(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-11
(45)【発行日】2023-12-19
(54)【発明の名称】空気調和機
(51)【国際特許分類】
F25B 1/00 20060101AFI20231212BHJP
F25B 1/10 20060101ALI20231212BHJP
【FI】
F25B1/00 331E
F25B1/00 304H
F25B1/00 311A
F25B1/00 396B
F25B1/10 R
(21)【出願番号】P 2022056161
(22)【出願日】2022-03-30
【審査請求日】2023-02-28
(73)【特許権者】
【識別番号】000006611
【氏名又は名称】株式会社富士通ゼネラル
(74)【代理人】
【識別番号】110003339
【氏名又は名称】弁理士法人南青山国際特許事務所
(72)【発明者】
【氏名】平野 浩史
(72)【発明者】
【氏名】廣崎 佑
【審査官】笹木 俊男
(56)【参考文献】
【文献】特開2004-183913(JP,A)
【文献】国際公開第2013/001572(WO,A1)
【文献】国際公開第2015/001613(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/00 ~ 49/04
(57)【特許請求の範囲】
【請求項1】
圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器と前記室内熱交換器との間に配置された減圧器と、前記圧縮機から吐出される非共沸混合冷媒である冷媒の流れ方向を切り替える四方弁と、冷房運転時において前記室外熱交換器で凝縮された冷媒の一部である第1冷媒を減圧するインジェクション制御弁と、前記インジェクション制御弁で減圧された前記第1冷媒と前記室外熱交換器で凝縮された冷媒の残りである第2冷媒とを熱交換する冷媒間熱交換器と、前記冷媒間熱交換器から流出した前記第1冷媒を前記圧縮機の中間圧力部へ導くインジェクション配管と、を有する冷媒回路と、
前記冷媒間熱交換器から流出し前記圧縮機の中間圧力部へ導入される前記第1冷媒の温度を検出する第1温度検出器と、
前記冷媒間熱交換器から流出し前記圧縮機の中間圧力部へ導入される前記第1冷媒の圧力を検出する第1圧力検出器と、
前記第1温度検出器により検出される冷媒温度と前記第1圧力検出器により検出される冷媒圧力とに基づいて算出される前記第1冷媒の比エンタルピが、前記インジェクション配管と前記圧縮機の中間圧力部との合流点における冷媒である第3冷媒の乾き度が1となる比エンタルピ目標値となるように、前記インジェクション制御弁の開度を制御する制御装置と
を備えた空気調和機。
【請求項2】
請求項1に記載の空気調和機であって、
前記圧縮機に吸入される冷媒の温度を検出する第2温度検出器と、前記圧縮機に吸入される冷媒の圧力を検出する第2圧力検出器とをさらに備え、
前記制御装置は、
前記第2温度検出器により検出される冷媒温度と、前記第1圧力検出器により検出される冷媒圧力と、前記第2圧力検出器により検出される冷媒圧力とに基づいて、前記圧縮機の中間圧力部における冷媒温度を算出し、
前記第1圧力検出器により検出される冷媒圧力と前記圧縮機の中間圧力部における冷媒温度とに基づいて算出される前記圧縮機の中間圧力部における冷媒の比エンタルピに基づいて、前記第3冷媒の乾き度1に相当する比エンタルピを算出し、
前記圧縮機の中間圧力部における冷媒の比エンタルピと前記第3冷媒の乾き度1に相当する比エンタルピとに基づいて、前記第1冷媒の前記比エンタルピ目標値を算出する
空気調和機。
【請求項3】
請求項1又は2に記載の空気調和機であって、
前記圧縮機から吐出される冷媒の圧力を検出する第3圧力検出器と、
冷房運転時において前記室外熱交換器から流出する冷媒の温度を検出する第3温度検出器と、
冷房運転時において前記冷媒間熱交換器から流出する前記第2冷媒の温度を検出する第4
温度検出器と、をさらに備え、
前記制御装置は、
前記
第3圧力検出器により検出される圧力と前記第3温度検出器により検出される温度とに基づいて、冷房運転時において前記室外熱交換器から流出する冷媒の比エンタルピを算出し、
前記
第3圧力検出器により検出される圧力と前記第4温度検出器により検出される温度とに基づいて、冷房運転時において前記冷媒間熱交換器から流出する前記第2冷媒の比エンタルピを算出し、
前記第1冷媒の比エンタルピと、冷房運転時において前記室外熱交換器から流出する冷媒の比エンタルピと、冷房運転時において前記冷媒間熱交換器から流出する前記第2冷媒の比エンタルピとに基づいて、前記第2冷媒に対する前記第1冷媒の比率であるインジェクション率を算出する
空気調和機。
【請求項4】
請求項3に記載の空気調和機であって、
前記制御装置は、前記インジェクション率が、前記第1冷媒の比エンタルピが前記比エンタルピ目標値であるときの目標インジェクション率となるように、前記インジェクション制御弁の開度を制御する
空気調和機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、過冷却熱交換器を有する空気調和機に関する。
【背景技術】
【0002】
高負荷時に冷房能力を向上させる目的で、凝縮器出口に配置された過冷却熱交換器を備え、凝縮器出口から流出する冷媒の過冷却をとるために用いた中圧二相冷媒を圧縮機の中間圧に注入するインジェクション経路を有する冷凍回路が知られている。
【0003】
