(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-11
(45)【発行日】2023-12-19
(54)【発明の名称】電動駆動装置及び電動パワーステアリング装置
(51)【国際特許分類】
H02K 11/21 20160101AFI20231212BHJP
H02K 5/22 20060101ALI20231212BHJP
H02K 11/33 20160101ALI20231212BHJP
【FI】
H02K11/21
H02K5/22
H02K11/33
(21)【出願番号】P 2020129670
(22)【出願日】2020-07-30
【審査請求日】2023-02-07
(73)【特許権者】
【識別番号】000004204
【氏名又は名称】日本精工株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】川田 昌昭
【審査官】稲葉 礼子
(56)【参考文献】
【文献】国際公開第2020/130107(WO,A1)
【文献】特開2016-100972(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 11/21
H02K 5/22
H02K 11/33
(57)【特許請求の範囲】
【請求項1】
負荷側から反負荷側へ軸方向に延びるシャフトと、
前記シャフトと連動するモータロータと、
前記モータロータを回転させるモータステータと、
前記モータロータ、及び前記モータステータを内側に収容する筒状のハウジングと、を含むモータと、
前記反負荷側の前記シャフトの端部に設けられた磁石と、
回路基板を含む電子制御装置と、
コネクタと、第1電源端子と、第2電源端子と、前記コネクタと前記第1電源端子とを電気的に接続する正極バスバー配線と、前記コネクタと前記第2電源端子とを電気的に接続する負極バスバー配線と、が一体成形され、前記シャフトが挿入される貫通孔があるバスバーモジュールと、
前記シャフトが貫通する中空部と、前記反負荷側に設けられた第1面と、前記第1面に立設した第1の位置決めピン及び第2の位置決めピンとを有する、ヒートシンクと、
前記ヒートシンクの前記中空部に配置され、前記シャフトを支持する軸受と、
を備え、
前記回路基板は、基板本体と、前記基板本体の前記負荷側に配置され、かつ前記磁石の回転を検出する回転角度センサと、を有し、
前記軸方向に、前記ハウジング、前記ヒートシンク、前記バスバーモジュール、及び前記回路基板の順に配置され、
前記回転角度センサは、前記磁石と対向しており、
前記第1の位置決めピンと、前記第2の位置決めピンとがそれぞれ前記バスバーモジュール及び前記回路基板を貫通しており、
前記軸方向にみて、前記第1の位置決めピン、前記シャフト及び前記第2の位置決めピンは、一直線上に並ぶ、電動駆動装置。
【請求項2】
前記軸方向にみて、前記第1の位置決めピン、前記回転角度センサ及び前記第2の位置決めピンは、一直線上に並ぶ、請求項1に記載の電動駆動装置。
【請求項3】
前記軸方向にみて、前記第1の位置決めピン及び前記第2の位置決めピンは、前記シャフトを挟む位置に配置されている、請求項2に記載の電動駆動装置。
【請求項4】
前記第1の位置決めピン及び前記第2の位置決めピンは、前記負荷側から前記反負荷側へ前記回路基板よりも突出している、請求項1から3のいずれか1項に記載の電動駆動装置。
【請求項5】
前記ヒートシンクは、前記第1面から隆起した第2面を有する隆起部と、前記第1面から前記反負荷側へ突出する第1凸部及び第2凸部とを有し、
前記第1面と前記第2面との段差に、前記バスバーモジュールが収容されると、前記バスバーモジュールと前記第1凸部が当接して固定され、
前記第2面よりも前記負荷側から前記反負荷側へ突出する前記第2凸部と、前記回路基板とが当接して固定されている、請求項1から4のいずれか1項に記載の電動駆動装置。
【請求項6】
前記第1の位置決めピンが貫通する前記回路基板の貫通孔は、径方向の長さが前記径方向に直交する方向の長さよりも大きい、請求項1から5のいずれか1項に記載の電動駆動装置。
【請求項7】
請求項1から6のいずれか1項に記載の電動駆動装置を備え、
前記電動駆動装置が補助操舵トルクを生じさせる電動パワーステアリング装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、モータの回転を制御する電子制御装置を備えた電動駆動装置及び電動パワーステアリング装置に関する。
【背景技術】
【0002】
モータによって補助操舵トルクを発生させる電動パワーステアリング装置は、モータを制御する装置である電子制御装置を備えている。例えば特許文献1には、電子部品を基板に高密度に実装可能である駆動装置が記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-034204号公報
【文献】特開2007-288929号公報
【文献】特開2017-092100号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1の電動駆動装置では、モータのシャフトに平行な軸方向に沿って、モータ、電子制御装置及びコネクタの順に並んでいる。コネクタへの挿抜方向は軸方向であるため、特許文献1の電動駆動装置では、軸方向に大きさが大きくなる。
【0005】
これに対して、特許文献2及び特許文献3の電動駆動装置では、コネクタへの挿抜方向は、モータのシャフトの径方向である。これにより、特許文献2及び特許文献3の電動駆動装置では、特許文献1の電動駆動装置よりも軸方向の大きさが小さくなる。
【0006】
特許文献2及び特許文献3の電動駆動装置では、コネクタの端子が基板に電気的に接続される。端子から供給された電力は、コイルグループへ電流を供給する電界効果トランジスタ(FET:Field Effect Transistor)などを含むパワー回路へ基板内の電源配線を介して、供給される。モータを駆動する電力が大きくなればなるほど、基板内の電源配線は、大きくする必要があり、基板の面積が大きくなってしまう(特許文献3[0015]、
図2参照)。そこで、モータのシャフトの径方向が小さい電動駆動装置が望まれている。
【0007】
そこで、本願発明者は、コネクタと一体のバスバーモジュールに、回路基板を取り付けることで、モータのシャフトに平行な軸方向及びシャフトの径方向の大きさを抑制することにした。ここで、バスバーモジュールがヒートシンクに収容されると、回路基板、バスバーモジュール及びヒートシンクの相対位置がばらつく可能性がある。回路基板、バスバーモジュール及びヒートシンクの相対位置のばらつきは、シャフトに取り付けられた磁石と、回路基板に搭載される回転角度センサの相対位置に影響を及ぼし、シャフトの回転角度の検出精度の低下が生じる可能性がある。
【0008】
本発明は、上記の課題に鑑みてなされたものであって、モータのシャフトに平行な軸方向及びシャフトの径方向の大きさを抑制しつつ、シャフトの回転角度の検出精度を高めることができる電動駆動装置及び電動パワーステアリング装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記の目的を達成するため、一態様に係る電動駆動装置は、負荷側から反負荷側へ軸方向に延びるシャフトと、前記シャフトと連動するモータロータと、前記モータロータを回転させるモータステータと、前記モータロータ、及び前記モータステータを内側に収容する筒状のハウジングと、を含むモータと、前記反負荷側の前記シャフトの端部に設けられた磁石と、回路基板を含む電子制御装置と、コネクタと、第1電源端子と、第2電源端子と、前記コネクタと前記第1電源端子とを電気的に接続する正極バスバー配線と、前記コネクタと前記第2電源端子とを電気的に接続する負極バスバー配線と、が一体成形され、前記シャフトが挿入される貫通孔があるバスバーモジュールと、前記シャフトが貫通する中空部と、前記反負荷側に設けられた第1面と、前記第1面に立設した第1の位置決めピン及び第2の位置決めピンとを有する、ヒートシンクと、前記ヒートシンクの前記中空部に配置され、前記シャフトを支持する軸受と、を備え、前記回路基板は、基板本体と、前記基板本体の前記負荷側に配置され、かつ前記磁石の回転を検出する回転角度センサと、を有し、前記軸方向に、前記ハウジング、前記ヒートシンク、前記バスバーモジュール、及び前記回路基板の順に配置され、前記回転角度センサは、前記磁石と対向しており、前記第1の位置決めピンと、前記第2の位置決めピンとがそれぞれ前記バスバーモジュール及び前記回路基板を貫通しており、前記軸方向にみて、前記第1の位置決めピン、前記シャフト及び前記第2の位置決めピンは、一直線上に並ぶ。
【0010】
これにより、モータのシャフトに平行な軸方向及びシャフトの径方向の大きさが抑制され、電動駆動装置が小さくなる。第1の位置決めピンと、第2の位置決めピンとがバスバーモジュール及び回路基板を貫通しているので、バスバーモジュールがヒートシンクに収容されても、回路基板、バスバーモジュール及びヒートシンクの相対位置が第1の位置決めピン及び第2の位置決めピンに規制される。これにより、回路基板、バスバーモジュール及びヒートシンクの相対位置のばらつきは、低減される。その結果、シャフトに取り付けられた磁石と、回路基板に搭載される回転角度センサの相対位置の精度が高まるので、シャフトの回転角度の検出精度が高まる。
【0011】
望ましい態様として、前記軸方向にみて、前記第1の位置決めピン、前記回転角度センサ及び前記第2の位置決めピンは、一直線上に並ぶ。これにより、回路基板に搭載される回転角度センサの相対位置の精度が高まる。
【0012】
