(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-11
(45)【発行日】2023-12-19
(54)【発明の名称】高性能ワイヤレスバックホールのためのHARQ設計
(51)【国際特許分類】
H04W 28/04 20090101AFI20231212BHJP
H04W 16/26 20090101ALI20231212BHJP
H04L 27/26 20060101ALI20231212BHJP
H04L 1/16 20230101ALI20231212BHJP
H04W 72/0446 20230101ALI20231212BHJP
H04W 28/06 20090101ALI20231212BHJP
【FI】
H04W28/04 110
H04W16/26
H04L27/26 100
H04L1/16
H04W72/0446
H04W28/06 130
(21)【出願番号】P 2022107648
(22)【出願日】2022-07-04
(62)【分割の表示】P 2020066448の分割
【原出願日】2016-01-22
【審査請求日】2022-07-31
(32)【優先日】2015-01-22
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2015-10-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【代理人】
【識別番号】230129078
【氏名又は名称】佐藤 仁
(72)【発明者】
【氏名】ピエール バートランド
(72)【発明者】
【氏名】ジューン チュル ロー
(72)【発明者】
【氏名】ジュン ヤオ
【審査官】桑原 聡一
(56)【参考文献】
【文献】国際公開第2015/005463(WO,A1)
【文献】特表2017-523644(JP,A)
【文献】Qualcomm Incorporated,Coverage enhancement techniques[online], 3GPP TSG-RAN WG1#86b R1-1610438,インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1610438.zip>,2016年10月10日
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24-7/26
H04W 4/00-99/00
H04L 27/26
H04L 1/16
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
ワイヤレス通信システムを動作させる方法であって、
アップリンク(UL)及びダウンリンク(DL)伝送の一方のためのパラメータを示すダウンリンク制御情報(DCI)を第1のトランシーバから第2のトランシーバに送信すること
と、
前記伝送がUL及びDL再伝送の一方によってプリエンプトされるかどうかを示すために
前記DCIと共にプリエンプト信号を送信すること
と、
を含む、方法。
【請求項2】
請求項
1に記載の方法であって、
前記プリエンプト
信号が先行する伝送の再伝送のための第1の論理状態を有し、前記DCIが前記再伝送のフォーマットを示す、方法。
【請求項3】
請求項
1に記載の方法であって、
前記第1のトランシーバによってサーブされる第2のトランシーバが
前記UL及びDL伝送の一方のためにスケジュールされないとき
に、前記プリエンプト
信号が第2の論理状態を有する、方法。
【請求項4】
請求項
1に記載の方法であって、
前記第1のトランシーバによってサーブされる第2のトランシーバが
前記UL及びDL伝送の一方のためにスケジュールされないとき
に、前記第1のトランシーバからの前記DCIが全てゼロである、方法。
【請求項5】
請求項1に記載の方法であって、
動的割当てにおける前記UL及びDL伝送の一方のために前記第2のトランシーバをスケジュールすることと、
前記第2のトランシーバから前記スケジュー
ルするための否定応答信号を受信することと、
前記第1のトランシーバからの前記DCIを全てゼロに設定することと、
前記プリエンプト信号を第1の論理状態に設定することと、
を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、概して、ワイヤレス通信システムに関し、より詳細には、時分割複信ロングタームエボリューション(TD-LTE)無線アクセスネットワーク(RAN)と互換性がある、NLOS(Non-Line-Of-Sight)ワイヤレス通信システムの低オーバーヘッド制御信号に関する。
【背景技術】
【0002】