例えば特許文献1には、凝縮器で凝縮された冷媒の一部を減圧する流量調整弁と、上記流量調整弁で減圧された冷媒と凝縮器で凝縮された残りの冷媒とを熱交換する過冷却熱交換器と、上記過冷却熱交換器の主流である液側流路の出口から流出する冷媒の液温度を検出する液出口温度センサと、上記過冷却熱交換器の支流であるガス側流路の出口から流出する冷媒を圧縮機の中間圧に注入するインジェクション経路とを備えた冷凍サイクル装置が開示されている。この冷凍サイクル装置は、上記液出口温度センサにより検出される冷媒温度に応じて、圧縮機の中間圧へ注入される冷媒の流量を調整することで、高負荷時における冷房能力の向上を図るようにしている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記過冷却熱交換器の液出口温度に基づくインジェクション制御では、非インジェクション制御時に比べて、冷房能力(出力)を消費電力(入力)で除した値であるエネルギ消費効率(EER)が低下するおそれがある。
【0006】
すなわち、過冷却熱交換器の利点は、主流側に流れる冷媒の量が少なくなることで蒸発器での圧力損失が小さくなり、蒸発器における冷媒の蒸発温度を高くする(圧縮機に吸入される冷媒の比体積を小さくする)ことで、圧縮機の回転数を低下させても冷凍能力を維持し、さらに圧縮動力を抑制できることにある。一方、インジェクション制御時は、非インジェクション制御時よりも冷凍能力は増加するが、インジェクションされる冷媒の密度が大きい場合においては圧縮機の高段における冷媒の流量の増加に伴って凝縮圧力が高くなるため、非インジェクション制御時よりも所定回転数で回転する圧縮機の動力が増加する傾向にある。したがって、過冷却熱交換器の液出口温度を監視するだけでは、冷凍能力の最大化を図れても、エネルギ消費効率(EER)の低下を抑えられない場合がある。
【0007】
以上のような事情に鑑み、本発明の目的は、冷凍能力の最大化を図りつつ、エネルギ消費効率(EER)の低下を抑えることができる空気調和機を提供することにある。
【課題を解決するための手段】
【0008】
本発明の一形態に係る空気調和機は、冷媒回路と、第1温度検出器と、第1圧力検出器と、制御装置とを備える。
前記冷媒回路は、圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器と前記室内熱交換器との間に配置された減圧器と、前記圧縮機から吐出される非共沸混合冷媒である冷媒の流れ方向を切り替える四方弁と、冷房運転時において前記室外熱交換器で凝縮された冷媒の一部である第1冷媒を減圧するインジェクション制御弁と、前記インジェクション制御弁で減圧された前記第1冷媒と前記室外熱交換器で凝縮された冷媒の残りである第2冷媒とを熱交換する冷媒間熱交換器と、前記冷媒間熱交換器から流出した前記第1冷媒を前記圧縮機の中間圧力部へ導くインジェクション配管と、を有する。
前記第1温度検出器は、前記冷媒間熱交換器から流出し前記圧縮機の中間圧力部へ導入される前記第1冷媒の温度を検出する。
前記第1圧力検出器は、前記冷媒間熱交換器から流出し前記圧縮機の中間圧力部へ導入される前記第1冷媒の圧力を検出する。
前記制御装置は、前記第1温度検出器により検出される冷媒温度と前記第1圧力検出器により検出される冷媒圧力とに基づいて算出される前記第1冷媒の比エンタルピが、前記インジェクション配管と前記圧縮機の中間圧力部との合流点における冷媒である第3冷媒の乾き度が1となる比エンタルピ目標値となるように、前記インジェクション制御弁の開度を制御する。
【0009】
空気調和機は、前記圧縮機に吸入される冷媒の温度を検出する第2温度検出器と、前記圧縮機に吸入される冷媒の圧力を検出する第2圧力検出器とをさらに備えてもよい。
前記制御装置は、前記第2温度検出器により検出される冷媒温度と、前記第1圧力検出器により検出される冷媒圧力と、前記第2圧力検出器により検出される冷媒圧力とに基づいて、前記圧縮機の中間圧力部における冷媒温度を算出してもよい。
前記制御装置は、前記第1圧力検出器により検出される冷媒圧力と前記圧縮機の中間圧力部における冷媒温度とに基づいて算出される前記圧縮機の中間圧力部における冷媒の比エンタルピに基づいて、前記第3冷媒の乾き度1に相当する比エンタルピを算出してもよい。
前記制御装置は、前記圧縮機の中間圧力部における冷媒の比エンタルピと前記第3冷媒の乾き度1に相当する比エンタルピとに基づいて、前記第1冷媒の前記比エンタルピ目標値を算出してもよい。
【0010】
空気調和機は、前記圧縮機から吐出される冷媒の圧力を検出する第3圧力検出器と、冷房運転時において前記室外熱交換器から流出する冷媒の温度を検出する第3温度検出器と、冷房運転時において前記冷媒間熱交換器から流出する前記第2冷媒の温度を検出する第4温度検出器と、をさらに備えてもよい。
前記制御装置は、前記第3圧力検出器により検出される圧力と前記第3温度検出器により検出される温度とに基づいて、冷房運転時において前記室外熱交換器から流出する冷媒の比エンタルピを算出してもよい。
前記制御装置は、前記第3圧力検出器により検出される圧力と前記第4温度検出器により検出される温度とに基づいて、冷房運転時において前記冷媒間熱交換器から流出する前記第2冷媒の比エンタルピを算出してもよい。
前記制御装置は、前記第1冷媒の比エンタルピと、冷房運転時において前記室外熱交換器から流出する冷媒の比エンタルピと、冷房運転時において前記冷媒間熱交換器から流出する前記第2冷媒の比エンタルピとに基づいて、前記第2冷媒に対する前記第1冷媒の比率であるインジェクション率を算出してもよい。
【0011】
前記制御装置は、前記インジェクション率が、前記第1冷媒の比エンタルピが前記比エンタルピ目標値であるときの目標インジェクション率となるように、前記インジェクション制御弁の開度を制御してもよい。
【0012】
前記圧縮機は、スクロール圧縮機であってもよい。
【発明の効果】
【0013】
本発明によれば、冷凍能力の最大化を図りつつ、エネルギ消費効率(EER)の低下を抑えることができる。
【図面の簡単な説明】