望ましい態様として、前記軸方向にみて、前記第1の位置決めピン及び前記第2の位置決めピンは、前記シャフトを挟む位置に配置されている。これにより、ヒートシンクにバスバーモジュールを固定する作業の応力が分散され、ヒートシンクに対してバスバーモジュールが動きにくくなる。ヒートシンクに回路基板を固定する作業の応力が分散され、ヒートシンクに対してバスバーモジュールが動きにくくなる。
【0013】
望ましい態様として、前記第1の位置決めピン及び前記第2の位置決めピンは、前記負荷側から前記反負荷側へ前記回路基板よりも突出している。これにより、回路基板の貫通孔へ第1の位置決めピン及び第2の位置決めピンが案内されやすくなる。
【0014】
望ましい態様として、前記ヒートシンクは、前記第1面から隆起した第2面を有する隆起部と、前記第1面から前記反負荷側へ突出する第1凸部及び第2凸部とを有し、前記第1面と前記第2面との段差に、前記バスバーモジュールが収容されると、前記バスバーモジュールと前記第1凸部が当接して固定され、前記第2面よりも前記負荷側から前記反負荷側へ突出する前記第2凸部と、前記回路基板とが当接して固定されている。これにより、バスバーモジュールとヒートシンクとの当接部分を小さくし、バスバーモジュールの成型公差がヒートシンクの形状加工公差よりも大きくても、ヒートシンクに対するバスバーモジュールの取り付け位置が成型公差の影響を受けにくくなる。また、回路基板とヒートシンクとの間に隙間ができるので、隙間に放熱材が保持されやすくなる。
【0015】
望ましい態様として、前記第1の位置決めピンが貫通する前記回路基板の貫通孔は、径方向の長さが前記径方向に直交する方向の長さよりも大きい。これにより、第1の位置決めピンと回路基板の貫通孔の間のクリアランスが大きくなり、第1の位置決めピン及び第2の位置決めピンが回路基板に応力がかかる状態で回路基板を挟むことはない。その結果、回路基板が歪むことがなく、回転角度センサが軸方向に位置ずれが生じにくくなり、回転角度センサの検出値がばらつきにくくなる。そして、回転角度センサの検出精度が高くなる。
【0016】
望ましい態様として、電動パワーステアリング装置は、電動駆動装置を備え、前記電動駆動装置が補助操舵トルクを生じさせる。これにより、モータのシャフトに平行な軸方向及びシャフトの径方向の大きさが抑制され、電動パワーステアリング装置の配置の自由度が向上する。
【発明の効果】
【0017】
本発明によれば、モータのシャフトに平行な軸方向及びシャフトの径方向の大きさを抑制しつつ、シャフトの回転角度の検出精度を高めることができる電動駆動装置及び電動パワーステアリング装置を提供することができる。
【図面の簡単な説明】
【0018】
【
図1】
図1は、実施形態に係る電動パワーステアリング装置を搭載した車両を模式的に示した斜視図である。
【
図2】
図2は、実施形態に係る電動パワーステアリング装置の模式図である。
【
図3】
図3は、実施形態に係るECUの配置例を示す側面図である。
【
図4】
図4は、実施形態に係るモータの断面を模式的に示す断面図である。
【
図5】
図5は、実施形態に係るモータの配線を示す模式図である。
【
図6】
図6は、実施形態に係るモータとECUとの関係を示す模式図である。
【
図7】
図7は、実施形態に係る電動駆動装置の構成例を示す斜視図である。
【
図8】
図8は、実施形態に係る電動駆動装置の構成例を示す分解斜視図である。
【
図9A】
図9Aは、実施形態に係るバスバーモジュールの構成例を示す斜視図である。
【
図11】
図11は、バスバーモジュールがヒートシンクの段差に収容された状態を説明するための斜視図である。
【
図12】
図12は、バスバーモジュールがヒートシンクの段差に収容された状態を説明するための上面図である。
【
図13】
図13は、バスバーモジュールがヒートシンクの段差に収容され、かつ回路基板が取り付けられた状態を説明するための上面図である。
【
図15】
図15は、シャフトと位置決めピンとの位置関係を説明するための説明図である。
【
図16】
図16は、回路基板における発熱する電子部品の配置と、電子部品に対向するヒートシンクの第2面との関係を説明するための斜視図である。
【
図17】
図17は、電動駆動装置の部分的な断面を説明するための断面図である。
【
図18】
図18は、本実施形態の永久磁石と第1センサ及び第2センサとの位置関係を示す説明図である。
【
図19】
図19は、本実施形態のセンサチップの回路構成を示す回路図である。
【発明を実施するための形態】
【0019】
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
【0020】
図1は、実施形態に係る電動パワーステアリング装置を搭載した車両を模式的に示した斜視図である。
図2は、実施形態に係る電動パワーステアリング装置の模式図である。
図1に示すように、車両101は、電動パワーステアリング装置100を搭載している。
図2を参照して電動パワーステアリング装置100の概要を説明する。
【0021】
電動パワーステアリング装置100は、運転者(操作者)から与えられる力が伝達する順に、ステアリングホイール91と、ステアリングシャフト92と、ユニバーサルジョイント96と、インターミディエイトシャフト97と、ユニバーサルジョイント98と、第1ラックアンドピニオン機構99と、タイロッド72と、を備える。また、電動パワーステアリング装置100は、ステアリングシャフト92の操舵トルクを検出するトルクセンサ94と、モータ30と、モータ30を制御する電子制御装置(以下、ECU(Electronic Control Unit)という。)10と、減速装置75と、第2ラックアンドピニオン機構70と、を備える。車速センサ82、電源装置83(例えば車載のバッテリ)、及びイグニッションスイッチ84は、車体に備えられる。車速センサ82は、車両101の走行速度を検出する。車速センサ82は、検出した車速信号SVをCAN(Controller Area Network)通信によりECU10に出力する。ECU10には、イグニッションスイッチ84がオンの状態で電源装置83から電力が供給される。
【0022】
電動駆動装置1は、モータ30と、モータ30のシャフト31の反負荷側に固定したECU10とを備える。また、電動駆動装置1は、ECU10とモータ30とを接続するアダプタを備えてもよい。
【0023】
図2に示すように、ステアリングシャフト92は、入力軸92Aと、出力軸92Bと、トーションバー92Cと、を備える。入力軸92Aは、一方の端部がステアリングホイール91に接続され、他方の端部がトーションバー92Cに接続される。出力軸92Bは、一方の端部がトーションバー92Cに接続され、他方の端部がユニバーサルジョイント96に接続される。なお、トルクセンサ94は、トーションバー92Cのねじれを検出することで、ステアリングシャフト92に加わる操舵トルクを検出する。トルクセンサ94は、検出した操舵トルクに応じた操舵トルク信号TをCAN通信によりECU10に出力する。ステアリングシャフト92は、ステアリングホイール91に付与された操舵力により回転する。
【0024】
インターミディエイトシャフト97は、アッパーシャフト97Aと、ロアシャフト97Bとを有し、出力軸92Bのトルクを伝達する。アッパーシャフト97Aは、ユニバーサルジョイント96を介して出力軸92Bに接続される。一方、ロアシャフト97Bは、ユニバーサルジョイント98を介して第1ラックアンドピニオン機構99の第1ピニオンシャフト99Aに接続される。アッパーシャフト97Aとロアシャフト97Bとは、例えば、スプライン結合されている。
【0025】
第1ラックアンドピニオン機構99は、第1ピニオンシャフト99Aと、第1ピニオンギヤ99Bと、ラックシャフト99Cと、第1ラック99Dと、を有する。第1ピニオンシャフト99Aは、一方の端部がユニバーサルジョイント98を介してロアシャフト97Bに接続され、他方の端部が第1ピニオンギヤ99Bに接続される。ラックシャフト99Cに形成された第1ラック99Dは、第1ピニオンギヤ99Bと噛み合う。ステアリングシャフト92の回転運動は、インターミディエイトシャフト97を介して第1ラックアンドピニオン機構99に伝達される。この回転運動は、第1ラックアンドピニオン機構99によりラックシャフト99Cの直線運動に変換される。タイロッド72は、ラックシャフト99Cの両端にそれぞれ接続される。
【0026】
モータ30は、運転者の操舵をアシストするための補助操舵トルクを発生させるモータである。モータ30は、ブラシレスモータでもよいし、ブラシ及びコンミテータを有するブラシモータでもよい。
【0027】
ECU10は、回転角度センサ23aを備える。回転角度センサ23aは、モータ30の回転位相を検出する。ECU10は、回転角度センサ23aからモータ30の回転位相信号を取得し、トルクセンサ94から操舵トルク信号Tを取得し、車速センサ82から車両101の車速信号SVを取得する。ECU10は、回転位相信号と操舵トルク信号Tと車速信号SVとに基づいて、アシスト指令の補助操舵指令値を算出する。ECU10は、算出された補助操舵指令値に基づいて、電流をモータ30に供給する。
【0028】
減速装置75は、モータ30のシャフト31と一体に回転するウォームシャフト75Aと、ウォームシャフト75Aと噛み合うウォームホイール75Bと、を備える。したがって、シャフト31の回転運動は、ウォームシャフト75Aを介してウォームホイール75Bに伝達される。なお、本実施形態において、シャフト31の減速装置75側を負荷側端部といい、シャフト31の減速装置75とは反対側を反負荷側端部という。
【0029】