セルラーネットワークにおける膨大なデータ需要増加に対する主な対応策は、典型的にマクロセルによってサーブされるユーザーの数より少ない数のユーザーにロングタームエボリューション(LTE)接続を提供する、スモールセルの配備である。これにより、より大きな送信/受信リソース機会をユーザーに提供すること、及び、マクロネットワークの負荷を軽減すること(offloading)の両方が可能となる。しかし、スモールセルの無線アクセスネットワーク(RAN)の技術的課題が、3GPPリリース10~12を通じて、相当な標準化の取組みの焦点であったが、バックホールのRANの技術的課題にはほとんど注意が払われなかった。それは、特に、有線バックホールが通常は利用可能でない屋外のスモールセル配備にとって、難しい技術的課題である。これはしばしば、灯柱、道路標識、バス待合所等など、スモールセルサイトの非従来的なロケーションに起因しており、この場合、ワイヤレスバックホールが最も実用的な解決策である。
【0003】
E-UTRAN(Evolved Universal TerrestrialRadio Access Network)としても知られるLTEワイヤレスアクセス技術は、3GPPワーキンググループによって標準化された。OFDMA及びSC-FDMA(シングルキャリアFDMA)アクセス方式が、それぞれ、E-UTRANのDL及びULに対して選択された。ユーザー機器(UE)は、物理的アップリンク共有チャネル(PUSCH)及び物理的アップリンク制御チャネル(PUCCH)上で時間及び周波数多重化され、UE間の時間及び周波数同期が、最適なセル間直交性を保証する。LTEエアインタフェースは、最良のスペクトル効率と、最近のセルラーネットワーク規格のコストトレードオフとを提供し、そのため、無線アクセスネットワーク(RAN)のための固有の4G技術としてオペレータによって広く採用されており、それを、ロバスト且つ実証済みの技術にしてきた。RANトポロジーにおける傾向が、旧来のマクロセルの近辺にスモールセルを付加することによりセル密度を増加させることであるので、関連付けられるバックホールリンク密度がそれに応じて増加し、また、RANとバックホールワイヤレスチャネルとの違いが減少する。また、これは、ポイント・ツー・マルチポイント(P2MP)バックホールトポロジーを必要とする。結果として、レシーバでの時間ドメイン等化(TDE)技法によりシングルキャリア波形を典型的に用いる従来のワイヤレスバックホールシステムは、これらの環境において実用的ではなくなっている。これは、6~42GHzマイクロ波周波数帯域におけるポイント・ツー・ポイントのLOS(line-of -sight)チャネルにおける動作のそれらの制限に主に起因している。むしろ、スモールセルバックホール及びスモールセルアクセストポロジー(P2MP)と、ワイヤレス無線チャネル(LOS)との類似性が、自然と、非常に類似したエアインタフェースの使用につながる。
【0004】
いくつかの特殊な問題が、例えば、10-6のパケット誤り率(PER)を有する高信頼性、スパースなスペクトル利用可能性、クリティカルレイテンシ、コスト、緩和されたピーク対平均電力比(PAPR)のための要件など、スモールセルサイトでのNLOSバックホールリンクと関連付けられる。ハンドオーバーがなく、遠隔ユニットがユーザー機器(UE)と同じレートで接続及び接続解除せず、スモールセルサイトにおけるNLOS遠隔ユニット(RU)がモバイルでない点で、スモールセルサイトでのNLOSバックホールリンクの挙動は、RANとは異なる。また、典型的なNLOSバックホールシステムは、UL及びDL伝送の受信を確かめるためのハイブリッド自動再送要求(HARQ(Hybrid Automatice Repeat Request))送信をサポートしていない。
【0005】
先行するアプローチは、ワイヤレスNLOS環境におけるバックホール伝送の改善を提供しているが、さらなる改善が可能である。
【発明の概要】
【0006】
第1の実施形態において、ワイヤレス通信システムを動作させる方法が、第1のトランシーバから、第2のトランシーバでN個のそれぞれのダウンリンク伝送を受信することを含み、ここでNは1より大きい正の整数である。N個のダウンリンク伝送のための受信アクノリッジメント信号(ACK/NACK)が、単一の受信アクノリッジメント信号に組み合わされる。単一の受信アクノリッジメント信号は、第1のトランシーバに送信される。第1のトランシーバは、第2のトランシーバを含む複数のトランシーバの各々のために独立してNを構成する。
【0007】