【0014】
【
図1】本発明の一実施形態に係る空気調和機の冷媒回路を示す図である。
【
図2】上記空気調和機における室外機制御装置の構成を示すブロック図である。
【
図3】冷房運転時における上記冷媒回路のモリエル線図である。
【
図4】上記室外機制御装置において実行される処理の手順の一例を示すフローチャートである。
【
図5】従来の空気調和機における冷媒回路のモリエル線図である。
【発明を実施するための形態】
【0015】
以下、図面を参照しながら、本発明の実施形態を説明する。
【0016】
[空気調和機の冷媒回路]
図1は、本発明の一実施形態に係る空気調和機1の冷媒回路を示す図である。
図1に示すように、本実施形態における空気調和機1は、屋外に設置される室外機2と、室内に設置され室外機2に液管4及びガス管5で接続された室内機3を備えている。詳細には、室外機2の液側閉鎖弁25と室内機3の液管接続部33が液管4で接続されている。また、室外機2のガス側閉鎖弁26と室内機3のガス管接続部34がガス管5で接続されている。以上により、空気調和機1の冷媒回路10が形成される。
【0017】
(冷媒)
冷媒には、非共沸混合冷媒が用いられる。本実施形態では、HFO系の非共沸混合冷媒が用いられる。非共沸混合冷媒としては、R1234yf冷媒とR32冷媒を含む混合冷媒が用いられる。
【0018】
(室外機の冷媒回路)
まずは、室外機2について説明する。
室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、アキュムレータ24と、液管4が接続された液側閉鎖弁25と、ガス管5が接続されたガス側閉鎖弁26と、室外ファン27と、暖房運転時において室内機3に設けられた室内膨張弁35(減圧器)の下流側に位置する室外膨張弁28(減圧器)と、インジェクション制御弁29と、冷媒間熱交換器82とを備えている。そして、室外ファン27を除くこれら各装置が後述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを形成している。
【0019】
なお、室内膨張弁35は室外機2(例えば、液側閉鎖弁25と冷媒間熱交換器82との間)に配置されてもよい。ここでは便宜上、室外機2の説明において室内膨張弁35についても言及する。
【0020】
圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。本実施形態において圧縮機21は、低段圧縮部と高段圧縮部とを有する二段圧縮機であり、例えば、スクロール圧縮機あるいはロータリ圧縮機が採用される。圧縮機21の冷媒吐出側は、四方弁22のポートaと吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、アキュムレータ24を介して四方弁22のポートcと吸入管66で接続されている。
【0021】
四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、ガス側閉鎖弁26と室外機ガス管64で接続されている。
【0022】
室外熱交換器23は、冷媒と、室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は液側閉鎖弁25と室外機液管63で接続されている。室外熱交換器23は、四方弁22の切り替えによって、冷房時は凝縮器として機能し、暖房運転時は蒸発器として機能する。
【0023】
室内膨張弁35及び室外膨張弁28は、図示しないパルスモータにより駆動される電子膨張弁である。具体的には、パルスモータに加えられるパルス数によりその開度が調整される。暖房運転時は、室内膨張弁35は全開とされ、室外膨張弁28は、圧縮機21の吐出温度が所定の目標値(圧縮機21に吸入される冷媒が適切な状態になる値)となるように調整されるか、若しくは、圧縮機21に吸入される冷媒の吸入過熱度(吸入SH)が所定の目標値(圧縮機21に吸入される冷媒が適切な状態になる値)となるように調整される。また、冷房運転時あるいは除湿運転時は、室内膨張弁35は、圧縮機21に吸入される冷媒の吸入過熱度(吸入SH)が所定の目標値となるように調整され、室外膨張弁28は全開とされる。
【0024】
室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、その中心部が図示しないファンモータの回転軸に接続されている。ファンモータが回転することで室外ファン27が回転する。室外ファン27の回転によって、室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を、室外機2の図示しない吹出口から室外機2外部へ放出する。
【0025】
室外機冷媒回路10aは、インジェクション配管65を有する。インジェクション配管65は、室外膨張弁28と冷媒間熱交換器82との間において室外機液管63から分岐し、インジェクション制御弁29および冷媒間熱交換器82を介して、圧縮機21の低段圧縮部と高段圧縮部との間である中間圧力部21aに接続されている。
【0026】
インジェクション配管65は、冷房運転時において室外熱交換器23で凝縮された冷媒の一部を圧縮機21へ流入させるインジェクション回路の一部であり、インジェクション制御弁29で減圧された冷媒を圧縮機21の中間圧力部21aへ導く冷媒配管である。インジェクション配管65の途中には、インジェクション配管65を流れる冷媒(第1冷媒)と室外熱交換器23で凝縮された残りの室外機液管63を流れる冷媒(第2冷媒)との間で熱交換を行う冷媒間熱交換器82が設けられている。
【0027】
冷媒間熱交換器82は、冷房運転時において、室外機液管63を流れる冷媒とインジェクション配管65を流れる冷媒との間で熱交換を行う過冷却熱交換器である。冷媒間熱交換器82において、室外機液管63は冷媒間熱交換器82の主流(液側流路)を形成し、インジェクション配管65は冷媒間熱交換器82の支流(ガス側流路)を形成する。
