IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱電機株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-07
(45)【発行日】2023-12-15
(54)【発明の名称】電磁波検出器及び電磁波検出器アレイ
(51)【国際特許分類】
   H01L 31/10 20060101AFI20231208BHJP
   H01L 31/108 20060101ALI20231208BHJP
   G01J 1/02 20060101ALI20231208BHJP
   H10N 15/10 20230101ALI20231208BHJP
【FI】
H01L31/10 E
H01L31/10 C
H01L31/10 D
G01J1/02 Y
H10N15/10
【請求項の数】 18
(21)【出願番号】P 2023540159
(86)(22)【出願日】2022-12-05
(86)【国際出願番号】 JP2022044762
(87)【国際公開番号】W WO2023112751
(87)【国際公開日】2023-06-22
【審査請求日】2023-06-29
(31)【優先権主張番号】P 2021201601
(32)【優先日】2021-12-13
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成30年度安全保障技術研究推進制度委託事業/防衛装備庁、安全保障技術研究推進制度、グラフェン等2次元機能性原子薄膜を用いた光検知素子の基礎研究、産業技術力強化法第17条の適用を受ける特許出願
【早期審査対象出願】
(73)【特許権者】
【識別番号】000006013
【氏名又は名称】三菱電機株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】小川 新平
(72)【発明者】
【氏名】嶋谷 政彰
(72)【発明者】
【氏名】福島 昌一郎
【審査官】原 俊文
(56)【参考文献】
【文献】中国特許出願公開第111370523(CN,A)
【文献】国際公開第2018/012076(WO,A1)
【文献】米国特許出願公開第2018/0144849(US,A1)
【文献】中国特許出願公開第108198876(CN,A)
【文献】中国特許出願公開第112071939(CN,A)
【文献】中国特許出願公開第108565312(CN,A)
【文献】米国特許出願公開第2020/0127155(US,A1)
【文献】国際公開第2021/002070(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/00-31/0392
H01L 31/08-31/119
H01L 27/14-27/148
G01J 1/02
H10N 15/10
(57)【特許請求の範囲】
【請求項1】
第1方向に並んで配置されている第1領域及び第2領域を有する二次元材料層と、
前記第1方向に互いに間隔を空けて配置されており、かつ前記二次元材料層の前記第1領域及び前記第2領域を介して互いに電気的に接続されている第1電極部及び第2電極部と、
平面視において前記二次元材料層の前記第1領域と重なる部分を有する第1強誘電体層と、
前記平面視において前記二次元材料層の前記第2領域と重なる部分を有する第2強誘電体層とを備え、
前記第1強誘電体層と前記第2強誘電体層との境界は、前記第1方向と交差する方向に延びており、
前記第1強誘電体層及び前記第2強誘電体層の各々を構成する材料は、焦電体であり、
前記第1強誘電体層及び前記第2強誘電体層の分極は、前記第1方向に沿っており、
前記第1強誘電体層及び前記第2強誘電体層は、電磁波が照射されたときに前記第1領域に生じる電圧変化が前記第2領域に生じる電圧変化と異なるように設けられている、電磁波検出器。
【請求項2】
第1方向に並んで配置されている第1領域及び第2領域を有する二次元材料層と、
前記第1方向に互いに間隔を空けて配置されており、かつ前記二次元材料層の前記第1領域及び前記第2領域を介して互いに電気的に接続されている第1電極部及び第2電極部と、
平面視において前記二次元材料層の前記第1領域と重なる部分を有する第1強誘電体層と、
前記平面視において前記二次元材料層の前記第2領域と重なる部分を有する第2強誘電体層とを備え、
前記第1強誘電体層と前記第2強誘電体層との境界は、前記第1方向と交差する方向に延びており、
前記第1強誘電体層及び前記第2強誘電体層の各々を構成する材料は、焦電体であり、
前記第1強誘電体層及び前記第2強誘電体層は、電磁波が照射されたときに前記第1領域に生じる電圧変化が前記第2領域に生じる電圧変化と異なるように設けられており、
前記第2強誘電体層の上部に配置されており、前記二次元材料層の前記第2領域とショットキー接合している半導体層をさらに備え、
前記第2電極部は、前記二次元材料層の前記第1領域、前記第2領域、及び前記半導体層を介して前記第1電極部と電気的に接続されている、電磁波検出器。
【請求項3】
前記第1強誘電体層を構成する材料の分極率は、前記第2強誘電体層を構成する材料の分極率と異なる、請求項1または2に記載の電磁波検出器。
【請求項4】
前記第1強誘電体層の厚みは、前記第2強誘電体層の厚みと異なる、請求項1または2に記載の電磁波検出器。
【請求項5】
前記第1強誘電体層を構成する材料は、前記第2強誘電体層を構成する材料と同じである、請求項4に記載の電磁波検出器。
【請求項6】
前記第1強誘電体層及び前記第2強誘電体層の少なくともいずれかには、1つ以上の凹凸が形成されており、
前記二次元材料層の前記第1領域および前記第2領域の少なくともいずれかは、前記凹凸上に配置されている、請求項1または2に記載の電磁波検出器。
【請求項7】
前記第1強誘電体層及び前記第2強誘電体層の各々には、複数の凹凸が周期的に形成されており、
前記二次元材料層の前記第1領域および前記第2領域の各々は、前記複数の凹凸のうちの少なくとも1つの凹凸上に配置されている、請求項1または2に記載の電磁波検出器。
【請求項8】
前記第1強誘電体層及び前記第2強誘電体層の各々の上面と接している第1絶縁層、及び前記第1強誘電体層及び前記第2強誘電体層の各々の下面と接している第2絶縁層の少なくともいずれかをさらに備える、請求項1または2に記載の電磁波検出器。
【請求項9】
前記第1強誘電体層及び前記第2強誘電体層の各々の下部に配置されており、前記第1強誘電体層及び前記第2強誘電体層の各々と電気的に接続されている導電層をさらに備える、請求項1または2に記載の電磁波検出器。
【請求項10】
前記電磁波に対する前記導電層の反射率が、前記電磁波に対する前記第1強誘電体層の反射率よりも高い、請求項9に記載の電磁波検出器。
【請求項11】
前記二次元材料層が前記第1強誘電体層及び前記第2強誘電体層の各々の下部に設けられた基板と接触している接触領域をさらに備え、
前記境界は、前記二次元材料層のうち前記接触領域にて前記基板と接触している部分と、前記部分を介して互いに対向する前記第1強誘電体層及び前記第2強誘電体層の各端面とにより構成されている、請求項1または2に記載の電磁波検出器。
【請求項12】
前記第1強誘電体層及び前記第2強誘電体層の各々の上部又は下部に、中空部分が形成されている、請求項1または2に記載の電磁波検出器。
【請求項13】
電圧計及び電流計の少なくともいずれかをさらに備え、
前記二次元材料層、前記第1電極部、前記第2電極部は、前記第1電極部、前記二次元材料層の前記第1領域、前記二次元材料層の前記第2領域、前記第2電極部の順に電気的に接続されており、
前記第1強誘電体層は、前記第1強誘電体層内の分極が変化したときに前記第1電極部と前記第2電極部との間の抵抗が変化するように配置され、
前記第2強誘電体層は、前記第2強誘電体層内の分極が変化したときに前記第1電極部
と前記第2電極部との間の抵抗が変化するように配置され、
前記電圧計及び前記電流計の少なくともいずれかが前記第1電極部と前記第2電極部との間に流れる電流の電圧及び電流の少なくともいずれかの変化を検出することで前記電磁波を検出するように構成されている、請求項1または2に記載の電磁波検出器。
【請求項14】
前記二次元材料層は、前記平面視において周期的又は非周期的なパターン形状を有している、請求項1または2に記載の電磁波検出器。
【請求項15】
前記第1強誘電体層及び前記第2強誘電体層の少なくともいずれかの分極方向は、前記第1方向に沿っている、請求項2に記載の電磁波検出器。
【請求項16】
前記二次元材料層の前記第1領域及び前記第2領域の各々は、乱層構造部分を含む、請求項1または2に記載の電磁波検出器。
【請求項17】
前記二次元材料層は、遷移金属ダイカルコゲナイド、グラフェン、黒リン、シリセン、ゲルマネン、グラフェンナノリボン及びボロフェンからなる群から選択されるいずれかの材料を含む、請求項1または2に記載の電磁波検出器。
【請求項18】
請求項1または2に記載の電磁波検出器を複数備え、
前記複数の電磁波検出器は、前記第1方向及び前記第1方向に交差する第2方向の少なくともいずれかに沿って並んで配置されている、電磁波検出器アレイ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電磁波検出器及び電磁波検出器アレイに関する。
【背景技術】
【0002】
次世代の電磁波検出器として、例えばグラフェン等の二次元材料層を電磁波検出層として備える電磁波検出器が知られている。二次元材料層は、極めて高い移動度を有しているが、両氏効率が比較的低い。近年、二次元材料層を備える電磁波検出器において、高感度化が進められている。
【0003】
例えば、国際公開第2018/012076号明細書(特許文献1)には、ソース・ドレイン電極間に接続されたグラフェン層の下部または上部に配置された強誘電体層を備える電磁波検出器が提案されている。
【0004】
上記検出器では、入射電磁波、特に赤外線波長域の電磁波が入射することにより強誘電体層が焦電効果を発生する。この焦電効果により、強誘電体層において誘電分極の変化が発生し、その結果、グラフェン層のゲート電圧が変調される。グラフェン層は原子層の厚さかつ電荷移動度が高いことから、わずかなゲート電圧変化によって巨大な電流応答変化が得らえる。このような効果を光ゲート効果と呼ぶ。この光ゲート効果により高感度化が実現できる。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2018/012076号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記特許文献1に記載された電磁波検出器の感度は、焦電効果により強誘電体層に発生する分極電圧の大きさに依存する。他方、強誘電体層の応答速度は、一般的に低い。そのため、上記電磁波検出器において、強誘電体層に発生する分極電圧を大きくするために強誘電体層の厚みを厚くすると、応答速度が低下する。その結果、上記電磁波検出器では、センサとしての応用を考慮した場合に、感度の向上に限界があった。
【0007】
本開示の主たる目的は、上記電磁波検出器と比べて感度を向上し得る電磁波検出器及び電磁波検出器アレイを提供することである。
【課題を解決するための手段】
【0008】
本開示に係る電磁波検出器は、第1方向に並んで配置されている第1領域及び第2領域を有する二次元材料層と、第1方向に互いに間隔を空けて配置されており、かつ二次元材料層の第1領域及び第2領域を介して互いに電気的に接続されている第1電極部及び第2電極部と、平面視において二次元材料層の第1領域と重なる部分を有する第1強誘電体層と、平面視において二次元材料層の第2領域と重なる部分を有する第2強誘電体層とを備える。第1強誘電体層と第2強誘電体層との境界は、第1方向と交差している。第1強誘電体層及び第2強誘電体層の各々を構成する材料は、焦電体である。第1強誘電体層及び第2強誘電体層は、電磁波が照射されたときに第1領域に生じる電圧変化が第2領域に生じる電圧変化と異なるように設けられている。
【発明の効果】
【0009】
本開示によれば、上記電磁波検出器と比べて感度を向上し得る電磁波検出器及び電磁波検出器アレイを提供できる。
【図面の簡単な説明】
【0010】
図1】実施の形態1に係る電磁波検出器を説明するための断面図である。
図2図1に示される電磁波検出器の平面図である。
図3】実施の形態1に係る電磁波検出器の変形例を説明するための断面図である。
図4】実施の形態2に係る電磁波検出器を説明するための断面図である。
図5】実施の形態2に係る電磁波検出器の第1変形例を説明するための断面図である。
図6】実施の形態2に係る電磁波検出器の第2変形例を説明するための断面図である。
図7】実施の形態3に係る電磁波検出器を説明するための断面図である。
図8】実施の形態3に係る電磁波検出器を平面視したときに、第1強誘電体層及び第2強誘電体層の各々に形成されている複数の凹凸の周期的なパターン形状を説明するための平面図である。
図9】実施の形態3に係る電磁波検出器の変形例を説明するための断面図である。
図10】実施の形態3に係る電磁波検出器を平面視したときに、第1強誘電体層及び第2強誘電体層の各々に形成されている複数の凹凸の周期的なパターン形状の第2例を説明するための平面図である。
図11】実施の形態4に係る電磁波検出器を説明するための断面図である。
図12】実施の形態4に係る電磁波検出器の第1変形例を説明するための断面図である。
図13】実施の形態4に係る電磁波検出器の第2変形例を説明するための断面図である。
図14】実施の形態5に係る電磁波検出器を説明するための断面図である。
図15】実施の形態6に係る電磁波検出器を説明するための断面図である。
図16】実施の形態6に係る電磁波検出器の第1変形例を説明するための断面図である。
図17】実施の形態6に係る電磁波検出器の第2変形例を説明するための断面図である。
図18】実施の形態6に係る電磁波検出器の第3変形例を説明するための断面図である。
図19】実施の形態7に係る電磁波検出器を説明するための断面図である。
図20図19に示される電磁波検出器の平面図である。
図21】実施の形態7に係る電磁波検出器の第1変形例を説明するための断面図である。
図22】実施の形態8に係る電磁波検出器を平面視したときに、二次元材料層の周期的なパターン形状の第1例を説明するための平面図である。二次元材料層の周期的なパターン形状の第1例を説明するための平面図である。
