(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2023-12-11
(45)【発行日】2023-12-19
(54)【発明の名称】情報処理装置、情報処理装置の制御方法、及び情報処理装置の制御プログラム
(51)【国際特許分類】
G06Q 10/04 20230101AFI20231212BHJP
G06Q 10/0631 20230101ALI20231212BHJP
【FI】
G06Q10/04
G06Q10/0631
(21)【出願番号】P 2022116358
(22)【出願日】2022-07-21
【審査請求日】2022-12-09
(73)【特許権者】
【識別番号】501440684
【氏名又は名称】ソフトバンク株式会社
(74)【代理人】
【識別番号】110002516
【氏名又は名称】弁理士法人白坂
(72)【発明者】
【氏名】下山 耕平
(72)【発明者】
【氏名】中西 康平
(72)【発明者】
【氏名】杉村 剛生
(72)【発明者】
【氏名】石浦 嘉晃
(72)【発明者】
【氏名】増田 奈央
(72)【発明者】
【氏名】齋藤 達子
【審査官】佐藤 敬介
(56)【参考文献】
【文献】特開2019-200487(JP,A)
【文献】特開2021-61050(JP,A)
【文献】特開2016-149167(JP,A)
【文献】特開2022-46926(JP,A)
【文献】米国特許出願公開第2018/0152487(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
フリーアドレス方式のオフィスにおける将来の座席の利用率を予測する予測システムに係る情報処理装置であって、
前記オフィスの所在地周辺の環境に関する環境情報、及び、前記オフィス内の施設の予約状況に関する予約情報を取得する取得部と、
座席の利用率を予測する予測日の前日における前記座席の利用率を目的変数とし、前記前日における前記環境情報及び前記予約情報、並びに、前記前日より以前の過去の所定期間にわたる時系列での前記環境情報、前記予約情報及び前記座席の利用率を説明変数とした機械学習によって予測モデルを生成し、前記予測モデルに基づいて、前記将来の座席の利用率として、前記予測日における座席の利用率を予測する予測部と、
前記予測部による予測結果を出力する出力部と、
を備える情報処理装置。
【請求項2】
前記予測部は、前記説明変数として、曜日に関する曜日情報をさらに用いた予測モデルを生成し、前記将来の座席の利用率を予測する、
請求項1に記載の情報処理装置。
【請求項3】
前記座席を利用するユーザのユーザ端末から送信された、前記将来の座席の利用率の表示要求を受け付ける受付部をさらに備え、
前記出力部は、前記表示要求を送信した前記ユーザ端末に対して前記予測結果を出力する、
請求項1に記載の情報処理装置。
【請求項4】
前記ユーザ端末から、前記座席を利用する予定であるか否かの予定情報を取得する予定取得部をさらに備え、
前記予測部は、前記予定取得部が取得した前記予定情報に基づいて、前記将来の座席の利用率を更新する、
請求項3に記載の情報処理装置。
【請求項5】
前記予測部は、フリーアドレス方式の複数のオフィスごとに前記予測モデルを生成し、
前記出力部は、前記予測結果として、前記複数のオフィスごとの将来の座席の利用率を出力する、
請求項1に記載の情報処理装置。
【請求項6】
前記取得部は、前記過去の任意の一日における所定の時間帯ごとの、前記環境情報及び前記予約情報を取得し、
前記予測部は、前記所定の時間帯ごとの前記将来の座席の利用率を予測する、
請求項1に記載の情報処理装置。
【請求項7】
前記環境情報は、前記オフィスの所在地周辺の天候情報、交通情報、感染症流行情報を含む、
請求項1に記載の情報処理装置。
【請求項8】
フリーアドレス方式のオフィスにおける将来の座席の利用率を予測する予測システムに係る情報処理装置の制御方法であって、
前記オフィスの所在地周辺の環境に関する環境情報、及び、前記オフィス内の施設の予約状況に関する予約情報を取得するステップと、
座席の利用率を予測する予測日の前日における前記座席の利用率を目的変数とし、前記前日における前記環境情報及び前記予約情報、並びに、前記前日より以前の過去の所定期間にわたる時系列での前記環境情報、前記予約情報及び前記座席の利用率を説明変数とした機械学習によって予測モデルを生成し、前記予測モデルに基づいて、前記将来の座席の利用率として、前記予測日における座席の利用率を予測するステップと、
前記予測するステップによる予測結果を出力するステップと、
を備える情報処理装置の制御方法。
【請求項9】
フリーアドレス方式のオフィスにおける将来の座席の利用率を予測する予測システムに係る情報処理装置の制御プログラムであって、
情報処理装置に、
前記オフィスの所在地周辺の環境に関する環境情報、及び、前記オフィス内の施設の予約状況に関する予約情報を取得する機能と、
座席の利用率を予測する予測日の前日における前記座席の利用率を目的変数とし、前記前日における前記環境情報及び前記予約情報、並びに、前記前日より以前の過去の所定期間にわたる時系列での前記環境情報、前記予約情報及び前記座席の利用率を説明変数とした機械学習によって予測モデルを生成し、前記予測モデルに基づいて、前記将来の座席の利用率として、前記予測日における座席の利用率を予測する機能と、
前記予測する機能による予測結果を出力する機能と、
を実現させる、情報処理装置の制御プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置、情報処理装置の制御方法、及び情報処理装置の制御プログラムに関する。
【背景技術】
【0002】
近年、在宅勤務とオフィスへの出社とを、日によって選択して働く働き方が広がり、社員全員分の固定席をオフィスに用意する必要がなくなってきている。そのため、今後、オフィス内の座席を各個人が自由に利用可能な、いわゆるフリーアドレス方式への移行が進んでいくと考えられる。