第2ラックアンドピニオン機構70は、第2ピニオンシャフト71Aと、第2ピニオンギヤ71Bと、第2ラック71Cと、を有する。第2ピニオンシャフト71Aは、一方の端部がウォームホイール75Bと同軸、かつ一体に回転するように固定される。第2ピニオンシャフト71Aは、他方の端部が第2ピニオンギヤ71Bに接続される。ラックシャフト99Cに形成された第2ラック71Cは、第2ピニオンギヤ71Bと噛み合う。モータ30の回転運動は、減速装置75を介して第2ラックアンドピニオン機構70に伝達される。この回転運動は、第2ラックアンドピニオン機構70によりラックシャフト99Cの直線運動に変換される。
【0030】
ステアリングホイール91に入力された運転者の操舵力は、ステアリングシャフト92、及びインターミディエイトシャフト97を介して、第1ラックアンドピニオン機構99に伝達される。第1ラックアンドピニオン機構99は、伝達された操舵力をラックシャフト99Cの軸方向に加わる力としてラックシャフト99Cに伝達する。この際、ECU10は、ステアリングシャフト92に入力された操舵トルク信号Tをトルクセンサ94から取得する。ECU10は、車速信号SVを車速センサ82から取得する。ECU10は、モータ30の回転位相信号を回転角度センサ23aから取得する。そして、ECU10は、制御信号を出力してモータ30の動作を制御する。モータ30が作り出した補助操舵トルクは、減速装置75を介して第2ラックアンドピニオン機構70に伝達される。第2ラックアンドピニオン機構70は、補助操舵トルクをラックシャフト99Cの軸方向に加わる力としてラックシャフト99Cに伝達する。このようにして、運転者のステアリングホイール91の操舵が電動パワーステアリング装置100によりアシストされる。
【0031】
図2に示すように、電動パワーステアリング装置100は、第2ラックアンドピニオン機構70にアシスト力が付与されるラックアシスト方式であるがこれに限定されない。電動パワーステアリング装置100は、例えば、ステアリングシャフト92にアシスト力が付与されるコラムアシスト方式、及び第1ピニオンギヤ99Bにアシスト力が付与されるピニオンアシスト方式でもよい。
【0032】
図3は、実施形態に係るECUの配置例を示す側面図である。
図3に示すように、ECU10及びモータ30を備える電動駆動装置1は、減速装置75に配置されている。
図3に示すコネクタCNTは、
図2に示すラックシャフト99Cの延びる方向と平行に、ワイヤーハーネスが挿抜可能である。本実施形態において、軸方向Axとは、モータ30のシャフト31(
図4参照)の延びる方向と平行な方向をいう。軸方向Axは、鉛直方向VDに対して、傾いていることが多い。軸方向Axは、車両101(
図1参照)のスペースの都合で決められるからである。
【0033】
図4は、実施形態に係るモータの断面を模式的に示す断面図である。
図5は、実施形態に係るモータの配線を示す模式図である。本実施形態において、周方向とは、シャフト31を中心とした同心円において、同心円に沿う方向である。径方向とは、軸方向Axに直交する平面において、シャフト31から離れる方向である。モータ30は、
図4に示すように、ハウジング930と、ステータコア931を有するモータステータと、モータロータ932と、を備える。モータステータは、円筒状であるステータコア931と、複数の第1コイル37と、複数の第2コイル38を含む。ステータコア931は、環状のバックヨーク931aと、バックヨーク931aの内周面から突出する複数のティース931bと、を備える。ティース931bは、周方向に12個配置されている。モータロータ932は、ロータヨーク932aと、マグネット932bとを含む。マグネット932bは、ロータヨーク932aの外周面に設けられている。マグネット932bの数は、例えば8つである。モータロータ932の回転は、シャフト31の回転と連動する。
【0034】
図4に示すように、第1コイル37は、複数のティース931bのそれぞれに集中巻きされている。第1コイル37は、ティース931bの外周にインシュレータを介して集中巻きされる。全ての第1コイル37は、第1コイル系統に含まれる。実施形態に係る第1コイル系統は、第1パワー回路25Aに含まれるインバータ回路251(
図6参照)によって、電流が供給され、励磁される。第1コイル系統は、例えば第1コイル37を6つ含む。6つの第1コイル37は、2つの第1コイル37が周方向で互いに隣接するように配置されている。隣接する第1コイル37を1つのグループとした第1コイルグループGr1が、周方向に等間隔に3つ配置されている。すなわち、第1コイル系統は、周方向に等間隔に並べられた3つの第1コイルグループGr1を備えている。なお、第1コイルグループGr1は、必ずしも3つでなくてもよく、nを自然数としたときに周方向に等間隔に3n個配置されていればよい。また、nは奇数である方が望ましい。以上説明したように、本実施形態では、コイルグループは、複数あり、3相毎に少なくとも第1コイルグループgr1と、第2コイルグループGr2の2系統に分けられ、かつステータコアが3相交流で励磁される。
【0035】
図4に示すように、第2コイル38は、複数のティース931bのそれぞれに集中巻きされている。第2コイル38は、ティース931bの外周にインシュレータを介して集中巻きされる。第2コイル38が集中巻きされるティース931bは、第1コイル37が集中巻きされるティース931bとは異なるティース931bである。全ての第2コイル38は、第2コイル系統に含まれる。第2コイル系統は、第2パワー回路25Bに含まれるインバータ回路251(
図6参照)によって電流が供給され、励磁される。第2コイル系統は、例えば第2コイル38を6つ含む。6つの第2コイル38は、2つの第2コイル38が周方向で互いに隣接するように配置されている。隣接する第2コイル38を1つのグループとした第2コイルグループGr2が、周方向に等間隔に3つ配置されている。すなわち、第2コイル系統は、周方向に等間隔に並べられた3つの第2コイルグループGr2を備えている。なお、第2コイルグループGr2は、必ずしも3つでなくてもよく、nを自然数としたときに周方向に等間隔に3n個配置されていればよい。また、nは奇数である方が望ましい。
【0036】
図5に示すように、6つの第1コイル37は、第1U相電流I1uにより励磁される2つの第1U相コイル37Ua及び第1U相コイル37Ubと、第1V相電流I1vにより励磁される2つの第1V相コイル37Va及び第1V相コイル37Vbと、第1W相電流I1wにより励磁される2つの第1W相コイル37Wa及び第1W相コイル37Wbと、を含む。第1U相コイル37Ubは、第1U相コイル37Uaに対して直列に接続されている。第1V相コイル37Vbは、第1V相コイル37Vaに対して直列に接続されている。第1W相コイル37Wbは、第1W相コイル37Waに対して直列に接続されている。第1コイル37のティース931bに対する巻き方向は、全て同じ方向である。また、第1U相コイル37Ub、第1V相コイル37Vb及び第1W相コイル37Wbは、スター結線(Y結線)で接合されている。
【0037】
図5に示すように、6つの第2コイル38は、第2U相電流I2uにより励磁される2つの第2U相コイル38Ua及び第2U相コイル38Ubと、第2V相電流I2vにより励磁される2つの第2V相コイル38Va及び第2V相コイル38Vbと、第2W相電流I2wにより励磁される2つの第2W相コイル38Wa及び第2W相コイル38Wbと、を含む。第2U相コイル38Ubは、第2U相コイル38Uaに対して直列に接続されている。第2V相コイル38Vbは、第2V相コイル38Vaに対して直列に接続されている。第2W相コイル38Wbは、第2W相コイル38Waに対して直列に接続されている。第2コイル38のティース931bに対する巻き方向は、全て同じ方向であり、第1コイル37の巻き方向と同じである。また、第2U相コイル38Ub、第2V相コイル38Vb及び第2W相コイル38Wbは、スター結線(Y結線)で接合されている。
【0038】
図4に示すように、3つの第1コイルグループGr1は、第1UVコイルグループGr1UVと、第1VWコイルグループGr1VWと、第1UWコイルグループGr1UWと、からなる。第1UVコイルグループGr1UVは、周方向で互いに隣接する第1U相コイル37Ub及び第1V相コイル37Vaを含む。第1VWコイルグループGr1VWは、周方向で互いに隣接する第1V相コイル37Vb及び第1W相コイル37Waを含む。第1UWコイルグループGr1UWは、周方向で互いに隣接する第1U相コイル37Ua及び第1W相コイル37Wbを含む。
【0039】
図4に示すように、3つの第2コイルグループGr2は、第2UVコイルグループGr2UVと、第2VWコイルグループGr2VWと、第2UWコイルグループGr2UWと、からなる。第2UVコイルグループGr2UVは、周方向で互いに隣接する第2U相コイル38Ub及び第2V相コイル38Vaを含む。第2VWコイルグループGr2VWは、周方向で互いに隣接する第2V相コイル38Vb及び第2W相コイル38Waを含む。第2UWコイルグループGr2UWは、周方向で互いに隣接する第2U相コイル38Ua及び第2W相コイル38Wbを含む。
【0040】
第1U相電流I1uにより励磁される第1コイル37は、第2U相電流I2uにより励磁される第2コイル38に、ステータコア931の径方向で対向している。以下の説明において、ステータコア931の径方向は、単に径方向と記載される。例えば、
図4に示すように、径方向で第1U相コイル37Uaが第2U相コイル38Uaに対向し、第1U相コイル37Ubが第2U相コイル38Ubに対向している。
【0041】
