(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-12
(45)【発行日】2023-12-20
(54)【発明の名称】コンデンサ
(51)【国際特許分類】
H01G 4/30 20060101AFI20231213BHJP
【FI】
H01G4/30 201K
H01G4/30 201C
H01G4/30 201L
H01G4/30 201P
H01G4/30 512
H01G4/30 513
H01G4/30 515
(21)【出願番号】P 2019011361
(22)【出願日】2019-01-25
【審査請求日】2021-05-10
【審判番号】
【審判請求日】2022-10-05
(73)【特許権者】
【識別番号】000006633
【氏名又は名称】京セラ株式会社
(74)【代理人】
【識別番号】110003029
【氏名又は名称】弁理士法人ブナ国際特許事務所
(72)【発明者】
【氏名】永吉 麻衣子
(72)【発明者】
【氏名】藤川 信儀
【合議体】
【審判長】井上 信一
【審判官】須原 宏光
【審判官】小池 秀介
(56)【参考文献】
【文献】特開2016-160111(JP,A)
【文献】韓国公開特許第10-2016-0007219(KR,A)
【文献】特開2018-107413(JP,A)
【文献】特開2018-098433(JP,A)
【文献】特開2015-162648(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 4/30
(57)【特許請求の範囲】
【請求項1】
誘電体層と内部電極層とが交互に複数層積層されたコンデンサ本体を備えており、
前記誘電体層は、結晶粒子と、粒界と、金属粒子とを有しており、
該金属粒子の平均粒径は、前記結晶粒子の平均粒径よりも小さく、前記粒界のうち二面間粒界の平均幅よりも大きく、
前記誘電体層の縦断面を観察したときに、前記金属粒子は、前記誘電体層の幅方向および厚み方向に分布し、
前記金属粒子は、90%以上の割合で、前記粒界のうち三重点粒界に存在
し、
前記誘電体層の断面において、前記金属粒子の占める面積が1.2%以上4%以下である、コンデンサ。
【請求項2】
少なくとも一つの前記誘電体層中に、複数の前記金属粒子が前記誘電体層の厚み方向に重なって並んでいる部分が存在する、請求項
1に記載のコンデンサ。
【請求項3】
複数の前記内部電極層のうちの少なくとも1層は、平均厚みが前記誘電体層の平均厚みよりも厚い、請求項1
または2に記載のコンデンサ。
【請求項4】
前記コンデンサ本体は、対向する2つの端面に前記内部電極層と電気的に接続された外部電極をそれぞれ有しており、
前記コンデンサ本体の表面の、前記外部電極から離間した位置に金属膜を有する、請求項1乃至
3のうちいずれかに記載のコンデンサ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、積層型のコンデンサに関する。
【背景技術】
【0002】
近年、積層型のコンデンサ(以下、コンデンサと表記する。)は、小型化および高容量化のために、誘電体層および内部電極層の薄層化が進展している(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【0004】
本開示のコンデンサは、誘電体層と内部電極層とが交互に複数層積層されたコンデンサ本体を備えており、前記誘電体層は、結晶粒子と、粒界と、金属粒子とを有しており、該金属粒子の平均粒径は、前記結晶粒子の平均粒径よりも小さく、前記粒界のうち二面間粒界の平均幅よりも大きく、前記誘電体層の縦断面を観察したときに、前記金属粒子は、前記誘電体層の幅方向および厚み方向に分布し、前記金属粒子は、90%以上の割合で、前記粒界のうち三重点粒界に存在する。
【図面の簡単な説明】
【0005】
【
図1】実施形態の一例として示すコンデンサの外観斜視図である。
【
図6】コンデンサの他の態様を示す外観斜視図である。