図23】実施の形態8に係る電磁波検出器を平面視したときに、二次元材料層の周期的なパターン形状の第2例を説明するための平面図である。
図24】実施の形態8に係る電磁波検出器を平面視したときに、二次元材料層の周期的なパターン形状の第3例を説明するための平面図である。
図25】実施の形態8に係る電磁波検出器を平面視したときに、二次元材料層の周期的なパターン形状の第4例を説明するための平面図である。
図26】実施の形態11に係る電磁波検出器を説明するための断面図である。
図27】実施の形態11に係る電磁波検出器の第1変形例を説明するための断面図である。
図28】実施の形態11に係る電磁波検出器の第2変形例を説明するための断面図である。
図29】実施の形態11に係る電磁波検出器の第3変形例を説明するための断面図である。
図30】実施の形態11に係る電磁波検出器の第4変形例を説明するための断面図である。
図31】実施の形態12に係る電磁波検出器アレイを説明するための平面図である。
図32】実施の形態12に係る電磁波検出器アレイのうちの1つの電磁波検出器と読み出し回路との接続構造を説明するための断面図である。
図33】実施の形態12に係る電磁波検出器アレイの変形例を説明するための平面図である。
【発明を実施するための形態】
【0011】
以下、実施の形態について図に基づいて説明する。なお、以下では、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。
【0012】
以下に説明される実施の形態において、図は模式的なものであり、機能または構造を概念的に説明するものである。また、上述のように、図2及び図20は実施の形態における電磁波検出器を平面視した平面図であるが、説明の便宜上、図2及び図20に示される各構成部材にハッチングを付している。また、以下に説明される実施の形態により本開示が限定されるものではない。特記される場合を除いて、電磁波検出器の基本構成は全ての実施の形態において共通である。また、同一の符号が付されたものは、上述のように同一またはこれに相当するものである。これは明細書の全文において共通する。
【0013】
以下に説明される実施の形態では、可視光または赤外光を検出する場合の電磁波検出器の構成が説明されるが、本開示の電磁波検出器が検出する光は可視光及び赤外光に限定されない。以下に説明される実施の形態は、可視光及び赤外光に加えて、例えば、X線、紫外光、近赤外光、テラヘルツ(THz)波、マイクロ波などの電波を検出する検出器としても有効である。なお、本開示の実施の形態において、これらの光及び電波を総称して電磁波と記載する。
【0014】
また、本実施の形態では、グラフェンとしてp型グラフェン及びn型グラフェンの用語が用いられる場合がある。以下の実施の形態では、真性状態のグラフェンよりも正孔が多いものがp型グラフェンと呼ばれ、真性状態のグラフェンよりも電子が多いものがn型グラフェンと呼ばれる。つまり、n型の材料は、電子供与性を有する材料である。また、p型の材料は、電子求引性を有する材料である。
【0015】
また、分子全体において電荷に偏りが見られる場合に電子が支配的になるものがn型と呼ばれる場合もある。分子全体において電荷に偏りが見られる場合に正孔が支配的になるものがp型と呼ばれる場合もある。二次元材料層の一例であるグラフェンに接触する部材の材料には、有機物及び無機物のいずれか一方または有機物及び無機物の混合物が用いられてもよい。
【0016】
また、金属表面と光との相互作用である表面プラズモン共鳴現象等のプラズモン共鳴現象、可視光域及び近赤外光域以外での金属表面にかかる共鳴という意味での擬似表面プラズモン共鳴と呼ばれる現象、または、波長以下の寸法の構造により波長を操作するという意味でのメタマテリアルまたはメタサーフェスまたはメタ表面またはプラズモニックメタマテリアルと呼ばれる現象については、特にこれらを名称により区別せず、現象が及ぼす効果の面からは同等の扱いとする。ここでは、これらの共鳴を、表面プラズモン共鳴、プラズモン共鳴、または、単に共鳴と呼ぶ。
【0017】
また、以下に説明する実施の形態では、二次元材料層の材料として、グラフェンを例に説明が行われているが、二次元材料層の材料はグラフェンに限られない。例えば、二次元材料層の材料としては、遷移金属ダイカルコゲナイド(TMD:Transition Metal Dichalcogenide)、黒リン(Black Phosphorus)、シリセン(シリコン原子による二次元ハニカム構造)、ゲルマネン(ゲルマニウム原子による二次元ハニカム構造)等の材料が適用され得る。遷移金属ダイカルコゲナイドとしては、例えば、二硫化モリブデン(MoS)、二硫化タングステン(WS)、二セレン化タングステン(WSe)等の遷移金属ダイカルコゲナイドが挙げられる。
【0018】
より好ましくは、二次元材料層は、グラフェン、遷移金属ダイカルゴゲナイト(TMD:Transition Metal Dichalcogenide)、黒リン(Black Phosphorus)、シリセン(シリコン原子による二次元ハニカム構造)、グラフェンナノリボン及びボロフェンからなる群から選択されるいずれかの材料を含んでいるか、これらの材料を複数積層したものであってもよい。
【0019】
遷移金属ダイカルゴゲナイト(TMD:Transition Metal Dichalcogenide)、黒リン(Black Phosphorus)、シリセン(シリコン原子による二次元ハニカム構造)、グラフェンナノリボン及びボロフェンなどの材料は、グラフェンと類似の構造を有している。これらの材料では、原子が二次元面内に単層で配列されている。したがって、これらの材料が二次元材料層に適用された場合においても、二次元材料層にグラフェンが適用された場合と同様の作用効果が得られる。
【0020】
以下に説明される実施の形態において、電磁波検出器は、第1強誘電体層及び第2強誘電体層を備えている。第1強誘電体層及び第2強誘電体層の各々を構成する材料は、焦電体である。第1強誘電体層及び第2強誘電体層の各々は、焦電効果により生じる電圧変化が異なる部材として定義される。例えば、以下の実施の形態に説明されるように、第1強誘電体層及び第2強誘電体層の各々は、それぞれを構成する材料が互いに異なるものとして定義され得る。あるいは、第1強誘電体層及び第2強誘電体層の各々は、それぞれの厚さが互いに異なるものとして定義され得る。
【0021】
実施の形態1.
<電磁波検出器100の構成>
図1図2を用いて、実施の形態1に係る電磁波検出器100の構成を説明する。
【0022】
図1に示されるように、電磁波検出器100は、二次元材料層1、第1電極部2a、第2電極部2b、基板3、第1強誘電体層4a、第2強誘電体層4b、及び第3電極部5を備える。
【0023】
二次元材料層1は、第1電極部2a及び第2電極部2bの各々に電気的に接続されている。二次元材料層1は、第1方向Xに並んで配置されている第1領域1a及び第2領域1bを有する。第1領域1aは、第1強誘電体層4aにおいて焦電効果により発生する電圧変化の影響をより強く受ける二次元材料層1内の領域と定義される。第2領域1bは、第2強誘電体層4bにおいて焦電効果により発生する電圧変化の影響をより強く受ける二次元材料層1内の領域と定義される。
【0024】
第1電極部2a及び第2電極部2bは、第1方向Xに互いに間隔を空けて配置されており、かつ二次元材料層1の第1領域1a及び第2領域1bを介して互いに電気的に接続されている。第1電極部2aは、二次元材料層1の第1領域1aと電気的に接続されている。第2電極部2bは、二次元材料層1の第2領域1bと電気的に接続されている。
【0025】
電磁波検出器100は、二次元材料層1をチャネル、第1電極部2aをドレイン電極、第2電極部2bをソース電極とするトランジスタと考えられる。以下、二次元材料層1をチャネルに用いた上記トランジスタ構造をトランジスタ型と呼ぶ。
【0026】
第1電極部2aと第2電極部2bとの間(ソース・ドレイン電極間)には、バイアス電圧Vdが印加される。第3電極部5にはバックゲート電圧Vbgが印加される。信号電流の変化は、電流計Id等の信号読み出し回路にて検出される。
【0027】
図1に示されるように、第1強誘電体層4aは、第1方向Xにおいて第2強誘電体層4bと並んで配置されている。第1方向Xにおいて第2領域1b側に位置する第1強誘電体層4aの第1端部は、例えば、第1方向Xにおいて第1領域1a側に位置する第2強誘電体層4bの第2端部と接している。
【0028】
図1及び図2に示されるように、第1強誘電体層4aは、平面視において二次元材料層1の第1領域1aと重なる部分を有する。第1強誘電体層4aは、例えば平面視において第1電極部2aと重なる部分を有する。二次元材料層1の第1領域1a及び第1電極部2aは、第1強誘電体層4a上に配置されている。第1強誘電体層4aは、例えば二次元材料層1の第1領域1aの下面及び第1電極部2aの下面と接触している上面を有している。
【0029】
第2強誘電体層4bは、平面視において二次元材料層1の第2領域1bと重なる部分を有する。第2強誘電体層4bは、例えば平面視において第2電極部2bと重なる部分を有する。二次元材料層1の第2領域1b及び第2電極部2bは、第2強誘電体層4b上に配置されている。第2強誘電体層4bは、例えば二次元材料層1の第2領域1bの下面と接触している上面を有している。
【0030】
第1強誘電体層4a及び第2強誘電体層4bの各々を構成する材料は、焦電効果を奏する焦電体である。第1強誘電体層4a及び第2強誘電体層4bの各々を構成する材料は、強誘電体層の内部の熱エネルギーの変化に対して分極変化が生じる強誘電体であればよい。なお、焦電効果において電磁波は単に熱源として作用する。このため、焦電効果には、基本的に波長依存性はない。よって、第1強誘電体層4a及び第2強誘電体層4bの各々には、基本的に波長依存性はない。したがって、第1強誘電体層4a及び第2強誘電体層4bの各々は、広帯域の電磁波に感度を有する。
【0031】
実施の形態1においては、第1強誘電体層4aを構成する材料は、第2強誘電体層4bを構成する材料と異なっている。第1強誘電体層4aを構成する材料の分極率は、第2強誘電体層4bを構成する材料の分極率と異なっている。例えば、第1強誘電体層4aを構成する材料の分極率は、第2強誘電体層4bを構成する材料の分極率よりも高い。第1強誘電体層4aの厚みは、例えば第2強誘電体層4bの厚みと等しい。
【0032】
図2に示されるように、第1強誘電体層4aと第2強誘電体層4bとの境界40は、第1強誘電体層4a及び第2強誘電体層4bの各々において焦電効果により生じる電圧変化に起因して二次元材料層1の第1領域1aと第2領域1bとの間に電位差(電圧勾配)が生じるように、設けられている。より具体的には、境界40は、第1強誘電体層4a及び第2強誘電体層4bの各々において焦電効果により生じる電圧変化に起因して二次元材料層1の第1領域1aと第2領域1bとの間に電圧勾配が生じるように、二次元材料層1に対して位置決めされている。電磁波検出器100において、境界40は、第1方向Xにおいて第2領域1b側に位置する第1強誘電体層4aの第1端部の端面と、第1方向Xにおいて第1領域1a側に位置する第2強誘電体層4bの第2端部の端面とにより構成されている。第1端部の端面は、第2端部の端面と接している。
【0033】
図2に示されるように、境界40は、平面視において二次元材料層1がチャネルとして動作する領域内に形成される。境界40は、第1方向Xと交差する方向に延びている。境界40は、例えば第1方向Xと直交する第2方向Yに沿って延びている。境界40は、例えば二次元材料層1の第1方向Xの中央に形成されている。
【0034】
なお、境界40は、第1領域1aと第2領域1bとの間に上記電圧勾配が形成され得る限りにおいて、任意に形成され得る。境界40は、平面視において少なくともチャネル領域内に形成されていればよい。境界40は、平面視において二次元材料層1の第1方向Xの中央よりも第1電極部2a側又は第2電極部2b側に形成されていてもよい。境界40は、電流が流れる第1方向Xに対して90°未満の角度を成すように形成されていてもよい。このようにしても、光バイアス効果により電荷取り出し効率は向上するため電磁波検出器100の感度は向上する。
【0035】
図2に示されるように、第1強誘電体層4aは、例えば、平面視において二次元材料層1の第1領域1aの全体と重なるように形成されている。第2強誘電体層4bは、例えば、平面視において二次元材料層1の第2領域1bの全体と重なるように形成されている。第1強誘電体層4a及び第2強誘電体層4bは、例えば平面視において二次元材料層1と重ならない領域にも形成されている。
【0036】
なお、第1強誘電体層4a及び第2強誘電体層4bの各々は、平面視において二次元材料層1と重ならない領域を含んでいなくてもよい。言い換えると、第1強誘電体層4a及び第2強誘電体層4bの全体が、平面視において二次元材料層1と重なるように形成されていてもよい。また、第1強誘電体層4a及び第2強誘電体層4bの各々は、平面視において二次元材料層1の一部のみと重なるように形成されていてもよい。第1強誘電体層4aは、平面視において二次元材料層1の第1領域1aの一部のみと重なるように形成されていてもよい。第2強誘電体層4bは、平面視において二次元材料層1の第2領域1bの一部のみと重なるように形成されていてもよい。
【0037】
つまり、二次元材料層1と第1強誘電体層4a及び第2強誘電体層4bとの相対的な位置関係は、二次元材料層1に対する境界40の相対的な位置が第1強誘電体層4a及び第2強誘電体層4bの各々において焦電効果により生じる電圧変化に起因して第1領域1aと第2領域1bとの間に電圧勾配が生じるように設定されている限りにおいて、任意に選択され得る。
【0038】
第1強誘電体層4a及び第2強誘電体層4bは、基板3上に配置されている。基板3は、第1面及び第1面とは反対側に位置する第2面を有している。基板3は、例えばケイ素(Si)等を含む平坦な半導体基板である。基板3を構成する材料は、第1面上の構造が保持され得る限りにおいて、特に制限されない。二次元材料層1、第1電極部2a、第1強誘電体層4a、及び第2強誘電体層4bは、第1面上に配置されている。第3電極部5は、第2面上に配置されている。第3電極部5は、いわゆるバックゲート電極である。
【0039】
次に、二次元材料層1、第1電極部2a、第2電極部2b、第1強誘電体層4a、及び第2強誘電体層4bの構成について詳細に説明する。
【0040】
<二次元材料層1の構成>