第1V相電流I1vにより励磁される第1コイル37は、第2V相電流I2vにより励磁される第2コイル38に、径方向で対向している。例えば、
図4に示すように、径方向で第1V相コイル37Vaが第2V相コイル38Vaに対向し、第1V相コイル37Vbが第2V相コイル38Vbに対向している。
【0042】
第1W相電流I1wにより励磁される第1コイル37は、第2W相電流I2wにより励磁される第2コイル38に、径方向で対向している。例えば、
図4に示すように、径方向で第1W相コイル37Waが第2W相コイル38Waに対向し、第1W相コイル37Wbが第2W相コイル38Wbに対向している。
【0043】
図6は、実施形態に係るモータとECUとの関係を示す模式図である。
図6に示すように、ECU10は、検出回路23と、制御回路24と、第1パワー回路25Aと、第2パワー回路25Bと、を備える。検出回路23は、回転角度センサ23aと、モータ回転数演算部23bと、を有する。制御回路24は、制御演算部241と、ゲート駆動回路242と、遮断駆動回路243と、を有する。第1パワー回路25Aは、インバータ回路251と、電流遮断回路255と、を有する。第2パワー回路25Bは、インバータ回路251と、電流遮断回路255と、を有する。また、インバータ回路251は、複数のスイッチング素子252と、電流値を検出するための電流検出回路254と、を有する。なお、
図6において、説明が不要な回路については、適宜省略している。
【0044】
制御演算部241は、モータ電流指令値を演算する。モータ回転数演算部23bは、モータ電気角θmを演算し、制御演算部241に出力する。ゲート駆動回路242は、制御演算部241から出力されるモータ電流指令値が入力される。ゲート駆動回路242は、モータ電流指令値に基づいて、第1パワー回路25A及び第2パワー回路25Bを制御する。
【0045】
ECU10は、
図6に示すように、回転角度センサ23aを備えている。回転角度センサ23aは、例えば、磁気センサである。回転角度センサ23aの検出値がモータ回転数演算部23bに供給される。モータ回転数演算部23bは、回転角度センサ23aの検出値に基づいてモータ電気角θmを演算し、制御演算部241に出力する。
【0046】
制御演算部241には、トルクセンサ94で検出された操舵トルク信号Tと、車速センサ82で検出された車速信号SVと、モータ回転数演算部23bから出力されるモータ電気角θmと、が入力される。制御演算部241は、操舵トルク信号T、車速信号SV及びモータ電気角θmに基づいてモータ電流指令値を算出し、ゲート駆動回路242に出力する。
【0047】
ゲート駆動回路242は、モータ電流指令値に基づいて第1パルス幅変調信号を演算し、第1パワー回路25Aのインバータ回路251に出力する。インバータ回路251は、第1パルス幅調変信号のデューティ比に応じて、3相の電流値となるようにスイッチング素子252をスイッチングして第1U相電流I1u、第1V相電流I1v及び第1W相電流I1wを含む3相交流を生成する。第1U相電流I1uが第1U相コイル37Ua及び第1U相コイル37Ubを励磁し、第1V相電流I1vが第1V相コイル37Va及び第1V相コイル37Vbを励磁し、第1W相電流I1wが第1W相コイル37Wa及び第1W相コイル37Wbを励磁する。
【0048】
ゲート駆動回路242は、モータ電流指令値に基づいて第2パルス幅変調信号を演算し、第2パワー回路25Bのインバータ回路251に出力する。インバータ回路251は、第2パルス幅調変信号のデューティ比に応じて、3相の電流値となるようにスイッチング素子252をスイッチングして第2U相電流I2u、第2V相電流I2v及び第2W相電流I2wを含む3相交流を生成する。第2U相電流I2uが第2U相コイル38Ua及び第2U相コイル38Ubを励磁し、第2V相電流I2vが第2V相コイル38Va及び第2V相コイル38Vbを励磁し、第2W相電流I2wが第2W相コイル38Wa及び第2W相コイル38Wbを励磁する。
【0049】
インバータ回路251は、直流電力を交流電力に変換する電力変換回路である。上記のように、インバータ回路251は、複数のスイッチング素子252を有する。スイッチング素子252は、例えば、電界効果トランジスタである。インバータ回路251には、平滑用コンデンサ253が並列に接続される。平滑用コンデンサ253は、例えば、電解コンデンサである。回路基板20は、平滑用コンデンサ253として、並列に接続された複数の平滑用コンデンサを備える。
【0050】
また、上記のように、インバータ回路251は電流検出回路254を有する。電流検出回路254は、例えば、シャント抵抗を含む。電流検出回路254で検知した電流値は、制御演算部241に送出される。なお、電流検出回路254は、モータ30の各相の電流値を検出するように接続してもよい。
【0051】
電流遮断回路255は、インバータ回路251と、第1コイル37又は第2コイル38との間に配置されている。電流検出回路254で検知した電流値が異常と判断される場合は、制御演算部241は、遮断駆動回路243を介して電流遮断回路255を駆動し、インバータ回路251から第1コイル37へ流れる電流を遮断できる。また、制御演算部241は、遮断駆動回路243を介して電流遮断回路255を駆動し、インバータ回路251から第2コイル38へ流れる電流を遮断できる。このように、第1コイル37へ流れる電流と、第2コイル38へ流れる電流は、制御演算部241にそれぞれ独立して制御される。また、制御演算部241には、操舵トルク信号T、車速信号SV等の入出力信号が、コネクタCNTを介して伝送される。
【0052】
図7は、実施形態に係る電動駆動装置の構成例を示す斜視図である。
図8は、実施形態に係る電動駆動装置の構成例を示す分解斜視図である。
図7及び
図8に示すように、電動駆動装置1は、モータ30と、モータ30の反負荷側に配置されるECU10とを備える。モータ30は、ハウジング930を備える。ハウジング930は筒状であり、その内側にモータロータ932と、3相毎に2系統に分けられた複数のコイルグループ、例えば第1コイルグループGr1及び第2コイルグループGr2(
図4参照)を含むステータと、シャフト31とを収容する。
【0053】
シャフト31の反負荷側の端部には、磁石32が取り付けられている。磁石32は、軸方向Axからみて半分がS極、半分がN極に着磁されている。あるいは、磁石32は、周方向にみて交互に配置されたS極及びN極を外周面に有するようにしてもよい。
【0054】
図8に示すように、ECU10は、回路基板20と、回路基板20を支持するヒートシンク40と、コネクタCNTと一体成形されたバスバーモジュールBBMと、蓋体50を有する。ヒートシンク40には、回路基板20と、バスバーモジュールBBMとが取り付けられている。軸方向Axからみて、モータ30のシャフト31の径方向外側からワイヤーハーネスが挿抜可能な方向にコネクタCNTが配置されている。
【0055】
図8に示すように、回路基板20は、基板本体21と、基板本体21に実装された複数の電子部品と、を有する。基板本体21は、例えば、樹脂等で形成されたプリント基板である。1枚の基板本体21に実装された複数の電子部品には、例えば、中央処理装置(CPU:Central Processing Unit)、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)、電界効果トランジスタ(FET:Field Effect Transistor)、磁気センサ、電解コンデンサ、抵抗素子、ダイオード、サーミスタ等が含まれる。これら複数の電子部品により、
図6に示した検出回路23、制御回路24、第1パワー回路25A及び第2パワー回路25Bが構成されている。
【0056】
ヒートシンク40は、回路基板20を支持する。ヒートシンク40の一方の面(反負荷側)に、回路基板20が固定されている。ヒートシンク40は、放熱性の高いアルミニウム、銅などの金属で構成されており、回路基板20が発する熱を外部に効率よく放熱する。
【0057】
蓋体50は金属製又は樹脂製であり、電動駆動装置1の内部に、異物や水分が侵入することを抑制する。
【0058】
図9Aは、実施形態に係るバスバーモジュールの構成例を示す斜視図である。
図9Bは、
図9Aの内部構成例を示す説明図である。
図10Aは、
図9Aとは異なる方向からみた、バスバーモジュールの構成例を示す斜視図である。
図10Bは、
図10Aの内部構成例を示す説明図である。
【0059】
図9A、
図9B、
図10A及び
図10Bに示すように、バスバーモジュールBBMは、コネクタCNTと、電極端子部64Aと、環状部63と、電極端子部64Bと、連結部64Cと、アーム部64Dと、案内部64Eと、第1電源端子Tdcと、第2電源端子Tgndと、CAN通信を行う通信用端子Tcanと、CAN通信以外の方法でデータを入出力する入出力端子Tioと、を有する。
【0060】
図9Bに示すように、第1電源端子Tdcは、電源装置83(
図2参照)の電源電圧Vdcを供給する金属製端子である。第2電源端子Tgndは、電源装置83の負電源電圧(例えば、グランドなどの基準電圧)を供給する金属製端子である。第1パワー回路25A及び第2パワー回路25Bには、第1電源端子Tdc、第2電源端子Tgndを介して、電源装置83から電力を伝送する電力配線PW(
図2参照)がそれぞれ接続される。
【0061】
また、
図9Aに示すように、通信用端子Tcan及び入出力端子Tioは、それぞれ金属製端子である。制御回路24の制御演算部241(
図6参照)には、通信用端子Tcan、入出力端子Tioを介して、操舵トルク信号T、車速信号SV等の入出力信号を伝送する信号伝送配線が接続される。
