(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-11
(45)【発行日】2023-12-19
(54)【発明の名称】選択的細胞アブレーションのための時間多重化波形
(51)【国際特許分類】
A61B 18/12 20060101AFI20231212BHJP
【FI】
A61B18/12
(21)【出願番号】P 2021555450
(86)(22)【出願日】2020-03-13
(86)【国際出願番号】 US2020022578
(87)【国際公開番号】W WO2020190691
(87)【国際公開日】2020-09-24
【審査請求日】2021-09-28
(32)【優先日】2019-03-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】506192652
【氏名又は名称】ボストン サイエンティフィック サイムド,インコーポレイテッド
【氏名又は名称原語表記】BOSTON SCIENTIFIC SCIMED,INC.
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(74)【代理人】
【識別番号】100142907
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】フォーサイス、ブルース アール.
(72)【発明者】
【氏名】キャナディ、ラリー ディ.ジュニア
(72)【発明者】
【氏名】ゴルジツキ、ジョナサン タイラー
(72)【発明者】
【氏名】オストルート、ティモシー エイ.
(72)【発明者】
【氏名】ツァオ、ホン
【審査官】北村 龍平
(56)【参考文献】
【文献】特表2019-500170(JP,A)
【文献】米国特許出願公開第2018/0303543(US,A1)
【文献】特表2018-515247(JP,A)
【文献】特開2017-012752(JP,A)
【文献】米国特許第09987081(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/00 - 18/28
(57)【特許請求の範囲】
【請求項1】
組織切除エネルギーの送達に適した信号発生器において、
電圧変換回路にエネルギー蓄積回路及び出力制御回路を備えた治療出力ブロックと、
組織切除エネルギーの送達プローブに接続するのに適しており、それに接続され、複数の電極を有するプローブを、複数の電極のサブセットの個々の活性化で使用できるように複数の出力チャンネルを規定する入力/出力回路と、
ユーザが前記信号発生器を制御することを可能にし、前記信号発生器によって送達される組織切除エネルギーの1つ以上のパラメータを表示するのに適したユーザインタフェースと、
前記治療出力ブロックと前記ユーザインタフェースとに接続されたコントローラと、
前記コントローラに接続され、治療サイクルの送達のための命令を格納するメモリであって、
前記治療サイクルは、
第1相として、第1振幅で第1パルス幅を有する、第1極性の第1出力と、
第2振幅で、第2パルス幅であって、前記第1パルス幅の半分よりも小さい前記第2パルス幅を有する前記第1極性の逆の第2極性の第2出力と、
前記第2振幅よりも小さい第3振幅で前記第2極性を用い、第3パルス幅が前記第2パルス幅を超える第3出力と、のそれぞれを有する
多相切除波形を含んでなる、前記メモリと、を備え、
前記第1、第2及び第3出力の合計は、平衡電荷をもたらし、前記多相切除波形に伴う筋肉刺激を制限するように1ミリ秒未満の持続時間を有する時間間隔内に送達される、信号発生器。
【請求項2】
前記格納された命令が、前記第1及び第2振幅が、不可逆電気穿孔閾値を超えるように規定し、前記第3振幅が、不可逆電気穿孔閾値よりも小さくなるように規定する、請求項1に記載の信号発生器。
【請求項3】
前記格納された命令が、前記第1及び第2振幅の少なくとも1つが、不可逆電気穿孔閾値を超えるように規定し、前記第3振幅が、可逆的電気穿孔閾値よりも小さくなるように規定する、請求項1に記載の信号発生器。
【請求項4】
前記格納された命令が、前記第1、第2及び第3パルス幅の1つが、前記第1、第2及び第3パルス幅の他の2つの合計を超えるように前記第1、第2及び第3パルス幅を規定する、請求項1に記載の信号発生器。
【請求項5】
前記格納された命令が、1~50マイクロ秒の範囲の前記第1パルス幅と、0.5~10マイクロ秒の範囲の前記第2パルス幅とを規定する、請求項1に記載の信号発生器。
【請求項6】
少なくとも1つの治療出力チャンネルの電流又は電圧の少なくとも1つを監視するために前記入力/出力回路に接続された監視回路構成をさらに含み、前記格納された命令が、
第1反復において、前記第1、第2及び第3出力が生成され、同時に前記第1、第2及び第3出力のそれぞれのインピーダンス又は電流の流れの1つ以上を
前記出力制御回路が監視し、
第2反復において、前記第1、第2及び第3出力が再度生成され、ただし、前記第1、第2及び第3出力の少なくとも1つの振幅又はパルス幅の少なくとも1つが、もしあれば、監視された前記インピーダンス又は電流の流れから決定される、前記第1、第2及び第3出力によって生じる電荷の不均衡を減少させるように調整され、
前記第1及び第2反復が、10ミリ秒未満の時間間隔内でそれぞれ行われる、
複数の反復を規定する、請求項1に記載の信号発生器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は選択的細胞アブレーションのための時間多重化波形に関する。
【背景技術】
【0002】
病変組織の除去又は破壊は、多くの癌治療法の目標である。腫瘍は外科的に除去してもよいが、より侵襲性の低いアプローチが多くの注目を集めている。組織切除は、体内の望ましくない組織を破壊する低侵襲な方法である。切除は、熱的であってもよく、又は非熱的であってもよい。
【0003】
熱的切除は、望ましくない細胞を破壊するために、熱を加えるか、又は熱を除去する。たとえば、冷凍切除は、細胞外区画を凍結させることによって、-15Cで細胞の脱水を開始させ、さらに低温で膜破裂を生じさせることによって細胞を殺す。冷凍切除は、患者の抗腫瘍免疫反応を(有益に)刺激することが公知である。
【0004】
加熱に基づく熱切除は、組織を破壊するために加熱する。無線周波数(RF:Radio-frequency)熱切除、マイクロ波切除及び高密度焦点式超音波療法は、それぞれ、局所組織の温度を身体の正常な37℃よりもかなり上に上げるために用いることができる。たとえば、RF熱切除は、摩擦によって熱に変換される細胞膜の振動を誘発するために高周波電界を用いる。細胞温度が50℃に達すれば細胞死は30秒で起こり、より高い温度では細胞死は瞬時に起こる。しかしながら、加熱に基づく切除は、冷凍切除に伴う望ましい免疫反応を引き起こさない可能性がある。
【0005】
加熱又は冷却を用いる熱切除技術は、それぞれ、治療領域の正常構造を助ける能力をほとんどあるいはまったく持たないという欠点がある。血管構造、神経構造又は他の構造への二次的な損傷は望ましくない。したがって、様々な研究者が、非熱切除も探求してきた。
【0006】
非熱切除技術は、電気化学療法及び不可逆的電気穿孔を含む。電気穿孔とは、高電圧パルス電界にさらされた細胞の細胞膜が、脂質二重層の不安定化により一時的に透過性になる現象を指す。次いで、少なくとも一時的に孔が形成される。電気化学療法は、孔の形成と、細胞死をもたらす化学物質の導入とを組み合わせている。用いる化学分子が大きいため、電界を受ける細胞のみがその化学物質を吸収し、その後死ぬため、治療ゾーンに有用な選択性をもたらす。不可逆的電気穿孔(IRE:Irreversible electroporation)は、化学物質を省き、代わりに通常は振幅が大きい電界を用い、回復点を超えて細胞膜の孔を拡大させるため、利用できる細胞膜がないために細胞死を引き起こす。印加電界の空間特性は、どの細胞及び組織が影響を受けるかを制御するため、熱技術と比較して、治療ゾーンでのより優れた選択性を可能にする。
【0007】
電気(熱的か否かにかかわらず)切除技術を用いる場合の課題の1つは、局所筋肉刺激に関するものである。単相波形は、一定の細胞死を引き起こす点で、IREにより優れた結果をもたらすと考えられている。しかしながら、単相波形は、とりわけ筋肉刺激を引き起こす傾向にあり、手術を容易にするために麻痺薬の使用を必要とする。二相波形は、筋肉刺激を回避するが、単相波形と同じエネルギーレベル及び振幅、又は同じエネルギーレベルもしくは振幅では同等に有効ではない可能性がある。二相波形をより有効にするために、単に電力を上げることは、熱切除を引き起こすリスクがある。筋肉刺激を回避しながら、IREのための単相刺激と同等に有効な使用波形を可能にし、それによって単相治療と二相治療の両方の利点を得るための、最新技術の強化と代替手段が望まれている。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明者らは、とりわけ、解決すべき課題は、筋肉刺激を避けながら、高い効果と組織選択性とを組み合わせた切除治療を提供することであると認識した。以下に示すいくつかの例は、このような目的を達成するために、治療出力の時間多重化を使用する。
【課題を解決するための手段】
【0009】