【発明を実施するための形態】
【0006】
コンデンサにおける誘電体層の薄層化は、コンデンサの静電容量を高める手段の一つである。しかしながら、誘電体層の厚みが薄くなってくると、絶縁性の確保が難しくなってくる。今般、本出願人は、以下のことを知見した。
【0007】
それは、コンデンサに電圧を印加し、その状態を長く続けた状態にしておくと、コンデンサが発熱し、温度が高くなり、信頼性が低下しやすくなるということである。つまり、電子機器を駆動させて、コンデンサに電圧が印加された状態が続くと、コンデンサは、連続した電圧の印加により次第に温度が高くなる。信頼性試験を例にすると、コンデンサが高温負荷寿命試験を受けている状態である。
【0008】
本開示はこのような課題に対処したものであり、その目的は、放熱しやすく、信頼性を高めることのできるコンデンサを提供することにある。
【0009】
以下、実施形態のコンデンサについて、
図1~
図4を基にして説明する。なお、本発明は、以下に記述する特定の実施形態に限定されるものではない。本発明は、添付の特許請求の範囲によって定義される総括的な発明の概念の精神または範囲に沿ったものであれば、様々な態様を含むものとなる。
【0010】
図1は、実施形態の一例として示すコンデンサの外観斜視図である。
図2は、
図1のi
i-ii線断面図である。
図3は、
図2におけるP1部の拡大図である。
図4は、
図3におけるP2部の拡大図である。
図5は、コンデンサの他の態様を示す外観斜視図である。実施形態の一例として示すコンデンサは、コンデンサ本体1と、その端面に設けられた外部電極3とを有する。コンデンサ本体1は、誘電体層5と内部電極層7とを有する。誘電体層5と内部電極層7とは交互に複数層積層されている。外部電極3は内部電極層7と電気的に接続された状態にある。誘電体層5は、結晶粒子9と、粒界11と、金属粒子13とを有する。結晶粒子9の周囲には、粒界11が取り巻いている。言い換えると、複数の結晶粒子9は粒界11を介して存在している。ここで、結晶粒子9は誘電性を示すセラミック粒子である。金属粒子13は主として粒界11に存在している。コンデンサを構成する結晶粒子9、粒界11、および金属粒子13は、以下の関係を有する。金属粒子13の平均粒径D13は結晶粒子9の平均粒径D9よりも小さい。金属粒子13の平均粒径D13は粒界11の平均幅W11よりも大きい。なお、金属粒子13の材料の熱伝導率は結晶粒子9の材料の熱伝導率よりも高い。金属粒子13は、誘電体層5の縦断面を観察したときに、誘電体層5の幅方向および厚み方向に分布している。
【0011】
実施形態のコンデンサによれば、誘電体層5の熱伝導性を高めることができる。これによりコンデンサからの放熱性が高まり、信頼性を向上させることが可能となる。
【0012】
ここで、誘電体層5の縦断面を観察したときに、金属粒子13が誘電体層5の幅方向および厚み方向に広がって点在しているとは、金属粒子13が誘電体層5の厚みの方向および幅の方向において、金属粒子13同士の間が結晶粒子9で隔てられるように配置されている状態のことをいう。また、その配置される範囲は複数の結晶粒子9にわたっている。言い換えると、金属粒子13は、結晶粒子9の周囲を取り巻いている粒界11に存在している。誘電体層5の幅方向とは、
図3示すように、コンデンサを縦断面視したときに、内部電極層7の表面に沿う方向である。
図3において、符号Awを付した矢印の方向が幅方向である。誘電体層5の厚み方向とは、
図3において、符号Atを付した矢印の方向であり、誘電体層5の厚みの方向である。
【0013】
このコンデンサでは、金属粒子13の平均粒径D13と粒界11のうち二面間粒界11Dの平均の幅W11Dとの関係から、金属粒子13は粒界11の中でも三重点粒界11Tに存在している割合が高い。これは金属粒子13が次に示す大きさを有しているからである。つまり、金属粒子13の平均粒径D13が結晶粒子9の平均粒径D9よりも小さく、粒界11のうち二面間粒界11Dの平均の幅W11Dよりも大きいサイズとなっているからである。なお、金属粒子13の平均粒径D13が二面間粒界11Dの平均の幅W11Dよりも小さい場合には、金属粒子13の熱伝導性に対する寄与が小さくなる。二面間粒界11Dの平均の幅W11Dの求め方は後述する。
