IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新日鐵住金株式会社の特許一覧 ▶ 豊田鉄工株式会社の特許一覧

特許7399360プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品
<>
  • 特許-プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品 図1A
  • 特許-プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品 図1B
  • 特許-プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品 図1C
  • 特許-プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品 図2
  • 特許-プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-12-07
(45)【発行日】2023-12-15
(54)【発明の名称】プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品
(51)【国際特許分類】
   B23K 11/14 20060101AFI20231208BHJP
   B23K 11/16 20060101ALI20231208BHJP
   B23K 11/00 20060101ALI20231208BHJP
   B23K 11/24 20060101ALI20231208BHJP
   C21D 1/40 20060101ALI20231208BHJP
   C21D 1/18 20060101ALI20231208BHJP
   C22C 38/00 20060101ALI20231208BHJP
   C22C 38/04 20060101ALI20231208BHJP
   C21D 9/50 20060101ALI20231208BHJP
【FI】
B23K11/14 310
B23K11/16 311
B23K11/00 570
B23K11/24 315
C21D1/40 C
C21D1/18 P
C22C38/00 301S
C22C38/00 301T
C22C38/04
C21D9/50 101B
【請求項の数】 11
(21)【出願番号】P 2023537327
(86)(22)【出願日】2022-12-23
(86)【国際出願番号】 JP2022047752
【審査請求日】2023-06-19
(31)【優先権主張番号】P 2022050329
(32)【優先日】2022-03-25
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(73)【特許権者】
【識別番号】000241496
【氏名又は名称】豊田鉄工株式会社
(74)【代理人】
【識別番号】100149548
【弁理士】
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100140774
【弁理士】
【氏名又は名称】大浪 一徳
(74)【代理人】
【識別番号】100134359
【弁理士】
【氏名又は名称】勝俣 智夫
(74)【代理人】
【識別番号】100188592
【弁理士】
【氏名又は名称】山口 洋
(74)【代理人】
【識別番号】100217249
【弁理士】
【氏名又は名称】堀田 耕一郎
(74)【代理人】
【識別番号】100221279
【弁理士】
【氏名又は名称】山口 健吾
(74)【代理人】
【識別番号】100207686
【弁理士】
【氏名又は名称】飯田 恭宏
(74)【代理人】
【識別番号】100224812
【弁理士】
【氏名又は名称】井口 翔太
(72)【発明者】
【氏名】泰山 正則
(72)【発明者】
【氏名】東 昌史
(72)【発明者】
【氏名】村山 元
(72)【発明者】
【氏名】今村 高志
(72)【発明者】
【氏名】▲徳▼永 仁寿
(72)【発明者】
【氏名】大井 浩一
(72)【発明者】
【氏名】大山 好則
(72)【発明者】
【氏名】川口 修
【審査官】松田 長親
(56)【参考文献】
【文献】特開2013-078784(JP,A)
【文献】特開2004-050280(JP,A)
【文献】特許第7020597(JP,B1)
【文献】国際公開第2020/240961(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 11/00-11/36
(57)【特許請求の範囲】
【請求項1】
非めっき鋼板または亜鉛系めっき鋼板である鋼板の第一面に、複数の突起を有するナット又はボルトである鋼部材をプロジェクション溶接して、複数の接合部を形成するように、前記鋼板及び前記鋼部材に通電をする第一通電工程を備えるプロジェクション溶接継手の製造方法であって、
前記鋼板の引張強さが1.5GPa以上であり、
下記式1によって算出される前記鋼板の炭素当量Ceqが0.30質量%以上であり、
前記鋼部材の中心及び前記接合部の中心を通り、且つ前記鋼板の前記第一面に垂直な断面において、
前記接合部のうち、前記鋼部材の中心から最も離れた位置を、前記接合部の端部とし、
前記接合部のうち、前記鋼板の前記第一面に沿って前記端部から前記鋼部材の中心に向かって0.5mm離れた位置までの領域を、前記接合部の端部領域とするとき、
前記製造方法がさらに、
複数の前記接合部のそれぞれを焼入れするクール工程と、
複数の前記接合部のそれぞれにおいて、前記端部領域を焼戻すように、前記鋼板及び前記鋼部材にさらに通電をする第二通電工程と、
を備えるプロジェクション溶接継手の製造方法。
Ceq=[C]+[Si]/30+[Mn]/20+2×[P]+4×[S] :式1
ここで、前記式1に含まれる元素記号は、前記鋼板に含まれる各元素の含有量である。
【請求項2】
前記鋼板がホットスタンプ鋼板であることを特徴とする請求項1に記載のプロジェクション溶接継手の製造方法。
【請求項3】
前記鋼板の化学成分が、単位質量%で、
C:0.07~0.45%、
Si:0.001~2.50%、
Mn:0.8~5.0%、
P:0.03%以下、
S:0.01%以下、
を含有することを特徴とする請求項1に記載のプロジェクション溶接継手の製造方法。
【請求項4】
前記鋼板が亜鉛系めっきホットスタンプ鋼板であることを特徴とする請求項1に記載のプロジェクション溶接継手の製造方法。
【請求項5】
前記鋼板が亜鉛系めっきホットスタンプ鋼板であり、
前記鋼板の板厚が1.2mm~3.6mmであり、
前記クール工程の長さが332msec以上であり、
前記第二通電工程における平均電流値I2及び通電時間t2の積I2×t2が、前記第一通電工程における平均電流値I1及び通電時間t1の積I1×t1の0.5倍以上である
ことを特徴とする請求項1に記載のプロジェクション溶接継手の製造方法。
【請求項6】
前記プロジェクション溶接継手の製造方法が、前記第一通電工程の前に、前記第一通電工程の開始時点の電流値未満の電流値で、前記鋼板及び前記鋼部材に通電する前通電工程をさらに有する
ことを特徴とする請求項1に記載のプロジェクション溶接継手の製造方法。
【請求項7】
前記鋼部材が前記ナットであることを特徴とする請求項1~6のいずれか一項に記載のプロジェクション溶接継手の製造方法。
【請求項8】