例示であって限定するものではない第1の例は、組織切除エネルギーの送達に使用するのに適した信号発生器であって、電圧変換回路にエネルギー蓄積回路及び出力制御回路を含む治療出力ブロックと、組織切除エネルギーの送達プローブに接続するのに適した入力/出力回路であって、それに接続され、複数の電極を有するプローブを、複数の電極のサブセットの個々の活性化によって使用できるように複数の出力チャンネルを規定する入力/出力回路と、ユーザが信号発生器を制御することを可能にし、信号発生器によって送達される組織切除エネルギーの1つ以上のパラメータを表示するのに適したユーザインタフェースと、治療出力ブロックとユーザインタフェースとに接続されたコントローラと、コントローラに接続され、治療サイクルであって、第1相として、第1振幅で第1パルス幅を有する、第1極性の第1出力と、第2振幅で、第2パルス幅であって、第1パルス幅の半分よりも小さい第2パルス幅を有する第1極性の逆の第2極性の第2出力と、第2振幅よりも小さい第3振幅で第2極性を用い、第3パルス幅が第2パルス幅を超える第3出力と、を含む治療サイクルの送達のための格納された命令を有するメモリと、を含む信号発生器において、第1、第2及び第3出力の合計が、多相切除波形に伴う筋肉刺激を制限する平衡電荷をもたらす、信号発生器の形態を取る。
【0010】
例示的な第1の例に加えて、あるいはこれに代えて、格納された命令は、第1及び第2振幅が不可逆電気穿孔閾値を超えるように規定し、第3振幅が不可逆電気穿孔閾値よりも小さくなるように規定してもよい。
【0011】
例示的な第1の例に加えて、あるいはこれに代えて、格納された命令は、第1及び第2振幅の少なくとも1つが不可逆電気穿孔閾値を超えるように規定し、第3振幅が可逆的電気穿孔閾値よりも小さいように規定してもよい。
【0012】
例示的な第1の例に加えて、あるいはこれに代えて、格納された命令は、第1、第2及び第3時間間隔の1つが第1、第2及び第3時間間隔の他の2つの合計を超えるように第1、第2及び第3パルス幅を規定してもよい。
【0013】
例示的な第1の例に加えて、あるいはこれに代えて、記憶された命令は、約1~50マイクロ秒の範囲の第1パルス幅と、約0.5~10マイクロ秒の範囲の第2パルス幅とを規定してもよい。
【0014】
例示的な第1の例に加えて、あるいはこれに代えて、記憶された命令は、持続時間が合計して1ミリ秒未満になるように第1、第2及び第3パルス幅を規定してもよい。
例示的な第1の例に加えて、あるいはこれに代えて、信号発生器は、少なくとも1つの治療出力チャンネルの電流又は電圧の少なくとも1つを監視するために入力/出力回路構成に接続された監視回路構成をさらに含んでもよく、記憶された命令は、第1反復において、第1、第2及び第3出力が生成され、同時に第1、第2及び第3出力のそれぞれの電流の流れのインピーダンスの1つ以上を制御回路構成が監視し、第2反復において、第1、第2及び第3出力が再度生成され、ただし、第1、第2及び第3出力の少なくとも1つの振幅又はパルス幅の少なくとも1つが、もしあれば、監視されたインピーダンスによって生じる変化の不均衡を減少させるように調整され、第1及び第2反復が10ミリ秒未満の時間間隔内で行われる、複数の反復を規定してもよい。
【0015】
例示であって、限定するものではない第2の例は、組織切除エネルギーの送達に使用するのに適した信号発生器であって、電圧変換回路にエネルギー蓄積回路及び出力制御回路を含む治療出力ブロックと、組織切除エネルギーの送達プローブに接続するのに適した入力/出力回路であって、それに接続され、複数の電極を有するプローブを、複数の電極のサブセットの個々の活性化で使用できるように複数の出力チャンネルを規定する入力/出力回路と、ユーザが信号発生器を制御することを可能にし、信号発生器によって送達される組織切除エネルギーの1つ以上のパラメータを表示するのに適したユーザインタフェースと、治療出力ブロックとユーザインタフェースとに接続されたコントローラと、コントローラに接続され、治療サイクルであって、第1振幅と第1パルス幅とを有する第1極性の第1パルスと、それと交互になる、第2振幅を有し、かつ第1パルス幅よりも少ない第2パルス幅を有する第1極性と逆の第2極性の第2パルスとを含む第1パルス列と、第3振幅と第3パルス幅とを有する第1極性の第3パルスと、それと交互になる、第4振幅と、第3パルス幅を超える第4パルス幅とを有する第2極性の第4パルスと、を含む第2パルス列と、を含む治療サイクルの送達のための格納された命令を有するメモリと、を含み、第1パルス列が第1電荷の不均衡をもたらし、第2パルス列が、第1電荷の不均衡を相殺して筋肉刺激を防止するための第2電荷の不均衡をもたらす、信号発生器の形態を取る。
【0016】
例示的な第2の例に加えて、あるいはこれに代えて、格納された命令は、第1振幅と第2振幅とが同じであり、第3振幅と第4振幅とが同じであることを規定してもよい。
例示的な第2の例に加えて、あるいはこれに代えて、格納された命令は、第1パルス列の開始から第2パルス列の終了までの時間が1ミリ秒未満になるように、第1パルス列と第2パルス列とが順に送達されることを要求してもよい。
【0017】
例示的な第2の例に加えて、あるいはこれに代えて、格納された命令は、第1パルス幅と第4パルス幅の持続時間が同じであり、第2パルス幅と第3パルス幅の持続時間が同じであることを規定してもよい。
【0018】
例示的な第2の例に加えて、あるいはこれに代えて、格納された命令は、第1パルス列が、第1量の第1パルスと第2量の第2パルスとを含み、第2パルス列が、第3量の第3パルスと第4量の第4パルスとを含み、第1、第2、第3及び第4量が全て同じであるように規定してもよい。
【0019】
例示的な第2の例に加えて、あるいはこれに代えて、格納された命令は、第1パルス幅が第2パルス幅の2倍であることを規定し、第4パルス幅が第3パルス幅の2倍であることを規定してもよい。
【0020】
例示的な第2の例に加えて、あるいはこれに代えて、格納された命令は、第1、第2、第3及び第4振幅がそれぞれ不可逆電気穿孔閾値を超えるように規定してもよい。
例示的な第2の例に加えて、あるいはこれに代えて、格納された命令は、第1、第2、第3及び第4パルス幅がそれぞれ約0.1~500マイクロ秒の範囲にあることを規定してもよい。
【0021】
例示であって限定するものではない他の例は、例示であって限定するものではない第1又は第2の例のいずれかに記載の信号発生器とそれに対する代替手段又は追加とともに、信号発生器とともに使用するのに適したプローブであって、その表面に複数の切除治療送達電極を有するプローブを含むシステムの形態を取る。
【0022】
例示であって限定するものではない第3の例は、多相切除波形を送達する方法であって、第1相として、第1振幅で第1時間間隔の間、第1極性の第1出力を生成し、第2振幅で、第2時間間隔であって、第1時間間隔の半分未満の第2時間間隔の間、第1極性の逆の第2極性の第2出力を生成し、第2振幅よりも小さい第3振幅で、第3時間間隔であって、第1時間間隔を超える第3時間間隔の間、第2極性を用いて第3出力を生成することを含む方法において、第1、第2及び第3出力の合計が、多相切除波形に伴う筋肉刺激を制限する平衡電荷をもたらす方法、の形態を取る。
【0023】
例示的な第3の例に加えて、あるいはこれに代えて、第1及び第2振幅の少なくとも1つは不可逆電気穿孔閾値を超えてもよく、第3振幅は不可逆電気穿孔閾値よりも小さくてもよい。
【0024】
例示的な第3の例に加えて、あるいはこれに代えて、第1及び第2振幅の少なくとも1つは不可逆電気穿孔閾値を超えてもよく、第3振幅は可逆的電気穿孔閾値よりも小さくてもよい。
【0025】
例示的な第3の例に加えて、あるいはこれに代えて、第1、第2及び第3時間間隔の1つは、第1、第2及び第3時間間隔の他の2つの合計を超えてもよい。
例示的な第3の例に加えて、あるいはこれに代えて、第1時間間隔は約1~50マイクロ秒の範囲であってもよく、第2時間間隔は約0.5~10マイクロ秒の範囲であってもよい。
【0026】
例示的な第3の例に加えて、あるいはこれに代えて、第1、第2及び第3時間間隔は、合計して1ミリ秒未満の持続時間となってもよい。
例示であって限定するものではない他の例は、第1反復において、例示であって限定するものではない第3の例の方法を行い、同時に第1、第2及び第3出力のそれぞれの電流の流れのインピーダンスの1つ以上を監視し、第2反復において、例示であって限定するものではない第3の例を再度行い、第1、第2及び第3出力の少なくとも1つの振幅又はパルス幅の少なくとも1つを、もしあれば、監視されたインピーダンスによって生じる変化の不均衡を減少させるように調整することを含み、第1及び第2反復は、10ミリ秒未満の時間間隔内で行われてもよい。
【0027】
例示であって限定するものではない第4の例は、多相切除波形を送達する方法であって、第1振幅と第1パルス幅とを有する第1極性の第1パルスと、それと交互になる、第2振幅を有し、かつ第1パルス幅よりも少ない第2パルス幅を有する第1極性と逆の第2極性の第2パルスとを含む第1パルス列を生成し、第3振幅と第3パルス幅とを有する第1極性の第3パルスと、それと交互になる、第4振幅と第3パルス幅を超える第4パルス幅とを有する第2極性の第4パルスとを含む第2パルス列を生成することを含む方法において、第1パルス列が、第1電荷の不均衡をもたらし、第2パルス列が、第1電荷の不均衡を相殺して筋肉刺激を防止するための第2電荷の不均衡をもたらす方法の形態を取る。