二次元材料層1は、例えば、単層のグラフェンである。単層のグラフェンは、二次元炭素結晶の単原子層である。グラフェンは、六角形状に配置された複数の連鎖の各々にそれぞれ配置された複数の炭素原子を有している。グラフェンの白色光の吸収率は、2.3%と低い。なお、本実施の形態において、白色光は、可視光線の波長を有する光が均等に混ざった光である。
【0041】
また、二次元材料層1は、複数のグラフェン層が積層された多層グラフェンであってもよい。多層グラフェン中のグラフェンのそれぞれの六方格子の格子ベクトルの向きは、一致していてもよいし、異なっていてもよい。また、多層グラフェン中のグラフェンのそれぞれの六方格子の格子ベクトルの向きは、完全に一致していてもよい。また、二次元材料層1は、p型またはn型の不純物がドープされたグラフェンであってもよい。二次元材料層1が多層グラフェンである場合、多層グラフェンの積層構造はいわゆるAB積層であってもよいし、積層されたグラフェン同士の格子が不整合な状態で積層された乱層積層であってもよい。乱層積層はランダム積層(turbostratic graphene)とも呼ばれる。
【0042】
二次元材料層1が多層グラフェンである場合、二次元材料層1にはバンドギャップが形成される。すなわち、積層されたグラフェン層の数を変更することによって、バンドギャップの大きさを調整することができる。これにより、二次元材料層1は、光電変換の対象となる電磁波(以下、単に検出波長ともよぶ)を選択する波長選択効果を有することができる。また、例えば、多層グラフェンのグラフェン層の数が増加すると、チャネル領域での移動度が低下する。一方で、多層グラフェンのグラフェン層の数が増加すると、基板からの光キャリア散乱の影響が抑制されるため、電磁波検出器100のノイズが低下する。このため、多層グラフェンが用いられた二次元材料層1を有する電磁波検出器100では、光吸収が増加されるため、電磁波の検出感度が向上する。
【0043】
上述のように、二次元材料層1としてナノリボン状のグラフェン(グラフェンナノリボン)が用いられてもよい。二次元材料層1は、グラフェンナノリボン単体であってもよい。二次元材料層1は、複数のグラフェンナノリボンの積層体であってもよい。二次元材料層1の構造は、グラフェンナノリボンが平面上に周期的に配列された構造であってもよい。二次元材料層1が周期的に配列された複数のグラフェンナノリボンを含む場合、グラフェンナノリボンにおいてプラズモン共鳴を発生するため、電磁波検出器100の感度が向上する。さらに、実効的に電流が流れる面積が減少するものの、プラズモン共鳴の効果により、照射光量は変わらないため、暗電流を低減することが可能である。
【0044】
グラフェンナノリボンが周期的に配列された構造は、グラフェンメタマテリアル又はグラフェンメタサーフェスと呼ばれることもある。つまり、二次元材料層1としてグラフェンメタマテリアルが用いられた電磁波検出器100では、上述の効果が得られる。
【0045】
二次元材料層1の第1領域1aが第1電極部2aに接触しているため、第1電極部2aから二次元材料層1に光キャリアがドープされる。例えば、二次元材料層1がグラフェンであり第1電極部2aが金(Au)である場合、光キャリアは正孔である。グラフェンの仕事関数と金(Au)の仕事関数との差によって、第1電極部2aに接している第2領域1bに正孔がドープされる。第2領域1bに正孔がドープされた状態において、電磁波検出器100が電子伝導状態で駆動すると、正孔の影響によって、チャネル内に流れる電子の移動度が低下する。このため、二次元材料層1と第1電極部2aとのコンタクト抵抗が増加する。特に、二次元材料層1の全ての領域が単層グラフェンによって形成されている場合、第1電極部2aから二次元材料層1に注入される光キャリアの量(ドープ量)が大きい。このため、電磁波検出器100の電界効果の移動度の低下は、顕著である。したがって、二次元材料層1の全ての領域が単層グラフェンによって形成されている場合、電磁波検出器100の性能は低下する。
【0046】
また、二次元材料層1において第1電極部2aと接している領域が多層グラフェンによって形成されている場合、第1電極部2aから当該多層グラフェンにドープされる光キャリアの量は、二次元材料層1において第1電極部2aと接している領域が単層グラフェンによって形成されている場合において第1電極部2aから当該単層グラフェンにドープされる光キャリアの量よりも少ない。このため、二次元材料層1において第1電極部2aから光キャリアがドープされる領域が多層グラフェンから形成されている場合には、二次元材料層1と第1電極部2aとの間のコンタクト抵抗の増加を抑制することができる。これにより、電磁波検出器100の電界効果の移動度の低下を抑制することができるため、電磁波検出器100の性能を向上させることができる。
【0047】
また、二次元材料層1の端部はグラフェンナノリボンであってもよい。この場合、グラフェンナノリボンはバンドギャップを有するため、グラフェンナノリボンと半導体部分との接合領域においてショットキー接合が形成される。
【0048】
<第1電極部2a及び第2電極部2bの構成>
第1電極部2a及び第2電極部2bの材料は、導電体であれば任意の材料であってよい。第1電極部2a及び第2電極部2bの材料は、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、クロム(Cr)及びパラジウム(Pd)の少なくともいずれかを含んでいてもよい。
【0049】
二次元材料層1の第1領域1aの厚みは、例えば二次元材料層1の第2領域1bの厚みと等しい。
【0050】
<第1強誘電体層4a、第2強誘電体層4bの構成>
第1強誘電体層4a及び第2強誘電体層4bの各々を構成する材料は、検出波長を有する電磁波が第1強誘電体層4a及び第2強誘電体層4bの各々に入射した際に、第1強誘電体層4a及び第2強誘電体層4bの各々に分極が生じる材料であれば、任意に選択され得る。第1強誘電体層4a及び第2強誘電体層4bを構成する材料は、例えば、チタン酸バリウム(BaTiO3)、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、チタン酸ストロンチウム(SrTiO)、チタン酸ジルコン酸鉛(PZT)、タンタル酸ビスマス酸ストロンチウム(SBT)、ビスマスフェライト(BFO)、酸化亜鉛(ZnO)、酸化ハフニウム(HfO)及び有機ポリマーであるポリフッ化ビニリデン系強誘電体(PVDF、P(VDF-TrFE)、P(VDF-TrFE-CTFE)からなる群から選択される少なくとも1つを含む。また、第1強誘電体層4a及び第2強誘電体層4bの各々は、異なる複数の強誘電体材料が積層または混合されることで構成されていてもよい。第1強誘電体層4aを構成する材料は、例えばLiNbOである。第2強誘電体層4bを構成する材料は、例えばLiTaOである。
【0051】
第1強誘電体層4a及び第2強誘電体層4bの各々を構成する材料は、自発分極を有する材料であってもよい。この場合には、電磁波の照射によって第1強誘電体層4a及び第2強誘電体層4bの各温度が上昇することで、自発分極が減少する。
【0052】
好ましくは、第1強誘電体層4a及び第2強誘電体層4bは、第1強誘電体層4a及び第2強誘電体層4bの各々における誘電分極の変化速度が可能な限り速くなるように、構成されている。好ましくは、第1強誘電体層4a及び第2強誘電体層4bの各々の厚さ(膜厚)は、二次元材料層1に電圧を印加可能な範囲内において、可能な限り薄い。
【0053】
好ましくは、第1強誘電体層4a及び第2強誘電体層4bの各々の厚さは、電磁波が二次元材料層1に照射された際に、二次元材料層1に可能な限り大きい電圧が印加されるように、設定されている。また、第1強誘電体層4a及び第2強誘電体層4bの各々の分極方向は、特に制限されないが、二次元材料層1において、第1電極部2aと第2電極部2bとの間に電圧が印加される方向、つまりバイアス電圧が印加される方向であることが望ましい。
【0054】
<電磁波検出器100の製造方法>
次に、実施の形態1に係る電磁波検出器100の製造方法を説明する。図1に示される電磁波検出器100の製造方法は、準備工程、強誘電体層形成工程、電極部形成工程、二次元材料層形成工程を含んでいる。
【0055】
まず、準備工程が実施される。準備工程では、図1に示される基板3が準備される。基板3は、例えばケイ素(Si)等を含む平坦な半導体基板である。
【0056】
次に、強誘電体層形成工程が実施される。強誘電体層形成工程では、まず第1強誘電体層4aが基板3の第1面上に形成され、その後、第2強誘電体層4bが第1面上に形成される。
【0057】
第1強誘電体層及び第2強誘電体層を形成する方法は、特に制限されない。例えば、第1強誘電体層4a及び第2強誘電体層4bの各々を構成する材料がポリマー系材料である場合、第1強誘電体層4a及び第2強誘電体層4bの各々は、スピンコート法等によって成膜された後にフォトリソグラフィ法によってパターニングされることにより、順に形成され得る。
【0058】
また、第1強誘電体層4a及び第2強誘電体層4bを構成する材料がポリマー系材料とは異なる材料である場合には、第1強誘電体層4a及び第2強誘電体層4bの各々は、スパッタ、蒸着、金属有機物分解法(MODコート法、MOD:Metal Organic Composition)、又はALD(Atomic Layer Deposition)法等によって成膜された後、フォトリソグラフィ法によってパターニングされることにより、順に形成され得る。また、第1強誘電体層4a及び第2強誘電体層4bの各々は、リフトオフ法によりパターニングされてもよい。
【0059】
以上の方法は第1強誘電体層4aを成膜及びパターニングした後、第2強誘電体層4bを成膜及びパターニングする方法であるが、第1強誘電体層4aを平面で形成後、第2強誘電体層4bを形成し、第2強誘電体層4bのみをパターニングしてもよい。
【0060】
次に、電極部形成工程が実施される。本工程では、第1電極部2aが第1強誘電体層4a上に形成され、さらに第2電極部2bが第2強誘電体層4b上に形成される。
【0061】
第1電極部2a及び第2電極部2bの形成方法として、例えば、以下のプロセスが用いられる。まず、第1強誘電体層4a及び第2強誘電体層4b上に写真製版または電子線(EB:Electron Beam)描画などによってレジストマスクが形成される。第1、2電極部2a、2bが形成されるレジストマスクの領域には、開口した部分が形成される。その後、レジストマスク上に、第1電極部2a及び第2電極部2bとなる金属などの膜が形成される。当該膜の形成には、蒸着法またはスパッタリング法などが用いられる。このとき、当該膜はレジストマスクの開口領域の内部から当該レジストマスクの上部表面にまで延在するように形成される。その後、レジストマスクが当該膜の一部と共に除去される。レジストマスクの開口領域に配置されていた膜の他の一部が第1強誘電体層4a及び第2強誘電体層4bの各々の上に残存し、第1電極部2a及び第2電極部2bとなる。上述した方法は、一般的にはリフトオフと呼ばれる方法である。
【0062】
第1電極部2a及び第2電極部2bの形成方法として、他の方法が用いられてもよい。例えば、まず、第1電極部2aとなる導電性膜、及び第2電極部2bとなる導電性膜が成膜される。その後、フォトリソグラフィ法によって各導電性膜上にレジストマスクが形成される。レジストマスクは、第1電極部2a及び第2電極部2bの各々が形成されるべき領域を覆うとともに、その他の領域を露出させるように形成される。その後、ウエットエッチングまたはドライエッチングにより、レジストマスクをマスクとして当該導電性膜が部分的に除去される。この結果、レジストマスク下に導電性膜の一部が残存する。この導電性膜の一部が第1電極部2a又は第2電極部2bとなる。その後、レジストマスクが除去される。このようにして、第1電極部2a及び第2電極部2bが形成されてもよい。
【0063】
次に、二次元材料層形成工程が実施される。本工程では、第1電極部2a、第2電極部2b、第1強誘電体層4a、及び第2強誘電体層4bの少なくとも一部上に、二次元材料層1が形成される。二次元材料層1は、例えば第1電極部2a、第2電極部2b、第1強誘電体層4a、及び第2強誘電体層4bの少なくとも一部を覆うように形成される。二次元材料層1の形成方法は、特に制限されない。二次元材料層1は、例えばエピタキシャル成長によって形成されてもよいし、スクリーン印刷法によって形成されてもよい。また、二次元材料層1は、予めCVD法により成膜された二次元材料膜が転写されて貼り付けられることによって形成されてもよい。二次元材料層1は、機械剥離等により剥離されたフィルム状の二次元材料膜が転写されて貼り付けられることによって形成されてもよい。
【0064】
二次元材料層1が形成された後、フォトリソグラフィ法によって二次元材料層1の上にレジストマスクが形成される。レジストマスクは、二次元材料層1が形成されるべき領域を覆うとともに、その他の領域を露出するように形成される。その後、レジストマスクをエッチングマスクとして二次元材料層1がエッチングされる。エッチングの手法は、例えば酸素プラズマによるドライエッチングである。その後、レジストマスクが除去される。これにより、図1に示される二次元材料層1が形成される。
【0065】
以上の工程によって、電磁波検出器100が製造される。
なお、上述された製造方法では第1電極部2a、第2電極部2bの上に二次元材料層1が形成されたが、第1強誘電体層4a、第2強誘電体層4b上に二次元材料層1が形成された後に当該二次元材料層1の一部上に重なるように第1電極部2a、第2電極部2bが形成されてもよい。ただし、第1電極部2a、第2電極部2bの形成時に、二次元材料層1が第1電極部2a、第2電極部2bの形成プロセスによって損傷しないように注意する必要がある。例えば、二次元材料層1において第1電極部2aが重ねられる領域の他の領域が保護膜等によって予め覆われた状態で第1電極部2a、第2電極部2bが形成されることで、第1電極部2a、第2電極部2bの形成プロセスによって損傷することが抑制される。なお、第1強誘電体層4a、第2強誘電体層4bに段差がある場合でも、二次元材料層1の形成は可能であり、本質的な製造工程の変更は不要である。
【0066】
<電磁波検出器100の動作原理>
次に、図1を用いて、実施の形態1に係る電磁波検出器100の動作原理を説明する。
【0067】