非めっき鋼板または亜鉛系めっき鋼板である鋼板と、
ナット又はボルトである鋼部材と、
前記鋼板の第一面及び前記鋼部材を接合する複数の接合部と
を備え、
前記鋼板の引張強さが1.5GPa以上であり、
下記式2によって算出される前記鋼板の炭素当量Ceqが0.30質量%以上であり、
前記鋼部材の中心及び前記接合部の中心を通り且つ前記鋼板の前記第一面に垂直な断面において、
前記接合部のうち、前記鋼部材の中心から最も離れた位置を、前記接合部の端部とし、
前記接合部のうち、前記鋼板の前記第一面に沿って前記端部から前記鋼部材の中心に向かって0.5mm離れた位置までの領域を、前記接合部の端部領域とするとき、
前記複数の接合部のそれぞれにおいて、前記第一面から0.3mm深さの位置のビッカース硬さを連続的に測定することによって求められる、前記端部領域の最大硬度Hedgeが式3の関係を満たし、
前記複数の接合部のそれぞれにおいて、前記第一面から0.3mm深さの位置のビッカース硬さを連続的に測定することによって求められる、前記接合部の最大硬度Hmaxが式4の関係を満たす
プロジェクション溶接継手。
Ceq=[C]+[Si]/30+[Mn]/20+2×[P]+4×[S] :式2
Hedge<0.9×Hm :式3
Hmax>0.9×Hm :式4
ここで、前記式3及び式4に含まれる記号Hmは、式5によって算出される値である。
Hm=884×[C]×(1-0.3×[C])+294 :式5
ここで、前記式2及び前記式5に含まれる元素記号は、前記鋼板に含まれる各元素の含有量である。
【請求項9】
前記複数の接合部のそれぞれにおいて、前記端部領域の前記最大硬度Hedgeが式3´の関係を満たすことを特徴とする請求項8に記載のプロジェクション溶接継手。
Hedge<0.8×Hm :式3´
【請求項10】
前記鋼板が亜鉛系めっきホットスタンプ鋼板であることを特徴とする請求項8に記載のプロジェクション溶接継手。
【請求項11】
請求項8~10のいずれか一項に記載のプロジェクション溶接継手を備える自動車部品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プロジェクション溶接継手の製造方法、プロジェクション溶接継手、及び自動車部品に関する。
本願は、2022年3月25日に、日本に出願された特願2022-050329号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
近年、自動車分野においては、低燃費化や炭酸ガス排出量削減を目的とした車体の軽量化および衝突安全性向上のために、車体及び部品等に、高強度鋼板を使用するニーズが高まっている。特に最近は、引張強さ1.5GPa以上の鋼板の採用が検討される事例が増えている。
【0003】
例えばフロントサイドメンバー、センターピラー、及びヒンジリンフォース等の自動車用構造部材においては、高強度鋼板からなる部品に、ナット等の鋼部品が溶接されてなる構成が採用されている。鋼部品が接合された自動車用構造部材を製造するにあたっては、プロジェクション溶接法を用いて高強度鋼板の表面にナットを接合する方法が、一般的に採用される。プロジェクション溶接とは、一方の母材の溶接箇所に形づくられた突起を、他方の母材の溶接箇所に接触させて電流を通し、抵抗熱の発生を比較的小さい特定の部分に限定するようにして行う抵抗溶接のことである。ナットを鋼板にプロジェクション溶接する場合は、複数の突起が設けられたナットを鋼板に押付け、これら突起に通電することにより、各突起と鋼板との接触界面を局所的に加熱して、溶融凝固又は固相接合を生じさせる。これにより形成された、ナット及び鋼板を接合する領域を、以下の記載において接合部と称する。
【0004】
プロジェクション溶接によって得られる自動車用構造部材に要求される特性の一つとして、耐遅れ破壊特性が挙げられる。遅れ破壊とは、高強度鋼部品が静的な負荷応力を受けた状態で、ある時間を経過したとき、外見上はほとんど塑性変形を伴うことなく、突然脆性的に破壊する現象のことである。鋼材の接合部の耐遅れ破壊特性は、(1)接合部および周囲に生じる熱影響部の硬さ、(2)接合部の水素濃度、及び(3)接合部に加わる応力に影響されると考えられている。一般に、これら(1)~(3)の値が大きい程、遅れ破壊が生じやすい。一方、これらの(1)~(3)の因子のうち1つでも抑制することができれば、遅れ破壊の抑制が可能となる。
【0005】
プロジェクション溶接継手の技術分野においては、耐遅れ破壊特性の向上のために、種々の試みがなされている。
【0006】
特許文献1には、溶接前の引張強さが1100MPa以上の高強度鋼板にピアス孔を設け、該ピアス孔の中心と溶接ナットまたは溶接ボルトのねじ部の中心とが概略一致した状態で加圧しながら通電加熱を行うプロジェクション溶接により、前記高強度鋼板と前記溶接ナットまたは溶接ボルトとが接合されることで得られる自動車用構造部材であって、前記溶接ナットまたは溶接ボルトは、下面側が前記高強度鋼板との接合面とされたフランジ部を有するとともに、前記接合面に略半球状のプロジェクション部が設けられており、さらに、前記フランジ部の縦断面において、前記プロジェクション部の略半球状の円弧と前記接合面とが交差してなす半円の弦上の中心をCとするとともに、前記プロジェクション部の半径をR(mm)としたとき、前記中心Cから3Rの距離の範囲内に凹部を有しており、前記凹部は、前記フランジ部の前記接合面と反対側の上面において、前記プロジェクション部に対応する位置で概略一致するように局所的に設けられており、且つ、前記凹部の合計体積が前記プロジェクション部の合計体積の0.7~1.3倍の範囲であることを特徴とする、溶接部の遅れ破壊特性並びに静的強度特性に優れた自動車用構造部材が開示されている。
【0007】
特許文献2には、溶接前の引張強さが1100MPa以上の高強度鋼板にピアス孔を設け、該ピアス孔の中心と溶接ナットのねじ孔の中心とが概略一致した状態で、前記高強度鋼板と前記溶接ナットとを加圧しながら通電加熱を行うプロジェクション溶接によって各々が接合されることで得られる、溶接ナット部を有する自動車用構造部材であって、前記溶接ナットは、前記高強度鋼板との接合面に略半球状のプロジェクション部が設けられており、且つ、前記高強度鋼板におけるメタルフロー腐食液を用いて出現させた溶接熱影響部の板厚方向の深さH1と、高強度鋼板の板厚H2との関係が、次式{H1/H2=0.05~0.5}を満たすことを特徴とする、溶接ナット部を有する自動車用構造部材が開示されている。
【0008】
特許文献3には、所定の成分組成を有するナットと、引張強さ:750~1600MPa、板厚:0.8~3.0mm、炭素当量Ceq:0.22~0.50%の範囲である高強度鋼板とをプロジェクション溶接する際、電極の加圧力EFおよび通電時間Wtで本通電を行った直後に、後通電電流POC1および後通電時間POt1で後通電を実施し、その後、電極保持時間Htで保持することで、ナットと高強度鋼板との接合部の面積SJと、ナットの呼び径部分の面積SRとの比が次式{0.7≦SJ/SR≦1.5}で表される関係を満たし、かつ、接合部および熱影響部のビッカース硬さの最大値が550Hv以下となるように制御するプロジェクション溶接継手の製造方法が開示されている。
【0009】