【0014】
金属粒子13の熱伝導率は結晶粒子9の熱伝導率よりも高い方が良い、例えば、誘電体層5の材料にチタン酸バリウムを用いて、内部電極層7の材料としてニッケルを用いたときのように10倍以上高い方が良い。この場合、金属粒子13と内部電極層7とは同じ金属成分を主成分として含んでいるのがよい。
【0015】
結晶粒子9の材料の主成分が例えばチタン酸バリウムであるときは、ニッケル以外にも種々の金属材料を金属粒子13として用いることができる。例えば、銀、パラジウムなどの貴金属材料の他、銅などの卑金属材料を挙げることができる。内部電極層7および外部電極3も上記と同様の金属材料を用いるのが良い。また、内部電極層7と金属粒子13とは主成分が同じあってもよい。チタン酸バリウムの熱伝導率は2.8W/m・K以上3.1W/m・K以下である。ニッケルの熱伝導率は90W/m・K以上92W/m・K以下である。銅の熱伝導率は400W/m・K以上404W/m・K以下である。
【0016】
また、実施形態のコンデンサでは、誘電体層5の断面において、金属粒子13の占める面積が1.2%以上4%以下であるのがよい。言い換えると、誘電体層5中に占める金属粒子13は、誘電体層5の単位面積当たりにおける面積の1.2%以上4%以下であるのがよい。誘電体層5中に占める金属粒子13の割合が上記した範囲であると、コンデンサは絶縁性を有し、設計値に近い静電容量を発現できる。この場合、静電容量の設計値とは、誘電体層5の厚み、誘電体層5の比誘電率、誘電体層5と内部電極層7とが重なった有効面積から見積もることのできる静電容量のことである。
【0017】
誘電体層5の結晶組織などの分析は分析装置を備えた走査型電子顕微鏡を用いるのが良い。誘電体層5中に存在する金属粒子13の割合は、例えば、以下のようにして求める。まず、コンデンサを切断もしくは研磨して
図2に示すような断面を露出させた試料を作製する。必要に応じて試料の断面のエッチング処理を行い、結晶粒子9、粒界11および金属粒子13のそれぞれの輪郭がわかるようにする。次に、得られた試料を走査型電子顕微鏡により観察し、
図3に示すような断面を選択し、結晶組織の写真を撮影する。次に、選択した試料の断面において、誘電体層5が1層ほど見える部分の範囲を指定して、その単位面積の面積を求める。次に、その単位面積の範囲内に存在する個々の金属粒子13の面積を求める。次に、金属粒子13の合計の面積を求める。金属粒子13の合計の面積をAm、誘電体層5の単位面積をAdとする。金属粒子13の誘電体層5の単位面積当たりに対する面積比はAm/Ad比から求める。金属粒子13の面積は、走査型電子顕微鏡により得られた写真から求める。具体的には、まず、写真に現れている金属粒子13の個々の輪郭を取る。次に、その輪郭を画像解析し、面積を求める。金属粒子13の粒径は、金属粒子13の輪郭を画像解析して求めた面積を円の面積に換算することにより求める。金属粒子13の平均粒径は、個々に求めた金属粒子13の粒径の平均値から求める。金属粒子13の粒径の個数(n数)としては、例えば、10個以上30個以下が良い。単位面積とする範囲は、誘電体層5の1層の厚み方向の長さをL1、誘電体層5の幅方向の長さをL2としたときに、L1とL2との積となる範囲である。L1は誘電体層5の1層分の厚みとしてもよい。L2はコンデンサ本体1における1層の誘電体層5の全幅としても良いが、L1の長さの2倍以上10倍以下の範囲としてもよい。結晶粒子9の平均粒径の測定も金属粒子13の場合と同様の方法を用いるのが良い。
【0018】
二面間粒界11Dの幅は、例えば、以下の方法により求める。
図4は二面間粒界11の幅W11Dを示している。まず、上記した単位面積の範囲に見られる結晶粒子9を任意に複数個抽出する。例えば、抽出する結晶粒子9の個数は3~5個としてもよい。次に、抽出した結晶粒子9の輪郭の中で、二面間粒界の部分を5~10カ所測定して平均を算出する。