【0062】
図8に示す貫通孔Hdcには、
図9Aに示す第1電源端子Tdcが挿入される。
図8に示す貫通孔Hgndには、
図9Aに示す第2電源端子Tgndが挿入される。
図8に示す貫通孔Hdc2には、
図9Aに示す第1電源端子Tdc2が挿入される。
図8に示す貫通孔Hgnd2には、
図9Aに示す第2電源端子Tgnd2が挿入される。
図8に示す貫通孔Hcanには、
図9Aに示す通信用端子Tcanが挿入される。
図8に示す貫通孔Hioには、
図9Aに示す入出力端子Tioが挿入される。
【0063】
図9B及び
図10Bに示すように、バスバーモジュールBBMには、正極バスバー配線65、66と、負極バスバー配線67、コンデンサ端子板68が樹脂モールドされて、内部に埋め込まれている。正極バスバー配線65、66と、負極バスバー配線67、コンデンサ端子板68は、銅などの金属板を打ち抜き加工して形成されている。バスバーモジュールBBMの樹脂は、例えば、ポリブチレンテレフタレート(PBT:Polybutylene terephthalate)である。
【0064】
コンデンサ端子板68と負極バスバー配線67との間には、コンデンサ62が接続されている。同様に、コンデンサ端子板68と正極バスバー配線65との間には、コンデンサ62が接続されている。正極バスバー配線65と正極バスバー配線66との間には、チョークコイル61が接続されている。チョークコイル61、コンデンサ62は、上述した電源装置83からの電力配線PWの高周波成分を除去する。
【0065】
図9Aに示すように、バスバーモジュールBBMは、電極端子部64Aと、電極端子部64Bとを備える。電極端子部64Aと、電極端子部64Bとは、環状部63を挟む。
図9Aに示す電極端子部64Bには、
図10Aに示す第1電源端子Tdcと、第2電源端子Tgndとが埋め込まれている。
図9Aに示す電極端子部64Aには、
図10Aに示す第1電源端子Tdc2と、第2電源端子Tgnd2とが埋め込まれている。第1電源端子Tdcと、第1電源端子Tdc2とは、正極バスバー配線66を介して電気的に接続されている。第2電源端子Tgndと第1電源端子Tdc2とは、負極バスバー配線67を介して電気的に接続されている。第1電源端子Tdc及び第2電源端子Tgndは、上述した第1パワー回路25A及び第2パワー回路25B(
図6参照)に接続される。第1電源端子Tdc2及び第2電源端子Tgnd2は、制御回路24(
図6参照)に接続される。このため、第1電源端子Tdcは、第1電源端子Tdc2よりも断面積が大きい。第2電源端子Tgndは、第2電源端子Tgnd2よりも断面積が大きい。
【0066】
図10Aに示すように、連結部64Cは、バスバーモジュールBBMのねじれを抑制し、組立時の取り扱いを容易にする。連結部64Cの径方向外側には、アーム部64Dがある。
図10Aに示すように、案内部64Eは、アーム部64Dよりも少なくとも軸方向Axに突出している。
【0067】
図8に示すように、第2面42を有する隆起部46と、ヒートシンク40の外周の縁部43dとの間に、バスバーモジュールBBMの案内部64Eを収容する貫通孔43Hが設けられている。バスバーモジュールBBMの環状部63が溝43aに挿入されると、貫通孔43HにバスバーモジュールBBMの案内部64Eが挿入される。
【0068】
図8及び
図9Aに示すように、バスバーモジュールBBMには、バスバーモジュールBBMを貫通する貫通孔BBH1及び貫通孔BBH2がある。貫通孔BBH1は、長孔であり、貫通孔BBH2は、丸孔である。貫通孔BBH1及び貫通孔BBH2は、それぞれ切り欠きでもよい。
図9Aに示すように、バスバーモジュールBBMの固定部64Wには、バスバーモジュールBBMを貫通する貫通孔64Hがあけられている。
【0069】
図8を参照して説明すると、基板本体21は、第1面21bと、第1面21bの反対側に位置する第2面21aとを有する。
図6に示す検出回路23、制御回路24、第1パワー回路25A及び第2パワー回路25Bは、第1面21b又は第2面21aに実装された1個以上の電子部品で構成されている。例えば、
図8に示すように、回転角度センサ23aは、基板本体21の第1面21bに実装された1個の電子部品で構成されている。
【0070】
また、
図6に示す制御回路24は、基板本体21の第2面21aにそれぞれ実装された複数個の電子部品で構成されている。
【0071】
また、回路基板20は、基板本体21の第2面21aに実装された平滑用コンデンサ253を含む。
【0072】
図8に示すように、基板本体21には、第1面21bと第2面21aとの間を貫く複数の貫通孔2321、2322が設けられている。
【0073】
また、
図8に示すように、電動駆動装置1は、第1コイルグループGr1と回路基板20とを接続する第1コイル配線321と、第2コイルグループGr2と回路基板20とを接続する第2コイル配線322と、を備える。第1コイル配線321及び第2コイル配線322は、ECU10に含まれてもよいし、モータ30に含まれてもよい。
【0074】
貫通孔2321には、ヒートシンク40の貫通孔43Hを貫通してきた、第1コイル配線321が挿入され、回路基板20と第1コイル配線321とが電気的に接続される。貫通孔2322には、ヒートシンク40の貫通孔43Hを貫通してきた、第2コイル配線322が挿入され、回路基板20と第2コイル配線322とが電気的に接続される。
【0075】
図9Aに示すように、環状部63の内側は、樹脂がない貫通孔69がある。このように、貫通孔69は、バスバーモジュールBBM本体にあけられている。
図8に示すように、モータ30のシャフト31の反負荷側は、ヒートシンク40を貫通し、第1面41に露出する。
【0076】
図8に示すように、基板本体21には、第1面21bと第2面21aとの間を貫く複数の貫通孔BH1、貫通孔BH2が設けられている。貫通孔BH1、貫通孔BH2は、切り欠きでもよい。基板本体21には、第1面21bと第2面21aとの間を貫く複数の貫通孔Hbtが設けられている。
【0077】
回転角度センサ23aは、シャフト31の反負荷側であって、軸方向Axの延長線上に配置されている。基板本体21は、軸方向Axと直交する平面を回転角度センサ23aの実装面としている。回転角度センサ23aは、磁石32の磁場の変化を感知できるように、基板本体21に実装されている。磁石32と、回転角度センサ23aとは、軸方向Axにおいて、対向していることが望ましい。
【0078】
回転角度センサ23aは、例えば、スピンバルブセンサである。スピンバルブセンサは、反強磁性層等で磁化の向きが固定された強磁性体のピン層と、強磁性体のフリー層とで非磁性層を挟んだ素子で、磁束の向きの変化を検出できるセンサである。スピンバルブセンサには、GMR(Giant Magneto Resistance)センサ、TMR(Tunnel Magneto Resistance)センサがある。なお、回転角度センサ23aは、磁石32の回転を検出可能なセンサであればよい。回転角度センサ23aは、例えば、AMR(Anisotropic Magneto Resistance)センサ、又はホールセンサでもよい。回転角度センサ23aのセンサチップについては、後述する。
【0079】
図8に示すように、ヒートシンク40は、ヒートシンク本体の反負荷側の第1面41と第2面42とに段差を設け、段差にバスバーモジュールBBMを収容する。これにより、第1面41と第2面42との段差により形成された溝43a、溝43b及び溝43cには、バスバーモジュールBBMの環状部63、電極端子部64B及び第1電源端子Tdc、第2電源端子Tgndが配置される。
【0080】
図8に示すように、ヒートシンク40は、第1面41から反負荷側に突出する第1凸部44P、第2凸部47、第3凸部48を備えている。なお、第1面41は、平坦面でなくてもよく、第2面42より、軸方向Axに低ければよい。第1凸部44Pには、反負荷側の上面から軸方向Axあけられたに雌ねじ部44Hがそれぞれある。第2凸部47には、反負荷側の上面から軸方向Axあけられたに雌ねじ部SHがそれぞれある。第3凸部48には、反負荷側の上面から軸方向Axあけられたに雌ねじ部CHがそれぞれある。
図8に示すように、蓋体50を貫通した雄ねじ部CTが、雌ねじ部CHに締結することで、ヒートシンク40に蓋体50が固定される。
【0081】
図8に示すように、ヒートシンク40には、第1面41よりも反負荷側に突出する隆起部46がある。隆起部46には、第1凸部44Pよりも反負荷側にある第2面42がある。第2凸部47及び第3凸部48は、隆起部46よりも反負荷側に突出している。
【0082】
図8に示すように、ヒートシンク40は、第1面41よりも反負荷側に突出する位置決めピン49P1及び位置決めピン49P2を備えている。位置決めピン49P1及び位置決めピン49P2は、隆起部46よりも反負荷側に突出している。
【0083】
図11は、バスバーモジュールがヒートシンクの段差に収容された状態を説明するための斜視図である。
図12は、バスバーモジュールがヒートシンクの段差に収容された状態を説明するための上面図である。
図13は、バスバーモジュールがヒートシンクの段差に収容され、かつ回路基板が取り付けられた状態を説明するための上面図である。
図11及び
図12に示すように、ヒートシンク40がバスバーモジュールBBMを収容すると、ヒートシンク40の第2面42の軸方向Axの位置が、バスバーモジュールBBMの反負荷側の面とほぼ同じ位置になる。これにより、電動駆動装置1は、モータ30のシャフト31に平行な軸方向Ax及びシャフト31の径方向の大きさを抑制する。
【0084】
ヒートシンク40がバスバーモジュールBBMを収容すると、