特許文献4には、所定の成分組成を有するナット(またはボルト)と、引張強さ:750~1600MPa、板厚:0.8~3.0mm、次式{[C]+[Si]/30+[Mn]/20+2[P]+4[S]}で表される炭素当量Ceqが0.22~0.50%の範囲である高強度鋼板とがプロジェクション溶接されてなり、ナット(またはボルト)と高強度鋼板との接合部Aの面積SJと、ナット(またはボルト)の呼び径部分の面積SRとの比が次式{0.7≦SJ/SR≦1.5}で表される関係を満たし、かつ、接合部および熱影響部のビッカース硬さの最大値が550Hv以下とされているプロジェクション溶接継手が開示されている。
【0010】
特許文献5には、板状をなす板状部をもつ鋼系の第1のワークと、複数の突起をもつ鋼系の第2のワークとを準備する準備工程と、前記第2のワークの前記突起を前記第1のワークの前記板状部に押しつけるように、前記第1のワーク及び前記第2のワークのうちの少なくとも一方を加圧する加圧操作を行いつつ、前記第1のワークと前記第2のワークとの間に溶接電流I1、通電時間T1の条件で通電する第1通電操作を実施し、その後、前記第1のワークと前記第2のワークとの間に溶接電流I2、通電時間T2の条件で通電する第2通電操作を実施し、前記第1通電操作の溶接電流I1は前記第2通電操作の溶接電流I2よりも小さく、且つ、前記第1通電操作の通電時間T1は前記第2通電操作の通電時間T2よりも短く設定されていることを特徴とするプロジェクション溶接方法が開示されている。
【先行技術文献】
【特許文献】
【0011】
【文献】特許第5626025号公報
【文献】特許第5613521号公報
【文献】特開2013-078784号公報
【文献】特開2012-157900号公報
【文献】特開2004-050280号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
特許文献1及び特許文献2の技術では、鋼板に接合されるナットの形状を適正化することによって、接合部に加わる応力を低減している。特許文献5の技術では、溶接条件を適正化することによって、複数の突起における溶接強度のバラツキを低減している。しかしながら、これら技術によって得られる接合部は、高硬度を有すると推定される。遅れ破壊の因子の一つである鋼材強度の観点から、耐遅れ破壊特性を一層改善するための余地が残されている。
【0013】
特許文献3及び特許文献4の技術は、溶接条件を適正化することによって耐遅れ破壊特性の改善を試みている。しかしながら、これら技術は引張強さ1.5GPa以上の高強度鋼板を対象としていない。
【0014】
以上の事情に鑑みて本発明は、引張強さ1.5GPa以上の高強度鋼板から構成され、且つ耐遅れ破壊特性に優れたプロジェクション溶接継手の製造方法、並びにプロジェクション溶接継手及び自動車部品を提供することを課題とする。
【課題を解決するための手段】
【0015】
本発明の要旨は以下の通りである。
【0016】
(1)本発明の一態様に係るプロジェクション溶接継手の製造方法は、非めっき鋼板または亜鉛系めっき鋼板である鋼板の第一面に、複数の突起を有するナット又はボルトである鋼部材をプロジェクション溶接して、複数の接合部を形成するように、前記鋼板及び前記鋼部材に通電をする第一通電工程を備えるプロジェクション溶接継手の製造方法であって、前記鋼板の引張強さが1.5GPa以上であり、下記式1によって算出される前記鋼板の炭素当量Ceqが0.30質量%以上であり、前記鋼部材の中心及び前記接合部の中心を通り、且つ前記鋼板の前記第一面に垂直な断面において、前記接合部のうち、前記鋼部材の中心から最も離れた位置を、前記接合部の端部とし、前記接合部のうち、前記鋼板の前記第一面に沿って前記端部から前記鋼部材の中心に向かって0.5mm離れた位置までの領域を、前記接合部の端部領域とするとき、前記製造方法がさらに、複数の前記接合部のそれぞれを焼入れするクール工程と、複数の前記接合部のそれぞれにおいて、前記端部領域を焼戻すように、前記鋼板及び前記鋼部材にさらに通電をする第二通電工程と、を備える。
Ceq=[C]+[Si]/30+[Mn]/20+2×[P]+4×[S]:式1
ここで、前記式1に含まれる元素記号は、前記鋼板に含まれる各元素の含有量である。
(2)上記(1)に記載のプロジェクション溶接継手の製造方法では、前記鋼板がホットスタンプ鋼板であってもよい。
(3)上記(1)又は(2)に記載のプロジェクション溶接継手の製造方法では、前記鋼板の化学成分が、単位質量%で、C:0.07~0.45%、Si:0.001~2.50%、Mn:0.8~5.0%、P:0.03%以下、S:0.01%以下、を含有してもよい。
(4)上記(1)~(3)のいずれか一項に記載のプロジェクション溶接継手の製造方法では、前記鋼板が亜鉛系めっきホットスタンプ鋼板であってもよい。
(5)上記(1)~(4)のいずれか一項に記載のプロジェクション溶接継手の製造方法では、前記鋼板が亜鉛系めっきホットスタンプ鋼板であり、前記鋼板の板厚が1.2mm~3.6mmであり、前記クール工程の長さが332msec以上であり、前記第二通電工程における平均電流値I2及び通電時間t2の積I2×t2が、前記第一通電工程における平均電流値I1及び通電時間t1の積I1×t1の0.5倍以上であってもよい。
(6)上記(1)~(5)のいずれか一項に記載のプロジェクション溶接継手の製造方法では、前記プロジェクション溶接継手の製造方法が、前記第一通電工程の前に、前記第一通電工程の開始時点の電流値未満の電流値で、前記鋼板及び前記鋼部材に通電する前通電工程をさらに有してもよい。
(7)上記(1)~(6)のいずれか一項に記載のプロジェクション溶接継手の製造方法では、前記鋼部材が前記ナットであってもよい。
【0017】
(8)本発明の別の態様に係るプロジェクション溶接継手は、非めっき鋼板または亜鉛系めっき鋼板である鋼板と、ナット又はボルトである鋼部材と、前記鋼板の第一面及び前記鋼部材を接合する複数の接合部とを備え、前記鋼板の引張強さが1.5GPa以上であり、下記式2によって算出される前記鋼板の炭素当量Ceqが0.30質量%以上であり、前記鋼部材の中心及び前記接合部の中心を通り且つ前記鋼板の前記第一面に垂直な断面において、前記接合部のうち、前記鋼部材の中心から最も離れた位置を、前記接合部の端部とし、前記接合部のうち、前記鋼板の前記第一面に沿って前記端部から前記鋼部材の中心に向かって0.5mm離れた位置までの領域を、前記接合部の端部領域とするとき、前記複数の接合部のそれぞれにおいて、前記第一面から0.3mm深さの位置のビッカース硬さを連続的に測定することによって求められる、前記端部領域の最大硬度Hedgeが式3の関係を満たし、前記複数の接合部のそれぞれにおいて、前記第一面から0.3mm深さの位置のビッカース硬さを連続的に測定することによって求められる、前記接合部の最大硬度Hmaxが式4の関係を満たす。
Ceq=[C]+[Si]/30+[Mn]/20+2×[P]+4×[S]:式2
Hedge<0.9×Hm:式3
Hmax>0.9×Hm:式4
ここで、前記式3及び式4に含まれる記号Hmは、式5によって算出される値である。
Hm=884×[C]×(1-0.3×[C])+294:式5
ここで、前記式2及び前記式5に含まれる元素記号は、前記鋼板に含まれる各元素の含有量である。
(9)上記(8)に記載のプロジェクション溶接継手では、前記複数の接合部のそれぞれにおいて、前記端部領域の前記最大硬度Hedgeが式3´の関係を満たしてもよい。
Hedge<0.8×Hm:式3´
(10)上記(8)又は(9)に記載のプロジェクション溶接継手では、前記鋼板が亜鉛系めっきホットスタンプ鋼板であってもよい。