【0028】
インジェクション制御弁29は、図示しないパルスモータにより駆動される電子膨張弁であり、室外機液管63とインジェクション配管65との分岐点30と冷媒間熱交換器82との間の配管途中に設けられる。インジェクション制御弁29は、インジェクション配管65の開閉手段、及び、インジェクション配管65における冷媒の流量調整手段として設けられる。
【0029】
以上説明した構成の他に、室外機2には各種のセンサが設けられている。
図1に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ73が設けられている。吸入管66には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74が設けられている。室外機液管63には、冷房運転時に室外膨張弁28に流入する冷媒の温度を検出する室外機液管温度センサ77cと、冷房運転時に冷媒間熱交換器82から流出する冷媒の温度を検出する冷媒間熱交液管温度センサ43が設けられている。
【0030】
室外熱交換器23の図示しない冷媒パスの略中間部には、室外熱交換器23の温度である室外熱交温度を検出する室外熱交中間温度センサ75が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ76が備えられている。
【0031】
インジェクション配管65には、冷房運転時において、冷媒間熱交換器82から流出し圧縮機21の中間圧力部21aへ導入される冷媒(第1冷媒)の温度を検出する注入温度センサ41と、冷媒間熱交換器82から流出し圧縮機21の中間圧力部21aへ導入される冷媒(第1冷媒)の圧力を検出する注入圧力センサ42が設けられている。
【0032】
また、室外機2には、室外機制御装置200が備えられている。室外機制御装置200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。
図2に示すように、室外機制御装置200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。室外機制御装置200は、本発明における制御装置に相当する。
【0033】
記憶部220は、フラッシュメモリで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27等の制御状態等を記憶している。また、図示は省略するが、記憶部220には室内機3から受信する要求能力に応じて圧縮機21の回転数を定めた回転数テーブルが予め記憶されている。
【0034】
通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。
【0035】
CPU210は、前述した室外機2の各センサでの検出結果を、センサ入力部240を介して取り込む。さらには、CPU210は、室内機3から送信される制御信号を、通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号等に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り替え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室内膨張弁35及び室外膨張弁28の開度調整、インジェクション制御弁29の開閉制御及び開度調整を行う。
【0036】
(室内機の冷媒回路)
次に、
図1を用いて、室内機3について説明する。
室内機3は、室内熱交換器31と、室内ファン32と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34と、室内熱交換器31と液管接続部33との間に配置された室内膨張弁35を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを形成している。
【0037】
室内熱交換器31は、冷媒と後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器31の一方の冷媒出入口は、液管接続部33と室内機液管67で接続されている。室内熱交換器31の他方の冷媒出入口は、ガス管接続部34と室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。
【0038】
室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン32は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。
【0039】
以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内熱交換器31内の流路の中間部には室内熱交換器31内の冷媒の温度を検出する室内熱交中間温度センサ77aが設けられている。室内機ガス管68には、暖房運転時に室内膨張弁35へ流入する冷媒の温度を検出する室内機ガス管温度センサ77bと、室内熱交換器31から流出あるいは室内熱交換器31に流入する冷媒の温度を検出するガス側温度センサ78が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温センサ79が備えられている。
【0040】
[冷媒回路の動作の概要]
次に、本実施形態における空気調和機1の動作の概要について説明する。
【0041】
(暖房運転)
まず、暖房運転時の冷媒の流れについて説明する。
暖房運転を行うとき、CPU210は、