図8に示す第1凸部44Pは、
図9Aに示すバスバーモジュールBBMの固定部64Wに当接し、バスバーモジュールBBMのZ方向の位置が規制される。
図9Aに示す貫通孔64Hと、
図8に示す雌ねじ部44Hとが重なり、雄ねじ部BBTが雌ねじ部44Hに締結されて、ヒートシンク40にバスバーモジュールBBMが固定される。
図11に示すように、ヒートシンク40がバスバーモジュールBBMを収容すると、第2凸部47が第2面42よりも反負荷側に突出する。
【0085】
また、ヒートシンク40がバスバーモジュールBBMを収容すると、
図8に示す位置決めピン49P1は、バスバーモジュールBBMの貫通孔BBH1を貫通する。貫通孔BBH1は、位置決めピン49P1の直径よりも少し小さい部分がある。位置決めピン49P2は、バスバーモジュールBBMの貫通孔BBH2を貫通する。貫通孔BBH2は、位置決めピン49P2の直径よりも少し小さい部分がある。
【0086】
図12に示すように、位置決めピン49P1、モータ30のシャフト31、位置決めピン49P2は、直線49L上に並ぶ位置にある。直線49L上には、モータ30のシャフト31が位置する。より望ましくは、直線49L上には、モータ30のシャフト31の中心を通る軸方向Axが位置することになる。これにより、雄ねじ部BBTが雌ねじ部44Hに締結されても、ヒートシンク40に対するバスバーモジュールBBMの位置が動きにくくなる。
【0087】
図8に示す回路基板20は、第2凸部47に当接し、回路基板20のZ方向の位置が規制される。
図8に示す貫通孔Hbtには、雌ねじ部SHが重なる。雄ねじ部BTが雌ねじ部SHに締結されて、ヒートシンク40に回路基板20が固定される。第2凸部47が第2面42よりも反負荷側に突出していたので、第2面42と回路基板20との間には、隙間ができる。
【0088】
図14は、
図13のXIV-XIVの段面図である。
図15は、シャフトと位置決めピンとの位置関係を説明するための説明図である。
図14に示すように、シャフト31は、軸受33と、軸受34とにより回転自在に支持される。軸受33は、ヒートシンク40とシャフト31との間に介在している。ヒートシンク40の負荷側には、軸受支持部411があり、シャフト31が貫通するヒートシンク40の中空部35がある。軸受支持部411で囲まれるヒートシンク40の中空部35の内側に軸受33が配置されている。軸受34は、ハウジング930とシャフト31との間に介在している。
【0089】
上述したように、シャフト31の反負荷側の端部には、磁石32が取り付けられている。軸受33は、部品精度が高いので、ヒートシンク40の反負荷側に配置される磁石32の軸方向Axの位置が一定となる。
【0090】
位置決めピン49P1及び位置決めピン49P2は、ヒートシンク40に直接取り付けられ、第1面41に立設している。位置決めピン49P1及び位置決めピン49P2の長さは、貫通孔BBH1及び貫通孔BBH2がある位置のバスバーモジュールBBMの厚みよりも大きいので、
図11に示すように、バスバーモジュールBBMよりも突出する。
【0091】
図13及び
図15に示すように、平面視で位置決めピン49P1、シャフト31、位置決めピン49P2は、直線49L上に並ぶ位置にある。これにより、雄ねじ部BTが雌ねじ部SHに締結されても、バスバーモジュールBBMに対する回転角度センサ23aの位置が動きにくくなる。
【0092】
図13及び
図15に示すように、本実施形態では、位置決めピン49P1と、位置決めピン49P2とは、平面視でシャフト31を挟む位置にある。
図15に示す貫通孔BBH1’及び位置決めピン49P1’は、比較例である。位置決めピン49P2から、シャフト31までの距離は、L3である。本実施形態において、位置決めピン49P1と、位置決めピン49P2との距離L1は、距離L3よりも大きい。比較例において、位置決めピン49P1’と、位置決めピン49P2との距離L2は、距離L3よりも小さい。
【0093】
ここで、
図15において、位置決めピン49P1が貫通孔BBH1内の中心にあり、位置決めピン49P2が貫通孔BBH2内の中心にある場合、平面視で、位置決めピン49P1の中心と、位置決めピン49P2の中心とを結ぶ仮想線が直線49Lである。
【0094】
位置決めピン49P1と貫通孔BH1との間に微少な隙間(以下、クリアランスという)があり、位置決めピン49P2と貫通孔BH2との間に微少なクリアランスがある。これらクリアランスは小さくしたいが、クリアランスを小さくするには限界がある。
【0095】
図16は、回路基板における発熱する電子部品の配置と、電子部品に対向するヒートシンクの第2面との関係を説明するための斜視図である。
図8に示すように、軸方向Axにみて、回路基板20は、ヒートシンク40の第2面42及びバスバーモジュールBBMに重なる。ここで、回路基板20において、第1パワー回路25A及び第2パワー回路25Bが最も発熱するので、第1パワー回路25A及び第2パワー回路25Bがヒートシンク40の第2面42に対向するように、配置される。
【0096】
図16に示すように、位置決めピン49P1及び位置決めピン49P2は、負荷側から反負荷側へ回路基板20よりも突出している。これにより、回路基板20の貫通孔BH1、BH2へ位置決めピン49P1及び位置決めピン49P2が案内されやすくなる。
【0097】
図14に示すように、回転角度センサ23aが磁石32に対向しており、シャフト31に対する、回転角度センサ23aの回転誤差が小さい状態であることが望ましい。以上説明したように、位置決めピン49P1及び位置決めピン49P2は、平面視でシャフト31を挟む位置にある。
【0098】
図13に示すように、位置決めピン49P1と貫通孔BBH1との間にクリアランスがあり、位置決めピン49P2と貫通孔BBH2との間に微少なクリアランスがある。これらクリアランスにより、位置決めピン49P1の中心と、位置決めピン49P2の中心とを結ぶ仮想線が直線49Lとなす最大角度が角度αである。同様に、位置決めピン49P1’の中心と、位置決めピン49P2の中心とを結ぶ仮想線が直線49Lとなす最大角度が角度βである。位置決めピン49P1と貫通孔BH1との間のクリアランスと、位置決めピン49P1’と貫通孔BH1’との間のクリアランスとが同じであったとしても、距離L1が距離L3よりも大きいので、角度αが角度βよりも小さくなる。
【0099】
図13に示すように、角度αが角度βよりも小さいので、回転角度センサ23aがヒートシンク40に対して取り付けられる精度が高くなる。シャフト31が軸受33を介してヒートシンク40に支持されており、シャフト31の端部に磁石32が取り付けられる。その結果、シャフト31に対する、回転角度センサ23aの回転誤差が小さい状態となる。そして、回転角度センサ23aの検出値にばらつきが生じにくくなる。
【0100】
仮にクリアランスが小さく、位置決めピン49P1及び位置決めピン49P2が回路基板20に応力がかかる状態で回路基板20を挟む場合、回路基板20が歪み、回転角度センサ23aが軸方向Axに位置ずれが生じる可能性がある。これに対して、本実施形態では、
図13に示すように回路基板20の貫通孔BBH1は、径方向RDが径方向に直交する方向よりも大きい。これより、位置決めピン49P1と貫通孔BBH1との間であって、径方向RDのクリアランスが大きくなり、位置決めピン49P1及び位置決めピン49P2が回路基板20に応力がかかる状態で回路基板20を挟むことはない。その結果、回路基板20が歪むことがなく、回転角度センサ23aが軸方向Axに位置ずれが生じにくくなり、回転角度センサ23aの検出値がばらつきにくくなる。そして、回転角度センサ23aの検出精度が高くなる。
【0101】
図8に示す第2面42は、
図11に示すアーム部64Dと、環状部63とに挟まれる面42aと、面42aの間を連結する面42bとを有している。
【0102】
図17は、電動駆動装置の部分的な断面を説明するための断面図である。
図17に示すように、回路基板20の発熱を放熱するために、回路基板20とヒートシンク40の第2面42との間に、放熱材Tmが塗布されている。放熱材Tmは、例えば、シリコーンポリマーに熱伝導性フィラーを混合した材料であり、TIM(Thermal Interface Material)と呼ばれる。放熱材Tmは、回路基板20の基板本体21よりも熱伝導率が大きい材料であれば、上記材料以外の他の材料でもよい。
【0103】
図16において、回路基板20の第1面21b(
図8参照)には、発熱する電子部品である電界効果トランジスタTR、シャント抵抗SRが配置されている。
図16では、回路基板20が破線で描かれることで、回路基板20における電界効果トランジスタTR及びシャント抵抗SRの位置が示されている。電界効果トランジスタTRは、
図6に示すスイッチング素子252のみならず、電流遮断回路255、遮断駆動回路243や、電源電圧Vdcを供給する配線上にも設けられる。シャント抵抗SRは、
図6に示す電流検出回路254に設けられている。
【0104】
電界効果トランジスタTR及びシャント抵抗SRと、ヒートシンク40との間には、放熱材Tmがある。これにより、電界効果トランジスタTR及びシャント抵抗SRの熱をヒートシンク40へ放熱することができる。
図16に示すように、電界効果トランジスタTR及びシャント抵抗SRは、
図11に示す面42a及び面42bに平面視で重なる位置に配置されている。そこで、放熱材Tmは、
図11に示す面42a及び面42bの縁を除く全面の塗布領域ATmに塗布されている。
図11及び
図16に示すように、塗布領域ATmと、電界効果トランジスタTR及びシャント抵抗SRが配置された領域とは、軸方向Axにみて重なり合う。