【0003】
このフリーアドレス方式のオフィスについて、例えば特許文献1では、席が固定されないことによる勤務者間のコミュニケーションの活性化といったメリットがあるとしながらも、毎日同じ席に同じ人が着席するようになって、上述のようなメリットが発揮されなくなってしまうことを問題視している。そして、特許文献1では、勤務者から座席の利用申請を受け付けたときに、現在空席である執務席の中から、勤務者に割り当てる執務席をランダムに選出することを開示している。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、出社した際に座席が空いていない場合、特許文献1に記載の技術では対応できない。例えば、出社した時点でフリーアドレスの座席が混雑していた場合、想定していた行動ができなくなる、勤務場所の変更やスケジュールの調整などが必要となり余計な手間がかかってしまうといった問題が生じる。したがって、オフィスへ出社するか否かを社員が前もって決定するために、オフィスにおける将来の座席の利用率を提示するための仕組みが求められている。
【課題を解決するための手段】
【0006】
本発明の一実施形態に係る、フリーアドレス方式のオフィスにおける将来の座席の利用率を予測する予測システムに係る情報処理装置は、オフィスの所在地周辺の環境に関する環境情報、及び、オフィス内の施設の予約状況に関する予約情報を取得する取得部と、座席の利用率を予測する予測日の前日における座席の利用率を目的変数とし、前日における環境情報及び予約情報、並びに、前日より以前の過去の所定期間にわたる時系列での環境情報、予約情報及び座席の利用率を説明変数とした機械学習によって予測モデルを生成し、予測モデルに基づいて、将来の座席の利用率として、予測日における座席の利用率を予測する予測部と、予測部による予測結果を出力する出力部とを備える。
【0007】
本発明の一実施形態に係る情報処理装置において、予測部は、説明変数として、曜日に関する曜日情報をさらに用いた予測モデルを生成し、将来の座席の利用率を予測してよい。
【0008】
本発明の一実施形態に係る情報処理装置は、座席を利用するユーザのユーザ端末から送信された、将来の座席の利用率の表示要求を受け付ける受付部をさらに備え、出力部は、表示要求を送信したユーザ端末に対して予測結果を出力してもよい。
【0009】
本発明の一実施形態に係る情報処理装置は、ユーザ端末から、座席を利用する予定であるか否かの予定情報を取得する予定取得部をさらに備え、予測部は、予定取得部が取得した予定情報に基づいて、将来の座席の利用率を更新してもよい。
【0010】
本発明の一実施形態に係る情報処理装置において、予測部は、フリーアドレス方式の複数のオフィスごとに予測モデルを生成し、出力部は、予測結果として、複数のオフィスごとの将来の座席の利用率を出力してもよい。
【0011】
本発明の一実施形態に係る情報処理装置において、取得部は、過去の任意の一日における所定の時間帯ごとの、環境情報及び予約情報を取得し、予測部は、所定の時間帯ごとの将来の座席の利用率を予測してもよい。
【0012】
本発明の一実施形態に係る情報処理装置において、環境情報は、オフィスの所在地周辺の天候情報、交通情報、感染症流行情報を含んでよい。
【0013】
本発明の一実施形態に係る、フリーアドレス方式のオフィスにおける将来の座席の利用率を予測する予測システムに係る情報処理装置の制御方法は、オフィスの所在地周辺の環境に関する環境情報、及び、オフィス内の施設の予約状況に関する予約情報を取得するステップと、座席の利用率を予測する予測日の前日における座席の利用率を目的変数とし、前日における環境情報及び予約情報、並びに、前日より以前の過去の所定期間にわたる時系列での環境情報、予約情報及び座席の利用率を説明変数とした機械学習によって予測モデルを生成し、予測モデルに基づいて、将来の座席の利用率として、予測日における座席の利用率を予測するステップと、予測するステップによる予測結果を出力するステップとを含む。
【0014】
本発明の一実施形態に係る、フリーアドレス方式のオフィスにおける将来の座席の利用率を予測する予測システムに係る情報処理装置の制御プログラムは、情報処理装置に、オフィスの所在地周辺の環境に関する環境情報、及び、オフィス内の施設の予約状況に関する予約情報を取得する機能と、座席の利用率を予測する予測日の前日における座席の利用率を目的変数とし、前日における環境情報及び予約情報、並びに、前日より以前の過去の所定期間にわたる時系列での環境情報、予約情報及び座席の利用率を説明変数とした機械学習によって予測モデルを生成し、予測モデルに基づいて、将来の座席の利用率として、予測日における座席の利用率を予測する機能と、予測する機能による予測結果を出力する機能とを実現させる。
【図面の簡単な説明】
【0015】
【
図1】本発明の一実施形態に係る情報処理システム構成の概略図である。
【
図2】本発明の一実施形態に係る、サーバ(情報処理装置)、及びユーザ端末(通信端末)の機能ブロック図の一例である。
【
図3】本発明の一実施形態に係る、オフィス情報テーブルの一例である。
【
図4】本発明の一実施形態に係る情報処理装置で用いられる学習データの一例である。
【
図5】(a)~(c)は、本発明の一実施形態に係る、ユーザ端末の表示画面の一例を示す図である。
【
図6】本発明の一実施形態に係るサーバの制御フローチャートである。
【発明を実施するための形態】
【0016】
以降、図を用いて、本開示に係る発明(本発明ともいう)の一実施形態を説明する。なお、図は一例であって、本発明は図に示すものに限定されない。例えば、図示したサーバ、ユーザ端末、記憶装置等の数、データセット(テーブル)、フローチャート、表示画面は一例であって、本発明はこれらに限定されるものではない。
【0017】
<システム構成>