図1に示されるように、まず、第1電極部2aと第2電極部2bとの間に信号読み出し回路が電気的に接続される。図1では、読み出し回路として電流計Idのみが図示されている。第1電極部2a、二次元材料層1、及び第2電極部2bが順に電気的に接続される。
【0068】
なお、バイアス電圧(Vbg)は二次元材料層1に必ずしも印加されなくてもよい。バイアス電圧が二次元材料層1に印加されない場合、電圧が印加されていないため暗電流がゼロになる。すなわち、電磁波検出器100は、OFF動作を行う。
【0069】
次に、第1強誘電体層4a及び第2強誘電体層4bの各々に電磁波が照射される。第1強誘電体層4a、第2強誘電体層4bの焦電効果によって、第1強誘電体層4a及び第2強誘電体層4bの各々の内部に誘電分極の変化が生じる。
【0070】
このとき、第1強誘電体層4aに生じる電圧変化は第2強誘電体層4bに生じる電圧変化とは異なるため、二次元材料層1の第1領域1a及び第2領域1bの各々に印加される電圧が異なることになる。つまり、電磁波検出器100中の二次元材料層1中には擬似的にPN接合と同様のバイアス電圧が印加される。これにより、電荷の取り出し効率が向上し、感度が増強される。この現象を光バイアス効果と呼ぶ。その結果、電磁波が照射された時に二次元材料層1に流れる電流の電圧または電流が電流計にて計測される。このようにして、電磁波検出器100を用いて電磁波が検出される。
【0071】
また、上記光バイアス効果は、以下のようにも解釈され得る。電磁波が第1強誘電体層4a及び第2強誘電体層4bの各々に照射されることで、焦電効果によって第1強誘電体層4a及び第2強誘電体層4bの各々の誘電分極が変化するため、二次元材料層1の第1領域1a及び第2領域1bの各々において、二次元材料層1のフェルミレベルが変調され、異なることになる。第1領域1aと第2領域1bとの間でフェルミレベルが異なることになるため、電磁波検出器100に電磁波が照射された時にのみ電流が流れる。よって、電磁波検出器100に電磁波が照射された時にのみ電流を検出することができる。
【0072】
また、電磁波検出器100は、上記のような電流の変化が検出される構成に限定されない。例えば、第1電極部2aと第2電極部2bとの間に一定の電流が流された状態で、電磁波検出器100に電磁波が照射されたときの第1電極部2aと第2電極部2bとの間の電圧の変化が検出されてもよい。なお、電磁波検出器100に電磁波が照射されたときの第1電極部2aと第2電極部2bとの間の電圧の変化は、二次元材料層1での電圧の変化である。
【0073】
また、上述された電磁波検出器100が第1の電磁波検出器として配置され、第1の電磁波検出器と同じ構成を有する第2の電磁波検出器がさらに配置されてもよい。第1の電磁波検出器は、電磁波が照射される空間に配置される。第2の電磁波検出器は、電磁波が遮蔽された空間に配置される。第1の電磁波検出器の電流と第2の電磁波検出器の電流との差分が検出されることで検出されてもよい。第1の電磁波検出器の電圧と第2の電磁波検出器の電圧との差分が検出されることで検出されてもよい。
【0074】
<電磁波検出器100の動作>
次に、図1を用いて、実施の形態1に係る電磁波検出器100の具体的な動作について説明する。二次元材料層1を構成する材料としてグラフェン、第1強誘電体層4aを構成する材料としてそれぞれニオブ酸リチウム(LiNbO)、第2強誘電体層4bを構成する材料としてタンタル酸リチウム(LiTaO)が用いられた場合について説明される。
【0075】
電磁波検出器100の検出波長は、ニオブ酸リチウム(LiNbO)の吸収波長に応じて定まる。
【0076】
検出波長を有する電磁波が第1強誘電体層4a及び第2強誘電体層4bの各々に入射することで、焦電効果によって第1強誘電体層4a及び第2強誘電体層4bの各々において誘電分極の変化が生じる。第1強誘電体層4a及び第2強誘電体層4bの各々における分極変化によって、電磁波検出器100内において電圧変化が生じる。
【0077】
二次元材料層1を構成するグラフェンにおける光キャリアの移動度が大きいため、わずかな電圧変化に対して大きな変位電流が得られる。このため、第1強誘電体層4a及び第2強誘電体層4bの各々の焦電効果によって二次元材料層1のフェルミレベルは大きく変化する。第1電極部2aと第2電極部2bとの間には、大きな電圧変化または電流変化が生じる。
【0078】
また、第1強誘電体層4aを構成する材料がLiNbO、第2強誘電体層4bを構成する材料がLiTaOであるため、それぞれ生じる誘電分極の変化は異なる。そのため、第1領域1aに生じる電圧変化量は、第2領域1bに生じる電圧変化量とは異なる。よって、二次元材料層1を構成するグラフェンには、疑似的にPN接合と同様のバイアスが生じる。その結果、第1強誘電体層4a及び第2強誘電体層4bの各々が形成されておらず、平面視において1つの強誘電体層のみが二次元材料層1と重なるように形成されている場合と比べて、電磁波検出器100の二次元材料層1を流れる電流及び二次元材料層1に加わる電圧は大きくなる。
【0079】
以上より、第1強誘電体層4a及び第2強誘電体層4bの各々の焦電効果によって、電磁波検出器100において、第1電極部2aと第2電極部2bとの間には電圧変化又は電流変化が生じる。
【0080】
さらに、第1強誘電体層4a及び第2強誘電体層4bの各々の誘電分極の変化速度が可能な限り短く設定されている場合には、電磁波が電磁波検出器100に入射してから二次元材料層1において抵抗の変化が生じるまでの時間が短くなる。これにより、光バイアス効果を利用した電磁波検出器100の応答速度が大きくなる。
【0081】
なお、本実施の形態に係る電磁波検出器100の構成は、他の実施の形態にも適用することができる。
【0082】
<作用効果>
続いて、本実施の形態の作用効果を説明する。
【0083】
焦電効果による第1強誘電体層4a及び第2強誘電体層4bの各々における分極に起因した二次元材料層1における電流の変化量は、通常の半導体における電流の変化量よりも大きい。特に、二次元材料層1では、通常の半導体と比較して、小さな電圧変化に対して大きな電流変化が生じる。
【0084】
例えば、二次元材料層1として単層のグラフェンが用いられた場合、二次元材料層1の厚みは原子層1層分であるため極めて薄い。つまり、二次元材料層1は、通常のバルク物質からなるチャネルと比較して、その周囲における電圧変化の影響を強く受ける。また、単層のグラフェンにおける電子の移動度は、通常のバルク物質における電子の移動度と比べて、高い。この場合、二次元材料層1における電子の移動度及び厚み等から算出される二次元材料層1での電流の変化量は、通常の半導体における電流の変化量の数百倍から数千倍程度である。この効果は、光ゲート効果と呼ばれる。
【0085】
光ゲート効果によって、二次元材料層1における検出電流の変化量は大幅に向上する。光ゲート効果は、通常の半導体のように光電変換材料の量子効率を直接的に増強するものではなく、電磁波の入射による電流の変化量を大きくするものである。このため、電磁波の入射による差分電流から算出された電磁波検出器100の量子効率は、100%を超えることができる。よって、本実施の形態に係る電磁波検出器100による電磁波の検出感度は、半導体電磁波検出器または光ゲート効果が適用されていないグラフェン電磁波検出器と比較して、高い。
【0086】
また、第1強誘電体層4aを構成する材料がLiNbOでありかつ第2強誘電体層4bを構成する材料がLiTaOである場合には、第1強誘電体層4aに生じる誘電分極の変化が第2強誘電体層4bに生じる誘電分極の変化とは異なるため、第1領域1aに生じる電圧変化は第2領域1bに生じる電圧変化とは異なる。よって、二次元材料層1を構成するグラフェンには疑似的にPN接合と同様のバイアスが生じる。そのため、第1強誘電体層4a及び第2強誘電体層4bの各々が形成されておらず、平面視において1つの強誘電体層のみが二次元材料層1と重なるように形成されている場合と比べて、電磁波検出器100の二次元材料層1を流れる電流及び二次元材料層1に加わる電圧は大きくなる。
【0087】
また、電磁波検出器100に電磁波が照射された際の電流の変化量は、二次元材料層1における光電変換によって生じた光電電流による変化を含んでいる。このため、電磁波検出器100に電磁波が照射されることで、上記の光バイアス効果、光ゲート効果及び光電変換が生じる。よって、電磁波検出器100は、光バイアス効果、光ゲート効果及び光電変換による電流の変化を検出することができる。したがって、電磁波検出器100の感度が向上する。
【0088】
二次元材料層1を構成する材料は、グラフェン、遷移金属ダイカルゴゲナイト、黒リン、シリセン、グラフェンナノリボン及びボロフェンからなる群から選択されるいずれかを含んでいる。このため、本実施の形態の作用効果を確実に得ることができる。
【0089】
<変形例1>
電磁波検出器100は、以下のように変形され得る。
【0090】
電磁波検出器100は、第1強誘電体層4a及び第2強誘電体層4bに加えて、1以上の強誘電体層をさらに備えていてもよい。
【0091】
図3に示されるように、電磁波検出器100は、第3強誘電体層4cをさらに備えていてもよい。第3強誘電体層4cは、第1方向Xにおいて第2強誘電体層4bに対して第1強誘電体層4aとは反対側に配置されている。第1強誘電体層4a、第2強誘電体層4b、及び第3強誘電体層4cは、この順に第1方向Xに並んで配置されている。
【0092】
図3に示される二次元材料層1は、第1方向Xに並んで配置されている第1領域1a、第2領域1b、及び第3領域1cを有する。第3領域1cは、第3強誘電体層4cにおいて焦電効果により発生する電圧変化の影響をより強く受ける二次元材料層1内の領域と定義される。第2電極部2bは、第3強誘電体層4c上に配置されており、第3領域1cと接している。これにより、第1電極部2a、二次元材料層1の第1領域1a、第2領域1b、第3領域1c、及び第2電極部2bが、上記記載順に電気的に接続されている。
【0093】
第3強誘電体層4cを構成する材料は、第1強誘電体層4aを構成する材料及び第2強誘電体層4bを構成する材料と異なっている。第3強誘電体層4cを構成する材料の分極率は、第1強誘電体層4aを構成する材料及び第2強誘電体層4bを構成する材料の分極率と異なっている。第3強誘電体層4cを構成する材料の分極率は、例えば第2強誘電体層4bを構成する材料の分極率よりも低い。言い換えると、第1強誘電体層4a、第2強誘電体層4b、及び第3強誘電体層4cの各々を構成する材料の分極率は、上記記載順に低くなっている。
【0094】
第2強誘電体層4bと第3強誘電体層4cとの境界41は、第2強誘電体層4b及び第3強誘電体層4cの各々において焦電効果により生じる電圧変化に起因して二次元材料層1の第2領域1bと第3領域1cとの間に電位差(電圧勾配)が生じるように、設けられている。より具体的には、境界41は、第2強誘電体層4b及び第3強誘電体層4cの各々において焦電効果により生じる電圧変化に起因して二次元材料層1の第2領域1bと第3領域1cとの間に電圧勾配が生じるように、二次元材料層1に対して位置決めされている。
【0095】
境界41は、平面視において二次元材料層1がチャネルとして動作する領域内に形成される。境界41は、第1方向Xと交差する方向に延びている。境界41は、例えば第1方向Xと直交する第2方向Yに沿って延びている。境界41は、例えば境界40と平行に延びている。
【0096】
なお、境界41は、第2領域1bと第3領域1cとの間に上記電圧勾配が形成され得る限りにおいて、任意に形成され得る。境界41は、平面視において少なくともチャネル領域内に形成されていればよい。境界41は、電流が流れる第1方向Xに対して90°未満角度を成すように形成されていてもよい。
【0097】
また、電磁波検出器100は、第1強誘電体層4a及び第2強誘電体層4bに加えて、複数の強誘電体層をさらに備えていてもよい。第1強誘電体層4a、第2強誘電体層4b及びその他の複数の強誘電体層は、例えば、第1方向Xにおいて第1電極部2a側から第2電極部2b側に向かうにつれて各分極率が低くなるように、第1方向Xに並んで配置されている。
【0098】
第1電極部2a及び第2電極部2bは、二次元材料層1の上部に形成されていてもよい。二次元材料層1と第1電極部2a及び第2電極部2bとの相対的な位置関係は、二次元材料層1が第1電極部2a及び第2電極部2bの各々と電気的に接続されている限りにおいて、任意に選択され得る。例えば、二次元材料層1と第1電極部2a及び第2電極部2bの各々とは、いわゆるエッジコンタクトにより接続されていてもよい。二次元材料層1の端面が第1電極部2a及び第2電極部2bの各々の端面と接触していてもよい。この場合、二次元材料層1と第1電極部2a及び第2電極部2bの各々との接触抵抗が低くなるため、電磁波検出器100の特性が向上する。
【0099】
さらに、二次元材料層1と第1電極部2a及び第2電極部2bの各々との接触面において、二次元材料層1に少なくとも1つの細孔又は周期的に配列された複数の細孔が形成されていてもよい。上記細孔は、例えば孔径がナノオーダーであるナノ細孔である。このように二次元材料層1に細孔を形成することで、接触抵抗が低くなるため、電磁波検出器100の特性が向上する。
【0100】
なお、電磁波検出器100は基板3を備えていなくてもよい。第1強誘電体層4a及び第2強誘電体層4bが、二次元材料層1、第1電極部2a、第2電極部2b、第1強誘電体層4a、第2強誘電体層4b、及び第3電極部5を備える構造体を保持し得る場合、基板3は必須ではない。
【0101】
また、電磁波検出器100は第3電極部5を備えていなくてもよい。言い換えると、基板3がバックゲート電極として作用してもよい。
【0102】
第1強誘電体層4a及び第2強誘電体層4b上には、図示されない保護膜が設けられていてもよい。図示されない保護膜は、二次元材料層1、第1電極部2a及び第2電極部2bを覆うように設けられていてもよい。保護膜の材料は、例えば、酸化物または窒化物等の絶縁体である。保護膜の材料は、例えば、酸化ケイ素(SiO2)、窒化ケイ素(SiN)、酸化ハフニウム(HfO2)、酸化アルミニウム(Al23)、窒化ボロン(BN:ボロンナイトライド)等である。
【0103】
電磁波検出器100は、図示されないモット絶縁体をさらに含んでいてもよい。図示されないモット絶縁体は、光が照射されることによって光誘起相転移が生じることで温度等の物性が変化するように構成されている。図示されないモット絶縁体は、第1強誘電体層4a及び第2強誘電体層4bの各々と接触している。
【0104】
実施の形態2.