【0018】
(11)本発明の別の態様に係る自動車部品は、上記(8)~(10)のいずれか一項に記載のプロジェクション溶接継手を備える。
【発明の効果】
【0019】
本発明によれば、引張強さ1.5GPa以上の高強度鋼板から構成され、且つ耐遅れ破壊特性に優れたプロジェクション溶接継手の製造方法、並びにプロジェクション溶接継手及び自動車部品を提供することができる。
【図面の簡単な説明】
【0020】
図1A】本実施形態に係るプロジェクション溶接継手の製造方法における、第一通電工程の前の状態を示す断面模式図である。
図1B】本実施形態に係るプロジェクション溶接継手の製造方法における、第二通電工程の後の状態を示す断面模式図である。
図1C】接合部の端部領域を示す断面拡大図である。
図2】鋼部材の平面図である。
図3】接合部の端部領域の最大硬度Hedge、及び接合部全体での最大硬度Hmaxの測定方法を説明する図である。
【発明を実施するための形態】
【0021】
<プロジェクション溶接継手の製造方法>
以下、本実施形態に係るプロジェクション溶接継手の製造方法について、図面を適宜参照しながら説明する。
【0022】
プロジェクション溶接継手1における遅れ破壊の原因は、接合部13に導入される応力と、接合部13に生じる焼入れ硬化であると考えられた。接合部13における応力は、溶接によって形成された接合部13の冷却過程で生じる熱応力、及び電極開放により接合部13に生じる歪等に起因するものであると考えられる。本発明者らは、応力が接合部13に導入される電極開放の際に、特定の部位において割れが生じやすいことを知見した。以下、割れが生じやすい部位を「危険部位」と称する。さらに本発明者らは、危険部位の硬度を低下させることにより、プロジェクション溶接継手1における遅れ破壊を極めて効果的に抑制可能であることを見出した。
【0023】
この本発明者らの知見に基づいて得られた、本実施形態に係るプロジェクション溶接継手の製造方法は、
(S1)図1A及び図1Bに示されるように、非めっき鋼板または亜鉛系めっき鋼板である鋼板11の第一面11aに、複数の突起121を有するナット又はボルトである鋼部材12をプロジェクション溶接して、複数の接合部13を形成するように、鋼板11及び鋼部材12に通電をする第一通電工程
を有し、さらに、
(S2)図1Cに示される、複数の接合部13それぞれの端部領域131を焼入れするクール工程と、
(S3)複数の接合部13それぞれの端部領域131を焼戻すように、鋼板11及び鋼部材12にさらに通電をする第二通電工程と、
を有する。
なお、端部領域131とは、鋼部材12の中心及び接合部13の中心を通り、且つ鋼板11の第一面11aに垂直な断面において、特定される領域である。具体的には、当該断面において、接合部13のうち鋼部材12の中心から最も離れた位置が、接合部13の端部130と定義される。そして、接合部13のうち、鋼板11の第一面11aに沿って、端部130から鋼部材12の中心に向かって0.5mm離れた位置までの領域を、接合部13の端部領域131と定義する。この端部領域131が、上述の危険部位に相当する。以下に、本実施形態に係る製造方法について詳述する。
【0024】
(鋼板11)
鋼板11は、引張強さ1.5GPa以上かつ炭素当量Ceqが0.30質量%以上の高強度鋼板である。これにより、プロジェクション溶接継手1は、極めて優れた静的強度を有する。鋼板11の引張強さは1.6GPa以上、1.7GPa以上、又は1.8GPa以上であってもよい。鋼板11の炭素当量Ceqは0.32質量%以上、0.35質量%以上、又は0.38質量%以上であってもよい。
【0025】
なお、炭素当量Ceqとは、下記式1によって算出される値である。
Ceq=[C]+[Si]/30+[Mn]/20+2×[P]+4×[S] :式1
式1に含まれる元素記号は、鋼板11に含まれる各元素の含有量である。炭素当量Ceqは、鋼材の焼入れ性の指標値である。炭素当量Ceqが高いほど、焼入れによる鋼材の硬度上昇量が大きい。
【0026】
本実施形態に係るプロジェクション溶接継手の製造方法においては、以下、説明の便宜上、鋼板11の2つの表面のうち鋼部材12が溶接される表面を第一面11aと称し、これの反対側の表面を第二面11bと称する。ただし、鋼部材12が鋼板11の両方の表面に溶接されてもよい。この場合、着目する鋼部材に応じて、上述の定義に従って鋼板の第一面11a及び第二面11bを区別すればよい。
【0027】
鋼板11の形状は特に限定されない。例えば鋼板11が平板であってもよい。一方、図1A及び図1Bに例示されるように、鋼板11に通し穴111が設けられていてもよい。鋼部材12がナットである場合、ナットの穴と通し穴111とを軸合わせすることにより、プロジェクション溶接継手1を貫通するように、ボルトをプロジェクション溶接継手1に取り付けられるようになる。
【0028】
そして鋼板11は、非めっき鋼板または亜鉛系めっき鋼板である。亜鉛系めっきとは、例えば溶融亜鉛めっき、及び合金化溶融亜鉛めっき等である。亜鉛系めっきは、ホットスタンプのために鋼板11を加熱した際に、鋼板11の表面におけるスケールの形成を抑制する働きを有する。亜鉛系めっきの目付量は、例えば片面当たり30~80g/mの範囲内とすることが好ましい。
【0029】
例えばプロジェクション溶接継手1を自動車部品として用いる場合、鋼板11をホットスタンプ鋼板とすることが好適である。ホットスタンプ鋼板とは、ホットスタンプ加工された鋼板のことである。また、ホットスタンプ鋼板の表面に亜鉛系めっきを設けてもよい。ホットスタンプ加工された亜鉛系めっき鋼板を、本実施形態においては亜鉛系めっきホットスタンプ鋼板と称する。
【0030】
鋼板11の化学成分も特に限定されない。例えば、鋼板11の化学成分が、単位質量%で、C:0.07~0.45%、Si:0.001~2.50%、Mn:0.8~5.0%、P:0.03%以下、及びS:0.01%以下を含有するものとすればよい。この場合、化学成分の残部は、Fe及び不純物を含む。このような化学成分を有する鋼板は、ホットスタンプ鋼板として好適に用いることができる。
【0031】
鋼板11の厚さも特に限定されない。例えば鋼板11がホットスタンプ鋼板である場合、鋼板11の板厚を1.2mm~3.6mmの範囲内とすることが好適である。その他、プロジェクション溶接継手1の用途に応じた様々な板厚を、鋼板11に適用することができる。
【0032】
(鋼部材12)
鋼部材12は、図1Aに示されるように、複数の突起121を有する。突起121は、プロジェクション溶接の際に鋼板11に押し付けられ、電流経路となる。そして突起121は、複数の突起121と鋼板11との接触面に電流を集中させて、鋼部材12と鋼板11とを接合する接合部13を形成する。
【0033】
鋼部材12を鋼板11に確実に接合するために、突起121の数は2個以上とされる。例えば、突起121の数を3個、4個、5個、又は6個としてもよい。後述するように、複数の突起121それぞれと鋼板11との接触状態を均一化する観点から、突起121の数を3個とすることが最も好ましい。複数の突起121の位置は特に限定されない。複数の突起121それぞれと鋼板11との接触状態を均一化する観点から、図2に示されるように、接合面に関して鋼部材12を平面視したときに、鋼部材12の重心に関して回転対称な位置に複数の突起121が配されることが好ましい。
【0034】