図1は、本発明の一実施形態に係る情報処理システムの構成例を示す図である。情報処理システム600は、フリーアドレス方式のオフィスに勤務するユーザに、将来の座席の利用率に関する情報を提供する予測サービスに係るシステムであってよい。なお、これ以降、本発明の一実施形態によって予測される将来の座席の利用率を、単に「予測利用率」とも称する。ここで、フリーアドレス方式のオフィスとは、各ユーザが自由に空いている座席を利用可能な方式のオフィスを指してよい。また、オフィスとは、企業が、自社に所属する社員(正社員、嘱託社員、契約社員等を含む)に提供するスペースであってもよいし。あるいは、オフィスとは、シェアオフィスやコワーキングスペース等の、作業スペースを提供するサービスに登録したユーザが座席を利用可能なオフィスであってもよい。すなわち、以降の説明では、予測システムを導入する企業の社員、シェアオフィス等の登録ユーザ等を、「ユーザ」と称する場合がある。
【0018】
情報処理システム600は、サーバ(情報処理装置)100と、ユーザの通信端末(ユーザ端末)200(200A~200C)と、記憶装置400とを含んでよい。
【0019】
サーバ100は、情報処理システム600により実現される予測サービスに係る種々の処理を実行することができる情報処理装置であってよい。サーバ100は、ユーザ端末200A~200C、及び記憶装置400と、ネットワーク500を介して接続されてよい。ネットワーク500は、無線ネットワークや有線ネットワークを含んでよい。具体的には、例えば、ネットワーク500は、ワイヤレスLAN(wireless LAN:WLAN)や広域ネットワーク(wide area network:WAN)、ISDNs(integrated service digital networks)、無線LANs、CDMA(code division multiple access)、LTE(long term evolution)、LTE-Advanced、第4世代通信(4G)、第5世代通信(5G)、及び第6世代通信(6G)以降の移動体通信システム等であってよい。なお、ネットワーク500は、これらの例に限られず、例えば、公衆交換電話網(Public Switched Telephone Network:PSTN)やブルートゥース(Bluetooth(登録商標))、光回線、ADSL(Asymmetric Digital Subscriber LINE)回線、衛星通信網等であってもよい。また、ネットワーク500は、これらの組み合わせであってもよい。
【0020】
なお、
図1において、サーバ100は1つのみ示してあるが、これに限られるものではない。すなわち、サーバ100が備えるとして説明する各機能は、複数のサーバによって実現されてもよい。また、サーバ100は、例えば、ネットワークを介して通信を行うことで協調動作する分散型サーバシステムでもよく、いわゆるクラウドサーバでもよい。すなわち、サーバ100は、物理的なサーバに限らず、ソフトウェアによる仮想的なサーバも含まれてよい。
【0021】
ユーザ端末200A~200Cは、予測サービスを利用するユーザの通信端末であってよい。なお、
図1において、ユーザ端末は、ユーザA~Cに関するものをそれぞれユーザ端末200A~200Cとして3台のみ示してある。しかしながら、ユーザ端末は、予測サービスを利用するユーザの数だけ存在してよく、また、特に区別しない場合、単にユーザ端末200と記す。
【0022】
ユーザ端末200には、予測サービスを利用するためのアプリケーションがインストールされ、サーバ100との間で各種情報の送受信が可能であってよい。あるいは、ユーザ端末200へのアプリケーションのインストールは必須ではなく、ユーザは、ユーザ端末200から、webブラウザ等を介して、サーバ100において提供される予測サービスを利用するためのwebページにアクセスし、各種情報をサーバ100へ送信してもよい。
【0023】
なお、
図1では、ユーザ端末200としてスマートフォンとノートパソコンとを示してあるが、ユーザ端末200としては、これ以降に説明する各実施形態において記載する機能を実現できる端末であればどのような端末であってもよい。例えば、ユーザ端末200は、携帯電話(フィーチャーフォン)、コンピュータ(例えば、タブレット、デスクトップパソコン)、ハンドヘルドコンピュータデバイス(限定でなく例として、PDA(personal digital assistant)、ウェアラブル端末(メガネ型デバイス、時計型デバイスなど)であってよい。
【0024】
記憶装置400は、情報処理システム600で利用する各種情報(データ)を記憶(格納)してよい。なお、
図1において、記憶装置400はサーバ100とは別に1つのみ示してあるが、サーバ100に一体化されていてもよい。すなわち、記憶装置400は、サーバ100の揮発性メモリ又は不揮発性メモリであってもよい。また、記憶装置400は、複数の記憶装置から構成されてもよい。なお、記憶装置400は、ネットワーク500とは異なる専用の内部ネットワークにて、サーバ100と接続されてもよいし、ネットワーク500を介してサーバ100と接続されてもよい。
【0025】
例えば、記憶装置400には、予測サービスを利用するユーザに関するユーザ情報テーブルが記憶されてよい。ユーザ情報としては、ユーザを一意に識別するためのユーザID(IDentifier)(識別子の一例)に関連付けて、ユーザ名、ユーザが所属する企業、部署、メールアドレス、電話番号といった、勤務先に関する情報や、ユーザ端末を一意に識別する端末ID等が記憶されてもよい。
【0026】