図4に示されるように、実施の形態2に係る電磁波検出器101は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、第1強誘電体層4aの厚みが第2強誘電体層4bの厚みと異なっている点で、電磁波検出器100とは異なる。以下、電磁波検出器101が電磁波検出器100とは異なる点を主に説明する。
【0105】
第1強誘電体層4aの厚みは、例えば第2強誘電体層4bの厚みよりも薄い。第1強誘電体層4aと第2強誘電体層4bとの境界40上には、段差部42が形成されている。二次元材料層1は、段差部42を覆うように配置されている。電磁波検出器101においても、第1強誘電体層4aにおいて焦電効果により生じる電圧変化量は、第2強誘電体層4bにおいて焦電効果により生じる電圧変化量とは異なる。そのため、電磁波検出器101においても、電磁波検出器100と同様に、光ゲート効果が生じ、高感度化が実現される。
【0106】
第1強誘電体層4aを構成する材料は、例えば第2強誘電体層4bを構成する材料と異なっている。第1強誘電体層4aを構成する材料の分極率は、例えば第2強誘電体層4bを構成する材料の分極率と異なっている。例えば、第1強誘電体層4aを構成する材料の分極率は、第2強誘電体層4bを構成する材料の分極率よりも高い。
【0107】
二次元材料層1の第1領域1aの厚みは、二次元材料層1の第2領域1bの厚みと等しい。なお、各図では、図示の便宜上、二次元材料層1の上面は平坦に図示されているが、二次元材料層1の上面は、例えば二次元材料層1の下面と同様に、ステップ状に設けられている。第2領域1bの上面は、例えば第1領域1aの上面よりも上方に配置されている。ただし、二次元材料層1の第1領域1aの厚みは、二次元材料層1の第2領域1bの厚みと異なっていてもよい。第2領域1bの上面は、例えば第1領域1aの上面と同一平面を成すように設けられていてもよい。
【0108】
電磁波検出器101は、電磁波検出器100の製造方法と基本的に同様の製造方法によって製造され得る。
【0109】
<変形例2>
電磁波検出器101は、以下のように変形され得る。
【0110】
図5に示されるように、第1強誘電体層4aを構成する材料は、第2強誘電体層4bを構成する材料と同じであってもよい。第1強誘電体層4aを構成する材料の分極率は、第2強誘電体層4bを構成する材料の分極率と等しくてもよい。つまり、電磁波検出器101では、第1強誘電体層4aと第2強誘電体層4bとの相違点が、それぞれの厚みのみであってもよい。この場合にも、上述した光ゲート効果が生じるため、高感度化が実現される。さらに、図5に示される電磁波検出器101では、第1強誘電体層4a及び第2強誘電体層4bが、基板3上に成膜された1つの強誘電体層の表面に段差部を形成することにより、同時に形成され得る。当該段差部は、強誘電体層上にフォトリソグラフィ法によりマスクパターンを形成した後、当該強誘電体層に任意のエッチング処理を施すことにより、比較的容易に形成され得る。そのため、図5に示される電磁波検出器101の製造方法は、電磁波検出器100の製造方法、及び図4に示される電磁波検出器101の製造方法と比べて、簡略化され得る。
【0111】
なお、電磁波検出器101においても、上記変形例1に列記した各変形例が、電磁波検出器100と同様に許容される。
【0112】
例えば、図6に示されるように、電磁波検出器101は、第3強誘電体層4cをさらに備えていてもよい。第3強誘電体層4cの厚みは、例えば、第2強誘電体層4bの厚みよりも厚い。第1強誘電体層4a、第2強誘電体層4b、及び第3強誘電体層4cの各々の厚みは、上記記載順に厚くなっている。第1強誘電体層4a、第2強誘電体層4b、及び第3強誘電体層4cの各々を構成する材料は、互いに異なっていてもよいし、互いに同じであってもよい。この場合、第2強誘電体層4bと第3強誘電体層4cとの境界上にも、段差部が形成されている。二次元材料層1は、第1強誘電体層4aと第2強誘電体層4bとの境界上の段差部、及び第2強誘電体層4bと第3強誘電体層4cとの境界上の段差部を覆うように配置されている。
【0113】
実施の形態3.
図7に示されるように、実施の形態3に係る電磁波検出器102は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、第1強誘電体層4a及び第2強誘電体層4bの少なくともいずれかが凹凸形状を有している点で、電磁波検出器100とは異なる。以下、電磁波検出器102が電磁波検出器100とは異なる点を主に説明する。
【0114】
図7に示される電磁波検出器102では、複数の第1凹部43aが第1強誘電体層4aに形成されており、複数の第2凹部43bが第2強誘電体層4bに形成されており、さらに1つの第3凹部43cが第1強誘電体層4aと第2強誘電体層4bとの間に形成されている。
【0115】
図8に示されるように、複数の第1凹部43aの各々は、第1方向Xに周期的に並んで配置されており、かつ第1方向Xと交差する方向に沿って延びている。複数の第2凹部43bの各々は、第1方向Xに周期的に並んで配置されており、かつ第1方向Xと交差する方向に沿って延びている。1つの第3凹部43cは、第1方向Xと交差する方向に沿って延びている。例えば、複数の第1凹部43a、複数の第2凹部43b、および第3凹部43cの各々は、第1方向Xと直交する第2方向Yに沿って延びている。
【0116】
第1強誘電体層4aと第2強誘電体層4bとの境界は、第2方向Yに隣り合う2つの第3凹部43c間において、第1方向Xと交差する方向に延びている。
【0117】
各第1凹部43aは、第1強誘電体層4aにおいて二次元材料層1側を向いている上面から凹んでいる。各第2凹部43bは、第2強誘電体層4bにおいて二次元材料層1側を向いている上面から凹んでいる。1つの第3凹部43cは、第1強誘電体層4aにおいて二次元材料層1側を向いている上面及び第2強誘電体層4bにおいて二次元材料層1側を向いている上面から凹んでいる。各第1凹部43a、各第2凹部43b、及び第3凹部43cは、例えば貫通孔として形成されている。なお、電磁波検出器102では、第3凹部43cが形成されていなくてもよい。
【0118】
複数の第1凹部43aの各々の開口幅及び深さ(以下、単に寸法ともよぶ)並びに間隔と、複数の第2凹部43bの各々の寸法及び間隔は、検出波長よりも小さい。第1凹部43aの数は、例えば第2凹部43bの数よりも多い。なお、第1凹部43aの数は、第2凹部43bの数と等しくてもよいし、第2凹部43bの数よりも少なくてもよい。
【0119】
二次元材料層1の第1領域1aは、複数の第1凹部43a及び1つの凹部43c上に配置されている。二次元材料層1の第2領域1bは、複数の第2凹部43b及び1つの凹部43c上に配置されている。
【0120】
図7及び図8に示される電磁波検出器102では、複数の第1凹部43a及び複数の第2凹部43bの各々が周期的に配置されているため、主に周期によって決定される波長の光と結合効率が高い。その結果、第1強誘電体層4a及び第2強誘電体層4bの各々は、当該波長を選択的に吸収することになり、光バイアス効果及び光ゲート効果がともに増大し、波長選択的な高感度化が可能である。
【0121】
電磁波検出器102は、電磁波検出器100の製造方法と基本的に同様の製造方法によって製造され得る。電磁波検出器102の製造方法は、複数の第1凹部43a、複数の第2凹部43b、及び第3凹部43cの各々を形成する工程をさらに備えている点で、電磁波検出器100の製造方法と異なる。複数の第1凹部43a、複数の第2凹部43b、及び第3凹部43cの各々は、各強誘電体層上にフォトリソグラフィ法によりマスクパターンを形成した後、各強誘電体層に任意のエッチング処理を施すことにより、比較的容易に形成され得る。
【0122】
<変形例3>
電磁波検出器102は、以下のように変形され得る。
【0123】
図9に示されるように、電磁波検出器102において、第1強誘電体層4aと第2強誘電体層4bには、複数の第1凹部43a、複数の第2凹部43b、および第3凹部43cに代えて、複数の第1凸部44a及び複数の第2凸部44bが形成されていてもよい。複数の第1凸部44aは、例えば第1強誘電体層4aの表面に周期的に形成されている。複数の第2凸部44bは、例えば第2強誘電体層4bの表面に周期的に形成されている。二次元材料層1の第1領域1aは、複数の第1凸部44a上に配置されている。二次元材料層1の第2領域1bは、複数の第2凸部44b上に配置されている。
【0124】
第1凸部44a及び第2凸部44bの各々は、例えば第1方向Xにおいて境界40から間隔を空けて配置されている。なお、第1強誘電体層4a及び第2強誘電体層4bは、第3凸部を共有していてもよい。この場合、境界40の一部は、第3凸部内に形成されている。
【0125】
図10に示されるように、電磁波検出器102における複数の凹凸の周期性は、2次元的であってもよい。例えば、第1強誘電体層4a及び第2強誘電体層4bには、第1方向Xに沿って延びている少なくとも1つの第4凹部43dが形成されていてもよい。第4凹部43dは、複数の第1凹部43a、複数の第2凹部43b、及び第3凹部43cの各々と交差しており、例えば直交している。
【0126】
電磁波検出器102では、第1強誘電体層4a及び第2強誘電体層4bの少なくともいずれかに、1つ以上の凹凸が形成されていればよい。第1強誘電体層4aにのみ、1つ以上の凹凸が形成されていてもよい。あるいは、第2強誘電体層4bにのみ、1つ以上の凹凸が形成されていてもよい。
【0127】
電磁波検出器102では、少なくとも1つの凹凸が非周期的に配置されていてもよい。この場合にも、凹凸の寸法及び間隔の少なくともいずれかが検出波長より十分小さければ、第1強誘電体層4a及び第2強誘電体層4bの少なくともいずれかによる電磁波の反射が抑制される。その結果、第1強誘電体層4a及び第2強誘電体層4bの各々の少なくともいずれかは、検出波長を選択的に吸収することになり、光バイアス効果及び光ゲート効果がともに増大し、波長選択的な高感度化が可能である。
【0128】
電磁波検出器102は、第1強誘電体層4a及び第2強誘電体層4bの少なくともいずれかが凹凸形状を有している点を除き、電磁波検出器101と同様の構成を備えていてもよい。また、電磁波検出器102においても、上記変形例1及び上記変形例2に列記した各変形例が許容される。
【0129】
第1強誘電体層4aを構成する材料は、第2強誘電体層4bを構成する材料と同じであってもよい。この場合、第1強誘電体層4aに形成されている複数の凹凸の各々の寸法及び間隔の少なくともいずれかは、第2強誘電体層4bに形成されている複数の凹凸の各々の寸法及び間隔の少なくともいずれかと異なっている。このような第1強誘電体層4a及び第2強誘電体層4bも、焦電効果により生じる電圧変化が異なる部材として定義され得る。その結果、電磁波検出器102は、電磁波検出器100と同様の効果を奏することができる。
【0130】
実施の形態4.
図11に示されるように、実施の形態4に係る電磁波検出器103は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、絶縁層8をさらに備えている点で、電磁波検出器100とは異なる。以下、電磁波検出器103が電磁波検出器100とは異なる点を主に説明する。
【0131】
図11に示されるように、絶縁層8は、第1強誘電体層4a及び第2強誘電体層4bの各々の上部に配置されている。二次元材料層1、第1電極部2a、及び第2電極部2bは、絶縁層8の上部に配置されている。絶縁層8は、平面視において、第1領域1aと重なる領域と、第2領域1bと重なる領域とを有している。
【0132】
絶縁層8の材料は、例えば、酸化ケイ素(SiO2)である。絶縁層8の材料は、酸化ケイ素に限られず、例えば、オルトケイ酸テトラエチル(Si(OC254)、窒化ケイ素(Si34)、酸化ハフニウム(HfO2)、酸化アルミニウム(Al23)、酸化ニッケル(NiO)、窒化ボロン(BN)(ボロンナイトライド)、シロキサン系のポリマー材料であってもよい。例えば、窒化ボロン(BN)の原子配列は、グラフェンの原子配列と似ている。このため、窒化ボロン(BN)がグラフェンからなる二次元材料層1に接触する場合、二次元材料層1の電子移動度の低下が抑制される。よって、窒化ボロン(BN)は、二次元材料層1の下に配置される下地膜としての絶縁層8に好適である。
【0133】
絶縁層8の厚さは、特に制限されない。トンネル電流を生じる厚さであってもよい。
電磁波検出器103において、絶縁層8は、第1強誘電体層4a及び第2強誘電体層4bの各々において生じる焦電分極と二次元材料層1中の電荷との相互作用をブロックする効果がある。この効果により、二次元材料層1中を流れる電荷が散乱されにくくなり、ノイズが減少し、電磁波検出器103の性能が向上する。
【0134】
また、例えば酸化シリコン、窒化シリコン、及び酸化アルミナなどの電気的絶縁性を有する材料は、波長10μm付近の赤外線を吸収し、発熱する。この発熱により、第1強誘電体層4a及び第2強誘電体層4bの各々において、焦電効果が大きくなり、電圧変化が大きくなる。その結果、電磁波検出器103では、光バイアス効果及び光ゲート効果がともに増大し、高感度化が可能である。
【0135】
電磁波検出器103は、電磁波検出器100の製造方法と基本的に同様の製造方法によって製造され得る。電磁波検出器103の製造方法は、絶縁層8を形成する工程をさらに備えている点で、電磁波検出器100の製造方法と異なる。絶縁層8は、例えば、CVD(Chemical Vapor Deposition)法、スパッタリング法、ALD (Atomic Layer Deposition)法により成膜される。
【0136】
<変形例4>
電磁波検出器103は、以下のように変形され得る。
【0137】
図12に示されるように、絶縁層8は、基板3の上部であって、第1強誘電体層4a及び第2強誘電体層4bの各々の下部に配置されていてもよい。図12に示される絶縁層8は、基板3を構成する材料がSiを含む場合には、基板3を熱酸化させることにより形成されてもよい。
【0138】
図13に示されるように、電磁波検出器102は、第1強誘電体層4a及び第2強誘電体層4bの各々を挟むように配置された1対の絶縁層8を備えていてもよい。1対の絶縁層8は、第1強誘電体層4a及び第2強誘電体層4bの各々の上部に配置されている上部絶縁層8と、第1強誘電体層4a及び第2強誘電体層4bの各々の下部に配置されている下部絶縁層8とを含む。
【0139】
図12に示される絶縁層8、及び図13に示される1対の絶縁層8は、図11に示される絶縁層8と同様に、第1強誘電体層4a及び第2強誘電体層4bの各々において生じる焦電分極と二次元材料層1中の電荷との相互作用をブロックし得る。
【0140】
電磁波検出器103は、絶縁層8をさらに備えている点を除き、電磁波検出器101又は電磁波検出器102と同様の構成を備えていてもよい。また、電磁波検出器103においても、上記変形例1、変形例2、及び変形例3に列記した各変形例が許容される。例えば、絶縁層8は、第1強誘電体層4a及び第2強誘電体層4bの少なくともいずれかに形成されている凹凸形状を覆うように配置されていてもよい。
【0141】
電磁波検出器103は、第1電極部2a又は第2電極部2bと絶縁層8との間に、両者の密着性を高めるための密着層をさらに備えていてもよい。密着層を構成する材料は、例えばクロム(Cr)またはチタン(Ti)等の金属材料を含む。
【0142】
実施の形態5.