【0028】
例示的な第4の例に加えて、あるいはこれに代えて、第1振幅と第2振幅とは同じであってもよく、第3振幅と第4振幅とは同じであってもよい。
例示的な第4の例に加えて、あるいはこれに代えて、第1パルス列の開始から第2パルス列の終了までの時間が1ミリ秒未満になるように、第1パルス列と第2パルス列とが順に送達されてもよい。
【0029】
例示的な第4の例に加えて、あるいはこれに代えて、第1パルス幅と第4パルス幅とは持続時間が同じであってもよく、第2パルス幅と第3パルス幅とは持続時間が同じであってもよい。
【0030】
例示的な第4の例に加えて、あるいはこれに代えて、第1パルス列は第1量の第1パルスと第2量の第2パルスとを含んでもよく、第2パルス列は第3量の第3パルスと第4量の第4パルスとを含んでもよく、第1、第2、第3及び第4量は全て同じであってもよい。
【0031】
例示的な第4の例に加えて、あるいはこれに代えて、第1パルス幅は第2パルス幅の2倍であってもよく、第4パルス幅は第3パルス幅の2倍であってもよい。
例示的な第4の例に加えて、あるいはこれに代えて、第1、第2、第3及び第4振幅は、それぞれ不可逆電気穿孔閾値を超えてもよい。
【0032】
例示的な第4の例に加えて、あるいはこれに代えて、第1、第2、第3及び第4パルス幅は、それぞれ約0.1~500マイクロ秒の範囲にあってもよい。
例示であって限定するものではない第5の例は、多相切除波形を送達する方法であって、第1振幅と第1パルス幅とを有する第1極性の第1パルスを生成し、第1極性の逆の第2極性の複数の第2パルスであって、第2振幅と第2パルス幅とを有し、第1パルス幅の1/2よりも小さい第2パルス幅を有する第2パルスを有する第1パルス列を生成することを含む方法において、第1パルスが第1電荷の不均衡をもたらし、第2パルス列が、第1電荷の不均衡を相殺して筋肉刺激を防止するための第2電荷の不均衡をもたらす方法の形態を取る。
【0033】
第5の例示的な例に加えて、あるいはこれに代えて、複数の第2パルスは、それぞれが、あるパルス間隔であって、第2パルス幅の2分の1から2倍の間のパルス間隔によって分離されてもよい。
【0034】
第5の例示的な例に加えて、あるいはこれに代えて、第1パルス幅は第2パルス幅の合計と同じであってもよい。
第5の例示的な例に加えて、あるいはこれに代えて、第1振幅と第2振幅は、それぞれ不可逆電気穿孔閾値を超えてもよい。
【0035】
第5の例示的な例に加えて、あるいはこれに代えて、第1振幅は第2振幅よりも小さくてもよく、第2パルス幅の合計は、第1パルス幅よりも小さくてもよい。
第5の例示的な例に加えて、あるいはこれに代えて、第2パルスは、それぞれ、第2パルス幅とパルス間隔の合計が第1パルス幅と同じであるパルス間隔によって分離されてもよい。
【0036】
第5の例示的な例に加えて、あるいはこれに代えて、第1パルスの開始から第1パルス列の終了までの持続時間は1ミリ秒未満であってもよい。
例示であって限定するものではない第6の例は、多相切除波形を送達する方法であって、あるパルス幅とある振幅をそれぞれが有する複数の第1パルスを含む第1パルス列を送達し、第1パルスの時間的に最初のパルスは第1振幅を有し、第1パルスの連続する各パルスは、直前のパルスよりも大きい振幅を有し、第1パルスのそれぞれは第1極性を有し、あるパルス幅とある振幅をそれぞれが有する複数の第2パルスを含む第2パルス列を送達し、第2パルスの時間的に最初のパルスは第1振幅を有し、第2パルスの連続する各パルスは、直前のパルスよりも大きい振幅を有し、第2パルスのそれぞれは第1極性の逆の第2極性を有することを含む方法において、第1パルス列と第2パルス列とが、約1ミリ秒未満の時間窓内で送達され、第2パルス列の終結時に電荷平衡が達成される方法の形態を取る。
【0037】
例示的な第6の例に加えて、あるいはこれに代えて、第1パルス列内で、時間的に最初のパルスは、不可逆電気穿孔閾値よりも小さい振幅を有していてもよく、時間的に最後のパルスは、不可逆電気穿孔閾値を超える振幅を有していてもよく、第2パルス列内で、時間的に最初のパルスは、不可逆電気穿孔閾値よりも小さい振幅を有していてもよく、時間的に最後のパルスは、不可逆電気穿孔閾値を超える振幅を有していてもよい。
【0038】
例示であって限定するものではない他の例は、患者に切除治療を送達するためのプローブとともに使用するために構成されたパルス発生器であって、電圧ベースの治療を送達するための出力回路構成と、送達される治療パルスの特徴を監視するための監視回路構成と、例示的な第3の例から第6の例までならびにそれらに対する追加及び代替手段のいずれかに記載の治療を送達するのに適した実行可能命令セットを含む不揮発性メモリを含む制御回路構成とを含むパルス発生器の形態を取る。他の例は、このようなパルス発生器と、パルス発生器とともに使用するのに適したプローブとを含み、複数の治療送達電極を含むシステムであってもよい。
【0039】
この概要は、本特許出願の主題への導入を目的としたものである。この概要は、本発明の排他的又は網羅的な説明を提供するものではない。発明の詳細な説明は、本特許出願についてのさらなる情報を提供するために含まれている。
【0040】
必ずしも縮尺どおり描かれているわけではない図面において、同じ数字は、異なる図において同様な構成要素を示すことができる。異なる文字の接尾語を持つ同じ数字は、同様な構成要素の異なる例を示すことができる。図面は、例として一般的に説明するものであって、本文書で説明されている様々な実施形態を限定するものではない。
【図面の簡単な説明】
【0041】
【
図1】電界強度とパルス持続時間の組み合わせに関連する様々な治療モダリティの近似を示す図。
【
図5】従来技術である「LeVeen(登録商標)」ニードルを示す図。
【発明を実施するための形態】
【0042】
図1は、送達される電気パルスの振幅-時間関係に依る様々な生物物理学的応答の近似を示す。細胞応答間の閾値(10、20、30)は、一般に、印加電界強度とパルス持続時間との関数として機能する。第1閾値10未満では効果は生じない。第1閾値10と第2閾値20との間では可逆的電気穿孔が生じる。第2閾値20超第3閾値30未満では、主として不可逆的電気穿孔(IRE)が生じる。第3閾値30超では、主として組織の加熱によってもたらされる熱的な効果が出始める。したがって、たとえば、一定の電界強度と持続時間では効果がない可能性があるが(位置12)、電界印加の持続時間が長くなれば、可逆的電気穿孔(位置22)と、不可逆的電気穿孔(位置32)と、熱切除(位置40)とが起こり得る。
【0043】
米国特許第6,010,613号に記載されているように、可逆的電気穿孔を引き起こすためには、約1ボルトの範囲の膜電位が必要である。しかしながら、タイミング及び持続時間などのパルスパラメータと、可逆的電気穿孔に必要となる膜電位との間の関係については、依然として活発に研究が行われている。治療される細胞の特性に応じて必要な電界は異なる可能性がある。マクロレベルでは、可逆的電気穿孔は、1センチメートルあたり数百ボルトのレベルの電圧を必要とするが、不可逆的電気穿孔では、より高い電圧を必要とする。例として肝臓組織のin vivo電気穿孔を考慮すれば、米国特許8,048,067号に記載されているように、可逆的電気穿孔の閾値電界強度は約360V/cmの可能性があり、不可逆的電気穿孔の閾値電界強度は約680V/cmの可能性がある。一般的に言って、治療される組織の大部分を通じてこのような効果を得るために、複数の個々のパルスが送達される。たとえば、2、4、8又は16以上のパルスが送達されてもよい。いくつかの実施形態において、数百のパルスを送達してもよい。
【0044】
電気穿孔のための電界は、通常は、1~数百マイクロ秒の範囲の持続時間をそれぞれが有する一連の個々のパルスを送達することによって印加されている。たとえば、米国特許第8,048,067号は、
図1の線20と線30との間の領域が実際に存在し、いくつかの実験において、1秒間隔で送達される一連の800マイクロ秒のパルスを用いて非熱IRE治療を実現することができることを示すために行った分析と実験を記載している。
【0045】
組織膜は、穿孔状態から静止状態まで瞬時には復帰しない。そのため、時間的に近接するパルスの印加は、たとえば米国特許第8,926,606号に記載されているように、累積効果を有し得る。さらに、米国特許出願公開第2007/0025919号に記載されているように、一連のパルスは、穿孔を維持することと、分子を移動させることの両方の役割を果たす電界を使って、最初に細胞膜に穿孔を生成させ、次いで生成された可逆的な孔を通して大分子を移動させるために使用することができる。
【0046】
図2~
図4は、細胞への電界の印加の様々な影響を示す。可逆的電気穿孔閾値未満の電界強度では、
図2に示すように、細胞60の細胞膜62はそのまま維持され、孔は生じない。
図3に示すように、より高い電界強度では、可逆的電気穿孔閾値超不可逆的電気穿孔閾値未満で、細胞70の膜72は孔74を発生させる。印加電界とパルス形状の特性に応じて、大小の孔74が生じることが可能であり、発生した孔は、長い時間又は短い時間持続する可能性がある。
【0047】
図4に示すように、さらに高い電界強度では、不可逆的電気穿孔閾値超で、細胞80は、多くの孔84、孔86を伴う膜82を有するようになっている。高振幅又は高出力レベルでは、孔84、孔86は、大きくなりすぎるため、かつ、数が多くなりすぎるため、又はそのいずれか一方のため、細胞が回復できない可能性がある。