【0105】
図17に示すように、環状部63の外周と、ヒートシンク40の隆起部46の壁面46I(
図17参照)との間には、第1隙間G1がある。アーム部64Dと、隆起部46の壁面46Oとの間には、第2隙間G2がある。バスバーモジュールBBMの熱膨張率とヒートシンク40の熱膨張率が異なっても、第1隙間G1及び第2隙間G2がバスバーモジュールの熱膨張の影響を緩和できる。また、バスバーモジュールの成型公差がヒートシンクの形状加工公差よりも大きくても、第1隙間G1及び第2隙間G2があるので、ヒートシンク40に対するバスバーモジュールBBMの取り付け位置が成型公差の影響を受けにくくなる。
【0106】
第1隙間G1は、回路基板20とヒートシンク40の第2面42との間の空間と、シャフト31がヒートシンク40を貫通する貫通孔45Hの空間とを連通する。このため、第1隙間G1を通じて、モータ30のシャフト31近傍へ放熱材Tmが移動する可能性がある。
【0107】
そこで、本実施形態では、
図10A及び
図17に示す環状部63の外周には、第1隙間G1を狭める第1突出部64Pがある。第1突出部64Pは、環状部63から隆起部46に向かって突出している。第1突出部64Pの端部64PEと、壁面46Iの反負荷側縁部との重なりΔw1ができる。これにより、第1突出部64Pが放熱材Tmの移動を抑制する。その結果、回路基板20とヒートシンク40との間に放熱材Tmが保持されやすくなる。そして、回路基板20の発熱が抑制され、シャフト31に放熱材Tmが付着しにくくなる。また、
図3に示すように、軸方向Axは、鉛直方向VDに対して、傾いていても、回路基板20とヒートシンク40との間に放熱材Tmが保持されやすくなる。そこで、鉛直方向VDに対して取り得る軸方向Axの傾きの自由度が大きくなる。なお、隆起部46は、第1突出部64Pの端部64PEに近接する部分に逃げ部42IEを設けている。隆起部46と、第1突出部64Pの端部64PEとの距離を小さくすることができる。
【0108】
図10A及び
図17に示す第1突出部64Pは、環状部63の反負荷側の縁に沿って設けられている。これにより、第1突出部64Pがヒートシンク40の第2面42に近くなり、回路基板20とヒートシンク40との間にある放熱材Tmが保持されやすくなる。
【0109】
図17に示すように、軸方向Axにおいて、環状部63の負荷側に対向するヒートシンク40の一部が凹んでいる貯留部43Mがある。仮に、放熱材Tmが第1隙間G1に侵入したとしても、放熱材Tmは、貯留部43Mに留まり、シャフト31に放熱材Tmが付着しにくくなる。
【0110】
回路基板20から磁石32までの距離D11は、回路基板20から第1面41までの距離D12の半分以下である。これにより、放熱材Tmが第1面41に、仮に到達したとしても、放熱材Tmが磁石32に付着しにくくなる。
【0111】
回路基板20からバスバーモジュールBBMの環状部63までの距離D13は、距離D11よりも大きい。回路基板20からバスバーモジュールBBMの環状部63の負荷側の面までの距離D14は、距離D12よりも小さい。
【0112】
貯留部43Mは、円環状に形成されており、バスバーモジュールBBMの環状部63が貯留部43Mを覆っている。回路基板20から貯留部43Mの底部までの距離D15は、距離D12よりも大きい。
【0113】
第2隙間G2は、回路基板20とヒートシンク40の第2面42との間の空間と、貫通孔43Hの空間とを連通する。このため、第2隙間G2を通じて、モータ30内の空間へ放熱材Tmが移動する可能性がある。
【0114】
そこで、
図10A及び
図17に示すアーム部64Dには、第2隙間G2を狭める第2突出部64PPがある。第2突出部64PPは、アーム部64Dから隆起部46に向かって突出している。第2突出部64PPの端部64PPEと、壁面42Iの反負荷側縁部との重なりΔw2ができる。これにより、第2突出部64PPが放熱材Tmの移動を抑制する。その結果、回路基板20とヒートシンク40との間に放熱材Tmが保持されやすくなる。そして、回路基板20の発熱が抑制され、シャフト31に放熱材Tmが付着しにくくなる。また、
図3に示すように、軸方向Axは、鉛直方向VDに対して、傾いていても、回路基板20とヒートシンク40との間に放熱材Tmが保持されやすくなる。そこで、鉛直方向VDに対して取り得る軸方向Axの傾きの自由度が大きくなる。なお、隆起部46は、第2突出部64PPの端部64PPEに近接する部分に逃げ部42IOを設けている。隆起部46と、第2突出部64PPの端部64PPEとの距離を小さくすることができる。
【0115】
図10A及び
図17に示す第2突出部64PPは、アーム部64Dの反負荷側の縁に沿って設けられている。これにより、第2突出部64PPがヒートシンク40の第2面42に近くなり、回路基板20とヒートシンク40との間にある放熱材Tmが保持されやすくなる。
【0116】
図17に示すように、回路基板20の貫通孔2321に重なる貫通孔HBが案内部64Eにあけられている。貫通孔HBの開口中心は、軸方向Axと平行である。貫通孔HBの反負荷側の端部には、直径DAの開口がある。貫通孔HBの負荷側の端部には、直径DAよりも大きな直径DBの開口があり、モータステータ側の端部から内部へ進むにつれて直径DBから直径DAへ徐々に小さくなるテーパ状の内壁HBTTがある。つまり、テーパ状の内壁HBTTは、軸方向Axに負荷側から反負荷側へと内部に進むにつれて、直径DBから直径DAへ徐々に小さくなる。
【0117】
予め、案内部64Eを貫通孔43Hに収容された状態で、バスバーモジュールBBMに回路基板20が固定された状態にしておいて、
図8に示す第1コイル配線321、第2コイル配線322を貫通孔HBへ挿入する。第1コイル配線321は、テーパ状の内壁HBTT(
図17参照)で案内され、開口中心に沿うようになる。その結果、開口中心にセンタリングされた第1コイル配線321が貫通孔2321に挿入される。同様に、第2コイル配線322は、貫通孔2322(
図8参照)に重なる貫通孔HBにおいてテーパ状の内壁HBTT(
図17参照)で案内され、開口中心に沿うようになる。その結果、開口中心にセンタリングされた第1コイル配線321が貫通孔2321に挿入され、開口中心にセンタリングされた第2コイル配線322が貫通孔2322に挿入される。そして、第1コイル配線321及び第2コイル配線322は、それぞれ基板本体21の内部回路に、電気的に接続される。これにより、第1コイル配線321又は第2コイル配線322と、回路基板20との電気的な接続安定性が向上すると共に、電動駆動装置1の組立性が向上する。
【0118】
図18は、本実施形態の永久磁石と第1センサ及び第2センサとの位置関係を示す説明図である。
図19は、本実施形態のセンサチップの回路構成を示す回路図である。
図17に示すように、環状部63に囲まれた貫通孔69には、回転角度センサ23aと磁石32とが配置される。これにより、異物の混入が抑制される。
【0119】
図18に示すように、回転角度センサ23aのセンサチップは、第1センサ116と、第2センサ124とを備える。回転角度センサ23aは、第1センサ116及び第2センサ124が集積された磁気センサである。
図19に示すように、第1センサ116は、第1方向検出回路118と、第2方向検出回路122と、を備える。第1センサ116は、第1方向検出回路118及び第2方向検出回路122が検出した検出電圧をECU10へ出力する。
【0120】
第1方向検出回路118は、MR素子Rx1、Rx2、Rx3、Rx4と、接続端子T12、T23、T34、T41と、アンプ120と、を備える。MR素子Rx1、Rx2、Rx3、Rx4は、TMR(Tunnel Magneto Resistance)素子である。MR素子Rx1、Rx2、Rx3、Rx4は、例えば、GMR(Giant Magneto Resistance)素子、AMR(Anisotropic Magneto Resistance)素子、ホール素子のいずれかであってもよい。
【0121】
TMR素子は、磁化方向が固定された磁化固定層と、外部磁界に応じて磁化の方向が変化する自由層と、磁化固定層と、自由層の間に配置された非磁性層とから構成される。TMR素子は、自由層の磁化の方向が磁化固定層の磁化の方向に対してなす角度に応じて抵抗値が変化する。例えば、該角度が0°のときに抵抗値は最小となり、該角度が180°のときに抵抗値は最大となる。
図19に示す各MR素子R
x1、R
x2、R
x3、R
x4に記載された矢印は、それぞれの磁化固定層の磁化方向を示す。MR素子R
x1、R
x2、R
x3、R
x4は、
図19に示すように、ブリッジ回路を形成する。
【0122】
接続端子T
12及び接続端子T
34は、アンプ120に接続される。接続端子T
41は、駆動電圧Vccに接続される。ここで、駆動電圧Vccは、
図19において便宜上ECU10から独立して記載されているが、ECU10から供給される電圧である。接続端子T
23は、
図19に示すように、アースGNDに接続される。ECU10は、ハーネス18を介して、接続端子T
41と接続端子T
23との間に電圧を印加する。
【0123】
アンプ120は、入力された電気信号を増幅する増幅回路である。アンプ120は、入力側が接続端子T12及び接続端子T34に接続される。アンプ120は、出力側がECU10に接続されている。アンプ120は、接続端子T12、T34から入力された検出信号を増幅して、ECU10へ出力する。
【0124】
第2方向検出回路122は、MR素子Ry1、Ry2、Ry3、Ry4と、接続端子T12、T23、T34、T41と、アンプ120と、を備える。第2方向検出回路122は、MR素子Rx1、Rx2、Rx3、Rx4に代えて、MR素子Ry1、Ry2、Ry3、Ry4を備えている。第2方向検出回路122の構成のうち、第1方向検出回路118の構成と同じ構成については、同じ符号を付して説明を省略する。