図14に示されるように、実施の形態5に係る電磁波検出器104は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、導電層9をさらに備えている点で、電磁波検出器100とは異なる。以下、電磁波検出器104が電磁波検出器100とは異なる点を主に説明する。
【0143】
導電層9は、第1強誘電体層4a及び第2強誘電体層4bの各々の電位を等しくするように設けられている。導電層9は、第1強誘電体層4a及び第2強誘電体層4bの各々の下部に配置されている。導電層9は、平面視において、第1領域1aと重なる部分と、第2領域1bと重なる部分とを有している。導電層9は、第1強誘電体層4a及び第2強誘電体層4bの各々と電気的に接続されている。好ましくは、検出波長に対する導電層9の反射率は、検出波長に対する第1強誘電体層4aの反射率よりも高い。
【0144】
導電層9を構成する材料は、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、クロム(Cr)およびパラジウム(Pd)の少なくともいずれかを含んでいる。導電層9を構成する材料は、グラフェン等の二次元材料又は高分子材料であってもよい。
【0145】
電磁波検出器104は、電磁波検出器100の製造方法と基本的に同様の製造方法によって製造され得る。電磁波検出器104の製造方法は、導電層9を形成する工程をさらに備えている点で、電磁波検出器100の製造方法と異なる。導電層9は、例えば、CVD(Chemical Vapor Deposition)法、スパッタリング法、ALD (Atomic Layer Deposition)法により成膜される。
【0146】
電磁波検出器100の製造方法では、二次元材料層1を第1強誘電体層4a及び第2強誘電体層4bの上部に成膜する際に、第1強誘電体層4a及び第2強誘電体層4bの各々にて分極により生じた電荷が二次元材料層1と第1強誘電体層4a及び第2強誘電体層4bの各々との密着を阻害し、二次元材料層1が剥離するおそれがある。
【0147】
これに対し、電磁波検出器104の製造方法では、二次元材料層1を第1強誘電体層4a及び第2強誘電体層4bの上部に成膜する際に、導電層9が第1強誘電体層4a及び第2強誘電体層4bの各々と電気的に接続されているため、第1強誘電体層4a及び第2強誘電体層4bの各々にて分極により生じた電荷が導電層9に逃げることにより、二次元材料層1の剥離が抑制され得る。
【0148】
さらに、検出波長に対する導電層9の反射率が検出波長に対する第1強誘電体層4aの反射率よりも高い場合には、第1強誘電体層4a及び第2強誘電体層4bの各々を透過した電磁波が、導電層9によって反射して、再び第1強誘電体層4a及び第2強誘電体層4bの各々に入射する。その結果、第1強誘電体層4a及び第2強誘電体層4bの各々の吸収効率が高まり、光バイアス効果及び光ゲート効果がともに増大し、高感度化が可能である。
【0149】
<変形例5>
電磁波検出器104は、基板3と導電層9との間に、両者の密着性を高めるための密着層をさらに備えていてもよい。密着層を構成する材料は、例えばクロム(Cr)またはチタン(Ti)等の金属材料を含む。
【0150】
電磁波検出器104は、導電層9をさらに備えている点を除き、電磁波検出器101、電磁波検出器102、又は電磁波検出器103と同様の構成を備えていてもよい。また、電磁波検出器104においても、上記変形例1~変形例4に列記した各変形例が許容される。
【0151】
実施の形態6.
図15に示されるように、実施の形態6に係る電磁波検出器105は、実施の形態4に係る電磁波検出器103と基本的に同様の構成を備え同様の効果を有するが、第1強誘電体層4aと第2強誘電体層4bの各々の上部又は下部に中空部分20が形成されている点で、電磁波検出器103とは異なる。以下、電磁波検出器105が電磁波検出器103とは異なる点を主に説明する。
【0152】
絶縁層8は、第1強誘電体層4a上に配置されている第1絶縁層8aと、第2強誘電体層4b上に配置されている第2絶縁層8bとを有している。第1絶縁層8aは、第1方向Xにおいて第2絶縁層8bと間隔を空けて配置されている。二次元材料層1は、第1絶縁層8aと第2絶縁層8bとの間に渡されている。
【0153】
中空部分20は、第1強誘電体層4aと第2強誘電体層4bの各々の上部に形成されている。中空部分20は、第1強誘電体層4a及び第2強誘電体層4bの各々と二次元材料層1との間であってかつ第1絶縁層8aと第2絶縁層8bとの間に形成されている。二次元材料層1、第1強誘電体層4a及び第2強誘電体層4b、並びに第1絶縁層8a及び第2絶縁層8bが、中空部分20に面している。中空部分20は、平面視において、第1領域1aと重なる領域と、第2領域1bと重なる領域とを有している。
【0154】
中空部分20は、第1強誘電体層4a及び第2強誘電体層4bとの対比において、断熱性を有している。中空部分20の内部を構成する材料は、第1強誘電体層4a及び第2強誘電体層4bを構成する材料よりも熱伝導率が低い任意の材料であればよいが、例えば空気である。
【0155】
電磁波検出器105は、二次元材料層1を抵抗とするボロメータと解釈され得る。一般に、ボロメータの感度は、ボロメータ抵抗の温度変化率:TCR(Temperature Coefficient Resistance)に比例し、熱コンダクタンスに反比例する。上述のように、電磁波検出器105の熱コンダクタンスは、中空部分20により断熱性を向上させることで、小さくなる。その結果、電磁波検出器105では、中空部分20が形成されていることにより、感度が向上する。
【0156】
好ましくは、中空部分20を挟むように配置されている二次元材料層1と第1強誘電体層4a及び第2強誘電体層4bとの間隔は、第1強誘電体層4a及び第2強誘電体層4bの電圧変化が二次元材料層1に及ぶように設けられている。中空部分20は、第1強誘電体層4a及び第2強誘電体層4bの電圧変化が二次元材料層1に及ぶように設けられている。上記間隔は、一般のボロメータと同様に、数ミクロン程度以下であることが望ましい。このようにすれば、電磁波検出器105は、前述した電磁波検出器100と同様の効果を奏する。
【0157】
また、一般的にグラフェン等の二次元材料のTCRの絶対値は数%/Kと比較的低いが、電磁波検出器105では、上記光ゲート効果により、二次元材料層1に生じる微小電圧の変化に対する電流変化量の比率は1000倍程度となる。そのため、二次元材料層1のTCRの絶対値は、数100%/Kとなり、比較的高い。
【0158】
これに対し、一般なボロメータに用いられている酸化バナジウム及びアモルファスシリコンのTCRの絶対値は数%/K程度である。つまり、電磁波検出器105の感度は、一般のボロメータの感度に対して、10倍以上高められ得る。
<変形例6>
電磁波検出器105は、以下のように変形され得る。
【0159】
図16に示されるように、中空部分20は、第1強誘電体層4aと第2強誘電体層4bの各々の下部に形成されていてもよい。中空部分20は、基板3と第1強誘電体層4a及び第2強誘電体層4bの各々との間であってかつ第1絶縁層8aと第2絶縁層8bとの間に形成されている。基板3、第1強誘電体層4a及び第2強誘電体層4b、並びに第1絶縁層8a及び第2絶縁層8bが、中空部分20に面している。
【0160】
図17に示されるように、電磁波検出器105は、第1絶縁層8a及び第2絶縁層8bに代えて、第1導電層9a及び第2導電層9bを備えていてもよい。中空部分20は、第1強誘電体層4aと第2強誘電体層4bの各々の下部に形成されている。中空部分20は、基板3と第1強誘電体層4a及び第2強誘電体層4bの各々との間であってかつ第1導電層9aと第2導電層9bとの間に形成されている。基板3、第1強誘電体層4a及び第2強誘電体層4b、並びに第1導電層9a及び第2導電層9bが、中空部分20に面している。
【0161】
図18に示されるように、電磁波検出器105は、二次元材料層1の上面又は下面に接するように配置されている絶縁層8をさらに備えていてもよい。電磁波検出器105は、二次元材料層1を挟むように配置された第3絶縁層8c及び第4絶縁層8dをさらに有していてもよい。第3絶縁層8cは、二次元材料層1の下部において、二次元材料層1において第1電極部2a及び第2電極部2bの各々と接続されるべき領域を露出するように形成されている。第4絶縁層8dは、二次元材料層1の上部に形成されている。なお、電磁波検出器105は、第3絶縁層8c及び第4絶縁層8dの少なくともいずれかを備えていればよい。
【0162】
電磁波検出器105では、光ゲート効果を発生し得る材料により構成されており、かつ中空部分20に接するように配置されている部材を、さらに備えていてもよい。当該部材を構成する材料の一例は、InSbである。このような電磁波検出器105は、中赤外線を検出する電磁波検出器に好適である。このような電磁波検出器105では、室温においても、InSbからなる部材にわずかな電圧変化が生じれば、電磁波検出器100と同様の効果が奏される。
【0163】
電磁波検出器105は、中空部分20が形成されている点を除き、電磁波検出器101,電磁波検出器102、電磁波検出器103、又は電磁波検出器104と同様の構成を備えていてもよい。また、電磁波検出器105においても、上記変形例1~変形例5に列記した各変形例が許容される。
【0164】
実施の形態7.
図19及び図20に示されるように、実施の形態7に係る電磁波検出器106は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、第2強誘電体層4bの上部に配置されており、二次元材料層1の第2領域1bとショットキー接合している半導体層10をさらに備える点で、電磁波検出器100とは異なる。以下、電磁波検出器106が電磁波検出器100とは異なる点を主に説明する。
【0165】
半導体層10は、第2強誘電体層4b上に配置されている。半導体層10は、第1方向Xにおいて第1電極部2aと間隔を空けて配置されている。二次元材料層1と第1強誘電体層4a及び第2強誘電体層4bとの間であって第1電極部2aと半導体層10との間には、中空部分20が形成されている。中空部分20は、実施の形態6における中空部分20と同様の構成を有している。半導体層10は、平面視において、第2領域1bと重なる部分とを有している。
【0166】
第2電極部2bは、二次元材料層1の第1領域1a、第2領域1b、及び半導体層10を介して第1電極部2aと電気的に接続されている。
【0167】
二次元材料層1と半導体層10とは、ショットキー接合を形成している。第1電極部2aと第2電極部2bとの間にさらに電圧が印加されてもよい。好ましくは、電圧は、二次元材料層1と半導体層10とのショットキー接合に対して順バイアスになるように設定される。電圧が印加されることによって、第1電極部2aとの第2電極部2bとの間に配置された二次元材料層1には電流が流れる。なお、第1電極部2aから第2電極部2bまでは電流が流れる経路となるため、二次元材料層1も電流が流れる経路となる。
【0168】
例えば、半導体層10を構成する材料がp型の珪素(Si)であり、二次元材料層1を構成する材料がn型のグラフェンである場合、二次元材料層1と半導体層10とはショットキー接合する。これにより、ショットキー接合に対して順バイアスが印加されるように電圧が調整されることで、第1強誘電体層4a及び第2強誘電体層4bの各々の誘電分極が微小である場合であっても、二次元材料層1を流れる電流の変化量を増幅できる。
【0169】
電磁波検出器106では、二次元材料層1と半導体層10とがショットキーダイオードを成している。以下、このような構造をダイオード型と呼ぶ。
【0170】
半導体層10の材料は、検出対象となる波長によって、光電変換可能な材料を選択する。例えば、可視波長域では珪素(Si)等の半導体材料である。また、半導体層10は、不純物がドープされたシリコン基板等であってもよい。
【0171】
半導体層10は、多層構造であってもよい。また、半導体層10は、pn接合フォトダイオード、pinフォトダイオード、ショットキーフォトダイオード、アバランシェフォトダイオードであってもよい。また、半導体層10は、フォトトランジスタであってもよい。
【0172】
本実施の形態においては半導体層10を構成する材料がシリコン基板である場合が説明されたが、半導体層10の材料は他の材料であってもよい。半導体層10の材料は、例えば、ケイ素(Si)、ゲルマニウム(Ge)、III-V族半導体またはII-V族半導体などの化合物半導体、テルル化カドミウム水銀(HgCdTe)、アンチモン化イリジウム(InSb)、鉛セレン(PbSe)、鉛硫黄(PbS)、カドミウム硫黄(CdS)、窒化ガリウム(GaN)、シリコンカーバイド(SiC)、リン化ガリウム(GaP)、ヒ化インジウムガリウム(InGaAs)、ヒ化インジウム(InAs)である。半導体層10は、量子井戸または量子ドットを含む基板であってもよい。半導体層10の材料は、TypeII超格子であってもよい。半導体層10の材料は、上記の材料の単体であってもよいし、上記の材料を組み合わせた材料であってもよい。
【0173】
半導体層10は、抵抗率が100Ω・cm以下になるように不純物がドーピングされていることが望ましい。半導体層10が高濃度にドーピングされることで半導体層10内における光キャリアの読み出し速度(移動速度)が向上するため、電磁波検出器100の応答速度が向上する。
【0174】
半導体層10の厚みは、10μm以下であることが望ましい。半導体層10の厚みが小さくなることで、光キャリアの失活が小さくなる。第2電極部2bと半導体層10との間に、図示されない密着層が設けられていてもよい。密着層は、密着性を高めるように構成されている。密着層の材料は、例えば、クロム(Cr)またはチタン(Ti)等の金属材料を含んでいる。
【0175】
電磁波検出器106の製造方法は、半導体層10を形成する工程を備えている点で、電磁波検出器100の製造方法とは異なる。
【0176】
半導体層10は、第1強誘電体層4a及び第2強誘電体層4bが形成された後に、形成される。半導体層10は、例えばスパッタ、蒸着、CVD等の任意の成膜法により成膜された半導体膜を、フォトリソグラフィ法によりパターニングすることにより、形成され得る。あるいは、半導体層10は、ウエハ状又はチップ状に成形された半導体層を第2強誘電体層4bに接合し、その後、半導体層を研磨して薄膜化することによっても、形成され得る。さらに、半導体層10は、上記のように薄膜化された半導体層を、フォトリソグラフィ法によりさらにパターニングすることによっても、形成され得る。接合には、加熱を行うウエハ融着法や表面の酸化膜を除去後に、直接接合する室温接合方法などがある。
【0177】
<電磁波検出器100の動作および原理>
電磁波検出器106では、二次元材料層1は半導体層10とショットキー接合する。検出対象である電磁波が電磁波検出器106に入射すると、電磁波のエネルギーによって、半導体層10において電子正孔対が生成する。この際に、バイアス電圧によって、電子正孔対の一方が、二次元材料層1に流れ込むことで電流が生じる。
【0178】
また、第1強誘電体層4a及び第2強誘電体層4bの各々にも、二次元材料層1を通過した電磁波及び二次元材料層1よりも外側を通過した電磁波が、入射する。この場合、第1強誘電体層4a及び第2強誘電体層4bの各々が焦電効果を生じることにより、第1強誘電体層4a及び第2強誘電体層4bの各々の表面の電圧が変化し、それぞれの直上にある二次元材料層1にはゲート電圧の変化が生じる。
<作用効果>
電磁波検出器106では、二次元材料層1が半導体層10とショットキー接合されているため、ショットキー接合のない、実施の形態1に示されるグラフェントランジスタ型と比較して、電磁波が入射していない状態での暗電流が抑制される。
【0179】
第1強誘電体層4a及び第2強誘電体層4bの各々による焦電効果により、二次元材料層1のゲート電圧が変化する。よって、二次元材料層1と半導体層10の間に印加されるバイアス電圧が変化する。第1強誘電体層4a及び第2強誘電体層4bを、このバイアス電圧の変化が順方向に増加するように配置すると、電流の取り出し効率が向上する。
【0180】
さらに、電磁波検出器106においても上記光ゲート効果が生じるため、電磁波検出器106にて得られる信号変化量は、極めて大きくなる。
【0181】
以上のように、電磁波検出器106では、二次元材料層1と半導体層10とのショットキー接合により暗電流が抑制されながらも、光ゲート効果により信号電流の変化量が増大しているため、高いS/N比が実現され得る。
【0182】
また、電磁波検出器106では、中空部分20が形成されているため、実施の形態6に係る電磁波検出器104と同様の効果も奏される。具体的には、中空部分20が形成されていることにより、二次元材料層1は第1強誘電体層4a及び第2強誘電体層4bの各々と断熱されている。そのため、電磁波検出器106では、電磁波検出器100と比較して、二次元材料層1が第1強誘電体層4a及び第2強誘電体層4bからの電気的・物理的な応答による散乱を受けにくい。その結果、例えば二次元材料層1を構成する材料がグラフェンを含む場合、中空部分20が形成されていない電磁波検出器100と比較して、その電荷移動度が大きく向上することになる。
【0183】
電磁波検出器106においても、中空部分20を挟むように配置されている二次元材料層1と第1強誘電体層4a及び第2強誘電体層4bとの間隔は、第1強誘電体層4a及び第2強誘電体層4bの電圧変化が二次元材料層1に及ぶように設けられていることが望ましい。中空部分20は、第1強誘電体層4a及び第2強誘電体層4bの電圧変化が二次元材料層1に及ぶように設けられている。上記間隔は、一般のボロメータと同様に、数ミクロン程度以下であることが望ましい。このようにすれば、電磁波検出器105は、前述した電磁波検出器100と同様の効果を奏する。
【0184】
<変形例7>
電磁波検出器106は、半導体層10を備える点を除き、電磁波検出器101,電磁波検出器102、電磁波検出器103、又は電磁波検出器104と同様の構成を備えていてもよい。また、電磁波検出器106においても、上記変形例1~変形例6に列記した各変形例が許容される。
【0185】
図21に示されるように、電磁波検出器106は、実施の形態4に係る電磁波検出器103と同様に、絶縁層8をさらに備えていてもよい。絶縁層8は、例えば第1強誘電体層4a及び第2強誘電体層4bの各々の上部に配置されている。第1電極部2a及び半導体層10は、絶縁層8上において第1方向Xに互いに間隔を空けて配置されている。
【0186】
実施の形態8.