図4に示されるように、孔は細胞80の左側及び右側に空間的に集中し、細胞膜が印加電界に平行となる領域88には孔がほとんど又はまったくないことにも注目してよい(ここでは、電界は、
図4で示された細胞の右側及び左側に配置される電極間で印加されていると想定している)。これは、電界が、細胞膜に対して直交せずに平行に近いため、領域88の膜電位が低いままであることによるものである。
【0048】
図5は、加療のためのプローブとして使用され得る、従来技術の「レビーン(LeVeen、登録商標)」ニードルを示す。米国特許第5,855,576号に記載されているように、この機器は、患者110の標的組織112にアクセスしたあとに伸長又は収縮させることができる複数の組織穿刺電極102に延びているシャフト104を有する挿入可能部分100を含む。この装置の近位端には、電源108への電気配線106が接続されており、RFエネルギーを供給するために使用することができる。
【0049】
通常は、レビーンニードルは、標的組織への熱切除を送達するために使用される。たとえば、’576特許に記載されているように、プレート(単数又は複数)の形態でのリターン電極は、患者の皮膚上に配置してもよく、リターン電極は、他の組織穿刺電極として設置することが可能であり、また、リターン電極は、組織穿刺電極102の近位の、その遠位端の近くのシャフト104上に設置してもよい。
【0050】
元の設計に対する機能強化は、たとえば、複数の電極の作動はもちろん、別々に電気的に活性化する電極の個々の作動の両方に関して、組織穿刺電極102の独立した作動を説明している米国特許第6,638,277号において見つけることができる。特許第5,855,576号及び第6,638,277号は、様々な治療送達プローブを示すために参照によって本願に組み込まれる。米国仮特許出願第62/620,873号(その開示は、様々な治療送達プローブを示すものとして参照によって本願に組み込まれる)は、電極のスペーシング、サイズ及び選択における自由度を可能にするレビーンニードル概念の更新及び強化を開示している。
【0051】
図6~
図8は、様々な波形の特徴を示す。
図6について言えば、単相波形は150で示されている。波形150は、ベースライン又は等電位152に対して示されている。理想的な方形波は、振幅154、パルス幅156及びサイクル長158を有することが示されている。波形150は、ベースライン152から指定された振幅154まで垂直に上昇する理想的な方形波として示されている。このような波形を説明するとき、周波数は、通常はサイクル長158の逆数を示す。したがって、たとえば、1マイクロ秒のパルス幅156を有する波形が2マイクロ秒間隔158で送達される場合、その波形の「周波数」は、500kHz(2マイクロ秒の逆数)と記載してもよい。波形150は、電流制御又は電圧制御波形であってもよい。以下でさらに詳しく述べるように、様々な例において、いずれのアプローチを使用してもよい。
【0052】
任意の実際の印加において、生成された波形のエッジは丸くされ、ベースライン152からの上昇は、
図7に示すようにさらに丸くされ、162で示されるベースラインからの上方剥離は、立ち上がり時間160が特徴となる。出力の終わりに、立ち下がり時間166を特徴とする非理想的な立ち下がり164もある。波形の実際の印加は、示されているように、臨界減衰信号又は過減衰信号のエッジの信号出力が不足減衰か又は丸くされている場合にたとえば振幅のオーバーシュートを含む可能性のある、ピーク振幅のいくらかの変動も含む。
【0053】
いくつかの例において、1つ以上の立ち上がり時間160又は立ち下がり時間166を操作することができる。例示的な例において、システムの出力回路構成は、抵抗器、インダクタなどの、その回路に切り替えた場合に立ち上がり時間を遅らせることができる選択可能な要素を含んでもよい。たとえば、インダクタを流れる電流は瞬時には変化することはできず、したがって、誘導素子を出力回路に切り替えることによって、インダクタが電流を流し始めるときに立ち上がり時間を遅くすることができる。
【0054】
立ち上がり時間及び立ち下がり時間は、いくつかの異なる方法で操作してもよい。たとえば、プロセス設定は、ピーク電圧目標を変更するように選択してもよい。高い目標は、様々な構成要素が指数関数的に応答して、出力回路がオンになるか、又はそれに切り替えられるため、速い立ち上がり時間をもたらすことができる。出力を監視することによって、システムはピーク電圧目標を人工的に増加させて立ち上がり時間を減少させることができ、真のピーク電圧に達すると、システムは、電圧源を切り替えるか、又は出力レギュレーションを使用して(整流器の使用か、又は個々の放電経路による出力電流のリダイレクトなどによる)、電圧出力に制限を加えてもよい。他の例において、様々な立ち上がり時間及び立ち下がり時間を示す様々なHVスイッチタイプを備える、システムに使用可能かつ選択可能な複数の様々なHVスイッチを備えることなどによる構成要素選択を行ってもよい。たとえば、それぞれが様々な立ち上がり/立ち下がり特性を示す3つの出力スイッチが使用可能な場合、システムは、特定の治療出力セッション中に使用するための適切な出力スイッチを選択することにより、長いか又は短い立ち上がり時間/立ち下がり時間を要求するユーザ入力に応答してもよい。ハイパス又はローパスフィルタリングは、スルーレートを制御するための出力回路に切り替えてもよく、又は制御信号回路に切り替えてもよい。たとえば、出力トランジスタの低速ターンオンは、トランジスタそれ自身の立ち上がり時間を遅くすることができ、逆に出力トランジスタの高速ターンオンは、立ち上がり時間を速めることができる。他の例において、立ち上がり時間又は立ち下がり時間のデジタル化制御を可能にする出力回路として、デジタル‐アナログ変換器を使用してもよい。さらに別の例において、デジタル‐アナログ変換器によって出力スイッチへの制御信号を生成することができ、それによって、出力回路構成それ自身へのオン/オフ信号を操作することができる。さらに別の例において、2019年3月15日に出願され、波形発生器及び選択的細胞切除の制御と題された米国仮特許出願第62/819,101号(その開示は、参照によって本願に組み込まれる)に示したコンデンサスタック出力を使用して、迅速な立ち上がり時間は、コンデンサスタックの最上部からの1つのスイッチング出力(又は所望の目標レベル)を用いて達成されてもよく、また、遅い立ち上がり時間は、コンデンサスタックのすべてよりも小さい出力を用いて出力を順にオンさせ、次いでさらにコンデンサスタックを出力に追加することによって達成されてもよい。出力回路構成における適切に配置されたダイオードは、このような操作時のコンデンサスタックの新しく追加された部分の逆電流又は短絡を防止する。
【0055】
図8は、今回は、二相信号についてのさらなる詳細を示す。ここでは、波形は180で示され、最初は182の正パルスであり、すぐ後に190の負パルスが続く。正パルス182は振幅184を有し、負パルス190は、通常は正パルスと電圧は等しいが、正パルスとは逆の極性である振幅192を有する。正パルス182はパルス幅186を有し、負パルス190はパルス幅194を有する。通常は、2つのパルス幅186、194は互いに等しい。示されている信号については、サイクル長は、正パルス182の始めの部分からその後のサイクルの開始まで、196で示されているように決定することができる。同様に、周波数はサイクル長の逆数である。
【0056】
二相信号の典型的な印加又は使用において、その目的は、一部分において、各サイクルの終わりに電荷平衡を達成することである。そのため、二相のパルス幅は等しく保たれ、極性は逆ではあるが振幅も等しい。電圧制御又は電流制御システムのどちらを使用する場合でも、単にパルス幅及び振幅を制御することによって、電荷平衡を合理的に維持することができる。たとえば、電圧制御システムにおいて、電流の流れは、サイクル内で大なり小なり一定であり、サイクル長196はミリ秒範囲以下であることが想定される。すなわち、切除手術時に、細胞が破壊されるにしたがって組織インピーダンスは変化し、一般にインピーダンスを減少させる細胞媒体を排出することが公知であるが、インピーダンスは直ちに変化することはないため、単純な二相波形は電荷平衡を与えることができなくなる。
【0057】
位相間の時間188は、正及び負パルス間のベースラインにおいて使われる時間間隔であり、基礎となる回路構成の物理的制約に従って通常は最小化される。したがって、たとえば、第1スイッチをオフにして正パルス182を終了させる必要があり、第2スイッチが負パルス190を開始させるために用いられる場合、デジタル制御を想定して、可能性のある内部短絡を防止するために、システムは、第1スイッチをオフにして、次いで第2スイッチをオンにした後に数デジタルクロックサイクルを終了してもよい。より速い切り替えにより、この位相間の時間を短縮させることができ、この時間間隔188を短縮するために多くのエンジニアリングの努力が行われている。
【0058】