図1に示すように四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通し、ポートbとポートcが連通するように、切り替える。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器31が凝縮器として機能する暖房サイクルとなる。
【0042】
また、暖房運転を行うとき、CPU210は、室内膨張弁35を全開にし、インジェクション制御弁29を全閉にする。さらにCPU210は、室外膨張弁28の開度を、圧縮機21の吐出温度が所定の目標値となるように、若しくは、圧縮機21に吸入される冷媒の吸入過熱度(吸入SH)が所定の目標値となるように調整する。
【0043】
圧縮機21から吐出された高温高圧のガス冷媒は、吐出管61を流れて四方弁22に流入する。四方弁22のポートaに流入した高温高圧のガス冷媒は、四方弁22のポートdから室外機ガス管64を流れて、ガス側閉鎖弁26を介してガス管5に流入する。ガス管5を流れる高温高圧のガス冷媒は、ガス管接続部34を介して室内機3に流入する。
【0044】
室内機3に流入した高温高圧のガス冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮して高温高圧の液冷媒になる。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。
【0045】
室内熱交換器31から流出した高温高圧の液冷媒は、室内機液管67を流れ、全開状態の室内膨張弁35を通過し、液管接続部33を介して液管4に流入する。液管4を流れ、液側閉鎖弁25を介して室外機2に流入した高温高圧の液冷媒は、室外機液管63を流れて、室外膨張弁28を通過する際に減圧されて低温低圧の気液二相冷媒になる。上述したように、暖房運転時において、室外膨張弁28の開度は、圧縮機21の吐出温度が所定の目標値となるように調整されるか、若しくは、圧縮機21に吸入される冷媒の吸入過熱度(吸入SH)が所定の目標値となるように調整される。
なお、暖房運転時における室内膨張弁35の開度は全開とされる場合に限られず、例えば、室内熱交換器31流出後の冷媒の過冷却度(SC)が所定の目標値となるように調整されてもよい。
【0046】
室外膨張弁28を通過して室外熱交換器23に流入した低温低圧の気液二相冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発して低温低圧のガス冷媒になる。室外熱交換器23から冷媒配管62に流出した低温低圧のガス冷媒は、四方弁22のポートb及びポートc、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
【0047】
[冷房運転]
次に、冷房運転時の冷媒の流れについて説明する。
冷房運転を行うとき、CPU210は、
図1に示すように四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbが連通し、ポートcとポートdが連通するように、切り替える。これにより、冷媒回路10において破線矢印で示す方向に冷媒が循環し、室外熱交換器23が凝縮器として機能するとともに、室内熱交換器31が蒸発器として機能する冷房サイクルとなる。
【0048】
また、冷房運転を行うとき、CPU210は、室外膨張弁28を全開にし、室内膨張弁28の開度を、圧縮機21に吸入される冷媒の吸入過熱度(吸入SH)が所定の目標値となるように調整する。さらにCPU210は、インジェクション制御弁29の開度を、後に詳述するように、目標とするインジェクション率となるように調整する。
【0049】
圧縮機21から吐出された高温高圧のガス冷媒は、吐出管61を流れて四方弁22に流入する。四方弁22のポートaに流入した高温高圧のガス冷媒は、四方弁22のポートbから冷媒配管62を流れて室外熱交換器23に流入し、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮して高温高圧の液冷媒になる。
【0050】
室外熱交換器23から流出した高温高圧の液冷媒は、全開状態の室外膨張弁28を通過し、冷媒間熱交換器82の主流を形成する室外機液管63を流れる冷媒と、インジェクション制御弁29を介して冷媒間熱交換器82の支流(ガス側流路)を形成するインジェクション配管65を流れる冷媒とに分岐する。室外機液管63を流れる高温高圧の液冷媒は、液側閉鎖弁25を介して液管4に流入する。インジェクション配管65を流れる高温高圧の液冷媒は、インジェクション制御弁29によって減圧された後、冷媒間熱交換器82において冷媒間熱交換器82の主流を流れる冷媒と熱交換して中圧の気液二相冷媒になり、圧縮機21の中間圧力部21aに導入される。
【0051】
液管4を流れ、液管接続部33を介して室内機3に流入した冷媒は、室内機液管67を流れて、室内膨張弁35を通過する際に減圧される。上述したように、冷房運転時において、室内膨張弁35の開度は、圧縮機21に吸入される冷媒の吸入過熱度(吸入SH)が所定の目標値となるように調整される。
【0052】
室内膨張弁35を通過して室内熱交換器31に流入した低温低圧の気液二相冷媒は、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って蒸発して低温低圧のガス冷媒になる。このように、室内熱交換器31が蒸発器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。
【0053】
室内熱交換器31から流出した低温低圧のガス冷媒は、室内機ガス管68を流れ、ガス管接続部34を介してガス管5に流入する。ガス管5を流れ、ガス側閉鎖弁26を介して室外機2に流入した低温低圧のガス冷媒は、四方弁22のポートd及びポートc、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