実施の形態8に係る電磁波検出器は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、図22に示されるように二次元材料層1が平面視において周期的なパターン形状を有している点で、電磁波検出器100とは異なる。以下、本実施形態に係る二次元材料層1が電磁波検出器100の二次元材料層1とは異なる点を主に説明する。
【0187】
図22に示されるように、二次元材料層1には、複数の貫通孔11が形成されている。複数の貫通孔11は、第1方向X及び第2方向Yの各々において周期的に配置されている。複数の貫通孔11の各々の平面形状(開口形状)は、例えば円形状である。なお、各貫通孔11の平面形状は、任意の形状であればよい。図23に示されるように、各貫通孔11の平面形状は、四角形状であってもよく、具体的には正方形状又は長方形状であってもよい。また、各貫通孔11の平面形状は、楕円形状であってもよい。各貫通孔11の平面形状は、互いに異なっていてもよい。
【0188】
図22及び図23に示されるように、複数の貫通孔11の各々の寸法は、例えば一定である。複数の貫通孔11の各々の第1方向X及び第2方向Yの間隔は、例えば一定である。複数の貫通孔11の各々の寸法及び間隔の少なくともいずれかは、第1方向X及び第2方向Yの少なくともいずれかにおいて周期的に変化していてもよい。複数の貫通孔11の各々の寸法及び間隔の少なくともいずれかは、第1方向X及び第2方向Yの少なくともいずれかにおいて非周期的に変化していてもよい。
【0189】
図22及び図23に示されるように、複数の貫通孔11の各々の第1方向Xの間隔は、複数の貫通孔11の各々の第2方向Yの間隔よりも長くてもよい。
【0190】
図24に示されるように、二次元材料層1は、第2方向Yに互いに間隔を空けて並んで配置されている複数の二次元材料層12により構成されていてもよい。各二次元材料層12は、第1方向Xに沿って延びている。各二次元材料層12は、第1方向Xに並んで配置されている上記第1領域及び上記第2領域を有している。
【0191】
図24に示されるように、各二次元材料層12の寸法は、例えば一定である。各二次元材料層12の第2方向Yの間隔は、例えば一定である。各二次元材料層12の寸法及び間隔の少なくともいずれかは、第2方向Yにおいて周期的に変化していてもよい。各二次元材料層12の寸法及び間隔の少なくともいずれかは、第2方向Yにおいて非周期的に変化していてもよい。
【0192】
図25に示すように、二次元材料層1は、第2方向Yに1次元周期的に配置されている複数の二次元材料層12Aと、第1方向X及び第2方向Yの各々に2次元周期的に配置されている複数の二次元材料層12Bとを含んでいてもよい。複数の二次元材料層12Bの各々は、1つの二次元材料層12Aと接続されている。複数の二次元材料層12Bの各々は、例えば複数の二次元材料層12Aの各々の上部又は下部に配置されている。複数の二次元材料層12Bの各々は、複数の二次元材料層12Aの各々と同一の層として一体的に形成されていてもよい。二次元材料層12Aを構成する材料は、二次元材料層12Bを構成する材料と同じであってもよい。
【0193】
図25に示される二次元材料層1では、2次元周期的に配置されている複数の二次元材料層12Bにおいて支配的にプラズモン共鳴が発生し、その共鳴によって増強された光電変換によって生じる電子正孔対が、1次元周期的に配置されている複数の二次元材料層12Aを通じて第1電極部2aに到達することができる。この場合、偏光依存性のない光電変換が発生するため、電磁波検出器の感度が向上する。
【0194】
上記のように、二次元材料層1が周期的又は非周期的なパターン形状を有していることにより、パターンによって決定されるプラズモン共鳴を生じる。二次元材料層1が周期的なパターン形状を有している場合には、プラズモン共鳴波長は一定となる。他方、二次元材料層1が非周期的なパターン形状を有している場合には、共鳴が複数生じることで、プラズモン共鳴波長が多波長化する。プラズモン共鳴波長の間隔が狭ければ、二次元材料層1が吸収し得る電磁波の波長は広くなる。このように、二次元材料層1が周期的又は非周期的なパターン形状を有していることで、プラズモン共鳴が生じ、二次元材料層1への電磁波の吸収が増強される。例えば、上述のように、二次元材料層1を構成する材料がグラフェンを含む場合であって二次元材料層1が周期的又は非周期的なパターン形状を有していない場合の白色光の吸収率は2%程度であるが、図22図25に示される二次元材料層1の白色光の吸収率は最大100%まで向上する。その結果、本実施形態に係る電磁波検出器は、図22図25に示される二次元材料層1を備えるため、高感度である。
【0195】
次に、二次元材料層1のパターン形状の対称性について説明する。例えば図22に示されるように、複数の貫通孔11は第1方向X及び第2方向Yのそれぞれにおいて周期的に配置されている。このような二次元材料層1を備える電磁波検出器が検出可能な電磁波の偏光方向は制限されない。他方、図24に示されるように複数の二次元材料層12Aは第2方向Yにおいてのみ周期的に配置されている。この場合、二次元材料層1は、電界が第2方向Yに平行である電磁波のみを吸収する。その結果、このような二次元材料層1を備える電磁波検出器は特定の偏光のみを検出可能となり、該電磁波検出器を複数個配列することで、偏光イメージセンサが実現される。
【0196】
なお、プラズモン共鳴波長は二次元材料層1の下地(基板3、第1強誘電体層4a及び第2強誘電体層4b等)の屈折率にも影響される。例えば、二次元材料層1の下部に配置された基板3を構成する材料がSiを含む場合、図24に示される二次元材料層1を備える電磁波検出器が中赤外線波長域に検出波長を有するには、各二次元材料層12Aの幅が200nm、第2方向Yの間隔(周期)が300nmであればよい。
【0197】
なお、本実施形態に係る電磁波検出器は、二次元材料層1が平面視において周期的なパターン形状を有している点を除き、電磁波検出器101,電磁波検出器102、電磁波検出器103、電磁波検出器104、又は電磁波検出器105と同様の構成を備えていてもよい。また、電磁波検出器107においても、上記変形例1~変形例7に列記した各変形例が許容される。
【0198】
実施の形態9.
実施の形態9に係る電磁波検出器は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、第1強誘電体層4a及び第2強誘電体層4bの各々の分極方向が具体的に特定される点で、電磁波検出器100とは異なる。以下、本実施形態に係る第1強誘電体層4a及び第2強誘電体層4bが電磁波検出器100の第1強誘電体層4a及び第2強誘電体層4bとは異なる点を主に説明する。
【0199】
第1強誘電体層4a及び第2強誘電体層4bの各々の分極方向は、それぞれの上面と下面との間(言い換えると、基板3の第1面に垂直な方向)に電位差が生じるzカットと呼ばれる分極方向、又は、それぞれの面内方向(言い換えると、第1方向X)に電位差が生じるxカットと呼ばれる分極方向である。
【0200】
zカット、xカットのいずれにおいても、これまで説明を行った光バイアス効果及び光ゲート効果が同時に実現される。ただし、xカットの場合、第1強誘電体層4a及び第2強誘電体層4bの各々の面内方向の電位差変化が顕著なことから、光バイアス効果のほうがより顕著に発生する。また、xカットの電荷の移動は比較的高速であることから、応答速度が速くなる。なお、第1強誘電体層4a及び第2強誘電体層4bの一方がzカットであり、他方がxカットであってもよい。このようにしても、光バイアス効果及び光ゲート効果が同時に実現される。
【0201】
なお、本実施形態に係る電磁波検出器は、第1強誘電体層4a及び第2強誘電体層4bの各々の分極方向が具体的に特定される点を除き、電磁波検出器101,電磁波検出器102、電磁波検出器103、電磁波検出器104、電磁波検出器105、又は実施の形態8に係る電磁波検出器と同様の構成を備えていてもよい。また、本実施形態に係る電磁波検出器においても、上記変形例1~変形例7に列記した各変形例が許容される。
【0202】
実施の形態10.
本実施の形態に係る電磁波検出器は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備えるが、二次元材料層1が乱層構造部分を有している点で、電磁波検出器100とは異なる。
【0203】
二次元材料層1においてチャネル領域に対応する部分が、乱層構造を有している。具体的には、二次元材料層1においてチャネル領域に対応する部分は、原子が二次元面内に配列されて成る単層が互いに積層している積層構造を有している。上記単層は、第1方向X及び第2方向Yに沿って延びており、第1方向X及び第2方向Yの各々に直交する方向に積層している。乱層構造部分では、上記垂直方向に隣り合う2つの単層の格子が不整合な状態にある。
【0204】
二次元材料層1の第1領域1a及び第2領域1bの各々が乱層構造部分を有している。
乱層構造部分の作製方法は、適宜に決められてもよい。例えば、CVD法で作製された単層のグラフェンが複数回転写され、多層グラフェンが積層されることで乱層構造部分が形成されてもよい。また、グラフェン上にエタノールまたはメタンなどが炭素源として配置され、グラフェンがCVD法によって成長することで乱層構造部分が形成されてもよい。
【0205】
本実施の形態である電磁波検出器は、二次元材料層1においてチャネル領域に対応する部分が、乱層構造を有しているため、二次元材料層1中の電荷の移動度が向上する。通常の積層グラフェンは、A-B積層と呼ばれ、互いのグラフェン同士の格子が整合した状態で積層される。しかし、CVDにより作製したグラフェンは多結晶であり、グラフェン上に更にグラフェンを複数回転写した場合や、CVDで下地のグラフェンを核としてグラフェンを積層した場合は、互いのグラフェン同士の格子が不整合な状態である乱層構造となる。乱層構造のグラフェンは層間の相互作用の影響が少なく、単層グラフェンと同等の性質を持つ。
【0206】
さらに、二次元材料層1が絶縁層8と接触している場合には、グラフェンは下地となる絶縁層8のキャリア散乱の影響を受けて移動度が低下するが、グラフェン上に乱層構造で積層されたグラフェンは下地の絶縁層8のキャリア散乱の影響を受けにくくなるため、移動度を向上させることができ、本実施の形態に係る電磁波検出器の感度を向上させることができる。
【0207】
なお、本実施形態に係る電磁波検出器は、二次元材料層1が乱層構造部分を有している点を除き、電磁波検出器101,電磁波検出器102、電磁波検出器103、電磁波検出器104、電磁波検出器105、実施の形態7又は実施の形態8に係る電磁波検出器と同様の構成を備えていてもよい。また、本実施形態に係る電磁波検出器においても、上記変形例1~変形例7に列記した各変形例が許容される。
【0208】
実施の形態11.