図3に、記憶装置400に記憶される、オフィスに関するオフィス情報テーブルの一例を示す。なお、テーブルとは、各種情報の集合(データセット)のことであってよい。オフィス情報テーブルTB10には、各オフィスを識別するためのオフィスIDに、オフィス名、座席数、位置情報、最寄り駅に関する情報等が関連付けられて記憶されてよい。「オフィス名」は、オフィスの名称であって、例えば予測サービスを利用する際にユーザ端末200上で表示されるオフィスの名称であってよい。「座席数」は、オフィスにおいてユーザが利用できる座席の総数を示す情報であってよい。すなわち、「座席数」は、フリーアドレスとして開放されている座席の総数であってよい。「位置情報」は、オフィスが位置する場所を示す情報であってよく、例えば、緯度及び経度が記憶されてよい。「最寄り駅」は、ユーザがオフィスに出社する際に用いる交通機関の最寄りの駅であってよい。なお、位置情報は、緯度及び経度ではなく住所であってもよい。また、図の例では最寄り駅を1つのみ示してあるが、最寄り駅が複数存在する場合、複数の最寄り駅に関する情報が記憶されてよい。また、図では「駅」と示してあるが、バス停であってもよい。
【0027】
なお、オフィス情報テーブルTB10に記憶される情報は図示したものに限定されず、記憶される情報は、これ以上でもこれ以下であってもよい。例えば、1つのオフィスが、フロア、部屋、ワークスペース等、複数のエリアに区切られている場合、オフィス情報テーブルTB10に、当該複数のエリアごとの座席数が記憶されてもよい。また、オフィス情報テーブルTB10には、例えば、モニタ付きデスク、個室、半個室、幅広のデスク、奥行きのあるデスクといった、座席の特徴を示す座席の属性情報がさらに記憶されてよい。
【0028】
<ユーザ端末>
図2を用いて、本発明の一実施形態に係るユーザ端末200のハードウェア構成、機能構成について説明する。
【0029】
(1)ユーザ端末のハードウェア構成
ユーザ端末200は、制御部210、通信部220、表示部230、入出力部240、記憶部270を備えてよい。
【0030】
制御部210は、典型的にはプロセッサであって、中央処理装置(CPU)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ(microprocessor)、プロセッサコア(processor core)、マルチプロセッサ(multiprocessor)、ASIC(Application-Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等を含み、集積回路(IC(Integrated Circuit)チップ、LSI(Large Scale Integration))等に形成された論理回路(ハードウェア)や専用回路によって実現されてよい。制御部210は、記憶部270に記憶されるプログラムを読み出し、読み出したプログラムに含まれるコード又は命令を実行することによって、各実施形態に示す機能、方法を実行してよい。
【0031】
記憶部270は、ユーザ端末200が動作するうえで必要とする各種プログラムや各種データを記憶する。すなわち、記憶部270は、予測サービスのアプリケーションに係るプログラムを記憶してよい。記憶部270は、例えば、フラッシュメモリや、制御部210に対する作業領域を提供するメモリ(RAM(Random Access Memory)、ROM(Read Only Memory)等)を含んでよい。
【0032】
通信部220は、ネットワークアダプタ等のハードウェアや通信用ソフトウェア、及びこれらの組み合わせとして実装されてよい。通信部220は、ネットワーク500を介し、任意の通信プロトコルを用いて、サーバ100との間で各種データの送受信を行ってよい。なお、通信部220が物理的に構造化された回路で構成される場合には、通信回路と表現する場合もある。
【0033】
表示部230は、フレームバッファに書き込まれた表示データに従って、データを表示するモニタであって、例えば、タッチパネル、タッチディスプレイ等であってよい。
【0034】
入出力部240は、ユーザ端末200に対する各種操作を入力する入力装置、及び、ユーザ端末200で処理された処理結果を出力する出力装置を含んでよい。入力装置は、ユーザからの入力操作を受け付けて、当該入力に係る情報を制御部210に伝達できる全ての種類の装置のいずれか、又は、その組み合わせにより実現されてよい。入力装置は、例えば、タッチパネル、タッチディスプレイ、カメラ、マイクを含んでよい。出力装置は、制御部210で処理された処理結果を出力してよい。出力装置は、例えば、タッチパネル、スピーカ等を含んでよい。
【0035】
(2)ユーザ端末の機能構成
ユーザ端末200は、制御部210によって実現される機能として、通信制御部211、表示制御部212、及び入出力制御部213を備えてよい。なお、
図2に記載の各機能部は必須ではなく、これ以降に説明する各実施形態において、必須でない機能部はなくともよい。また、各機能部の機能又は処理は、実現可能な範囲において、機械学習又はAI(Artificial Intelligence)により実現されてもよい。なお、ユーザ端末200が実行するとしてこれ以降に説明する各種処理の一部を、サーバ100が実行してもよい。
【0036】
通信制御部211は、通信部220による、ネットワーク500を介したサーバ100との間の通信を制御し、各種情報の送受信を実行させてよい。
【0037】
表示制御部212は、表示部230へのデータの表示を制御してよい。例えば、表示制御部212は、後述するサーバ100の出力情報生成部117から出力された情報に応じた画面を、表示部230に表示させてよい。
【0038】
入出力制御部213は、入出力部240を介した外部装置との各種情報の伝達を制御してよい。例えば、入出力制御部213は、入力装置で受け付けたユーザの入力操作に応じて、各種情報を各機能部へ情報を伝達したり、タッチパネル、モニタ、スピーカ等の図示しない出力装置に対し、各機能部からの情報を伝達したりしてよい。また、入出力制御部213は、ユーザから、予測利用率の表示要求を受け付けたり、オフィスに出社して座席を利用するか否かや、在宅勤務を選択するか否かの入力を受け付けたりしてよい。
【0039】
<サーバ>