第2の実施形態において、ワイヤレス通信システムを動作させる方法が、M個の第2のトランシーバから、第1のトランシーバでそれぞれのアップリンク伝送を受信することを含み、ここでMは1より大きい正の整数である。M個の第2のトランシーバのための受信アクノリッジメント信号(ACK/NACK)が、単一の受信アクノリッジメント信号に組み合わされる。単一の受信アクノリッジメント信号は、M個の第2のトランシーバの各々に送信される。
【0008】
第3の実施形態において、ワイヤレス通信システムを動作させる方法が、アップリンク(UL)及びダウンリンク(DL)伝送の一方のためのパラメータを示す制御情報を、第1のトランシーバから第2のトランシーバに送信することを含む。第1の伝送が、アップリンク(UL)及びダウンリンク(DL)伝送の一方によってプリエンプト(preempt)されるかどうかを示すために、プリエンプト信号が制御情報と共に送信される。
【図面の簡単な説明】
【0009】
【
図1】スモールセルと複数のユーザー機器(UE)との通信を中継する遠隔ユニット(RU)をサーブするバックホールポイント・ツー・マルチポイント(P2MP)ハブユニット(HU)をホストするセルラーマクロサイトを備えるワイヤレス通信システムの図である。
【0010】
【
図2】例示的な実施形態に従った、ダウンリンク及びアップリンクサブフレーム構成の図である。
【0011】
【
図3】ダウンリンク及びアップリンクサブフレーム構成の従来のサブセットの図である。
【0012】
【
図4】例示的な実施形態に従った、ダウンリンク及びアップリンクスロット構成のサブセットの図である。
【0013】
【
図5】ダウンリンク及びアップリンクスロット並びに特殊スロットを示す構成3(
図2)におけるようなデータフレームの詳細な図である。
【0014】
【
図6】例示的な実施形態に従った、
図5のデータフレームにおいて用いられ得るダウンリンク(DL)スロットの図である。
【0015】
【
図7】例示的な実施形態に従った、
図5のデータフレームにおいて用いられ得るアップリンク(UL)スロットの図である。
【0016】
【
図8A】
図2のフレーム構成6のためのRU割当てを示す図である。
【0017】
【
図8B】
図8Aの割当てのためのPUCCHにおいて送信されるACK/NACK遠隔ユニット(RU)バンドリングを示す図である。
【0018】
【
図9】レートマッチングを通じた、異なる割当てサイズを有する非適応再伝送を示す図である。
【発明を実施するための形態】
【0019】
本明細書を通して、下記の略語のいくつかが用いられる。下記の用語集は、これらの略語の説明をアルファベット順で提供する。
BLER:ブロック誤り率
CQI:チャネル品質インジケータ
CRS:セル特定基準信号
CSI:チャネル状態情報
CSI-RS:チャネル状態情報基準信号
DCI:ダウンリンク制御情報
DL:ダウンリンク
DwPTS:ダウンリンクパイロット時間スロット
eNB:E-UTRANノードB又は基地局又はエボブドノードB
EPDCCH:エンハンスト物理的ダウンリンク制御チャネル
E-UTRAN:エボルブドユニバーサルテレストリアル無線アクセスネットワーク
FDD:周波数分割複信
HARQ:ハイブリッド自動再送要求
HU:(バックホール)ハブユニット
ICIC:セル間干渉協調
LTE:ロングタームエボリューション
MAC:媒体アクセス制御
MIMO:多入力多出力
MCS:変調制御方式
OFDMA:直交周波数分割多元接続
PCFICH:物理的制御フォーマットインジケータチャネル
PAPR:ピーク対平均電力比
PDCCH:物理的ダウンリンク制御チャネル
PDSCH:物理的ダウンリンク共有チャネル
PMI:プリコーディングマトリックスインジケータ
PRB:物理的リソースブロック
PRACH:物理的ランダムアクセスチャネル
PS:パイロット信号
PUCCH:物理的アップリンク制御チャネル
PUSCH:物理的アップリンク共有チャネル
QAM:直交振幅変調
RAR:ランダムアクセス応答
RE:リソース要素
RI:ランクインジケータ
RRC:無線リソース制御
RU:(バックホール)遠隔ユニット
SC-FDMA:シングルキャリア周波数分割多元接続
SPS:半永続的スケジューリング
SRS:サウンディング基準信号
TB:トランスポートブロック
TDD:時分割複信
TTI:送信時間インタバル
UCI:アップリンク制御情報
UE:ユーザー機器
UL:アップリンク
UpPTS:アップリンクパイロット時間スロット
【0020】