【0019】
また、このコンデンサでは、誘電体層5中に、複数の金属粒子13が誘電体層5を厚み方向に重なって並んでいる部分が存在する構成でもよい。
図3を用いて、破線枠Fb1および破線枠Fb2の2つの場所を対比させて説明する。破線枠Fb1内には、誘電体層5の厚み方向に金属粒子13aと金属粒子13bとが存在している。破線枠Fb2内には金属粒子13cが1個存在している。破線の枠Fb1内に存在している金属粒子13aおよび金属粒子13bは、誘電体層5および内部電極層7を積層方向から見たときに、少なくとも一部が重なっている状態にある。
図3において、破線枠Fb1において示しているように、金属粒子13aおよび金属粒子13bを誘電体層5の厚み方向から見たときに、金属粒子13aおよび金属粒子13bが重なる部分が存在する場合には、誘電体層5を上下から挟んでいる2つの内部電極層7間において、金属粒子13aと金属粒子13bとの距離が誘電体層5の厚み方向においてより短い距離となる。これにより誘電体層5の厚み方向への熱伝導性をさらに高めることができる。なお、
図3においては、金属粒子13aの直径D13aが金属粒子13bの直径D13bよりも大きく、誘電体層5および内部電極層7を積層方向から見たときに、金属粒子13bが金属粒子13aによって隠れる配置と
なっている。この他、誘電体層5の厚み方向に2つ以上の金属粒子13が並んだ場合に、金属粒子13同士の一部が重なる配置でも良い。
【0020】
図5は、コンデンサの他の態様を示す断面図である。実施形態のコンデンサでは、コンデンサ本体1の内部に、誘電体層5の厚みよりも厚みの厚い内部電極層7が含まれていてもよい。複数の内部電極層7の中に、厚みの異なる内部電極層7a、7bが含まれていてもよい。
図5では、厚みの薄い内部電極層は符号7aで表している。一方、厚みの厚い内部電極層は符号7bで表している。
図5では、誘電体層5の厚みの符号をtD1で表している。内部電極層7aの厚みの符号はtE1である。内部電極層7bの厚みの符号はtE2である。内部電極層7bの厚みtE2は誘電体層5の厚みtD1よりも厚みが厚い。内部電極層7bの厚みtE1は誘電体層5の厚みtD1よりも薄い。コンデンサ本体1中に誘電体層5よりも厚みの厚い内部電極層7bが含まれていると、コンデンサ本体1の全体の体積に対する内部電極層7の体積比が増える。これにより内部電極層7からの放熱性をさらに高めることができる。この場合、互いに隣接している誘電体層5と内部電極層7との間において、内部電極層7の平面方向にわたる1層の全体で内部電極層7の厚みが誘電体層5の厚みよりも厚い方が良い。この場合、コンデンサ本体1の中で、規定されたサイズと静電容量を満足する条件であれば、厚みの厚い内部電極層7bは層数が多い方がよい。厚みの厚い内部電極層13bの層数の割合は50%以上であるのがよい。
【0021】
図6は、コンデンサの他の態様を示す外観斜視図である。実施形態のコンデンサでは、外部電極3が設けられた領域以外のコンデンサ本体1の表面に、外部電極3から離間した位置に金属膜17を有していても良い。コンデンサ本体1の表面の位置に金属膜17が配置されていると、コンデンサは外部電極3以外の領域における放熱量を多くすることが可能になる。この場合、金属膜17はコンデンサ本体の4つの側面のうち少なくとも2つの側面に設けられていてもよい。金属膜17が2つの側面に設けられる場合には対向する配置となっていても良い。コンデンサ本体1の表面において、金属膜17が対向する配置であると、コンデンサが静電容量を発現するときに積層方向に膨張するのを抑えることができる。これによりクラックの発生が抑えられ、より高い信頼性を得ることが可能になる。
【0022】
実施形態のコンデンサは、積層数が100層以上である多積層のコンデンサに適している。また、誘電体層5を形成するための材料としては、上述したチタン酸バリウム以外にも、酸化チタン、チタン酸ストロンチウムおよびチタン酸カルシウムなど常誘電性を示す誘電体材料でもよい。