鋼部材12の形状は特に限定されない。例えばプロジェクション溶接継手1を自動車部品として用いる場合、鋼部材12をボルト又はナットとすることが好ましい。しかしながら、プロジェクション溶接継手1の用途に応じて、種々の形状を鋼部材12に適用することができる。鋼部材12の強度及び化学成分等も特に限定されない。例えば、鋼部材12の素材をS10C、又はS25C等としてもよい。
【0035】
本実施形態に係るプロジェクション溶接継手の製造方法では、鋼部材12と鋼板11とをプロジェクション溶接する第一通電工程と、接合部13を焼入れするクール工程と、接合部13を焼戻す第二通電工程とが行われる。一連の工程、特にプロジェクション溶接のための第一通電工程を行うための装置は、鋼部材12を鋼板11に向けて加圧する機能と、鋼部材12及び鋼板11に通電する機能とを有する必要がある。例えばスポット溶接機は、一対の電極を用いて被溶接物に加圧及び通電をする機能を有する。また、通常、スポット溶接装置の電極は、被溶接物を冷却する機能も有する。従って、プロジェクション溶接用の装置の好適な一例はスポット溶接装置である。
【0036】
(第一通電工程)
本実施形態に係るプロジェクション溶接継手の製造方法では、まず、鋼板11の第一面11aに、複数の突起121を有する鋼部材12をプロジェクション溶接して、複数の接合部13を形成するように、鋼板11及び鋼部材12に第一通電工程を行う。プロジェクション溶接の際には、複数の突起121を鋼板11の第一面11aに押し付けるように、鋼板11及び鋼部材12を加圧しながら通電を行う。突起121と鋼板11の第一面11aとの接触面に電流が集中することにより、接触面の温度が上昇し、鋼板11と鋼部材12とを接合する接合部13が形成される。
【0037】
第一通電工程における電流値が高い場合は、鋼板11の第一面11aと、突起121との接触面及びその近傍が溶融凝固して、接合部13には溶接金属が形成される。第一通電工程における電流値が低い場合は、接触面及びその近傍が溶融することはなく、接合部13は固相接合面となる。本実施形態に係るプロジェクション溶接継手1の製造方法においては、接合部13は溶接金属であっても固相接合面であってもよい。また、第一通電工程における電流値、及び/又は加圧力が大きく、突起121が小さい場合は、図1Bに示されるように、突起121は第一通電工程の際に潰れて消失することがある。一方、突起121が第一通電工程の後に残存することもある。本実施形態に係るプロジェクション溶接継手1の製造方法においては、第一通電工程の後に突起121が残存していても、消失していてもよい。以上の理由により、第一通電工程における通電条件及び加圧条件は特に限定されない。
【0038】
(クール工程)
本実施形態に係るプロジェクション溶接継手の製造方法では、第一通電工程に次いで、複数の接合部13のそれぞれにおける、複数の端部領域131を焼入れするために、複数の接合部13を冷却する。この冷却を、クール工程と称する。端部領域131とは、図1Cを参照しながら上述したように、接合部13の端部130から0.5mm離れた位置までの領域のことである。接合部13の端部130とは、接合部13のうち鋼部材12の中心から最も離れた位置のことである。
【0039】
冷却の方法は特に限定されない。例えば、通電のために用いられる電極の内部に流路を設け、この流路内に冷媒を流通させてもよい。このような構成を有する電極と、鋼板11及び鋼部材12とを接触させたまま、電流値を0又はこれに近い小さい値に減少させると、接合部13から電極への抜熱現象によって接合部13が急冷される。そして、端部領域131を含む接合部13の全体に焼入れ硬化が生じる。
【0040】
クール工程においては、全ての接合部13に対して冷却が行われる必要がある。一方、クール工程における冷却時間、及びその他の条件は特に限定されない。焼入れ硬化を生じさせることができる冷却条件を、鋼板11及び鋼部材12の構成に応じて適宜選択することができる。例えば、鋼板のHmに基づいて、焼入れ硬化の有無を判別することができる。また、接合しようとする鋼板11及び鋼部材12に対して、後述する第二通電工程を省略したテスト溶接を実施し、これにより得られた接合部の硬度を評価することにより、そのテスト溶接におけるクール工程の冷却条件が焼入れ硬化を生じさせるか否かを確認することができる。このようなテスト溶接を繰り返すことにより、好適な冷却条件を定めることができる。好適な冷却条件の例については後述する。
【0041】
(第二通電工程)
本実施形態に係るプロジェクション溶接継手の製造方法では、クール工程に次いで、複数の接合部13のそれぞれにおける複数の端部領域131を焼戻しするように、鋼板11及び鋼部材12に通電する。この通電をする工程を、第二通電と称する。第二通電工程によって端部領域131を焼戻すと、端部領域131が軟化する。これにより、クール工程において、端部領域131に導入された応力が緩和される。さらに、端部領域131を軟化させてから電極を開放することにより、電極開放時に端部領域131に導入される応力も緩和される。焼戻しは、全ての接合部13に対して行われる必要がある。
【0042】
本発明者らは、端部領域131が、遅れ破壊が生じやすい危険部位であることを見出した。遅れ破壊を生じさせる要因の一つである応力を、端部領域131において低減することにより、遅れ破壊を抑制することができる。
【0043】
第一通電工程の開始の時点では、鋼部材12の突起121と鋼板11との接触面積は極めて小さく、従って接触面における電流密度は高い。従って、第一通電工程においては当該接触面が極めて高い温度まで加熱され、接合部13の全体にわたって焼入れ硬化が生じる。一方、第二通電工程の開始の時点では、鋼部材12の突起121と鋼板11との間に接合部13が形成されているので、接合部13における電流密度は第一通電工程の開始時よりも低い。この状態で第二通電工程を実施すると、鋼部材12の中心に近い領域と、鋼部材12の中心に遠い領域との間で温度差が生じることを本発明者らは見出した。この現象を利用することにより、第二通電工程において、接合部13の端部領域131においてのみ焼戻し軟化を生じさせることができる。
【0044】
端部領域131を焼き戻すことができる限り、第二通電工程の条件は特に限定されない。鋼板11及び鋼部材12の構成、並びに第二通電工程の前に行われる第一通電工程及びクール工程の条件等に応じて、適正な電流値及び通電時間を設定すればよい。
【0045】
なお、プロジェクション溶接と同じ抵抗溶接に分類されるスポット溶接においては、本通電によってナゲットを形成した後、後通電によってナゲットを焼戻す技術が知られている。しかしながら、スポット溶接における後通電条件をプロジェクション溶接の第二通電条件に転用することは好ましくない。スポット溶接では溶接点が1点である一方、プロジェクション溶接では溶接点が複数存在し、しかも各溶接点における発熱量等を可能な限り一致させる必要があるためである。プロジェクション溶接では、考慮すべき事項がスポット溶接よりも多く、それらの内容も両者の間で相違している。従って、溶接条件の最適化のための手順も、両者の間で相違している。本実施形態に係るプロジェクション溶接継手の製造方法の実施にあたっては、部材の形状及び材質等に応じた溶接条件の最適化を行うことが好ましい。
【0046】
上述したように、鋼板11が亜鉛系めっきホットスタンプ鋼板であってもよい。亜鉛系ホットスタンプ鋼板は、耐食性等に優れている。
【0047】