図1は、例示的な実施形態に従った、NLOS時分割複信(TDD)ワイヤレスバックホールシステムを示す。セルラーマクロサイト100が、マクロ基地局をホストする。マクロサイト100は、ワイヤレスバックホールハブユニット(HU)もホストする。マクロサイト100は、スモールセルサイト104などのスモールセルサイトと接続される。各スモールセルサイトは、スモールセル基地局及びワイヤレスバックホール遠隔ユニット(RU)と共に同じ場所に配置される。マクロサイト100は、バックホールリンク110などのバックホールリンクを介して、ポイント・ツー・マルチポイント(P2MP)ワイヤレスバックホールシステムを通じて、スモールセルサイトと通信する。マクロサイト100の基地局は、RANリンク112を介してUE102と直接的に通信する。しかし、UE106は、RANアクセスリンク108を介してスモールセルサイト104のスモールセル基地局と直接的に通信する。スモールセルサイト104のRUは、バックホールリンク110を介してマクロセルサイト100のHUと直接的に通信する。システムは、スペクトル再利用を最大化するように設計される。バックホールリンク110設計は、レイテンシを最小化するために0.5msのスロットベースの送信時間インタバル(TTI)と、TD-LTEとの互換性のために5msのUL及びDLフレームとを利用する。このように、様々なUL/DL比が、TD-LTE構成と互換性がある。これにより、複数の遠隔ユニット(RU)のためのフレキシブルなスロットアサインが可能となる。
【0021】
図2は、7個のアップリンク(UL)及びダウンリンク(DL)フレーム構成を備え、それゆえ、UL及びDLトラフィック比の多様な混合をサポートする、TDDフレーム構造を示す。各構成は、様々なアップリンク(U)、ダウンリンク(D)、及び、特殊(S)スロットを含み、各々が、5msの総フレーム期間のために0.5ms期間の送信時間インタバル(TTI)を有する。一実施形態において、このフレーム構造は、
図1のNLOSバックホールリンク110を生成するために用いられる。しかし、例示的な実施形態が、TD-LTEとの類似の共存と、NLOSバックホールリンクのような性能要件とを共有する任意の種類の通信リンクを生成するために用いられてもよい。結果として、一般性を失うことなく、フレーム構造及び関連付けられる構成要素(スロット、チャネル等)が、「NLOSバックホール」又は単に「NLOS」フレーム、スロット、チャネル等と呼ばれる。
【0022】
図3を参照すると、従来の10msのTD-LTEフレームのフレーム構造が、5msのTDDフレーム(
図4)と比較される。
図4は、
図2で示すようなUL/DLフレーム構成1、3、及び5のより詳細な図である。
図3のフレームは、10個のサブフレームに分割され、各サブフレームが1msのTTIを有する。各サブフレームはさらに、2スロットに分割され、各スロットが0.5msの期間を有する。それゆえ、20個のスロット(0~19)が各TD-LTE構成内にある。或るスロットにおけるDは、それがダウンリンクスロットであることを示す。同様に、或るスロットにおけるUは、それがアップリンクスロットであることを示す。時間スロット2及び3は、DLサブフレームからULサブフレームへの遷移を可能にする特殊サブフレームを構成する。DwPTS及びUpPTSは、それぞれ、特殊サブフレームのダウンリンク及びアップリンク部分を示す。
【0023】
比較すると、
図4のフレームは、5ms期間を有し、サブフレームベースではなく、スロットベースである。各フレームは、10個(0~9)のスロットを有する。各スロットは、0.5ms期間を有する。
図3のフレームと同様、Dはダウンリンクスロットを示し、Uはアップリンクスロットを示す。しかし、
図4の3個のUL/DL構成の各々において、両フレームのスロット3は、
図3のスロット2~3及び12~13における特殊サブフレームではなく、Sで示される特殊スロットを含む。特殊スロットのこの固定の位置は、TD-LTEフレームとの互換性を保証する。それは有利に、任意の5ms期間のTD-LTE UL/DLサブフレーム構成と100%互換性があるNLOS UL/DL構成を常に見つけることを可能にする。例えば、これは、両方が同じ周波数で動作するとき、NLOSバックホールDL伝送がアクセスリンク上のTD-LTE RAN UL伝送と干渉するのを防ぐ。言い換えると、それは有利に、1つのシステムのマクロセルサイト100におけるトランスミッタが、同じ場所に配置されるシステムのレシーバと干渉するのを防ぐ。
【0024】
図4のフレーム構成は、同じ周波数で動作する場合に互換性を保証するために、
図3のフレーム構成と共通のいくつかの特徴を有する。両フレームは、各スロットにおいて7個のSC-FDMA記号と通常のサイクリックプレフィックス(CP)とを備える、0.5msスロット期間を有する。SC-FDMA記号期間は、各フレームにおいて同じである。両フレームは、それぞれの、5MHz、10MHz、15MHz、及び20MHz帯域幅のための同数のサブキャリアを有し、両フレームが15kHzサブキャリア間隔を有する。両フレームは、同じリソースエレメント(RE)定義を使用し、4、16、及び64QAM符号化をサポートする。