たとえば、非常に短い位相間の時間188は、米国特許第10,154,869号に示すような設計を用いて達成することができる。特許第10,154,869号において、インダクタは出力負荷と平行して配置される。電源は、治療送達の初期段階において負荷とインダクタに印加される。電源と負荷/インダクタとの間のスイッチを開くことによって、電源が切断された後、インダクタが負荷から電流を引き出すため、負荷を流れる電流がほぼ瞬時に反転する。
【0059】
図6~
図8から、一般的な使用法の背景が得られる。以下にさらに示すいくつかの実施形態において、単相パルスは、筋肉刺激を防止する電荷平衡に関して二相の成果を達成するために用いられる。本明細書におけるすべての例において、用語「筋肉刺激を引き起こさずに」とは、少しの筋肉刺激は許容されるが、それは該当する介入及び手術領域内で、又は介入もしくは手術領域内で許容される量のみであることに留意する必要がある。たとえば、生じる刺激は、患者が不快に感じるほど強くはない。他の例において、生じる刺激は、組織を除去するための手術が、刺激を受けた患者の動作によって干渉を受けない程度に小さい。他の例において、生じる筋肉刺激は、手術に影響がなく、麻痺薬の投与を必要とせずに手術を行うことが可能である。いくつかの例において、生じる刺激は、プローブの配置と固定に影響を及ぼさないか、又は十分に小さいために、プローブの移動が生じない。
【0060】
図9は、ブロック方式の信号発生器を示す。信号発生器200は内蔵型ユニットであってもよく、またそれは、ワイヤ及び無線接続のうちの少なくともいずれか一方とともに接続されたいくつかの個々の構成要素を含んでもよい。制御ブロックは202で示されており、ステートマシン、マイクロコントローラ及び関連するデジタル論理又はマイクロプロセッサの形での複数の論理回路や、さらには、必要に応じてラップトップ又はデスクトップコンピュータなどの既成の演算装置を含んでもよい。メモリ204は、制御ブロック202から独立していてもしていなくてもよく、操作のための実行可能命令セットを格納するだけでなく、システムの動作のログ及び、治療時に受信されるセンサ出力を保管するためにも含まれる。メモリ204は揮発性又は不揮発性メモリであってもよく、光学メディア、デジタルメディア、フラッシュドライブ、ハードドライブ、ROM、RAMなどを含んでもよい。UI又はユーザインタフェース206は、制御ブロックに組み込まれてもよい(制御装置202のためにラップトップ(メモリ204及びUI206のそれぞれを含む)を用いる場合など)。UI206は、必要に応じて、マウス、キーボード、スクリーンタッチスクリーン、マイクロホン、スピーカなどを含んでもよい。
【0061】
電源入力208は、電池(単数又は複数)を含んでもよいが、通常は、線電源を受け取るための壁コンセントに差し込む電気的接続を含む。治療ブロックは210で示され、いくつかの段階を含む。絶縁及び電圧変換回路は212で示され、たとえば、電池又は線電圧を受け入れ、HVストレージ214に格納される高電圧出力に増加させる1つ以上の変圧器又は他の昇圧コンバータ(容量式昇圧変換回路など)を含んでもよい。HVストレージ214は、電池、インダクタ又は他の回路素子を含んでもよいが、通常は、積層型コンデンサなどの容量式ストレージブロックである。HVストレージ214は、ブロック212からHV信号を取得し、経時的にそれを平滑化して、それからHV出力回路216によって送達されるより安定した高電圧出力を提供するのに役立ててもよい。また、HVストレージ214は、長時間にわたってエネルギーを格納して短いバーストで送達することによって、低出力電圧入力が、非常に高い電源出力を生成することを可能にしてもよい。
【0062】
HV出力回路216は、出力制御回路の役割を果たしてもよい。HV出力回路216には、218で示されるIOブロックへの高電圧信号の選択的出力を可能にする、たとえば、シリコン制御式整流器、高出力Mosfet及び他の要素などの高電圧スイッチを含む多くのスイッチ及び他の要素が含まれる。IOブロック218は、1つ以上の送達プローブ220からのプラグを受け入れるためのいくつかのコンセントだけでなく、リターン電極として役立てるか、又は単に患者及びシステムを接地するための、患者の身体に配置される1つ以上の不関電極の1つ以上の出力を提供してもよい。
【0063】
治療ブロック210へのいくつかの代替的アプローチにおいて、HVストレージから信号を直接に出力するためのスイッチのセットを用いるHV出力216ではなく、共振回路は、HV信号を電源として、共振回路の出力を選択的に切り替えることによって、共振回路の出力を治療送達に用いてもよい。「Hブリッジ」における4つのスイッチのセットを用いてRF回路を駆動するトポロジーは、たとえば米国特許第10,105,172号に示されている。いくつかの実施形態において、個々のパルスの制御は、本発明において、2019年3月15日に出願され、波形発生器及び選択的細胞切除のための制御と題された米国仮特許出願第62/819,101号(その開示は、参照によって本願に組み込まれる)に示すように、駆動RF回路を省略し、単に拡張Hブリッジ回路の1形態に依存することによって達成される。
【0064】
制御ブロック202へのフィードバックを提供するために、1つ以上の検出回路224が含まれてもよい。たとえば、検出回路は、プローブ220への出力ノードの電圧を測定してもよく、組織性状を観察することを可能にするプローブ220に接続する出力ノードに向かう電流を測定してもよい。たとえば、一例として直接変換、遂次近似、ランプ型、ウィルキンソン、積分、デルタコード化、パイプライン化、シグマデルタ、及び時間インターリーブADCなどのうちの少なくともいずれか1つを含む電圧測定回路は当該分野で周知であり、適用に適している場合は、それらのいずれも使用してもよい。電流測定回路構成は、たとえば、トレース抵抗検出、変流器又はロゴスキーコイルなどの、ファラデーの法則に基づく電流センサ、又は1つ以上の伝送路に電気的又は磁気的に接続された磁場センサの使用(ホール効果、フラックスゲート、及び磁気抵抗電流センサのうちの少なくともいずれか1つ)を使用してもよい。出力回路構成の電流検出を使用して、安全の目的のために、短絡又は過電流状態を防止したり、抑えてもよい。
【0065】
他の例において、プローブ220は、温度センサ、力センサ又は化学物質もしくはpHセンサなどのセンサを含んでもよく、それらのいずれも、治療送達時に組織性状を監視するために使用することができる。たとえば、温度センサを使用して、ある領域の温度が閾値温度より高くなっているか、又は上昇傾向を示しているかどうかを観察することによって、電気穿孔などの非熱療法を管理してもよく、その場合、電源出力の1つ以上の要素を減少させて、所望の治療タイプが優位であることを確認してもよい。プローブがこのような部材を含む場合、検出回路224は、感知された信号が制御ブロック202での使用のために調整されることを可能にするために、任意の適切な増幅器、フィルターなどを含んでもよい。
【0066】
検出回路224は、以下に述べるように、心調律を捕捉し、治療送達のための生理学的ウィンドウを同定するために、1つ以上の電極(たとえば患者の胸部に配置した表面電極)とともに使用するのに適した心調律センサを含んでもよい。治療のための生理学的ウィンドウを同定するための心臓信号は、代わりに、クリニック内ECGモニター、心臓モニター、ペースメーカ又は除細動器などの埋め込み型医療機器、又は心調律を検知する様々なウェアラブル製品から受信してもよい。
【0067】
任意選択で、「他の治療」ブロック222を含めてもよい。「他の」治療は、たとえば、追加の治療を提供するため、送達される治療を促進するため、又は免疫反応を引き起こして切除後の身体の治癒自体を容易にするための化学薬品又は生物学的製剤の送達を含んでもよい。このような他の治療222は、たとえば、シリンジ又はカテーテル又はプローブによって患者に送達される材料のリザーバ(詰め替え可能であってもよい)を含んでもよい。「他の治療」222は、電気的に送達される治療の切除効果を、促進するため、増強するため、相乗的に発揮するため、又は別に追加するための物質を導入することを含んでもよい。たとえば、物質注入と電界印加の組み合わせによる不可逆的電気穿孔と題された米国特許出願第16/188,343号(その開示は、参照によって本願に組み込まれる)に開示されているように、電界効果を改変又は増強するために物質を注入してもよい。
【0068】
いくつかの例において、必要に応じて免疫反応を促進して、電気的切除の前、最中又は後に組織冷却を可能にする凍結療法をこのシステムに組み込んでもよい。凍結療法は、たとえば、治療プローブ220上のバルーンを用いて送達されてもよく、亜酸化窒素などの加圧流体源に接続されたバルーン内のノズルとは別に提供されてもよい。たとえば米国特許第6,428,534号に開示されているように、ノズルから排出された加圧流体は、膨張するか、又は液体からガスへの相変化を行って局所冷却を引き起こす。他の例において、流体(ガス又は液体)は、外部で冷却され、凍結目的でカテーテルによって導入されてもよく、これに変えて外部で熱せられ、加熱切除目的で、カテーテルによって導入されてもよい。
【0069】
さらに他の例において、他の治療222は、機械的エネルギー(たとえば超音波)又は、たとえば、標的組織にレーザーエネルギーが送達されるのを可能にするプローブを通して延びている光ファイバーに接続されたレーザー源(たとえば垂直共振器面発光型レーザー)を用いる光エネルギーなどのエネルギーの送達を含んでもよい。いくつかの例において、指摘したように、標的組織を破壊するための主要アプローチとして使用されない場合であっても、免疫反応を引き起こすための二次の又は「他の」治療を使用してもよい。