【0054】
[インジェクション制御について]
本実施形態の空気調和機1は、高負荷時に冷房能力を向上させる目的で、過冷却熱交換器としての冷媒間熱交換器82と、過冷却に用いた中圧の気液二相冷媒を圧縮機21の中間圧力部21aに注入するインジェクション配管65と、インジェクション配管65に流入する冷媒の流量を制御するインジェクション制御弁29とを備える。
【0055】
図3は、冷房運転時における冷媒回路10のモリエル線図である。図中の各動作点M1~M9についてはそれぞれ以下のとおりである。
M1:室内熱交換器31と圧縮機21との間、
M2:非インジェクション制御時(インジェクション制御弁29の全閉時)における圧縮機21と室外熱交換器23との間、
M3:圧縮機21の中間圧力部21a、
M4:圧縮機21の中間圧力部21aとインジェクション配管65との合流点、
M5:インジェクション制御時における圧縮機21と室外熱交換器23との間、
M6:室外機液管63と冷媒間熱交換器82との間、
M7:インジェクション制御弁29と冷媒間熱交換器82との間、
M8:冷媒間熱交換器82と圧縮機21の中間圧力部21aとの間、
M9:冷媒間熱交換器82と室内膨張弁35との間
【0056】
インジェクション制御時は、非インジェクション制御時と比べて、以下の点が異なる。
(1)圧縮機21での圧縮過程(点M1~M3~M4~M5間)において、インジェクション配管65を介して凝縮過程の冷媒の一部(第1の冷媒)が二相状態で圧縮機21の中間圧力部21aに流入することにより、圧縮機21で圧縮される冷媒の温度が圧縮途中で低下し、インジェクション配管65に冷媒を循環させない場合(非インジェクション制御時)の圧縮機21の吐出温度(t2)と比較して、圧縮機21の吐出温度(t5)が下がる。
(2)冷媒は、凝縮過程(点M5~M6間)を通過して液相状態になった後、点M6~M9間においてインジェクション配管65の点M7~M8間を流れる冷媒と冷媒間熱交換器82によって熱交換され過冷却される。
(3)点M5~M6間から分岐しインジェクション配管65に流入した冷媒は、点M6~M7間でインジェクション制御弁29を介して圧力が下げられ、二相状態になり、その後、点M7~M8間において点M6~M9間を流れる冷媒と冷媒間熱交換器82によって熱交換されて乾き度が上昇し、点M8から圧縮機21の中間圧力部21aにインジェクションされる。
【0057】
その結果、冷媒間熱交換器82の支流(ガス側流路)を流れる冷媒の量(Ginj)が0より大きくなり、対して、冷媒間熱交換器82の主流(液側流路)に流れる冷媒の量(Ge)が少なくなる。これにより、蒸発器(室内熱交換器31)での圧力損失が非インジェクション制御時よりも小さくなる。その結果、蒸発器における冷媒の蒸発温度が高くなる(圧縮機に吸入される冷媒の比体積が小さくなる)ため、圧縮機の回転数を低下させても冷凍能力を維持しつつ、圧縮動力を抑制できる。このため、高負荷時において冷房能力を向上させることができるとともに、圧縮動力の抑制を図ることができる。
【0058】
しかし、インジェクションされる冷媒の密度が大きい場合においては、圧縮機21の高段における冷媒の流量の増加に伴って凝縮圧力が高くなるため、非インジェクション制御時よりも同じ回転数で回転する圧縮機21の動力が増加し、冷房能力(出力)を消費電力(入力)で除した値であるエネルギ消費効率(EER)の低下を抑えられない場合がある。
【0059】
そこで本実施形態では、インジェクション配管65を介して圧縮機21の中間圧力部21aへ注入される冷媒(第1冷媒)の比エンタルピ(h8)が、インジェクション配管65と圧縮機21の中間圧力部21aとの合流点(
図3の点M4)における冷媒(第3冷媒)の乾き度が1となる比エンタルピ目標値となるように、インジェクション制御弁29の開度を制御する。
上記第3冷媒は、上記第1冷媒が、圧縮機21の中間圧力部21aにおける冷媒(低段圧縮部から吐出される冷媒)と合流した後の冷媒であり、この合流後の冷媒が圧縮機21の高段圧縮部にて圧縮される。
これにより、インジェクションされる冷媒の密度が大きい場合であっても、圧縮機21の中間圧力部21aにおける圧縮負荷の上昇が抑えられるため、冷凍能力の最大化を図りつつ、エネルギ消費効率(EER)の低下を抑えることができる。
【0060】
[インジェクション制御の詳細]
以下、インジェクション制御の詳細について説明する。
図4は、室外機制御装置200(CPU210)において実行される処理の手順の一例を示すフローチャートである。
【0061】
(開始条件)
冷房運転を開始すると、CPU210は、インジェクション制御の開始条件を満たすか否かを判定する(ステップ101)。インジェクション制御の開始条件は特に限定されないが、例えば以下の2つの条件が挙げられる。
【0062】
(1)圧縮機21の回転数
第1の条件は、圧縮機21の回転数が所定の閾値以上であるか否かである。その目的は、圧縮機21の低速運転時は、インジェクションポートが開いている時間(中間圧力部21aに連通する時間)が比較的長いため、インジェクション量が過剰にならないようにすることにある。上記所定の閾値は、例えば、50rpsである。
【0063】
(2)凝縮器出口過冷却度
第2の条件は、凝縮器(室外熱交換器23)の出口での冷媒の過冷却度(SC)が所定の閾値以上であるか否かである。その目的は、インジェクション制御弁29へ冷媒を液状態で導入し、流量を担保することにある。上記所定の閾値は、例えば、8℃である。
【0064】
凝縮器出口過冷却度は、例えば次式にて算出される。
(凝縮器出口過冷却度)=(高圧液飽和温度)-(過冷却液温度)
高圧液飽和温度は、上述のように、吐出管61に設置された吐出圧力センサ71による検出値(