【0025】
図4のフレーム構成は、いくつかの固有の特徴を有する。各スロットの記号は主に、ULとDLの両方のためのSC-FDMAである。各スロットの第1のSC-FDMA記号は、システムレイテンシを改善するためにパイロット信号(PS)を含む。PSとは異なるセル固有の同期信号(SS)が、セル検索及びフレーム境界検出のために各フレームに含まれる。
【0026】
図5は、
図4のUL/DL構成3に示すようなNLOSバックホール(BH)フレームの詳細な図である。ここで、及び以下の記述において、図の垂直軸はコンポーネントキャリアの周波数を示し、水平軸は時間を示し、各スロットは0.5ms期間を有する。例えば、20MHz帯域幅を有するスロットが、15kHzのキャリア間隔を有する1200個のサブキャリア(SC)を含む。フレームは、DLスロット、特殊スロット、及びULスロットを含む。各DL及びULスロットは、7個のそれぞれのシングルキャリア周波数分割多元接続(SC-FDMA)記号を有する。各記号は、スロットの個別の縦列によって示される。
【0027】
図6は、
図5のフレームと共に用いられ得るダウンリンクスロットの詳細な図である。DLスロットは、HUからRUにペイロードトラフィックを伝える物理的ダウンリンク共有チャネル(PDSCH)を送信するために用いられる。DLスロットは、媒体アクセス制御(MAC)シグナリングによって導かれるような動的及び半永続的スケジューリング(SPS)領域を含む。動的スケジューリングは、リンク状況についてUEフィードバックに基づいてリソースを割当てる。これは、パケット搬送を妨害するおそれのある増大される制御シグナリングという代償を払って、フレキシブルなリソース割当てを達成する。半永続的スケジューリングは、固定の将来の時間のためにパケットを割当てる。これは有利に、より少ない制御信号で、フレキシブルなリソース割当てを提供する。また、特殊スロットを除いて、DLスロットは、RUにHARQ ACK/NACKフィードバックを伝える物理的HARQインジケータチャネル(PHICH)を含む。物理的ダウンリンク制御チャネル(PDCCH)も、このスロットにおいて送信される。PDCCHは、そうしたスロットにおいて各々動的にスケジュールされるRUのためのMCS及びMIMO構成のためのPHY制御情報をRUに提供する。また、PDCCHは、一つ又は複数の将来のULスロットにおいて各々動的にスケジュールされるRUのためのMCS及びMIMO構成のためのPHY制御情報をRUに提供する。
【0028】
高優先度のパケットのためのレイテンシを改善するために、システム帯域幅の両端でのスペクトル割当ての4ペアが、異なるRUにアサインされ得、ここで、或るペアの2個の割当てチャンク間の周波数ギャップは、割当てペアの間で同じである。リソース割当ては、PDSCHチャネルにおける、より高いレイヤからの専用メッセージを通じて、半永続的スケジューリング(SPS)アプローチで成される。各SPS割当てペアのサイズは、予期されるトラフィック負荷パターンに応じて構成可能である。例えば、SPS割当てがない場合、SPS伝送に対して物理的リソースブロック(PRB)は割当てられない。予期されるトラフィックがより大きい場合、2つ(スペクトルの各サイドに一つ)、或いは、4つ(スペクトルの各サイドに2つ)のPRBが割当てられ得る。各RUは、任意のSPS割当て又は複数の隣接するSPS割当てを有し得る。一実施形態において、全ての4個のSPS割当てペアは同じサイズである。好ましくは、スロットにおける大部分の残りの周波数時間リソースは、PS、PDCCH、PHICH、及びSPS割当てを除いて、単一のRUに動的にアサインされ、そうしたRUのスケジューリング情報はPBCHにおいて伝えられる。
【0029】
LTEと同様に、複雑さを最小化するために、全ての割当てサイズは、PRB(12個のサブキャリア)の倍数であり、定義されたサイズセットに制限される。唯一の例外は、最も近い数のサブキャリアを、公称の目標とされる割当てサイズ(2個又は4個のPRB)にし得るSPS割当てに関する。これは、SPSと、PDSCH又はPUSCHとの間の無駄になるガード帯域を最小化する。
【0030】