【0070】
いくつかの例において、筋肉刺激を低減又は最小化する二相効果は、正相信号と負相信号とを時間的に分離して単相治療効果を提供することによって達成される。治療は、2つのルールのそれぞれを満たす1つ以上のパルス列を用いて送達されてもよい。
‐電荷平衡ルール:以下の範囲内の電荷平衡又は電荷平衡の近似を与えることによってパルス列が完了する。
〇組織型及び水分含有量などの因子に依存する場合がある、周辺組織の時定数よりも小さい時間間隔。周辺組織の時定数は、電界内の組織及び細胞の複素インピーダンスを反映する。たとえば、2つの電極間の組織の時定数は、その複素インピーダンスによって決定される。簡略化したモデルでは、時定数は、2つの電極間で生成される電界内の、細胞を含む組織の抵抗を掛けた静電容量になる。すでに分極化されている細胞又は組織は、より大きいか又はより小さい有効時定数を有していてもよい。
○約1ミリ秒未満の時間間隔
○患者を試験することによって決定された、患者が許容できる最大時間間隔。たとえば、患者を試験するために、治療出力は、ある時間間隔によって分離された第1部分及び第2部分を含んでもよく、第1部分と第2部分を分離する間隔は、筋収縮が認められるまで、患者が収縮又は張力を感じることを報告するまで、又は患者によって不快感が示されるまで延ばすことができ、治療の第1部分は、電荷の不均衡をもたらす第1単相パルス(単数又は複数)であり、治療の第2部分は、電荷の不均衡を取り除くように構成されている。たとえば、二相出力は、位相間の時間(
図8、188)をパルス幅の倍数まで制御し広げることによって、たとえば数十マイクロ秒又は数百マイクロ秒、又はさらに患者が許容できる数ミリ秒まで分離され、なお以下に示す治療完了ルールの範囲内にとどまる、5マイクロ秒パルスを用いて、2つの部分に分離してもよい。
‐治療完了ルール:パルス列は、患者の心調律などの非治療因子の観察によって決定される生理学的ウィンドウ内で送達される。
【0071】
治療完了ルールに関しては、心臓をドライバーとして、心調律は、R波、QRS群、P波及びT波として一般に公知の様々な構成要素を含む。切除目的での非心臓組織の刺激は、心調律の妨げになるべきではなく、心臓は、R波ピーク(又はQRS群の終点)とT波との間の間隔では電気信号の干渉の影響を受けにくい可能性がある。この間隔は、ST間隔(S波はQRS群の終点となる)と呼ばれることもある。特定の患者のST間隔は数十ミリ秒持続する可能性があり、5~100ミリ秒の範囲である可能性がある。おおよそ60ミリ秒が健常者に一般的であるが、本明細書で説明した治療は必ずしも健康な人や一般的な人を対象とするものではないため、ST間隔は「一般的」でない可能性がある。一例において、R波が感知されると、治療バーストは、R波検出又はR波ピークから約50ミリ秒の遅延の後に送達される。いずれにしても、いくつかの例において、治療はST間隔ウィンドウ内で開始され、完了される。ST間隔又は他の生理学的に有用なウィンドウの同定に有用な心臓信号は、別の機器(外部又は埋め込み型の)から得られてもよく、又は患者の内部もしくは表面に配置された電極から心臓信号を受信するための入力を有する治療発生装置によって感知されてもよい。他の情報源は、ドライバーであってもよい。たとえば、横隔膜運動の検出は、患者がいつ吸気又は呼気したかに関する治療の送達の時間を設定するのに役立つ可能性がある。
【0072】
他の例において、これらのタイミングルールの一方、他方又は両方を省いてもよい。いくつかの例において、パルス列が1ミリ秒又は800マイクロ秒又は500マイクロ秒以内に平衡電荷状態に戻らなければならないというルールを設定することなどによってウィンドウを近似してもよい。
【0073】
図10は例示的な治療波形300を示す。この例は、第1相として、第1振幅314で、パルス幅312を用いる第1時間間隔の間、第1極性(この例では、パルス310は負の極性を有する)の第1出力310を生成することを含む、多相切除波形を送達する方法を示す。この方法において、次のステップは、第2振幅324で、パルス幅322を用いる第2時間間隔であって、第1時間間隔312の半分未満の第2時間間隔322の間、第1極性の逆の第2極性(示されているように、ここでは正の極性である)の第2出力320を生成する。一例において、第2時間間隔はたとえば、1~5マイクロ秒であってもよく、第2時間間隔は10マイクロ秒であってもよく、他の間隔を使用してもよい。いくつかの例において、第1時間間隔又はパルス幅312は、約1~50マイクロ秒の範囲であってもよく、第2時間間隔又はパルス幅322は、約0.5~10マイクロ秒の範囲であってもよい。この方法は、さらに、第2振幅よりも小さい第3振幅334で、パルス幅332で示される第3時間間隔であって、第1時間間隔を超える第3時間間隔の間、第2極性(再度、正の極性が示されている)を用いる第3出力330を生成することを含む。この例において、第3時間間隔は、たとえば、必要に応じて、約10~約500マイクロ秒の範囲であってもよい。この例でさらに、第1、第2及び第3出力の合計は、多相切除波形に伴う筋肉刺激を制限するための平衡電荷をもたらす。したがって、示されているように、全時間間隔340の間の、出力電流の積分(この場合、おおよそ電圧の積分であってもよい)はおおよそゼロである。数値例であって、限定するものではない例において、800ボルトの第1振幅314で、第1パルス幅312は約10マイクロ秒(8ミリ秒‐ボルト)であってもよく、800ボルトの第2振幅324で、第2パルス幅322は約4マイクロ秒(3.2ミリ秒‐ボルト)であってもよく、約48ボルトの電圧で、第3パルス幅332は約100マイクロ秒(4.8ミリ秒‐ボルト)であってもよい。これは、全間隔340の間、全般的に一定のインピーダンスを仮定すれば、平衡電荷出力をもたらすと考えられるシーケンスである。
【0074】
いくつかの例において、第1振幅314と第2振幅324は、それぞれ不可逆電気穿孔閾値を超え、第3振幅334は、不可逆電気穿孔閾値よりも小さい。たとえば、第1振幅と第2振幅は、使用中の電極間の距離に応じて、IRE閾値が、単位距離あたりのボルト、たとえば1センチメートルあたり670ボルトなどで規定されてもよいと認識して、約700~5000ボルトの範囲であるか、又はそれよりも大きくても小さくてもよく、一方、第3振幅は、たとえば、第1及び第2振幅の振幅の半分であるか又は半分よりも小さいか、又は別様にIRE閾値よりも小さい。
【0075】
いくつかの例において、第1振幅314と第2振幅324は、それぞれ不可逆電気穿孔閾値を超え、第3振幅334は可逆的電気穿孔閾値よりも小さい。たとえば、治療出力を構成するとき、治療電極間の距離は、上記の方法を用いて推定してもよく、又は公知であってもよい。次に、第1振幅314と第2振幅324は、IRE閾値を超えるように、たとえば670ボルト/cmを超えるように計算することができ、一方、第3振幅は、可逆的閾値よりも小さく、たとえば330ボルト/cmよりも小さく計算される。他の例において、第3振幅は可逆的電気穿孔閾値よりも大きくてもよい。第3振幅を大きく保つことは、第1及び第2相の治療送達320、治療送達330、又はそのいずれか一方の間に開孔した孔を、より長期間開放したままにするか、又はさらに発達して不可逆的になることを促進するのに役立つ可能性がある。
【0076】
図1で示されたような曲線は、治療の計画を支援するのに役立つ可能性がある。より長いか又はより短い持続時間が、可逆又は不可逆電気穿孔を達成するために必要な電界強度を決定する可能性があることに注目してもよい。これらの例は、振幅が、電気穿孔閾値よりも大きく又は小さく設定される(可逆的か否かを問わず)ことを意味するとしてもよいが、パルス幅を考慮した振幅が、このような閾値よりも大きいか又は小さいことを意味すると理解すべきである。このように、振幅への言及は、排他的な記述を意味するものではなく、これらの例のいずれかに関連する閾値は、所定のパルス幅での電界強度の閾値である。
【0077】
いくつかの例において、第3時間間隔は第1及び第2時間間隔の合計を超える。このような例は、所望の単極治療アプローチを模倣するとともに、所望の電荷平衡をもたらすのに役立ててもよい。いくつかの例において、第2時間間隔は、たとえば第1時間間隔の4分の1又は10分の1の第2時間間隔を使用することで、上記よりもはるかに短くしてもよい。
【0078】
いくつかの例において、第1、第2及び第3時間間隔は、合計して1ミリ秒未満の持続時間となる。全持続時間340が1ミリ秒未満であることを確実にすることによって、筋肉刺激の可能性を回避又は減少させる時間枠内で電荷平衡を達成することができる。
【0079】
いくつかの例において、第1出力310と第2出力320とは、少なくとも10ナノ秒の位相間の間隔316によって分離され、第2出力と第3出力とは、位相間の間隔によって分離されない。
図10の図面において、位相間の間隔がないことが示されている。このようなアプローチは、米国特許第10,154,869に示されているトポロジーを用いて実現されてもよい。しかしながら、他の例において、出力電圧が生成されない位相間の間隔316は、数ミリ秒未満の時間間隔内で電荷平衡を達成する目的に留意しつつ、1ナノ秒から数十マイクロ秒、さらには数百マイクロ秒までの範囲の持続時間を有していてもよい。位相間で、出力電極は開回路状態であってもよく、又は、必要に応じて、基準電圧に接地もしくは接続されてもよい。しかしながら、ほとんどの場合、電極は開回路状態であり、高インピーダンス状態に置かれている。