【0125】
MR素子Ry1、Ry2、Ry3、Ry4は、磁化固定層の磁化方向以外は、MR素子Rx1、Rx2、Rx3、Rx4と同様の構成を有する。各MR素子Ry1、Ry2、Ry3、Ry4に記載された矢印は、それぞれの磁化固定層の磁化方向を示す。
【0126】
なお、第2センサ124は、第1センサ116と同様の構成を有するので、同様の構成に同様の符号を付し、その説明を省略する。
【0127】
第1方向検出回路118及び第2方向検出回路122は、シャフト31(
図17参照)の軸方向Axに対し、所定の距離で配置されている場合、精度の高い検出信号を出力できる。第1センサ116は、磁石32に対し、所定の関係にあるときに、所定の検出信号を出力できる。このように、第1センサ116は、シャフト31の軸方向Ax及び磁石32に対して所定の位置である必要がある。同様に、第2センサ124もシャフト31の軸方向Ax及び磁石32に対して所定の位置である必要がある。
【0128】
上述したように、
図12に示すように、位置決めピン49P1、モータ30のシャフト31、位置決めピン49P2は、直線49L上に並ぶ位置にある。
図13に示すように、位置決めピン49P1、回転角度センサ23a、位置決めピン49P2は、直線49L上に並ぶ位置にある。これにより、第1センサ116は、シャフト31の軸方向Ax及び磁石32に対して所定の位置になる。同様に、第2センサ124もシャフト31の軸方向Ax及び磁石32に対して所定の位置になる。その結果、回転角度センサ23aの出力精度が高くなる。
【0129】
以上説明したように、実施形態に係る電動駆動装置1は、モータ30と、モータ30を駆動制御するために、シャフト31の反負荷側に設けられたECU10と、バスバーモジュールBBMとを備える。ECU10は、シャフト31の反負荷側の端部の磁石32と、シャフト31の反負荷側であって、シャフト31の軸方向(例えば、軸方向Ax)の延長線上に配置された回路基板20と、を含む。回路基板20は、磁石32の回転を検出する回転角度センサ23aを含む検出回路23と、制御回路24と、第1パワー回路25Aと、第2パワー回路25Bとを有する。回転角度センサ23aは、磁石32の回転を検出する磁気センサである。
【0130】
バスバーモジュールBBMは、コネクタCNTと、第1電源端子Tdcと、第2電源端子Tgndと、コネクタCNTと第1電源端子Tdcとを電気的に接続する正極バスバー配線65、66と、コネクタCNTと第2電源端子Tgndとを電気的に接続する負極バスバー配線67とがコネクタCNTと樹脂モールドで一体成形されている。
【0131】
正極バスバー配線66及び負極バスバー配線67は、コネクタCNTからシャフト31の延長線上を迂回する。そして、正極バスバー配線66及び負極バスバー配線67は、コネクタCNTからシャフト31の延長線までの距離よりもコネクタCNTからの距離が大きい位置にある貫通孔Hdc、貫通孔Hgndで、第1電源端子Tdc、第2電源端子Tgndを介して、基板本体21と接続される。この構造によれば、コネクタCNTへの挿抜方向は、軸方向Axと直行する面内において、モータ30のシャフト31の径方向になる。このため、電動駆動装置1の軸方向Axの大きさが抑制される。また、正極バスバー配線66及び負極バスバー配線67は、基板本体21の電源配線とは別であることから、基板本体21内における第1パワー回路25A及び第2パワー回路25Bを回路基板20への電源配線の面積を小さくすることができる。その結果、基板本体21の面積が抑制され、回路基板20が小さくなる。そして、電動駆動装置1の径方向の大きさも抑制される。
【0132】
回転角度センサ23aは回路基板20の基板本体21に取り付けられ、磁石32と対向している。ヒートシンク40の第1面41と第2面42との段差に、バスバーモジュールBBMが収容されている。第1の位置決めピン49P1と第2の位置決めピン49P2とがそれぞれバスバーモジュールBBM及び回路基板20を貫通している。第1の位置決めピン49P1、シャフトの中心(軸方向Ax)及び第2の位置決めピン49P2は、直線49Lの一直線上に並ぶ。そして、回路基板20、バスバーモジュールBBM及びヒートシンク40の相対位置が第1の位置決めピン49P1及び第2の位置決めピン49P2に規制される。これにより、回路基板20、バスバーモジュールBBM及びヒートシンク40の相対位置のばらつきは、低減される。その結果、シャフト31に取り付けられた磁石32と、回路基板20に搭載される回転角度センサ23aの相対位置の精度が高まるので、シャフト31の回転角度の検出精度が高まる。
【0133】
つまり、第1の位置決めピン49P1、回転角度センサ23a及び第2の位置決めピン49P2は、一直線上に並ぶ。これにより、回路基板20に搭載される回転角度センサ23aの相対位置の精度が高まる。雄ねじ部BBTが雌ねじ部44Hに締結されると、バスバーモジュールには応力がかかる。雄ねじ部BTが雌ねじ部SHに締結されると、回路基板20には応力がかかる。第1の位置決めピン49P1及び第2の位置決めピン49P2は、シャフト31の中心を挟む位置に配置されている。これにより、ヒートシンク40にバスバーモジュールBBMを固定する作業の応力が分散され、ヒートシンク40に対してバスバーモジュールが動きにくくなる。ヒートシンク40に回路基板20を固定する作業の応力が分散され、ヒートシンク40に対してバスバーモジュールBBMが動きにくくなる。
【0134】
第1面41と第2面42との段差により形成された溝43aと、バスバーモジュールBBMの環状部63の外周とが接することで、ヒートシンク40に対するバスバーモジュールBBMの取り付け位置を規制してしまう場合、バスバーモジュールBBMの寸法ばらつきとヒートシンク40の寸法ばらつきとが異なることから、ヒートシンク40に対するバスバーモジュールBBMの位置が不正確となりやすい。本実施形態では、ヒートシンク40は、負荷側から反負荷側へ突出する第1凸部44P及び第2凸部47を有する。第1面41と第2面42との段差に、バスバーモジュールBBMが収容されると、バスバーモジュールBBMと第1凸部44Pが当接して固定されることになる。これにより、バスバーモジュールBBMとヒートシンク40との当接部分を小さくし、
図17に示す隆起部46と、バスバーモジュールBBMの環状部63の外周との間は、第1隙間G1を設けても、バスバーモジュールBBMの位置を規制できる。これにより、バスバーモジュールBBM及びヒートシンク40の寸法ばらつきの影響が緩和される。また、第2面42よりも負荷側から反負荷側へ突出する第2凸部47と、回路基板20とが当接して固定されている。これにより、回路基板20とヒートシンク40との間に隙間ができるので、隙間に放熱材Timが保持されやすくなる。
【0135】
バスバーモジュールBBMは、通信用端子Tcanを備える。通信用端子Tcanは、コネクタCNTからシャフト31の延長線までの距離よりも、コネクタCNTからの距離が小さい位置で、基板本体21と電気的に接続される。通信用端子Tcanからの配線が短くなるように、制御回路24が配置可能になり、
図11に示すように、第1パワー回路25A及び第2パワー回路25Bよりも発熱の小さい制御回路24は、コネクタCNTの近傍に配置しやすくなる。
【0136】
第1パワー回路25Aに含まれる電子部品の少なくとも一部(例えば、複数のスイッチング素子252)と、第2パワー回路25Bに含まれる電子部品の少なくとも一部(例えば、複数のスイッチング素子252)は、基板本体21の第1面21bに取り付けられている。ヒートシンク40の第2面42と、スイッチング素子252、電界効果トランジスタTR、シャント抵抗SRなどの発熱する電子部品とは、放熱材を介して又は直接対向できる。放熱材は、シリコーンポリマーに熱伝導性フィラーを混合した材料であり、TIM(Thermal Interface Material)と呼ばれる。これにより、第1パワー回路25A及び第2パワー回路25Bで発生した熱を、より効果的に放熱することができる。
【0137】
また、電動パワーステアリング装置100は、上述の電動駆動装置1を備え、電動駆動装置1が補助操舵トルクを生じさせる。これにより、モータ30のシャフト31に平行な軸方向Ax及びシャフト31の径方向の大きさが抑制され、電動パワーステアリング装置100の配置の自由度が向上する。
【符号の説明】
【0138】
1 電動駆動装置
10 ECU
18 ハーネス
20 回路基板
21 基板本体
23a 回転角度センサ
30 モータ
31 シャフト
32 磁石
33、34 軸受
35 中空部
40ヒートシンク
41 第1面
42 第2面
43H 貫通孔
44P 第1凸部
45H 貫通孔
46 隆起部
47 第2凸部
48 第3凸部
49P1 位置決めピン(第1の位置決めピン)
49P2 位置決めピン(第2の位置決めピン)
50 蓋体
63 環状部
64D アーム部
64E 案内部
64H 貫通孔
64W 固定部
65、66 正極バスバー配線
67 負極バスバー配線
69 貫通孔
100 電動パワーステアリング装置
101 車両
411 軸受支持部
930 ハウジング
931 ステータコア
931a バックヨーク
931b ティース
932 モータロータ
932a ロータヨーク
932b マグネット
2321 貫通孔
2322 貫通孔
ATm 塗布領域
Ax 軸方向
BBM バスバーモジュール
BH1、BH1'、BH2、BBH1、BBH1'、BBH2 貫通孔
CNT コネクタ