或る特殊スロット構造が開示され、この特殊スロット構造は、後に詳細に説明するように、同期信号(SS)、物理的ブロードキャストチャネル(PBCH)、パイロット信号(PS)、ガード期間(GP)、及び、物理的ランダムアクセスチャネル(PRACH)を含む。これらのスロットベース特徴は、LTEフレーム構造を大幅に簡素化し、コストを削減し、TD-LTEとの互換性を維持する。例示的な実施形態は、有利に、内側符号としてのターボ符号を、非常に低いブロック誤り率(BLER)を提供するリードソロモン外側ブロック符号と連結することによって、ロバストなフォワード誤り補正(FEC)方法を用いる。また、実施形態は、コンポーネントキャリア(CC)毎に1つの動的割当てを備える複数のRUの動的スケジューリングにより、HU毎に最大4個のCCを備えるキャリアアグリゲーションをサポートする。また、これらの実施形態は、高優先度のトラフィックを伝えるように定められたRUのためのスロット内で、周波数分割多元接続(FDMA)における小さな割当ての半永続的スケジューリング(SPS)をサポートし、それにより、動的スケジューリングの時分割多元接続(TDMA)と関連付けられるレイテンシを回避する。TDMA動的スケジューリングとFDMA SPSのこの組合せは、最小限の複雑さで最適なパフォーマンスを提供する。
【0031】
このタイプの動的割当てはいくつかの利点を有する。各RUが、物理的ブロードキャストチャネル(PBCH)上で親HUから割当て情報を受信する。各RUは、潜在的なスロット及びコンポーネントキャリアを見つけるために、5ms毎にこの割当て情報を復号する。このようにして、あらゆるRUは、HUによってサーブされるあらゆる他のRUのための動的スロット割当てを認識している。その後、各RUは、それぞれのスロットにより識別される物理的ダウンリンク制御チャネル(PDCCH)上で手順情報を取得する。言い換えると、PDCCHは、どのRUがそうしたスロットの意図された受け手であるかに関係なく、変調制御方式(MCS)、プリコーディングマトリックスインジケータ(PMI)、及びランクインジケータ(RI)などの手順情報を提供する。この利点は、PDCCHが全てのDLスロット及びコンポーネントキャリアに最小のサイズで分配され得ることである。各PDCCHは、その関連するスロットにおいてスケジュールされたRUのインデックスを搬送する必要がない。また、すべてのRUインデックス及びコンポーネントキャリアがPBCHによって識別されるので、全ての割当て情報の受信が、単一のPBCH-ACKで各RUによってアクノリッジされ得る。
【0032】
図7は、
図5のフレームと共に用いられ得るアップリンクスロットの詳細な図である。ULスロットは、RUからHUにペイロードトラフィックを伝える物理的アップリンク共有チャネル(PUSCH)を送信するために用いられる。
図7におけるPUSCH領域は、動的及び半永続的スケジューリング(SPS)両方の割当てを含み、後者は、
図5に示すようにPUSCH領域の両スペクトルエッジに配置される。PUCCHは、HUに、RUからのHARQ ACK/NACKフィードバックを提供する。いくつかの構成においてACK/NACKバンドリングが必要とされ、バンドリングはRU毎に適用しなければならない。直接的な結果は、PUCCHリソース上へのACK/NACKマッピングが、RUベースでACK/NACKをグループ化することである。これは、各RUが他のRUのすべてのDL割当てを認識していることを想定する。動的割当てでは、各RUがPBCHにおけるすべての動的グラントを復号するので、これは明快である。SPS割当てでは、これは、より高いレイヤが、すべてのRUのSPS割当てを各RUにシグナリングすることを暗示する。ACK/NACKバンドリングの場合、各RUは、全ての他のRUに適用される潜在的なバンドリングファクタを認識しており、それゆえ、各RUは、RUインデックスnRUで任意の所与のRUによってレポートされる(バンドリングされた、又はされていない)PDSCH ACK/NACKの総計
を認識している。各RUについて、PUCCHスロットにおいて送信されるべきPDSCH ACK/NACKは、時系列でULスロットと関連付けられる複数のDLスロット間で時間方向にまずグループ化される。その後、それらは、最初に、減少するCCインデックスによって、及び、最後に一次CCによって、二次コンポーネントキャリア(CC)間で周波数方向にグループ化される。一次CCにおいて、それらは、最初に動的割当て、その後SPS割当て間で、グループ化される。動的スケジューリングでは、RUは、潜在的なスロット割当て情報を見つけるために、5ms毎にPBCHを復号する。PUSCHを介する送信又はPDSCHを介する受信は、HUによって、動的に又は半永続的にスケジュールされ得る(SPS)。PUSCH送信及びPDSCH受信の両方は、PDSCH上で、より高いレイヤシグナリングを通じて、各RUに対して独立して構成される。良好なチャネル特性を備えるRUは、劣悪なチャネル特性を備えるRUより大きなバンドリングファクタを備えて構成され得る。SPS構成は、スロット毎に4個の利用可能なSPSチャンク間の周波数チャンクと、RUにより用いられる複数の隣接するチャンクとを含む。付加的な構成情報には、各フレームにおける時間スロット、SPS割当ての期間、変調制御方式(MCS)、送信モード(TM)、及び、DLのためのSPSチャンクサイズが含まれる。