【0080】
いくつかの例において、波形300は、第1及び第2反復で反復して送達されてもよく、第3反復又はそれ以上の反復を使用してもよい。このようないくつかの例において、事前設定されたパラメータのセットを用いて第1反復を行い、出力を送達すると同時に、第1出力310、第2出力320及び第3出力330のそれぞれに対するインピーダンス又は電流の流れの1つ以上を監視する。次いで、方法は、第2(及び場合によってそれに続く)反復において、もしあれば、監視されたインピーダンスによって生じる変化の不均衡を減少させるために、第1出力310、第2出力320及び第3出力330の少なくとも1つの振幅又はパルス幅の少なくとも1つを調整することを含む。このようないくつかの例において、第1及び第2反復は、10ミリ秒未満の時間間隔内、又は1ミリ秒未満の時間間隔内で行われる。たとえば、上記の数値例に戻って、治療送達のための全間隔340は、約115マイクロ秒を用いて議論される。200マイクロ秒間隔で反復が開始される場合、1ミリ秒ウィンドウ内で5反復を用いることが可能である。上記のように、繰り返される反復のためのウィンドウは、たとえば心周期STウィンドウ内に収めるためにさらに長くすることができ、たとえば約50ミリ秒まで、又はそれ以上にすることができる。各反復がインピーダンスを用いて調整されるか否かにかかわらず、
図10に示されるような波形を繰り返し送達することができることに注意が必要である。
【0081】
図11は、例示的な治療波形を示す。この例は、第1振幅414及び第1パルス幅412を有し、第1極性(この図示では負)の第1パルス410を含む第1パルス列430と、第2振幅424を有し、かつ第1パルス幅412よりも小さい第2パルス幅422を有する、第1極性とは逆の第2極性の第2パルス420とを交互に生成することを含む、多相切除波形を送達する方法を示す。この例は、さらに、第3振幅444及び第3パルス幅442を有する第1極性の第3パルス440を含む第2パルス列460と、第4振幅454及び、第3パルス幅442を超える第4パルス幅452を有する第2極性の第4パルス450とを交互に生成することを含む。この方法例は、第1パルス列430が第1電荷の不均衡をもたらし、第2パルス列460が、第1電荷の不均衡を相殺して筋肉刺激を防止するための第2電荷の不均衡をもたらすように行ってもよい。第1パルス列430の電荷の不均衡は、振幅414とパルス幅412と第1パルス列430の第1パルスの量410との積と、振幅424とパルス幅422と第1パルス列430の第2パルスの量420との積との間の差異に比例するであろう。
【0082】
いくつかの例において、第1振幅414と第2振幅424とは同じであり、第3振幅444と第4振幅454とは同じである。さらに、方法は、第1パルス列430の開始から第2パルス列460の終了までの時間470が、第1パルス列430の電荷の不均衡による筋肉刺激を回避できるほど十分に短くなるように行ってもよい。たとえば、時間470は、1ミリ秒よりも短くてもよく、2ミリ秒よりも短くてもよく、又は、必要に応じて、他の持続時間であってもよい。
【0083】
いくつかの例において、第1パルス幅412と第4パルス幅452とは持続時間が同じであり、第2パルス幅422と第3パルス幅442とは持続時間が同じである。たとえば、第1パルス幅412と第4パルス幅452は約1~約20マイクロ秒の範囲であってもよく、第2パルス幅422と第3パルス幅442は約0.1~約10マイクロ秒の範囲であってもよい。いくつかの例において、第1パルス幅412は第2パルス幅422の約2倍であり、第4パルス幅452は第3パルス幅442の約2倍である。他の例において、第1、第2、第3及び第4パルス幅は、それぞれ、約0.1~50マイクロ秒の範囲にあり、他の適切な比を有していてもよい。一般に、この概念は、単独で送達される場合はいずれも不均衡であるが、筋肉刺激を引き起こすことなく電荷平衡を達成できるほど十分に短い時間内で送達が行われる、2つのパルス列を提供することである。
【0084】
いくつかの例において、第1パルス列430は、第1パルス410の第1量と第2パルス420の第2量とを含み、第2パルス列460は、第3パルス440の第3量と第4パルス450の第4量とを含み、第1、第2、第3及び第4量は全て同じである。
【0085】
いくつかの例において、第1、第2、第3及び第4振幅は、それぞれ、不可逆電気穿孔閾値を超える。指摘したように、「閾値」は、一部分において、パルス幅だけでなく、電極間の距離に依存してもよい。他の例において、第1、第2、第3及び第4パルス幅は、それぞれ、約0.1~500マイクロ秒の範囲にある。
【0086】
代替処方において、パルス列430は、パルスp1、p3及びp5が同じ極性であり、それぞれがパルス幅PWを有するが、パルスp2及びp4は反対の極性であり、それぞれがパルス幅1.5×PWを有し、それぞれの極性で送達されるパルスの電荷量は同じではなくても、バランスのとれた電荷出力をもたらす、それぞれが同じ振幅を有する、パルスp1~p5などの奇数のパルス数を含んでもよい。他の例において、パルス列430は、パルスp1、p3及びp5が同じ極性であり、それぞれが振幅Vを有するが、パルスp2及びp4は反対の極性であり、それぞれが振幅1.5×Vを有し、また非対称な出力を提供するが、パルス列の終結時には電荷平衡を提供する、それぞれが同じパルス幅を有する、パルスp1~p5などの奇数のパルス数を含んでもよい。
【0087】
図12は例示的な治療波形を示す。この例において、多相切除波形500を送達する方法は、第1振幅514及び第1パルス幅512を有する第1極性の第1パルス510を生成し、第1極性の逆の第2極性の複数の第2パルス522であって、第2振幅526及び第2パルス幅524を有し、第2パルス幅524が第1パルス幅の分数、たとえば第1パルス幅514の半分よりも小さいか、又は1/4よりも小さい第2パルス522を有する第1パルス列520を生成することを含む。切除波形500は、第1パルス510が第1電荷の不均衡をもたらし、第1パルス列520が、筋肉刺激を防止するための第1電荷の不均衡を相殺する第2電荷の不均衡をもたらすように送達されてもよい。この例において、第1パルスの、より広いパルス幅512は比較的長くてもよく、実際、反復して送達された場合には組織の加熱をもたらし始めるほど長くてもよい。しかしながら、それに続く相殺パルス列520は、より短いパルス幅を用いるため、この加熱効果を減少させるか、又はさらには打ち消すであろう。
【0088】
いくつかのさらなる例において、複数の第2パルス522は、それぞれ、パルス間隔528であって、第2パルス幅524の2分の1から2倍の間のパルス間隔528で分離されている。いくつかの例において、パルス間隔528は、第2パルス幅524の2倍よりもさらに長くてもよい。たとえば、このパルス間隔は、このパルス幅の数十倍又は数百倍であってもよく、たとえばこの第2パルス幅の最大数千倍であってもよい。位相間間隔を516で示す。位相間間隔516は、必要に応じて省いてもよい。含まれる場合、位相間間隔は、数ナノ秒から数百マイクロ秒までの任意の適切な長さであってもよい。最初のパルス510とパルス列520との間隔をあけることによって、単相結果がさらに達成されてもよい。他の例と同様に、たとえば1ミリ秒よりも短くすることによって、筋肉刺激を引き起こすことなく電荷平衡を達成できるほど十分に短くなるように全間隔530が選択されてもよい。
【0089】
いくつかの例において、第1パルス幅は、第2パルス幅の合計と同じである。さらに他の例において、第1振幅と第2振幅は、それぞれ不可逆電気穿孔閾値を超える。すでに指摘したように、適用可能なIRE閾値は、組織と使用中のパルス幅とによって異なってもよい。
【0090】
示されている例は、第1パルス510と、パルス列520のパルス522の両方について同じ振幅が用いられていることを示している。他の例において、第1振幅514は第2振幅526よりも小さく、第2パルス幅524の合計は、第1パルス幅512よりも小さい。いくつかの例において、第2パルス幅524とパルス間隔528(すなわちパルス列520の全持続時間)との合計は、第1パルス幅と同じである。必要に応じて、順番は逆であってもよい。
【0091】
図13は、例示的な治療波形を示す。この例において、2つの複合単極出力が組み合わされて電荷平衡を生じる。第1出力560は、比較的小さい振幅の第1パルス562と、それに続くより大きい振幅とより短いパルス幅を有するいくつかのパルス564とを含む。562と564の順番は、必要に応じて逆であってもよい。他の例において、このより大きい振幅パルスは、第1パルス562と重ね合わされてもよい。
【0092】
第2出力570は、少しの持続時間552の後で送達される。持続時間552は、任意の適切な持続時間であってもよいが、第1出力560の持続時間と同じか又はそれを超えるように比較的長くし、さらに、1ミリ秒未満の間隔580内で全治療550が送達されるのを可能にするのが好ましい。第2出力570も、より長いパルス幅とより小さい振幅部分572と、短いパルス幅とより大きい振幅列574を含んでもよい。この例において、パルス562とパルス572の振幅は、パルス幅と同様に異なっているが、そうである必要はなく、また他のパルス562とパルス572では、振幅とパルス幅に関して同じであるが、極性は逆である。一例において、短いパルス564とパルス574の振幅はIRE閾値よりも大きく(同様に、電極の距離と適用可能なパルス幅とを考慮して)、他のパルス562とパルス572はIRE閾値よりも小さい。