次に、本発明の一実施形態に係るサーバ100のハードウェア構成、機能構成について説明する。
【0040】
(1)サーバのハードウェア構成
サーバ100は、制御部110、通信部120、及び記憶部170を備えてよい。
【0041】
制御部110は、典型的にはプロセッサであって、中央処理装置(CPU)、MPU、GPU、マイクロプロセッサ、プロセッサコア、マルチプロセッサ、ASIC、FPGA等を含み、集積回路(ICチップ、LSI)等に形成された論理回路(ハードウェア)や専用回路によって実現されてよい。なお、サーバ100は、なお、サーバ100は、大量のデータを処理するための演算能力の高いプロセッサを有することが好ましい。
【0042】
記憶部170は、サーバ100が動作するうえで必要とする各種プログラムや各種データを記憶する。記憶部170は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリ等を含んでよい。また、記憶部170は、制御部110に対する作業領域を提供するメモリを含んでよい。
【0043】
通信部120は、ネットワークアダプタ等のハードウェアや通信用ソフトウェア、及びこれらの組み合わせとして実装されてよい。通信部120は、ネットワーク500を介して、ユーザ端末200との間でそれぞれ各種データの送受信を行ってよい。通信部120は、制御部110からの指示に従って、各種データを、ユーザ端末200に送信してよい。また、通信部120は、ユーザ端末200から送信された各種データを受信し、制御部110に伝達してよい。
【0044】
(2)サーバの機能構成
サーバ100は、制御部110によって実現される機能として、通信制御部111、取得部112、予測部116、出力情報生成部117、及び表示要求受付部118を備えてよい。また、取得部112は、環境情報取得部113、予約情報取得部114、及び座席情報取得部115を備えてよい。なお、
図2に記載の各機能部は必須ではなく、これ以降に説明する各実施形態において、必須でない機能部はなくともよい。また、各機能部の機能又は処理は、実現可能な範囲において、機械学習又はAIにより実現されてもよい。
【0045】
通信制御部111は、通信部120を介したユーザ端末200との間の通信を制御してよい。
【0046】
取得部112は、将来の座席の利用率を予測するのに必要な各種情報を取得してよい。例えば、取得部112は、オフィスへ出社した人数に関する情報を取得してよい。これは例えば、オフィスへの入館ゲートの通過人数等であってよい。
【0047】
環境情報取得部113は、オフィスの所在地周辺の環境に関する環境情報を取得してよい。オフィスの所在地周辺とは、オフィスを含む所定のエリアであって、例えばこれに限定されるものではないが、オフィスの所在地から所定の距離以内のエリアをさしてよい。所定の距離とは、これに限定されるものではないが、例えばオフィスの所在地から半径10kmであってよい。また、環境情報とは、オフィスの所在地周辺の環境に関する情報であればどのようなものであってもよく、例えば、天候情報(温度(最低気温・最高気温を含む)、湿度、天候)、交通情報(最寄り駅の混雑度、運行情報等)、イベントの有無、所定の感染症の陽性者数等であってよい。なお、オフィスの所在地とは、例えばオフィス情報テーブルTB10に含まれる位置情報により示される地点であってよい。
【0048】
取得部112は、上述の環境情報を、外部のサービスプラットフォームから取得してよい。例えば、環境情報取得部113は、外部の天候情報サービスが提供する天候情報を、例えばAPI(Application Programming Interface)を介して取得してよい。また、環境情報取得部113は、交通機関や外部の交通情報サービスが提供する交通情報を、APIを介して取得してよい。所定の感染症の陽性者数は、官公庁や自治体から提供される情報を用いてよい。
【0049】
予約情報取得部114は、オフィス内の施設の予約状況に関する予約情報を取得してよい。オフィス内の施設の予約状況とは、オフィス内で予約可能な施設の予約状況であってよく、当該施設としては、会議室、電話ブース等の、業務を遂行する上で利用する施設のほか、オフィス内や、オフィスの入居するビル内に設置された、フィットネス施設、医療施設(病院、歯科医院、整体等)、サービス施設(美容院、理容院、ネイルサロン等)等が含まれてよい。オフィス内の施設が予約されていることは、予約したユーザがオフィスに来ることを意味する。したがって、予約情報は座席の利用率に影響すると考えられ、本発明の一実施形態によれば、将来の座席の利用率の算出に、予約情報が用いられてよい。なお、予約情報は、施設の予約率に関する情報であってよく、予約したユーザに関する情報が特に取得されなくてもよい。
【0050】
なお、予約情報取得部114は、オフィス内の会議室の予約状況に関する情報を、企業が導入する所定のアプリケーションから取得してよい。例えば、会議室の予約状況を、ユーザが利用するスケジュールアプリケーションから取得してもよいし、企業が利用する所定の予約アプリケーションから取得してもよい。また、医療施設やフィットネス施設等の予約情報は、上述のスケジュールアプリケーションから取得してもよい。なお、取得部112による各種情報の取得手法は、上述したものに限定されない。
【0051】