【0033】
PUCCH割当てサイズは、主に、PDSCH ACK/NACK割当てによって決定される。所与の帯域幅に対し、固定数の物理的リソースブロック(PRB)のみが、PUCCH及びPUSCH伝送のために利用可能である。或る実施形態によれば、複数のPUCCH PRBが、完全に、UL/DLフレーム構成、スロット番号、及び、HUによりサポートされるRUの数から判定される。その結果、PUCCH割当てサイズがRUに明確にシグナリングされる必要はない。各RUは、フレーム構成及びRUの総数から、各スロットのためのPUCCH割当てサイズを判定する。
【0034】
一例として、
図8Aは、
図2のフレーム構成6のRU(0~4)のためのDLスロット割当てを示す図である。この図は、周波数に従った行によって組織化され、一次コンポーネントキャリア(0)のための下方の5行、及び二次コンポーネントキャリアのための上方の3行(1~3)を有する。コンポーネントキャリアは、2番目の列において、動的又はSPS割当てとして識別される。動的又はSPS割当ての各々は、3番目の列における、対応する送信番号によりさらに識別される。4番目から12番目の列は、フレームの時間スロット1~0である。例えば、1番目の行は、DLスロット1がRU1のためのコンポーネントキャリア3の動的割当てであることを示す。DLスロット2は、RU2のためのコンポーネントキャリア3の動的割当てである。DLスロット3は、RU3のためのコンポーネントキャリア3の動的割当てである。スロット4は、ULスロットであり、それゆえブランクである。DLスロット5~6は、それぞれ、RU4及び0のためのコンポーネントキャリア3の動的割当てである。
【0035】
図8Bは、RUのPDSCH送信のPDSCH ACK/NACKの配列
を示す図であり、
図8Aにおいて定義されたユースケースから、nRU=1(バンドリングなし)であるRU#1、及び、nRU=2(バンドリングあり)であるRU#2に対し、ULスロット#4におけるRUインデックスnRUがレポートされている。例えば、1番目の行(二次CC#3)のDLスロット1及び7は、RU1に割り当てられており、それらの対応するPUCCHインデックス
は、バンドリングがないので全て1である。このように、1番目の行のDLスロット1に応答して送信されるACK/NACKは、そのスロットにおける受信のみを表す。1番目の行(二次CC#3)のDLスロット2及び8、並びに2番目の行(二次CC#2)の3及び9は、RU2に割当てられており、それらの対応するPUCCH ACK/NACKインデックス
は、4のバンドリングファクタを備えたバンドリングがあるので、全て1である。これは、二次CC#3上のスロット2又は8、或いは、二次CC#2上のスロット3又は9が伝送を受信しない場合、単一の否定応答(NACK)信号がバンドル及び送信されることを意味する。二次CC#3上のスロット2及び8並びに二次CC#2上のスロット3及び9の全てが正しい伝送を受信する場合にのみ、アクノリッジメント(ACK)信号が送信される。
【0036】
PUCCH割当てサイズは主に、PDSCH ACK/NACKによって決定される。PUCCH物理的リソースブロック(PRB)は完全に、UL/DLフレーム構成、スロット番号、及び、サポートされるRUの最大数から判定される。結果として、PUCCH割当てサイズがRUに明確にシグナリングされる必要はない。また、ACK/NACKバンドリングは、構成6(
図2)におけるようなフレームにおけるUL及びDLスロット間に大きな差がある場合にのみ必要とされる。
図8BのACK/NACKウィンドウは、HARQフィードバック信号がバンドルされ得るフレームにおけるスロットの範囲を示す。ウィンドウは、時間及びコンポーネントキャリア(CC)周波数の両方に及ぶ。ウィンドウのサイズは、TDD UL/DL構成及びTDDフレームにおけるULスロット番号に依存する。ウィンドウ内のバンドリングファクタは、後続のULフレームにおいてHUに組み合わせ及び送信されるRUフィードバックアクノリッジメント信号の数である。このバンドリングファクタは、ウィンドウ内のPBCHにおいてRUにシグナリングされる。特に、PBCHにおけるバンドリングファクタは、ACK/NACKレポートにおける連続するバンドルされた伝送の数を定義する。
【0037】