【0093】
いくつかの例において、パルス562及び572は、それに続くパルスによって引き起こされるIREのために組織を整えるために送達されるプライミングパルスである。さらなる例において、「プライミング」パルス562及び572は、それぞれ、短いパルス564及び574に対して逆の極性である。
【0094】
図14は例示的な治療波形を示す。この例において、第1パルス対610が送達され、それ自身、電荷バランスがとれている。第1パルス対610は、第1パルス幅及び第1振幅を有する第1極性の第1パルス612と、位相間遅延616後に送達される第2パルス614であって、第1パルス612の振幅の2倍よりも大きい、またいくつかの例においては3倍よりも大きい、振幅を有する第2パルス614とを含む。電荷平衡を達成するために、第2パルス614は、第1パルス612よりもパルス幅がはるかに短いが、第1パルス612の振幅とパルス幅との積は、第2パルス614の振幅とパルス幅との積と同じである。2つの610と620の間にパルス間間隔618を置いて、第1パルス対610の繰り返しとなる、第2パルス対620を送達してもよい。第1パルス対610を送達するのに必要な時間は、好ましくは、周辺組織の時定数よりも小さい。すなわち、パルス612及び614は、いずれも、筋肉刺激なしに電荷平衡を達成する時間内に送達される。2つのパルス対610と620は、持続時間630が、ウィンドウが可能にするよりも短くなるように、ST間隔などの生理学的ウィンドウ内に送達される。
【0095】
図15は、例示的な治療波形650を示す。この例は、2つの段階的波形660と670を示す。より具体的には、図は、多相切除波形650を送達する方法であって、それぞれが、あるパルス幅とある振幅を有する複数の第1パルスを含む第1パルス列660を送達することを含む方法において、時間的に最初の第1パルス662は第1振幅を有し、第1パルスの連続するパルスのそれぞれは、直前のパルスよりも大きい振幅を有し、第1パルスのそれぞれは第1極性を有する方法を示す。いくつかの例において、列660における第1パルス662の振幅は、IRE閾値よりも小さいが、最終パルス664は、パルス幅と電極距離を考慮して、組織のIRE閾値を超える振幅を有する。方法例は、第2パルス列670を送達する方法であって、それぞれが、あるパルス幅とある振幅とを有する複数の第2パルスを含む方法において、時間的に最初の第2パルス672は第1振幅を有し、第2パルスの連続するパルスのそれぞれは、直前のパルスよりも大きい振幅を有し、第2パルスのそれぞれは、第1極性の逆の第2極性を有する方法も含む。いくつかの例において、列670における第1パルス672の振幅はIRE閾値よりも小さいが、最終パルス674は、パルス幅と電極距離を考慮して、組織のIRE閾値を超える振幅を有する。いくつかの例において、2つのパルス列660と670は、たとえば、第1パルス662と672とは、それぞれ同じ振幅(であるが逆の極性)及びパルス幅を有するように、同じで逆側であり、また、最終パルス664と674についても同じことが言える。2つのパルス列は、少なくとも個々のパルス幅のいずれかを超え、好ましくはそのパルス幅の少なくとも4、8又は16倍である間隔652によって分離されてもよい。
【0096】
この例において、筋肉刺激を引き起こさずに、第2パルス列670の終結時に電荷平衡が達成されるように、約1ミリ秒未満の時間窓680内に第1パルス列と第2パルス列とが送達される。
【0097】
他の例において、合計して電荷バランスのとれたパルス列とならない一連の単相パルスを提供することができる。一連の単相パルス内で、一部はIRE閾値を超えてもよく、他は可逆的電気穿孔閾値のみを超えるパルスも印加される。必要に応じて、電荷平衡目的で、一連の単相パルスのバランスを取るために、より小さい振幅で長いデューティサイクルパルスを提供することができる。
【0098】
本発明のいくつかの実施形態は、患者に切除治療を送達するためのプローブとともに使用するために構成されたパルス発生器であって、電圧ベースの治療を送達するための出力回路構成と、送達される治療パルスの特徴を監視するための監視回路構成と、上記の方法のいずれかに記載の治療を送達するのに適した実行可能命令セットを含む不揮発性メモリを含む制御回路構成とを含むパルス発生器の形態を取る。
【0099】
本発明のいくつかの実施形態は、切除治療送達のための複数の電極を有する、患者への挿入のためのプローブと、患者に切除治療を送達するためのプローブとともに使用するために構成されたパルス発生器であって、電圧ベースの治療を送達するための出力回路構成と、送達される治療パルスの特徴を監視するための監視回路構成と、上記の方法のいずれかに記載の治療を送達するのに適した実行可能命令セットを含む不揮発性メモリを含む制御回路構成とを含むパルス発生器とを含むシステムの形態を取る。
【0100】
上記の例において、送達されるパルスに適用可能な場合、用語第1、第2、第3、第4などは、必ずしもパルスの送達の順番を示すものではないことに留意すべきである。「第3」パルスと呼ばれるパルスは、「第1」、「第2」又は「第4」と呼ばれるパルスに対して時間的に最初に送達されてもよく、また他の順番を使用してもよい。
【0101】
これらの限定されない例のそれぞれは、単独で通用することもできるが、他の例の1つ以上と様々な順列又は組み合わせで組み合わせることもできる。上記の詳細な説明には、発明の詳細な説明の一部を構成する添付図面への参照が含まれている。図面は、本発明を実施することができる特定の実施形態を例示として示している。これらの実施形態は、本明細書では「実施例」とも呼ぶ。このような例は、図示又は記載されているものに加えて要素を含むことができる。しかしながら、本発明者らは、図示又は記載されている要素のみが提供される例も企図する。さらに、本発明者らは、特定の例(又はその1つ以上の態様)に関して、又は本明細書に図示又は記載されている他の例(又はその1つ以上の態様)に関して、図示又は記載されているこれらの要素(又はその1つ以上の態様)の任意の組み合わせ又は順列を用いる例も企図する。本文書と、参照によって組み込まれる任意の文書との間に矛盾した用法が用いられている場合、本文書の用法が優先する。
【0102】
本文書において、特許文献では一般的であるように、用語「a」又は「an」は、「少なくとも1つの」又は「1つ以上の」という任意の他の例又は使用に依存せず、1つ又は1つ以上を含むために使用される。さらに、下記の請求項において、用語「第1」、「第2」及び「第3」などは、単に符号として使用され、それらの対象に数値要件を課すものではない。
【0103】
本明細書に記載の方法の例は、少なくとも一部分において機械又はコンピュータに実装可能である。いくつかの例は、上記の例で説明された方法を実行する電子機器を構成するように動作可能な命令で符号化された、コンピュータ可読媒体又は機械可読媒体を含むことができる。このような方法の実施態様は、たとえばマイクロコード、アセンブリ言語コード、高級言語コードなどのコードを含むことができる。このようなコードは、様々な方法を実行するためのコンピュータ可読命令を含むことができる。コードは、コンピュータプログラム製品の一部を形成してもよい。さらに、一例において、コードは、実行中又は他の時間などに、1つ以上の揮発性、非一次的、又は不揮発性の有形のコンピュータ可読媒体に有形に格納することができる。これらの有形のコンピュータ可読媒体の例は、限定するものではないが、ハードディスク、取り外し可能なディスク、メモリカード又はスティック、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)などを含むことができる。
【0104】
上記の説明は、例示を目的としたものであり、限定を目的としたものではない。たとえば、上記の例(又はその1つ以上の態様)は、互いに組み合わせて使用してもよい。たとえば、当業者は、上記の説明を精査することによって、他の実施形態を使用することができる。
【0105】
要約は、読者が、技術的開示の性質を素早く確認できるように、37C.F.R.§1.72(b)に準拠して提供されている。要約は、請求項の範囲又は意味を解釈又は制限するために使用されないという理解のもとに提出されている。
【0106】
また、上記「発明を実施するための形態」において、様々な特徴をまとめて、本開示を簡素化してもよい。これは、請求されていない開示された特徴が、請求に不可欠であることを意図すると解釈されるべきではない。むしろ、発明の主題は、開示されている特定の実施形態の全部の特徴にあるとは限らないことがある。したがって、以下の請求項は、本明細書において実施例又は実施形態として「発明を実施するための形態」に組み込まれ、各請求項は、個別の実施形態として独立しており、そのような実施形態は、さまざまな組み合わせ又は入れ替えにおいて互いに組み合わされうると想定される。本発明の範囲は、添付の特許請求の範囲を参照して、そのような請求項に権利が認められる均等物の全範囲とともに判断されるべきである。