ただし一般に、亜鉛系ホットスタンプ鋼板は、複数の突起を有する鋼部材とのプロジェクション溶接には不向きであると考えられている。何故なら、亜鉛系めっき鋼板をホットスタンプのために加熱すると、その表面にポーラス状の亜鉛酸化物が生成し、その表面抵抗が大きく、且つ不均一に上昇するからである。例えば、亜鉛系めっきホットスタンプ鋼板の表面抵抗は、ホットスタンプ用の加熱後に、平均10mΩ超となることがある。さらに本発明者らが加熱後の亜鉛系めっきホットスタンプ鋼板の表面抵抗を測定したところ、測定場所に応じて、約1~400mΩの範囲内で大きくばらついた。
【0048】
接合強度を確保するためには、複数の突起121に均等に発熱を生じさせることが好ましい。一方、鋼板11の表面抵抗のばらつきは、複数の突起121それぞれを通る電流経路の抵抗値をばらつかせて、これにより複数の突起121における発熱量をばらつかせる。この場合、一つの突起121に対して適正な溶接条件が設定されたとしても、別の突起121において、その溶接条件は不適正なものとなりうる。以上の理由により、鋼板11の表面抵抗のばらつきは、プロジェクション溶接継手1の接合強度に悪影響を及ぼす。そのため、従来技術においては、亜鉛系めっきホットスタンプ鋼板にプロジェクション溶接で鋼部材を取り付ける例はほとんどなかった。
【0049】
しかしながら、本実施形態に係るプロジェクション溶接継手の製造方法では、プロジェクション溶接のための第一通電工程を実施した後で、クール工程及び第二通電工程によって接合部13に焼入れ及び焼戻しを実施する。この焼入れ及び焼戻しを経ると、高い表面抵抗に起因する悪影響が緩和され、割れが低減されることを本発明者らは知見した。これは、不適正な溶接条件によって脆化した接合部13の硬度が、焼戻しによって低下するからであると推定される。従って、本実施形態に係るプロジェクション溶接継手の製造方法においては、平均表面抵抗10mΩ超の亜鉛系めっきホットスタンプ鋼板を鋼板11として用いてもよい。
【0050】
上述の通り、第一通電条件、クール条件、及び第二通電条件は特に限定されない。鋼板の表面処理の種類等に応じた適切な値を、適宜選択することができる。ここで、鋼板11が亜鉛系めっきホットスタンプ鋼板である場合の、第一通電条件、クール条件、及び第二通電条件の組み合わせの好適な例を挙げると、以下の通りである。鋼板11が亜鉛系めっきホットスタンプ鋼板であり、鋼板11の板厚が1.2mm~3.6mmである場合、クール工程の長さを332msec以上とし、第一通電工程における平均電流値I1、第一通電工程における通電時間t1、第二通電工程における平均電流値I2、及び第二通電工程における通電時間t2が、I2×t2≧0.5×(I1×t1)の関係を満たすようにすることが好ましい。
【0051】
クール工程長さとは、第一通電と第二通電との間の無通電時間の長さである。クール工程の長さを332msec以上とすることにより、接合部13を十分に冷却し、焼入れ硬化を生じさせることができる。クール工程の長さを498msec以上、又は581msec以上としてもよい。クール工程の長さの上限は例えば4sec、好ましくは3sec、より好ましくは2secである。なお、クール工程において通電を完全に停止する必要はなく、わずかに通電していてもよい。
【0052】
第一通電工程における通電時間t1とは、突起と鋼板とを接合するための通電が開始した時点から、電流値が実質的に0になる時点までの期間の長さである。なお、第一通電工程の前に、突起を軟化させるための前通電工程がある場合、前通電の時間は通電時間t1には含まない。第一通電工程における平均電流値I1とは、当該期間における電流値の平均値である。第二通電工程における通電時間t2とは、クール工程が終了し、通電が開始した時点から、電流値が再び0になる時点までの期間の長さである。第二通電工程における平均電流値I2とは、当該期間における電流値の平均値である。なお、第一通電工程及び第二通電工程の際の電流値は、通電期間中に一定値であってもよいし、変動してもよい。第一通電工程の開始から終了までの平均電流値I1とは、第一通電工程の開始時点から終了時点までの期間における電流値の時間積分値を、第一通電工程における通電時間t1で割った値である。同様に第二通電工程の開始から終了までの平均電流値I2とは、第二通電工程の開始時点から終了時点までの期間における電流値の時間積分値を、第二通電工程における通電時間t2で割った値である。
【0053】
I2×t2をI1×t1の0.5倍以上とすることにより、接合部13の温度を確実に焼戻し温度以上まで上昇させることができる。I2×t2をI1×t1の0.6倍以上、又は0.8倍以上としてもよい。なお、I2×t2の上限は特に限定されないが、接合部13が再焼き入れ温度を超えて加熱されることを防ぐために、I2×t2をI1×t1の4.5倍以下、又は4.0倍以下と規定してもよい。
【0054】
(前通電工程)
第一通電工程の前に、第一通電工程の開始時点の電流値未満の電流値で、鋼板11及び鋼部材12に通電してもよい。この通電は、前通電と称される。前通電工程を行うことにより、鋼板11と鋼部材12との接合現象が生じる前に、鋼部材12の突起121を軟化させ、変形させることができる。これにより、複数の突起121と鋼板11との接触状態を均一化させて、プロジェクション溶接継手の接合強度を一層高めることができる。特に、鋼板11が亜鉛系ホットスタンプ鋼板である場合、前通電は接合強度の確保のために有効である。上述のように、亜鉛系ホットスタンプ鋼板のプロジェクション溶接では、表面抵抗値のばらつきに起因して、突起ごとの加熱温度がばらつきやすい。しかしながら、第一通電に先だって前通電を実施することにより、突起と鋼板との接触面積が拡大し、表面抵抗値のばらつきを緩和し、突起ごとの加熱温度を均一化することができる。
【0055】
前通電工程の際の電流値は、通電期間中に一定値であってもよいし、変動してもよい。例えば、前通電工程の際の電流値が徐々に上昇するように、電源を制御してもよい。このような通電条件において、電流値の時間変化をグラフにすると、グラフは正の傾きを有するスロープ状となる。一方、所定の値まで電流値を瞬間的に上昇させ、その所定の値で電流値を保持してもよい。様々な通電パターンを前通電工程に適用することができる。また、前通電工程と第一通電工程との間に無通電時間を設けてもよいし、前通電工程と第一通電工程とを連続的に行ってもよい。
【0056】
<プロジェクション溶接継手>
次に、本実施形態に係るプロジェクション溶接継手について、以下に説明する。なお、上述したプロジェクション溶接継手の製造方法において説明した様々な構成は、後述するプロジェクション溶接継手に適宜適用することができる。ただし、本実施形態に係るプロジェクション溶接継手の製造方法は特に限定されない。上述された製造方法以外の方法によって得られたプロジェクション溶接継手も、後述する要件を満たす場合は、本実施形態に係るプロジェクション溶接継手であると解される。
【0057】