図26に示されるように、実施の形態11に係る電磁波検出器108は、実施の形態1に係る電磁波検出器100と基本的に同様の構成を備え同様の効果を有するが、二次元材料層1と基板3が直接接する接触領域50を備え、第1強誘電体層4aと第2強誘電体層4bとの境界が、二次元材料層1のうち接触領域50にて基板3と接触している部分と、当該部分を介して互いに対向する第1強誘電体層4aと第2強誘電体層4bの各端面とにより構成されている点で、電磁波検出器100、101、103、104とは異なる。
【0209】
異なる観点から言えば、電磁波検出器108は、第1方向Xにおいて第2領域1b側に位置する第1強誘電体層4aの第1端部が第1方向Xにおいて第1領域1a側に位置する第2強誘電体層4bの第2端部と接しておらず、第1端部と第2端部とが二次元材料層1を介して接続されている点で、電磁波検出器100、101、103、104とは異なる。以下、電磁波検出器108が電磁波検出器100、101、103、104とは異なる点を主に説明する。
【0210】
図26に示すように、電磁波検出器108は、二次元材料層1と基板3とが接触する接触領域50を有する。接触領域50は、第1強誘電体層4aと第2強誘電体層4bとの間に形成される。二次元材料層1は、接触領域50において、基板3とショットキー接合されている。
【0211】
電磁波検出器108において、第1強誘電体層4aの第1端部の端面及び第2強誘電体層4bの第2端部の端面は、それぞれ二次元材料層1と接している。
【0212】
図26に示される電磁波検出器108は、ドレイン電極として作用する第1電極部2aと、ソース電極として作用する第2電極部2bとを備える。
【0213】
接触領域50は、第1強誘電体層4a及び第2強誘電体層4bの少なくともいずれかを部分的にエッチングして基板3を露出させた後、基板3、第1強誘電体層4a及び第2強誘電体層4b上に二次元材料層1を転写することにより、形成され得る。二次元材料層1は伸縮性を有するため、上記方法により形成された二次元材料層1は、原子間力によりその下方に形成されている凹凸の表面に沿うように変形して基板3と接触し得る。接触領域50において二次元材料層1と基板3との間で接触不良は生じにくい。
【0214】
図26に示される電磁波検出器108においても、第1強誘電体層4aに生じる電圧変化は第2強誘電体層4bに生じる電圧変化とは異なるため、二次元材料層1の第1領域1a及び第2領域1bの各々に印加される電圧が異なることになる。つまり、電磁波検出器108において、二次元材料層1中には擬似的にPN接合と同様のバイアス電圧が印加される。他方、基板3から二次元材料層1へ電荷が注入されるため、二次元材料層1に注入された電荷は、上述した光バイアス効果によって、二次元材料層1をチャネルとしてソース電極及びドレイン電極から取り出される。二次元材料層1がグラフェンである場合、電荷移動度は例えばシリコンの100倍程度であるため、二次元材料層1のグラフェンに注入された電荷の移動度は基板3中の電荷の移動度と大きく異なるため、ゲインが発生する。この場合、取り出される出力信号は、シリコンからなる一般的なチャネルを備える電磁波検出器において取り出される出力信号と比べて、100倍程度大きくなる。この効果は量子ゲイン(Quantum gain)と呼ばれる。以上のように、電磁波検出器108では、二次元材料層1と基板3が接触する接触領域50を備えるため、さらなる高性能化が可能である。
【0215】
なお、電磁波検出器108は、接触領域50において二次元材料層1と基板3の間にバリア層をさらに備えていてもよい。このバリア層は光スイッチ効果を増強する効果があるため、光検出性能をより高性能化することが可能である。
【0216】
図27に示される電磁波検出器109は、電磁波検出器108の第1変形例である。電磁波検出器109は、第2電極部2bを備えていない点で、電磁波検出器108とは異なる。電磁波検出器109は、二次元材料層1と半導体層10とのショットキー接合を利用したショットキーダイオードとして動作する。電磁波検出器109は、電極としては、ドレイン電極としての第1電極部2a、及びバックゲート電極としての第3電極部5のみを備えていればよい。
【0217】
電磁波検出器109では、二次元材料層1は基板3とショットキー接合を形成し、二次元材料層1のフェルミレベルと基板3のフェルミレベルとの差で決定されるショットキーバリアをもつ。そのため、電磁波が入射していない状態での暗電流が抑制され、ノイズが低減され得る。
【0218】
他方、電磁波が照射された場合には、上述のように、第1強誘電体層4aに生じる電圧変化は第2強誘電体層4bに生じる電圧変化とは異なるため、二次元材料層1の第1領域1a及び第2領域1bの各々に印加される電圧が異なることになる。つまり、電磁波検出器109中の二次元材料層1中には、擬似的にPN接合と同様のバイアス電圧が印加され、二次元材料層1と基板3との間にバイアス電圧が印加されることになる。これにより、電荷の取り出し効率が向上し、感度が増強される。さらに二次元材料層1を構成する材料がグラフェンの場合、上述のように、第1強誘電体層4a及び第2強誘電体層4bの各々の焦電効果によって二次元材料層1のフェルミレベルは大きく変化する。そのため電磁波検出器109では、金属―半導体間のショットキー接合を利用するが強誘電体層による焦電効果を利用していない電磁波検出器と比べて、電磁波が照射されたときにより巨大な出力電流をドレイン電極より取り出すことができる。この効果は、光ゲート効果あるいは、光スイッチ効果と呼ばれる。この効果により、電磁波検出器109の出力電流は、金属―半導体間のショットキー接合を利用するが強誘電体層による焦電効果を利用していない電磁波検出器と比べて、量子効率換算で約100倍以上まで増強され得る。さらに電磁波検出器109の端子数は2つであるため、3端子の電磁波検出器と比べて、各端子と読み出し回路との電気的接続構造が簡便となる。その結果、電磁波検出器109によれば、アレイ化された際にも、小型化・小部品化され得る。
【0219】
図28に示される電磁波検出器110は、電磁波検出器108の第2変形例である。電磁波検出器110は、第1強誘電体層4aの厚みが第2強誘電体層4bの厚みと異なっている点で、電磁波検出器108とは異なる。言い換えると、電磁波検出器110は、接触領域50を備えている点で、電磁波検出器101とは異なる。
【0220】
図29に示される電磁波検出器111は、電磁波検出器108の第3変形例である。電磁波検出器111は、絶縁層8をさらに備えている点で、電磁波検出器108とは異なる。言い換えると、電磁波検出器111は、接触領域50を備えている点で、電磁波検出器103とは異なる。電磁波検出器111において、絶縁層8は、第1強誘電体層4a上に形成されている第1絶縁層8aと、第2強誘電体層4b上に形成されている第2絶縁層8bとを含む。第1絶縁層8aは、第2絶縁層8bと間隔を空けて配置されている。平面視において、第1絶縁層8a及び第2絶縁層8bは、接触領域50を挟むように配置されている。
【0221】
図30に示される電磁波検出器112は、電磁波検出器108の第4変形例である。電磁波検出器112は、導電層9をさらに備えている点で、電磁波検出器108とは異なる。言い換えると、電磁波検出器112は、接触領域50を備えている点で、電磁波検出器104とは異なる。電磁波検出器112において、導電層9は、第1強誘電体層4a上に形成されている第1導電層9aと、第2強誘電体層4b上に形成されている第2導電層9bとを含む。第1導電層9aは、第2導電層9bと間隔を空けて配置されている。平面視において、第1導電層9a及び第2導電層9bは、接触領域50を挟むように配置されている。
【0222】
図27図30に示される電磁波検出器109~112は、電磁波検出器108と同様に動作し得る。また、図28図30に示される電磁波検出器110~112は、図27に示される電磁波検出器109と同様に、第2電極部2bを備えず、第1電極部2aと第3電極部5を備えていてもよい。
【0223】
実施の形態12.
実施の形態12に係る電磁波検出器アレイ200は、検出素子として実施の形態1~11のいずれかに係る電磁波検出器を複数備えている。図31に示される電磁波検出器アレイ200は、複数の電磁波検出器100を備えている。複数の電磁波検出器100は、例えば第1方向X及び第2方向Yの各々において周期的に配置されている。複数の電磁波検出器100は、例えば2×2のアレイ状に配置されている。
【0224】
電磁波検出器100の個数及び配列は、これに制限されるものではない。複数の電磁波検出器100は、第1方向X及び第2方向Yの少なくともいずれかに沿ってアレイ状に配置されていればよい。また、複数の電磁波検出器100の各々は、非周期的に配列していてもよい。
【0225】
複数の電磁波検出器100の各々が感度を有する検出波長は、例えば互いに同等である。複数の電磁波検出器100の各々が感度を有する検出波長は、互いに異なっていてもよい。言い換えると、複数の電磁波検出器100の各々は、互いに異なる検出波長選択性を有していてもよい。この場合、電磁波検出器アレイ200は、少なくとも2つ以上の異なる波長の電磁波を検出することができる。
【0226】
また、電磁波検出器アレイ200では、複数の電磁波検出器100の第1強誘電体層4a及び第2強誘電体層4bが互いに分離されていれば、1つの第2電極部2b(図1参照)が共通電極として用いられてもよい。これにより、複数の第2電極部2bが独立している場合よりも電磁波検出器アレイ200の配線を少なくすることができるため、電磁波検出器アレイ200の解像度を高めることができる。
【0227】
図32は、電磁波検出器アレイ200のうちの1つの電磁波検出器100と読み出し回路300との接続構造を説明するための断面図である。図32に示されるように、電磁波検出器100は、二次元材料層1を覆うように配置された絶縁層13と、第1電極部2aと電気的に接続されており絶縁層13上に引き出された引き出し電極2cと、絶縁層18及び引き出し電極2c上に配置されたパッド14とをさらに備えていてもよい。二次元材料層1は、引き出し電極2cと電気的に絶縁されている。パッド14は、バンプ15を介して読み出し回路300と電気的に接続されている。言い換えると、電磁波検出器100と読み出し回路とは、いわゆるハイブリッド接合されている。図32に示される接続構造は、基板3を構成する材料がSi以外の材料である場合に、好適である。
【0228】
この場合、バンプ15を構成する材料は、導電性材料であればよい。導電性材料の一例としてインジウムが挙げられるが、これに制限されない。パッド14を構成する材料は、アルミニウムシリコン、ニッケル、金などの導電性材料である。読み出し回路300はCTIA (Capacitive Transimpedance Amplifier)型などが用いられるが、この方式には限定されず、他の読み出し方式でもよい。
【0229】
電磁波検出器アレイ200は、互いに異なる種類の電磁波検出器を備えていてもよい。図33に示される電磁波検出器アレイ200に含まれる複数の電磁波検出器は、互いに異なる種類の電磁波検出器100~103である。互いに異なる種類の電磁波検出器100~103は、第1方向X及び第2方向Yの少なくともいずれかに沿ってアレイ状に配置されていればよい。複数の電磁波検出器100~103の各々が感度を有する検出波長は、互いに異なっていてもよい。言い換えると、複数の電磁波検出器100~103の各々は、互いに異なる検出波長選択性を有していてもよい。なお、電磁波検出器アレイ200に含まれる複数種の電磁波検出器の組み合わせは、実施の形態1~11に係る電磁波検出器から任意に選択され得る。
【0230】
電磁波検出器アレイ200は、実施の形態1~11に係る電磁波検出器のいずれかをアレイ状に配置することで、画像センサとしての機能を持たせることができる。
【0231】
このように異なる検出波長を有する電磁波検出器をアレイ状に配置することにより、可視光域で用いるイメージセンサと同様に、紫外光、赤外光、テラヘルツ波、電波の波長域においても波長を識別でき、カラー化した画像を得ることができる。
【0232】
また、電磁波検出器100~103の各々の第1強誘電体層4aの吸収波長が互いに異なっていてもよい。このような電磁波検出器100~103を備える電磁波検出器アレイ200が車載センサに適用された場合、電磁波検出器アレイ200は、昼間は可視光画像用カメラとして使用され、夜間は赤外線カメラとしても使用され得る。そのため、電磁波の検出波長によって、画像センサを有するカメラを使い分ける必要が無い。
【0233】
また、電磁波検出器アレイ200は、画像センサ以外の用途に用いられてもよい。電磁波検出器アレイ200は、例えば少ない画素数でも物体の位置を検出できる位置検出用センサとして用いられ得る。また、例えば、電磁波検出器アレイ200は、複数の波長において電磁波の強度を検出できる画像センサとして用いられ得る。これにより、従来、CMOS(Complementary MOS:相補型MOS)センサ等で必要とされていたカラーフィルタを用いることなく、複数の電磁波を検出し、カラー化された画像を得ることができる。
【0234】
複数の電磁波検出器100~103の各々は、互いに異なる偏光を有する電磁波を検出するように構成されていてもよい。例えば、検知する偏光角度が0°、90°、45°、135°である4つの画素を一単位として、当該一単位の電磁波検出器を複数配置することで偏光イメージングが可能になる。偏光識別イメージセンサによって、例えば、人工物と自然物の識別、材料の識別、赤外波長域においてそれぞれ同一温度を有する複数の物体の識別、複数の物体間の境界の識別、または、等価的な分解能の向上などが可能になる。
【0235】
以上より、上述のように構成された本実施の形態である電磁波検出器を用いた電磁波検出器は、広い波長域の電磁波を検出することができる。また、本実施の形態である電磁波検出器を用いた電磁波検出器は、異なる波長の電磁波を検出することができる電磁波検出器を提供することができる。
【0236】
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。さらに、本発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0237】
1,12A,12B 二次元材料層、1a 第1領域、1b 第2領域、1c 第3領域、2a 第1電極部、2b 第2電極部、2c 引き出し電極、3 基板、4a 第1強誘電体層、4b 第2強誘電体層、4c 第3強誘電体層、5 第3電極部、8,13,18 絶縁層、8a 第1絶縁層、8b 第2絶縁層、8c 第3絶縁層、8d 第4絶縁層、9 導電層、9a 第1導電層、9b 第2導電層、10 半導体層、11 貫通孔、14 パッド、15 バンプ、20 中空部分、40,41 境界、42 段差部、43a 第1凹部、43b 第2凹部、43c 第3凹部、43d 第4凹部、44a 第1凸部、44b 第2凸部、50 接触領域、100,101,102,103,104,105,106,107 電磁波検出器、200 電磁波検出器アレイ、300 読み出し回路。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33