座席情報取得部115は、オフィス内の座席の利用状況に関する情報を取得してよい。座席の利用状況に関する情報とは、オフィス内のどの座席が利用されたか否かを示す情報であってよい。すなわち、利用状況に関する情報とは、オフィス内において、ユーザが利用した座席を特定可能な情報であってよい。利用状況に関する情報は、例えば、以下のように取得されてよい。まず、座席情報取得部115は、ユーザの所有するユーザ端末200がオフィス内のネットワークに接続された場合に、当該ネットワークの情報から判別される位置情報と、ネットワークへ接続するためのユーザ情報(ユーザ端末200の識別情報、ユーザID等)とを取得してよい。そして、座席情報取得部115は、取得した情報から、オフィス内におけるユーザの位置を識別し、ユーザが利用した座席を特定してよい。このとき、座席情報取得部115は、ユーザが利用した座席を特定可能な情報を座席の利用状況に関する情報として取得してよい。なお、利用状況に関する情報の取得手法としては上述の例に限定されない。例えば、ユーザ端末200の位置情報取得部(図示していない。)から取得されたユーザの現在位置の情報がサーバ100に送信され、座席情報取得部115は、ユーザ端末200から送信された位置情報から、ユーザが利用した座席を特定してよい。なお、利用状況に関する情報は、ユーザが座席を利用した時間に関する情報を含んでもよい。
【0052】
予測部116は、座席の利用率を予測する日である予測日の前日における座席の利用率を目的変数とし、前日における環境情報及び予約情報、並びに、前日より以前の過去の所定期間にわたる時系列での環境変数、予約情報及び座席の利用率を説明変数とした機械学習によって予測モデルを生成し、生成した予測モデルに基づいて、将来の座席の利用率として、予測日の座席の利用率を予測してよい。
【0053】
予測部116による予測について、
図4を用いて説明する。
図4は、取得部112によって取得された、上述の環境情報及び予約情報に関するデータであって、予測部116による予測モデルの生成に用いられる学習データの一例である。学習データTB20は、データを取得した日付、曜日、オフィス周辺の最高気温、最低気温、オフィスの最寄り駅の混雑率、オフィス周辺における感染症の陽性者数、施設の予約率、座席利用率をそれぞれ示す情報を含んでよい。これらの情報は、オフィス情報IDごとに関連付けられてよい。すなわち、学習データTB20は、オフィスごとに用意されてよい。なお、「座席利用率」は、座席情報取得部115が取得した座席の利用状況から判定される、座席を利用した延べ人数の、オフィス内の座席数に対する割合であってよい。
【0054】
予測部116は、例えば、座席の利用率を予測する日(予測日)「6/17」の前日である日付「6/16」における座席利用率「ZZ%」を目的変数とし、「6/16」における環境情報及び予約情報である、天候「雨」、最高気温「18℃」、最低気温「12℃」、駅混雑率「30%」、施設予約率「50%」、さらに、日付「6/16」より以前の過去の所定期間として、例えば直近の10日間(6/4~6/15)の環境情報、予約情報、及び座席利用率のデータを説明変数として機械学習することによって、予測日である「6/17」の座席利用率を予測可能な予測モデルを作成してよい。すなわち、予測部116は、教師ありの所定の機械学習の手法によって、オフィスごとに、将来の座席の利用率を予測する予測モデルを作成してよい。なお、所定期間は10日間に限定されない。本発明の一実施形態によれば、過去の所定期間にわたる座席利用率を説明変数に含んだ予測がなされるため、予測日の直近における利用率の推移を加味した予測が可能となってよい。なお、予測部116は、予測時に不明な値については「-1」でマスクした上で、値を予測モデルに入力してよい。また、予測部116は、学習データTB20のうちカテゴリ変数に相当するものは、例えばワンホットベクトル化等によって数値に変換した上で、上述の機械学習を行ってよい。なお、所定の機械学習の手法としては、これに限定されるものではないが、例えば、線形回帰(Linear Regression)、サポートベクトル回帰(Support Vector Regression:SVR)、ランダムフォレスト回帰(Random Forest regression)、又は勾配ブースティング回帰(Gradient Boosting Regression:GBT)、k最近傍法(k-Nearest Neighbor:kNN)などであってよい。
【0055】
予測部116は、生成した予測モデルに、予測日「6/17」の天候、最高気温、最低気温、駅混雑率、施設予約率と、予測日の過去の所定期間として直近の10日間(6/5~6/16)の天候、最高気温、最低気温、駅混雑率、施設予約率とを入力し、予測日の座席利用率を出力してよい。なお、予測日の天候情報や交通情報は、上述した外部のサービスプラットフォームから提供される予報値であってよい。また、予測部116による予測は、予測日の所定の時間(例えば、朝6時など)に実行されてもよいし、外部のサービスプラットフォームから予報値が取得可能であれば、いつ実行されてもよい。
【0056】
なお、予測部116による予測には、上述のように直近の過去数日間のデータを用いてもよいし、例えば一年前の同期間などのデータを用いてもよい。前者の場合、最近の傾向に沿った予測が可能となり、後者の場合、季節による傾向が考慮された予測となり得る。また、予測結果と、実際の利用率とを比較し、予測と実測の差に基づき、より予測精度の高い予測モデルを生成するように、学習データを抽出する所定の期間を設定してよい。
【0057】
出力情報生成部117は、予測部116による予測結果を出力するための出力情報を生成してよい。
図5に、ユーザ端末200の表示部230に表示された予測結果の表示画面の一例を示す。
図5(a)に示す画面10は、ある1つのオフィスにおける座席の予測利用率を示してよい。
図5(a)に示すように、画面10には、6/20(月)のオフィスAの座席の予測利用率が「80%」であることが少なくとも表示されてよい。また、オフィスA周辺の天候情報が合わせて表示されてもよい。
【0058】
さらに、出力情報生成部117は、予測結果に応じたコメントを表示させる出力情報を生成してもよい。
図5(a)の例では、「オフィスAは混雑見込みです。オフィスB、オフィスCへの出社または在宅勤務を検討ください」とのコメントが表示されている。これは例えば、予測される利用率に応じて、80%以上を「混雑見込み」、60%以上80%未満を「やや混雑」、30%以上60%未満を「比較的空いている」、30%未満を「空いている」など予め出力するテキストを定義しておき、予測結果に応じて、テキストが選択されて出力されてよい。