本実施形態に係るプロジェクション溶接継手1は、非めっき鋼板または亜鉛系めっき鋼板である鋼板11と、ナット又はボルトである鋼部材12と、鋼板11の第一面11a及び鋼部材12を接合する複数の接合部13とを備え、鋼板11の引張強さが1.5GPa以上であり、下記式2によって算出される鋼板11の炭素当量Ceqが0.30質量%以上であり、鋼部材12の中心及び接合部13の中心を通り且つ鋼板11の第一面11aに垂直な断面において、接合部13のうち、鋼部材12の中心から最も離れた位置を、接合部13の端部130とし、接合部13のうち、鋼板11の第一面11aに沿って端部130から鋼部材12の中心に向かって0.5mm離れた位置までの領域を、接合部13の端部領域131とするとき、複数の接合部13のそれぞれにおいて、第一面11aから0.3mm深さの位置のビッカース硬さを連続的に測定することによって求められる、端部領域131の最大硬度Hedgeが式3の関係を満たし、複数の接合部13のそれぞれにおいて、第一面11aから0.3mm深さの位置のビッカース硬さを連続的に測定することによって求められる、接合部13の最大硬度Hmaxが式4の関係を満たす。
Ceq=[C]+[Si]/30+[Mn]/20+2×[P]+4×[S] :式2
Hedge<0.9×Hm :式3
Hmax>0.9×Hm :式4
ここで、前記式3及び式4に含まれる記号Hmは、式5によって算出される値である。
Hm=884×[C]×(1-0.3×[C])+294 :式5
ここで、前記式2及び前記式5に含まれる元素記号は、前記鋼板に含まれる各元素の含有量である。
【0058】
(鋼板11)
鋼板11は、引張強さ1.5GPa以上かつ炭素当量Ceqが0.30質量%以上の非めっき高強度鋼板または亜鉛系めっき高強度鋼板である。これにより、プロジェクション溶接継手1は、極めて優れた静的強度を有する。上述したプロジェクション溶接継手の製造方法において例示された鋼板11の好適な形態を、本実施形態に係るプロジェクション溶接継手1の鋼板11に適用することができる。
【0059】
(鋼部材12)
本実施形態に係るプロジェクション溶接継手において、鋼部材12はボルト又はナットである。ここで鋼部材12は、鋼板11に接する複数の突起121を判別可能に有してもよいし、判別可能に有しなくともよい。複数の突起121は、プロジェクション溶接の際に潰れて消失しうるからである。また、突起121はプロジェクション溶接のために必要とされるものであり、溶接の終了後には特に必要とされない。また、鋼部材12の形状は特に限定されない。
【0060】
(接合部13)
接合部13は、プロジェクション溶接によって、複数の突起121と、鋼板11の第一面11aとの接触部位に形成されたものである。そのため、接合部13の数は2つ以上であり、好ましくは3つ以上又は4つ以上である。接合部13は、鋼板11の第一面11a及び鋼部材12を接合する。接合部13は溶接金属から構成されていても、固相接合面から構成されていてもよい。接合部13の位置は特に限定されないが、突起121と同様に、接合面に関して平面視したときに、鋼部材12の重心に関して回転対称な位置に接合部13が配されることが好ましい。
【0061】
本実施形態に係るプロジェクション溶接継手1においては、複数の接合部13それぞれにおいて、端部領域131における最大硬度Hedge、及び接合部13の全体における最大硬度Hmaxが所定範囲内とされる。硬度の具体的な測定方法は後述する。
【0062】
本実施形態に係るプロジェクション溶接継手においては、接合部13は全体的に一旦焼き入れされており、一方、接合部13のうち端部領域131はさらに焼き戻されている。その結果、端部領域131の最大硬度Hedgeは式3を満たし、接合部13の最大硬度Hmaxは式4を満たす。
Hedge<0.9×Hm :式3
Hmax>0.9×Hm :式4
ここで、式3及び式4に含まれるHmは、式5によって算出される値である。
Hm=884×[C]×(1-0.3×[C])+294 :式5
ここで、式5に含まれる元素記号は、鋼板11に含まれる各元素の含有量である。
【0063】
鋼板のHmとは、組織が全てマルテンサイトとなるようにその鋼板が焼き戻された場合の、その鋼板のビッカース硬さの推定値である。Hmに基づき、鋼板の焼き入れ後の硬さを予測することができる。接合部13の最大硬度Hmaxが、Hmの0.9倍超である場合、接合部13には焼入れ硬化が生じているとみなすことができる。また、接合部13の最大硬度HmaxがHmの0.9倍超である場合において、端部領域131の最大硬度HedgeがHmの0.9倍未満である場合、端部領域131は、プロジェクション溶接後に一旦焼き入れされ、次いで焼き戻されたとみなすことができる。接合部13の危険部位である端部領域131が軟化していることにより、本実施形態に係るプロジェクション溶接継手1は、高い耐遅れ破壊特性を有する。
【0064】
Hedgeは、Hmの0.8倍以下であってもよい。即ち、端部領域の最大硬度Hedgeが下記式3´の関係を満たしてもよい。これにより、プロジェクション溶接継手1の耐遅れ破壊特性が一層高められる。
Hedge<0.8×Hm :式3´
Hedgeは、Hmの0.7倍以下、又は0.6倍以下であってもよい。ただし、接合部13において式3の関係が満たされない場合でも、上述のクール工程及び第二通電工程において接合部13に焼入れ及び焼戻しが行われていれば、遅れ破壊を抑制する効果は得られる。
【0065】
(接合部13の硬度測定方法)
端部領域131の最大硬度Hedge及び接合部13の最大硬度Hmaxの測定方法は以下の通りである。まず、複数の接合部13全てを、鋼板11の第一面11aに垂直な面において切断し、次いで切断面を研磨する。なお、これら切断面それぞれは、鋼部材12の中心を通り、且つ、接合部13の中心を通る必要がある。例えば、図2に示されるように3つの突起部を有する鋼部材においては、一点鎖線に沿って接合部13を切断する。
【0066】
次に、全ての切断面において、鋼板11の第一面11aに平行且つ第一面11aから0.3mm深さの位置の線に沿って、ビッカース硬さを連続的に測定する。測定荷重は500gとし、圧子に荷重をかける時間は10秒とし、測定間隔は0.25mmとする。これにより、各切断面に関し、例えば図3に示されるような、硬度測定位置と硬度との関係を示すグラフを作成することができる。
【0067】
上記手順で得られた硬さ-測定位置グラフにおいて、接合部の端部から0.5mm離れた位置までの硬さ測定値を抽出する。これら硬さ測定値のうち最大の値を、端部領域131の最大硬度Hedgeとみなす。同様に、接合部の全ての硬さ測定値のうち最大の値を、接合部13の最大硬度Hmaxとみなす。Hmaxに該当する硬さ測定値が、端部領域131の内部において得られた値である場合、HedgeとHmaxとが同一の値となる。ただし、この場合は、上述の式3及び式4の両方が満たされることはない。
【0068】
複数の接合部それぞれにおいて、Hedge及びHmaxを特定し、これらが上記式を満たすか否かを確認する。全ての接合部において、Hedge及びHmaxが上記式を満たすプロジェクション溶接継手は、本実施形態に係るプロジェクション溶接継手とみなされる。
【0069】
鋼板11が、亜鉛系めっきホットスタンプ鋼板であってもよい。通常、亜鉛系めっきホットスタンプ鋼板に鋼部材12をプロジェクション溶接した場合、遅れ破壊が生じやすい傾向にある。なぜなら、亜鉛系めっきホットスタンプ鋼板は表面抵抗のばらつきが大きく、従ってプロジェクション溶接の際に複数の突起部の加熱温度が不均一になりやすいからである。また、亜鉛系めっきホットスタンプ鋼板に鋼部材12をプロジェクション溶接した場合、押し込み剥離強度が低下する場合もある。しかし本実施形態に係るプロジェクション溶接継手1では、Hedge及びHmaxが上述の式を満たすように、接合部に焼き入れ及び焼戻しが行われている。そのため、本実施形態に係るプロジェクション溶接継手1は、亜鉛系めっきを有しながら高い耐遅れ破壊特性を有する。亜鉛系めっきを有することにより、耐食性の向上、及びスケール量減少等の効果が得られる。