反対側で、RUからHUへのUL伝送も、HUによってHARQ応答される。これはUL HARQ ACK/NACKと呼ばれ、ACK/NACKレポートは、物理的HARQインジケータチャネル(PHICH)上のダウンリンクにおいて送られる。ここでもまた、いくつかの構成においてACK/NACKバンドリングが必要とされる。1つのACK/NACKレポートへのn個のトランスポートブロック(TB)のACK/NACKバンドリングは、すべてのバンドルされるTBが正しく復号される(CRCによるチェックをパスする)場合にACKを、及び、TBの少なくとも1つが正しくないCRCを有する場合にNACKを送信することにある。
【0038】
4個のスロットを3個にバンドリングする場合、(時系列における)最初の2個のULスロットが共にバンドルされ、次の2個のULスロットはバンドルされない。異なるRUが2個のスロットにおいてスケジュールされた場合、スロットバンドリングは、異なるRUのACK/NACKをバンドルし得ることに留意されたい。スロットバンドリングは、同じFDMAインデックス
のFDMA割当て間に適用する。
【0039】
図9は、レートマッチングを通じて異なる割当てサイズを有する非適応再伝送を示す図である。例えば、HARQ再伝送が、初期の伝送とは異なる割当てサイズを有し得る。それゆえ、それは、新たな割当てサイズにレートマッチされ、また、この新たな割当ての1つのトランスポートブロックにおける伝送のために利用可能なビットの総数に調節される。UL及びDL HARQに対し、PDCCHは、割当てグラントにおいて、UL又はDLリソースがプリエンプトされるか又は別のRUによって置換されるかを伝える。プリエンプトは、再伝送と関連付けられるDCIビットによってシグナリングされる。プリエンプトするRUが、下記のルールに従ってプリエンプトされるRUと同じものであっても、プリエンプトビットは、再伝送のフォーマットをシグナリングするように設定される。動的又はSPS割当てにおいてRUがスケジュールされない場合、関連したプリエンプトビットはリセットされる。動的割当てにおいてRUがスケジュールされない場合、PDCCHにおける関連したDCIは全てゼロ(ブランク)である。動的割当てにおいてRUがスケジュールされるが、PBCH NACKをリポートする場合、PDCCHにおける関連したDCIは、設定されたプリエンプトビットを除いて、全てゼロ(ブランク)である。
【0040】
実施形態は、NLOSバックホールのための、同期ハイブリッド自動再送要求(HARQ)設計に向けられている。各UL/DL構成に対し、プロセスの特定のタイミング及び関連する番号がある。例えば、
図9の図は、UL/DL構成1(
図2)のためのものである。頂部のスロット番号0~9は、4個のシーケンシャルフレーム及び4個の対応するHARQプロセスを示す。各スロット0でのフレーム境界は影付きである。垂直矢印の中間の行において、下向き矢印はDLスロットを示し、上向き矢印はULスロットを示す。下方に湾曲した矢印は、DLスロットから、対応するACK/NACKを含むULスロットまで延びる。上方に湾曲した矢印は、ACK/NACKを含むULスロットから、NACKの事象において再伝送を含む後続のDLスロットまで延びる。下方の4個の行は、同じ又は異なるRUによって用いられ得る4個のそれぞれのHARQプロセスを表す。各Tは、そうした行におけるHARQプロセスのためのPDSCH上のDL伝送を示す。これに対応して、各Aは、そうした行におけるHARQプロセスのためのPUCCH上のACK/NACKを表す。
【0041】
前述の実施形態は、いくつかの重要な利点を有する。第1に、HARQは、同期及び非適応である。NACKは、そうしたプロセスのための次の利用可能なスロットにおける再伝送を暗黙的に要求する。第2に、再伝送が非適応であっても、それは、元の伝送とは異なる割当てサイズを有し得る。第3に、異なる割当てサイズは、異なる割当てサイズに対応するようにレートマッチされる。第4に、PDCCHは、割当てグラントにおいて、UL又はDLリソースが別のRUによってプリエンプトされるかどうかを伝える。最後に、レイテンシ要求がLTEに対して大幅に削減される。PUSCH受信及びPHICH送信のためのHU処理は、3スロット又は1.5msを要する。これはLTEの場合の半分である。PUCCH受信及びPDSCH送信のためのHU処理は、2スロット又は1.0msを要する。これはLTEの場合の3分の1である。PHICH受信及びPUSCH送信のためのRU処理は、2スロット又は1.0msを要する。これは、LTEの場合の3分の1である。PDSCH受信及びPUCCH送信のためのRU処理は、3スロット又は1.5msを要する。これはLTEの場合の半分である。
【0042】
特許請求の範囲内で、説明された実施形態において改変が可能であり、他の実施形態が可能である。実施形態は、ソフトウェア、ハードウェア、又はそれら両方の組合せにおいて実装され得る。