再度浄化運転・再生運転・運転停止を繰り返し実行することを典型的なパターンとして運用するものとする。なおこの図では、再生運転前後の切り替え期間も併せて表示している。
【0038】
なおここで前提とする模擬条件は、流入量は一定、浄化水量は3.6倍、水位は流入と流出の差、再生前後のモードの切り替え時間は0.45時間、100%再生時間は0.95時間、50%再生時間は0.3時間とし、浄化運転開始の基準は水位が満水の2/3であることとしている。
【0039】
図6bは、予測結果として将来時点であるt6において越流が発生したことを示している。なお時刻t6は再生処理後の切り替え時間内であるが、切り替え時間も含めて再生運転の範囲内としている。いずれにせよ、浄化運転ではないので水処理ができない、つまり貯留槽2の水位制御が機能していない期間である。
【0040】
図6cは、越流発生が予測された状態において、現時点t0から越流時刻t6までの間にとりえる有効な対応策を例示している。対応策1は、時刻t3からt4の間の再生運転期間を、負荷増大を見越して活性炭汚染度の100%再生とすべく、期間延長したことである。対応策2は、再生後の運転停止期間を浄化運転後の時刻t5で短時間実施に切り替えた点であり、これは水位低下のため一時停止したものである。対応策3は、運転停止後に浄化運転を再開し限界まで浄化運転としたことである。
【0041】
この結果として、越流発生予測時刻では再生運転が実行されているが、この時の再生は、タンク水位の増加を予測して目的除去能力(再生時間)を決定(この場合は50%)し、短すぎても長すぎても溢れることとなる。
【0042】
図6cの考え方は、
図5bと同じものであり、要するに負荷の増大による越流が予測される場合,前もって除去能力を100%まで回復させておくということである。
【実施例2】
【0043】
実施例1は、学習器の機能を用いて予測結果を実運用に反映させて具体的な制御手法を実現させたものであるが、これは越流のような異常発生時の対応といえる。これに対し実施例2では、学習器の機能を利用することで、ランニングコストを低減させることについて
図7a,
図7bを用いて説明する。
【0044】
図7aは、通常の浄化運転例を示しており、
図5aと同様に、浄化・再生後に運転停止し、再度浄化・再生・運転停止を繰り返し実行したものである。これに対し、複数の工場5における稼働計画情報Sg1からの排水量予測結果として、工場からの排水量が少なく低負荷の状態が継続するということが事前に判明しているのであれば、
図7bに例示するようにこの予測結果を利用して再生時間を短くして運用するのがよい。これにより汚染度が高い状態を保持したまま運転継続し、汚染度を逆に低くしないようにする。この結果としてこの運転態様によれば、活性炭の吸着、脱着特性を活用し,再生度を低下させ,再生コストを削減することができる。
【実施例3】
【0045】
実施例3では、本発明に係る排水処理システムの一般的な全体運転手順について、
図8を用いて説明する。このフローにおける最初の処理ステップS11では活性炭吸着装置31(処理槽22)の運転により汚水を浄化し、適宜再生運転を行っている。
【0046】
処理ステップS12では、再生直後の浄化水濃度をその上限値と比較する。なおここでの上限値は、浄化運転を再生運転に切り替える判断基準としての許容値ではなく、活性炭の劣化によりその浄化性能が交換時期に来たことを判断する基準であり、上限値の逸脱により処理ステップS13において活性炭吸着装置31を止めて、活性炭を交換する。活性炭を交換した後は処理ステップS11の活性炭吸着装置31(処理槽22)の運転に入るが、この場合に所定性能が達成されていることを確認してから活性炭吸着運転に入るなどの確認対応がされることは言うまでもない。
【0047】
処理ステップS14では、排水処理設備制御装置4からの格別の指示の有無を確認し、指示がある場合には処理ステップS22に移り、指示がない場合は処理ステップS15の通常処理に映る。ここで排水処理設備制御装置4からの格別の指示とは、例えば
図6bに例示した運転態様の指示であり、指定された実行期間での再生運転を行うことでコスト重視の運転とする。格別の指示がない場合には、処理ステップS15の通常処理により浄化水濃度を許容値と比較し、許容値を逸脱する場合には処理ステップS18において再生運転に入る。
【0048】
処理ステップS15において浄化水濃度が許容値以下である場合には、引き続いて貯留槽2の水位の予測監視の処理を行う処理ステップS16を実行する。ここで推移に異常がなければ処理ステップS11に戻り、通常の浄化処理(活性炭吸着処理)を継続する。処理ステップS16において貯留槽2の水位が許容値以上である場合には、処理ステップS17において、
図5bに示した予測時点における越流の事前予防対策を実行する。
【0049】
処理ステップS18の再生運転は、処理ステップS19の判断で排水処理設備制御装置4からの停止指示がない限り実行され、停止指示がないときは処理ステップS20においてDMEセンサの測定値が許容値以上であるときには処理ステップS21において再生装置を停止し、DMEを交換する。
【実施例4】
【0050】
実施例1では浄化水の汚染濃度と処理層22の汚染度と貯留槽2の水位を監視制御することについて説明した。これに対し実施例4では、貯留槽2から流入する汚水の濃度を管理することについて説明する。
【0051】
貯留槽2の流入濃度が変化する場合、貯留槽2で緩和され,活性炭ろ過・再生装置3に送液されるが、濃度の場合でも,濃度変動予測による運転変更による事前対策の効果が期待できる。具体的には、汚染物濃度が増大すると,浄化できる水量が低下するため,越流する可能性が増加する。このときも事前に,濃度の上昇が予測された場合,事前に活性炭の除去能力を向上させることで浄化水量を増加できるので,上記で示した,流量変動の予測に対する浄化設備の運転方法の変更方法は,濃度変動にも適用できる。
【0052】
なお,実施例1から4における排水処理には,固体浄化剤である活性炭を用いた浄化と,液体再生剤として液化ガスを用いた再生を例として説明したが,本発明はこの組合せに限る物では無く,活性炭の代わりの固体浄化剤として他の吸着剤や砂ろ過を用いることもできる。例えば砂ろ過では,物理的に固形物を除去することができ,シリカゲルやアルミナゲルでは,砂ろ過に加えて吸着作用も示すので溶存物質も除去できる。これに対して活性炭を用いる場合では,吸着できる物質の種類や吸着量を増大させられる点が異なる。組み合わせる再生剤は液化ガスに限る必要は無く,除去対象と浄化剤の組合せから適切な再生剤を選定すれば良い。
【符号の説明】
【0053】
1:排水処理設備、2:貯留槽、3:活性炭ろ過・再生装置、4:排水処理設備制御装置、5:工場、6、8:濃度センサ、7:汚染度センサ、8:21:ポンプ、22:処理槽、28:蒸発器、29:凝縮器、41:排水量予測部、42:物理量検出部、43:プロセス制御部、44:データベース、45:学習器、46:司令部、V11からV15:バルブ