図3における圧力Pdに相当)を飽和温度へ換算することで得ることができる。
過冷却液温度は、室外熱交換器23の出口に設置された室外機液管温度センサ77cの検出値(
図3における点M6の温度t6に相当)を代用できる。
【0065】
本実施形態では、上記2つの条件をすべて満たす場合にインジェクション制御を開始する。なおこれに限られず、上記2つの条件のうち少なくとも1つの条件が満たされる場合にインジェクション制御を開始するようにしてもよいし、他の条件が採用されてもよい。
【0066】
CPU210は、インジェクション制御の開始条件を満たすと判定したとき(ステップ101においてYes)、インジェクション制御弁29の初期開度を調整する(ステップ102)。インジェクション制御弁29の初期開度は、過剰なインジェクション量による液圧縮を防止できる開度であれば特に限定されず、例えば、最大パルス出力(全開時)に比べて10%の出力に相当する開度に設定される。
【0067】
続いて、CPU210は、実インジェクション率αを算出する(ステップ103)。
実インジェクション率αは、
図3に示すように、以下の式で定義される。
インジェクション率α=Ginj/Ge=Δh
L/Δh
G
=(h6-h9)/(h8-h6)
=(h3-h4)/(h4-h8)
【0068】
ここで、Ginjは、冷媒間熱交換器82の支流(ガス側流路)、すなわちインジェクション配管65を流れる冷媒(第1の冷媒)の流量であり、Geは、冷媒間熱交換器82の主流(液側流路)、すなわち室外機液管63を流れる冷媒(第2冷媒)の流量である。すなわち、実インジェクション率とは、インジェクション制御弁29の現在の開度によって実現される、上記第2冷媒の流量に対する上記第1冷媒の流量の流量比(Ginj/Ge)を意味する。
【0069】
また、Δh
Lは、冷媒間熱交換器82の主流における支流との熱交換前後での冷媒の比エンタルピ差であり、Δh
Gは、冷媒間熱交換器82の支流における主流との熱交換前後での冷媒の比エンタルピ差である。
さらに、h6は、室外熱交換器23出口における冷媒の比エンタルピ、h8は、冷媒間熱交換器82の主流(液側流路)出口における冷媒の比エンタルピ、そして、h9は、冷媒間熱交換器82の支流(ガス側流路)出口における冷媒の比エンタルピである(
図3参照)。
【0070】
比エンタルピは、冷媒の圧力と温度を参照することで算出することができる。
例えば、h6の算出に際し、圧力は、吐出管61に設置された吐出圧力センサ71の検出値(
図3においてPdに相当)を代用できる。温度は、室外熱交換器71の出口に設置した室外機液管温度センサ77cの検出値(
図3においてt6に相当)を代用できる。
h9の算出に際しては、圧力は、吐出管61に設置された吐出圧力センサ71の検出値(
図3においてPdに相当)を代用できる。温度は、冷媒間熱交換器82の主流側出口に配置した冷媒間熱交液管温度センサ43の検出値(
図3においてt9に相当)を代用できる。
そして、h8の算出に際しては、圧力は、インジェクション配管65に設置した注入圧力センサ42の検出値(
図3においてPinjに相当)を代用でき、温度は、インジェクション配管65に設置した注入温度センサ41の検出値(
図3においてt8に相当)を代用できる。
【0071】
続いてCPU210は、目標インジェクション率αtgtを算出する(ステップ104)。
目標インジェクション率αtgtは、以下のように表される。
目標インジェクション率αtgt=Ginj/Ge=ΔhL/ΔhG
=(h6-h9)/(h8*-h6)
=(h3-h4*)/(h4*-h8*)・・・(式1)
【0072】
式(1)において、h8*は、インジェクション配管65を介して圧縮機21の中間圧力部21aへ注入される冷媒の比エンタルピ(h8)の目標値(比エンタルピ目標値)であって、インジェクション配管65と圧縮機21の中間圧力部21aとの合流点における冷媒の乾き度が1となる比エンタルピである。つまり、目標インジェクション率とは、インジェクション配管65を介して圧縮機21の中間圧力部21aへ注入される冷媒(第1冷媒)の比エンタルピ(h8)が比エンタルピ目標値h8*となるインジェクション率である。
【0073】
また、h4*は、インジェクション配管65と圧縮機21の中間圧力部21aとの合流点(M4)における冷媒(第3冷媒)の乾き度1に相当する比エンタルピである。h4*は、以下のように表すことができる。
h4*=(h3+αtgt・h8*)/(1+αtgt)
展開すると、
h8*={(1+αtgt)h4*-h3}/αtgt ・・・(式2)
【0074】
(式1)と(式2)の連立解として、目標インジェクション率αtgtと、比エンタルピ目標値h8*を求めることができる。
【0075】
h3は、注入圧力センサ42の検出値(Pinj)と、圧縮機21の低段吐出温度(
図3においてt3に相当)を用いて算出することができる。
低段吐出温度t3は、以下の式(A)のように、圧縮過程の温度として、圧縮機21の低段吸入温度(吸入温度センサ74の検出値(t1に相当))および低段吸入圧力(吸入圧力センサ72の検出値(Psに相当))と、注入圧力センサ42の検出値(Pinjに相当)と、実圧縮時ポリトロープ定数nを用いて算出することができる。Ps、Pinjは、絶対圧力である。
【数1】
【0076】
実圧縮時ポリトロープ定数nは、理想的な断熱圧縮時の断熱指数に相当し、圧縮機21の仕様、吐出圧力センサ71の検出値(Pd)、低段吸入圧力(Ps)、冷媒の種類等に依存する変数である。本実施形態では、所定の負荷、冷媒温度下での圧縮機単体性能実験により、実圧縮時ポリトロープ定数nが決定される。
【0077】
h4は、圧縮機21の中間圧力部21aとインジェクション配管65との合流点(