【0070】
<自動車部品>
次に、本実施形態に係る自動車部品について、以下に説明する。本実施形態に係る自動車部品は、上に説明した実施形態に係るプロジェクション溶接継手を備える。これにより、本実施形態に係る自動車部品は、引張強さ1.5GPa以上の高強度鋼板から構成され、且つ耐遅れ破壊特性に優れる。自動車部品とは、例えばピラー部品である。ピラー部品とは例えば、Aピラー、Bピラー、及びルーフリンフォース等である。
【実施例
【0071】
実施例により本発明の一態様の効果を更に具体的に説明する。ただし、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例に過ぎない。本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
【0072】
表1に、実施例の製造のために準備された種々の鋼板のデータを示す。参考のために、鋼板の平均表面抵抗も表1に記載した。鋼板の平均表面抵抗は様々な手法で測定可能であるが、本実験においては以下の手順で測定して、その結果を表1に記載した。先端径Φ6mm且つ40Rの、一対のドーム型Cu-Cr電極を用いて、鋼板11を挟持した。加圧力は250kgfとした。そして、電極に、直流定電流2Aを通電した。通電時の電流値及び電圧値に基づき、電極によって挟持された箇所の抵抗値を算出した。この測定法によれば、電極によって挟持された箇所における、鋼板11の内部抵抗と表面抵抗との合計値が測定されることになる。しかし鋼板11の内部抵抗は非常に小さい。そのため、この測定法によって得られた値は、電極によって挟持された箇所における鋼板11の表面抵抗とみなすことができる。この抵抗値測定を10か所で行い、得られた測定値の平均値を、鋼板11の平均表面抵抗とみなした。
【0073】
表2A及び表2Bに、プロジェクション溶接条件を示す。ここで「加圧力」とは、プロジェクション溶接(第一通電)工程、クール工程、及び第二通電工程の間に、鋼部材を鋼板に押し付ける圧力のことである。一連の工程において、加圧力は一定値とした。「スクイズ」とは、加圧力を加え始めてから、プロジェクション溶接電流を流し始めるまでの時間のことである。「保持工程」とは、第二通電が終了してから、加圧力を0にするまでの時間のことである。「第一入熱」とは、プロジェクション溶接(第一通電)における平均電流値と通電時間との積であり、「第二入熱」とは、第二通電における平均電流値と通電時間との積である。なお、全ての例において、第一通電の前に、2cycのアップスロープ通電と6cycの一定通電とから構成される前通電を実施した。
【0074】
表3に、接合部の硬さ測定結果及び耐遅れ破壊特性の評価結果を示す。「接合部の焼き入れ判定」列には、接合部の最大硬度Hmaxが表1の「0.9×Hm」列の値を上回る場合に「〇」を記載し、さもなくば「×」と記載した。「端部領域の焼戻し」列には、端部領域の最大硬度Hedgeが表1の「0.9×Hm」列の値を下回る場合に「〇」を記載し、表1の「0.8×Hm」列の値を下回る場合に「◎」と記載し、さもなくば「×」と記載した。
【0075】
硬さ測定は、上述した方法に従って実施した。なお、本実験の条件下では、3つの接合部全てが対称に形成された。そのため、1つの接合部の測定値のみを代表値として表に記載した。ただし、実操業条件下では、接合部が対称に形成されない場合があるので、全ての接合部に対して硬さ評価等をすることが望ましい。
【0076】
耐遅れ破壊特性の評価は、まず、溶接完了後4日経過した後のプロジェクション溶接継手に対して行った。継手の接合部を切断し、研磨した後、倍率200倍で観察し、割れがあるか否かを確認した。なお、割れの確認は、1条件あたり、6試料に対して実施した。6試料のうち4試料以上で割れが発生している条件に関しては、「割れ調査結果 溶接後」の列に「×」と記載し、6試料のうち1~3試料で割れが発生している条件に関しては、「割れ調査結果 溶接後」の列に「△」と記載し、6試料いずれにも割れが発生しなかった条件に関しては、「割れ調査結果 溶接後」の列に「〇」と記載した。なお、プロジェクション溶接継手1つにつき3つの接合部が形成されたが、3つのうち1つ以上に割れがあれば、その継手は「割れがある継手」と判断した。
【0077】
また、溶接完了の直後のプロジェクション溶接継手を、同一pHの塩酸に所定時間だけ浸漬した。塩酸中では、水素が接合部等に侵入するので、遅れ破壊が促進される。浸漬後のプロジェクション溶接継手の3つの接合部を切断し、研磨した後、倍率200倍で観察し、割れがあるか否かを確認した。なお、割れの確認は、1条件あたり、6試料に対して実施した。6試料のうち4試料以上で割れが発生している条件に関しては、「割れ調査結果 塩酸」の列に「×」と記載し、6試料のうち1~3試料で割れが発生している条件に関しては、「割れ調査結果 塩酸」の列に「△」と記載し、6試料いずれにも割れが発生しなかった条件に関しては、「割れ調査結果 塩酸」の列に「〇」と記載した。
2種類の評価結果のうち悪い方を、総合評価として「判定」列に記載した。判定が△又は〇であった条件を、耐遅れ破壊特性に優れた発明例と判断した。
【0078】
【表1】
【0079】
【表2A】
【0080】
【表2B】
【0081】
【表3】
【0082】
表に記載されていない条件は以下の通りとした。
・鋼部材:3つのドーム型突起を有するM8ナット
・亜鉛系めっき:なし
【0083】
比較例1~4の製造においては、クール工程、及び第二通電工程が実施されなかった。そのため、比較例1~4の継手においては、焼き入れ硬化部も焼戻し軟化部も確認されなかった。これら比較例においては、塩酸浸漬後の耐遅れ破壊特性評価結果が劣位であった。
【0084】
比較例5の製造においては、端部領域の焼戻しが不十分であった。そのため、比較例5においては、塩酸浸漬後の耐遅れ破壊特性評価結果が劣位であった。
【0085】
参考例6においては、クール工程、及び第二通電工程が実施されず、焼き入れ硬化部及び焼戻し軟化部も形成されなかったが、耐遅れ破壊特性は良好であった。これは、鋼板の引張強さが1.5GPaを下回っていたからである。このように、鋼板の引張強さが1.5GPaを下回る場合、プロジェクション溶接における遅れ破壊は課題とはならない。
【0086】
一方、プロジェクション溶接の後にクール工程、及び第二通電工程が実施された結果、接合部に焼入れがなされ、且つ端部領域に焼戻しがなされた実施例は、鋼板の引張強さが1.5GPaを超えるにもかかわらず、耐遅れ破壊特性に優れていた。
【符号の説明】
【0087】
1 プロジェクション溶接継手
11 鋼板
111 通し穴
11a 第一面
11b 第二面
12 鋼部材
121 突起
13 接合部
130 端部
131 端部領域
132 中心領域
i 硬度測定点
【要約】
本発明の一態様に係るプロジェクション溶接継手の製造方法は、非めっき鋼板または亜鉛系めっき鋼板である鋼板の第一面に鋼部材をプロジェクション溶接して、複数の接合部を形成するように、鋼板及び鋼部材に通電をする第一通電工程を備え、鋼板の引張強さが1.5GPa以上であり、鋼板のCeqが0.30質量%以上であり、製造方法がさらに、複数の接合部のそれぞれを焼入れするクール工程と、複数の接合部のそれぞれにおいて、端部領域を焼戻すように、鋼板及び鋼部材にさらに通電をする第二通電工程と、を備える。
図1A
図1B
図1C
図2
図3