【0059】
また、
図4のように、学習データはオフィスごとに用意され、予測部116は、オフィスごとに座席の予測利用率を予測してよい。すなわち、予測部116は、フリーアドレス方式の複数のオフィスごとに予測モデルを生成し、出力情報生成部117は、予測結果として、複数のオフィスごとの将来の利用率を出力する出力情報を生成してよい。
【0060】
図5(b)は、ユーザ端末200の表示部230に表示された、オフィスごとの予測利用率の表示画面の一例である。このように、オフィスA~Dそれぞれの予測利用率が、棒グラフ等の比較しやすい形態で、ユーザ端末200において表示されてよい。これにより、ユーザの出社にあたり、ユーザにとってより好ましいオフィスを選択させることが可能となる。
【0061】
なお、
図5で説明した表示画面は一例であって、予測結果の表示画面は図示したものに限定されず、表示される情報はこれ以上でもこれ以下であってもよいし、ユーザの設定に応じて、ユーザごとに異なってもよい。
【0062】
このように、本発明の一実施形態によれば、オフィス内のみならず、オフィスの周辺の環境情報を加味した予測モデルによって、オフィスの座席の利用率が予測されてよい。これにより、より精度の高い予測が可能となり、ユーザビリティの高い予測サービスを提供することが可能となる。したがって、本発明の一実施形態によれば、オフィスへの出社、在宅勤務、サテライトオフィス勤務等を組み合わせたベストミックスな働き方の実現に貢献することができる。また、本発明の一実施形態を、シェアオフィスにおける座席の予測に拡張することもできる。
【0063】
なお、予測部116は、説明変数として、過去の任意の一日の曜日に関する曜日情報をさらに用いた予測モデルを生成し、将来の利用率を予測してよい。すなわち、予測部116は、
図4における「曜日」を説明変数に入れた予測モデルを生成し、予測日の「曜日」を入力して、予測利用率を算出してよい。
【0064】
曜日によって、ユーザのモチベーションや生活リズムが変動すると考えられる。そのため、本発明の一実施形態によれば、曜日を考慮した予測モデルを生成することによって、より精度の高い予測が可能となる。
【0065】
なお、表示要求受付部118は、座席を利用するユーザのユーザ端末200から送信された、将来の予測利用率の表示要求を受け付けてよい。そして、出力情報生成部117は、表示要求を送信したユーザ端末200に対して、予測結果を出力させる出力情報を送信してよい。ユーザによっては、座席の予測利用率が提供されたとしても、例えば会議室での会議が予定されておりオフィスへの出社が必須であって、特に座席の予測利用率を考慮しない場合もある。したがって、本発明の一実施形態によれば、ユーザ端末200から要求があった場合にのみ、
図5で示すような予測利用率がユーザ端末200に表示されてよい。これにより、サーバ100の処理負荷を低減させるとともに、ユーザビリティの高い予測サービスを提供することが可能となる。
【0066】
また、取得部112は、ユーザ端末200から座席を利用する予定であるか否かの予定情報を取得する、予定取得部として機能してもよい。
図5(c)に、ユーザ端末200に表示された予定入力画面の一例を示す。予定入力画面30は、ユーザから、予測日に出社予定であるか、または在宅勤務であるか否かを受け付ける画面であって、例えば、
図5(a)の画面10に対して所定の操作が行われたことにより表示されてよい。ユーザは、画面10で座席の予測利用率を確認したのちに、予定入力画面30で、自身の予定を入力することができてよい。入力された予定情報は、ユーザ端末200からサーバ100へ送信され、予測部116は、予定取得部が取得した予定情報に基づいて、将来の利用率を更新してよい。なお、予測部116による予測利用率の更新は、例えば、在宅勤務を予定するユーザが増加した場合に、増加の割合に応じて、予測利用率が低下するような重みづけがなされたり、出社を予定するユーザが増加した場合に、増加の割合に応じて、予測利用率が上昇するような重みづけがなされたりしてよい。
【0067】
このように、本発明の一実施形態によれば、ユーザの予定に応じて、予測利用率が更新されてよい。したがって、より精度の高い予測値を算出することができ、よりユーザビリティの高い予測サービスを提供することができる。
【0068】
なお、本発明の一実施形態によれば、予測モデルの生成に用いる環境情報に、オフィスの所在地周辺の天候情報、交通情報、感染症流行情報を含んでよい。これにより、オフィスの所在地の特性を考慮した予測が可能となる。
【0069】
<サーバの制御フローチャート>
サーバ100の制御方法について、
図6のフローチャートを用いて説明する。まず、サーバ100は、オフィスの所在地周辺の環境に関する環境情報、オフィス内の施設の予約状況に関する予約情報を取得してよい(ステップS11)。なお、取得した各種情報は、上述した学習データTB20として記憶装置400に記憶されてよい。
【0070】
予測部116は、座席の利用率を予測する予測日の前日における座席の利用率を目的変数とし、前日における環境情報及び予約情報、並びに、前日より以前の過去の所定期間にわたる時系列での環境情報、予約情報及び座席の利用率を説明変数とした機械学習によって予測モデルを生成してよい(ステップS12)。また、予測部116は、予測モデルに基づいて、将来の座席の利用率を予測してよい(ステップS13)。なお、予測部116による予測モデルの生成及び予測は、上述の通りであってよい。
【0071】
出力情報生成部117は、予測部116による予測結果を出力してよい。すなわち、出力情報生成部117は、予測結果を表示させる表示画面をユーザ端末200に表示させるための出力情報を生成し、ユーザ端末200に送信してよい。なお、予測結果の表示画面などは、
図5を用いて説明した通りであってよい。
【0072】