図3の点M4)に対する、インジェクション配管65側と圧縮機21の低段吐出部側からの流入を考慮したエネルギ(比エンタルピ×流量)収支として以下の式(B)から算出できる。
【数2】
したがって、h4
*は、式(B)において、「h8」をh8
*に、「α」をαtgtにそれぞれ置き換えることで算出することができる。
【0078】
続いてCPU210は、目標インジェクション率αtgtから実インジェクション率αを減じた差分であるΔα(αtgt-α)を算出し、Δαが-β以上β以下か判定する(ステップ105,106)。
【0079】
βは、インジェクション率の目標値(目標インジェクション率αtgt)と現在値(実インジェクション率α)との差分である制御偏差量(Δα=α-αtgt)の偏差の閾値であり、β=Δα/αで定義される。閾値βの値は特に限定されず、制御周期や圧縮機21のインジェクションポートの大きさ等に応じて任意に設定可能であり、本実施形態では2%である。
【0080】
判定の結果、-β≦Δα≦βの場合は(ステップ105,106のいずれにおいてもYes)、インジェクション配管65を介して圧縮機21の中間圧力部21aへ注入される冷媒(第1冷媒)の比エンタルピ(h8)が制御目標値である比エンタルピ目標値h8*と一致あるいはほぼ一致するとみなして、インジェクション制御弁29の開度を現在の開度に維持する(ステップ107)。
【0081】
一方、Δαが閾値βより大きい場合は(ステップ105においてNo)、インジェクション制御弁29の開度を所定量緩める(開度を所定量大きくする)制御を実行する(ステップ108)。これにより、実インジェクション率αを目標ターゲット率αtgtに近づけることができる。
【0082】
反対に、Δαが閾値-βより小さい場合は(ステップ106においてNo)、インジェクション制御弁29の開度を所定量絞る(開度を所定量小さくする)制御を実行する(ステップ109)。これにより、実インジェクション率αを目標ターゲット率αtgtに近づけることができる。
【0083】
続いてCPU210は、インジェクション制御の終了条件を満たすか否かを判定する(ステップ110)。本実施形態では、上述したインジェクション制御の2つの開始条件のうち少なくとも1つが非該当になった場合、インジェクション制御の終了条件を満たすと判定される。
【0084】
インジェクション制御の終了条件を満たさない場合(ステップ110においてNo)、ステップ103に移行して再び実インジェクション率αが目標インジェクション率αtgtとなるようにインジェクション制御弁29の開度制御が行われる。一方、インジェクション制御の終了条件を満たす場合(ステップ110においてYes)、CPU210はインジェクション制御弁29を閉じてインジェクション制御を終了する(ステップ111)。
【0085】
以上の処理を繰り返し実行することにより、インジェクション配管65を介して圧縮機21の中間圧力部21aへ注入される冷媒(第1冷媒)の比エンタルピ(h8)が、インジェクション配管65と圧縮機21の中間圧力部21aとの合流点における冷媒(第3冷媒)の乾き度が1となる比エンタルピ目標値(h8*)となるように、インジェクション制御弁29の開度が制御される。上記第3冷媒の乾き度が1ということは、圧縮機21の中間圧力部21aにおける冷媒がすべてガス冷媒であることを意味する。このため、インジェクションされる冷媒の密度が大きい場合であっても、圧縮機21の中間圧力部21aにおける圧縮負荷の上昇が抑えられるため、冷凍能力の最大化を図りつつ、エネルギ消費効率(EER)の低下を抑えることができる。
【0086】
また本実施形態においては、冷媒に非共沸混合冷媒を用いているため、二相領域での冷媒の比エンタルピを適切に求めることができ、目標とするインジェクション率が得られるようにインジェクション制御弁29の開度を適切に制御することができる。すなわち、非共沸混合冷媒は、温度勾配により、比エンタルピで温度が変わる。温度と圧力の2変数で冷媒の乾き度が定まることを利用して、圧縮機21の中間圧力部21aにおける冷媒の乾き度を算出することができる。
【0087】
さらに、冷凍能力の向上を図るために冷媒間熱交換器の液側出口温度に応じてインジェクション制御弁の開度を調整する従来の技術(例えば特許文献1参照)では、
図5に示すように、圧縮機の高段部での冷媒吸入点(M4に相当)が飽和蒸気線よりも左側にシフトしてしまい、この点における冷媒の乾き度を1にできない。このため、圧縮機の高段負荷が高くなり、エネルギ消費効率の低下の要因になっていた。
【0088】
これに対して本実施形態によれば、圧縮機21の中間圧力部21aにおける冷媒の乾き度が1となるようにインジェクション制御弁29の開度を調整するため、圧縮機21の高段部での冷媒吸入点(M4)が飽和蒸気線上に位置し、これにより圧縮機21の高段負荷が抑えられるため、
図5の場合と比較して、エネルギ消費効率を向上させることができる。
【0089】
さらに本実施形態によれば、圧縮機21にスクロール圧縮機が用いられているため、ロータリ圧縮機等と比較して、インジェクションポートが広く、圧縮機内圧も低いため、インジェクション量を増加させることができる。これにより、圧縮機21の回転数に依存せず、目的とするインジェクション制御を安定に行うことができる。
【符号の説明】
【0090】
1…空気調和機
2…室外機
3…室内機
10…冷媒回路
21…圧縮機
21a…中間圧力部
22…四方弁
23…室外熱交換器
28…室外膨張弁
29…インジェクション制御弁
41…注入温度センサ(第1温度検出器)
42…注入圧力センサ(第1圧力検出器)
65…インジェクション配管
72…吸入圧力センサ(第2圧力検出器)
74…吸入温度センサ(第2温度検出器)
71…吐出圧力センサ(第3圧力検出器)
77c…室外機液管温度センサ(第3温度検出器)
200…室外機制御装置