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。また、上記実施の形態に示す構成を適宜組み合わせることとしてもよい。例えば、サーバ100が備えるとして説明した各構成部は、複数のサーバによって分散されて実現されてもよいし、機能によっては、外部のプラットフォーム等をAPI(Application Programming Interface)等で呼び出して実現してもよい。また、上述でサーバ100が行うとして説明した処理は、ユーザ端末200が実行してもよいし、ユーザ端末200が行うとして説明した処理を、サーバ100が実行してもよい。
【0073】
例えば、上述では、予測部116による予測が一日単位の場合について説明した。しかしながら、本発明の一実施形態によれば、例えば9時から11時まで、13時から15時までといった、所定の時間帯ごとに予測が行われてよい。すなわち、取得部112は、過去の任意の一日における所定の時間帯ごとの、環境情報及び予約情報を取得し、予測部116は、所定の時間帯ごとに予測モデルを生成して、予測日の所定の時間帯における将来の利用率を予測してもよい。これにより、例えば、1日のうちどの時間帯の予測利用率が高いかをユーザに提供することができ、ユーザにとって使いやすい予測サービスを提供することが可能となる。
【0074】
なお、上述で予測モデルの生成に用いるとした説明変数は一例であって、上述したものに限定されない。また、上述では、目的変数として座席の利用率を出力する予測モデルについて説明したが、座席の利用率そのものでなく、座席の利用率に関する情報を出力するようにしてもよい。例えば、目的変数として、オフィスへの出社人数を出力する予測モデルが生成されてもよい。
【0075】
また、予測モデルの生成については上記に限定されず、例えば、過去の任意の一日における環境情報及び予約情報を説明変数、過去の任意の一日における座席の利用率を目的変数とした過去の所定期間にわたる機械学習によって、予測モデルが生成されてもよい。そして、予測日の環境情報及び予約情報を予測モデルに入力することによって、予測日の座席の利用率が出力されてもよい。
【0076】
本開示の各実施形態のプログラムは、情報処理装置に読み取り可能な記憶媒体に記憶された状態で提供されてもよい。記憶媒体は、「一時的でない有形の媒体」に、プログラムを記憶可能である。プログラムは、例えば、ソフトウェアプログラムや制御プログラムを含む。サーバ100の各機能部をソフトウェアにより実現する場合、サーバ100は、プロセッサがメモリ上にロードされたプログラムを実行することにより、通信制御部111、取得部112、予測部116、出力情報生成部117、及び表示要求受付部118として機能する。
【0077】
記憶媒体は適切な場合、1つ又は複数の半導体ベースの、又は他の集積回路(IC)(例えば、フィールド・プログラマブル・ゲート・アレイ(FPGA)、特定用途向けIC(ASIC)等)、ハード・ディスク・ドライブ(HDD)、ハイブリッド・ハード・ドライブ(HHD)、光ディスク、光ディスクドライブ(ODD)、光磁気ディスク、光磁気ドライブ、フロッピィ・ディスケット、フロッピィ・ディスク・ドライブ(FDD)、磁気テープ、固体ドライブ(SSD)、RAMドライブ、セキュア・デジタル・カードもしくはドライブ、任意の他の適切な記憶媒体、又はこれらの2つ以上の適切な組合せを含むことができる。記憶媒体は、適切な場合、揮発性、不揮発性、又は揮発性と不揮発性の組合せでよい。
【0078】
また、本開示のプログラムは、当該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して、サーバ100に提供されてもよい。
【0079】
また、本開示の各実施形態は、プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。なお、本開示のプログラムは、例えば、JavaScript(登録商標)、Python等のスクリプト言語、C言語、Go言語、Swift,Koltin、Java(登録商標)等を用いて実装されてよい。
【0080】
以上説明した本開示の各態様によれば、ユーザがより働きやすい環境を提供するとともに、企業のフリーアドレス方式の採用を支援して、オフィス空間の有効利用、ユーザ同士のコミュニケーションの機会の向上が可能となることにより、持続可能な開発目標(SDGs)の目標11「住み続けられるまちづくりを」の達成に貢献できる。
【符号の説明】
【0081】
100 サーバ(情報処理装置)
110 制御部
111 通信制御部
112 取得部
113 環境情報取得部
114 予約情報取得部
115 座席情報取得部
116 予測部
117 出力情報生成部
118 表示要求受付部
120 通信部
170 記憶装置
200 ユーザ端末(通信端末)
210 制御部
211 通信制御部
212 表示制御部
213 入出力制御部
220 通信部
230 表示部
240 入出力部
270 記憶部
400 記憶装置
500 ネットワーク
600 情報処理システム
【要約】
【課題】オフィスにおける座席の利用率を提示するための仕組みに関する情報処理装置等を提供すること
【解決手段】本発明の一実施形態に係る、フリーアドレス方式のオフィスにおける将来の座席の利用率を予測する予測システムに係る情報処理装置は、オフィスの所在地周辺の環境に関する環境情報、及び、オフィス内の施設の予約状況に関する予約情報を取得する取得部と、座席の利用率を予測する予測日の前日における座席の利用率を目的変数とし、前日における環境情報及び予約情報、並びに、前日より以前の過去の所定期間にわたる時系列での環境情報、予約情報及び座席の利用率を説明変数とした機械学習によって予測モデルを生成し、予測モデルに基づいて、将来の座席の利用率として、予測日における座席の利用率を予測する予測部と、予測部による予測結果を出力する出力部とを備える。
【選択図】
図2