【0023】
次に、実施形態のコンデンサの製造方法について説明する。実施形態のコンデンサは、内部電極パターンを形成するための導体ペーストとして、以下に示す導体ペーストを用いる以外は、コンデンサの慣用的な製造方法によって作製できる。実施形態のコンデンサは、塩素成分を含む添加剤を含む導体ペーストを用いることによって得ることができる。塩素成分を含む添加剤を導体ペーストに用いると、導体ペースト中の金属粉末がセラミックグリーンシート中に拡散しやすくなる。塩素成分を含む添加剤によって金属粉末がセラミックグリーンシート中に拡散しやすくなるのは、導体ペーストに用いている特定の溶媒が塩素成分を含む添加剤とともにセラミックグリーンシートに用いている有機ビヒクルを適度に溶解させているからである。この場合、誘電体層中に存在する金属粒子の面積比は添加剤の添加量によって調整する。以下、実施例にて詳細に説明する。
【実施例】
【0024】
以下、コンデンサを具体的に作製して特性評価を行った。まず、誘電体粉末を調製するための原料粉末として、チタン酸バリウム粉末(BaTiO3)、炭酸マグネシウム粉末(Mg2CO3)、酸化ディスプロシウム粉末(Dy2O3)、炭酸マンガン粉末(MnCO3)およびガラス粉末(SiO2=55、BaO=20、CaO=15、Li2O3
=10(モル%))およびを準備した。誘電体粉末は、チタン酸バリウム粉末100モルに対して、酸化マグネシウム粉末(MgO)をMgO換算で0.8モル、酸化ディスプロシウム粉末(Dy2O3)を0.8モル、MnCO3粉末をMnO換算で0.3モル添加し、さらにガラス成分(SiO2-BaO-CaO系のガラス粉末)をチタン酸バリウム粉末100質量部に対して1質量部添加した組成とした。
【0025】
上記した誘電体粉末に有機ビヒクルを混合し調製したスラリーを用いてドクターブレード法によって、平均厚みが1.3μmのセラミックグリーンシートを作製した。セラミックグリーンシートを調製する際の有機ビヒクルに含ませる樹脂としてはブチラール系樹脂を用いた。ブチラール系樹脂の添加量は誘電体粉末100質量部に対して10質量部とした。溶媒にはエチルアルコールとトルエンとを1:1で混合した溶媒を用いた。内部電極パターンを形成するための導体ペースト用の金属としてニッケル粉末を用いた。導体ペーストを調製するための樹脂としてはエチルセルロースを用いた。エチルセルロースの添加量はニッケル粉末100質量部に対して5質量部とした。溶媒としてはジヒドロターピネオール系溶媒とブチルセロソルブとを混合して用いた。また、導体ペーストに塩素成分を含むポリエチレングリコール系分散剤を添加剤として添加した。添加剤の添加量は表1に示した。表1に示した添加剤の添加量はニッケル粉末100質量部に対する割合である。
【0026】
次に、作製したセラミックグリーンシートに導体ペーストを印刷してパターンシートを作製した。また、内部電極パターンの厚みをセラミックグリーンシートの厚みよりも厚くしたパターンシートも作製した。
【0027】
次に、作製したパターンシートを200層積層してコア積層体を作製した。内部電極パターンの厚みをセラミックグリーンシートの厚みよりも厚くしたパターンシートは積層方向に通常のパターンシートと交互に積層するようにした。次に、コア積層体の上面側および下面側にセラミックグリーンシートをそれぞれ重ねて母体積層体を作製した。この後、母体積層体を切断してコンデンサ本体の成形体を作製した。
【0028】
次に、作製したコンデンサ本体の成形体を焼成してコンデンサ本体を作製した。本焼成は、水素-窒素中、昇温速度を900℃/hとし、最高温度を1080℃に設定した条件で焼成した。この焼成にはローラーハースキルンを用いた。次に、作製したコンデンサ本体に対して再酸化処理を行った。再酸化処理の条件は、窒素雰囲気中、最高温度を1000℃に設定し、保持時間を5時間とした。
【0029】
得られたコンデンサ本体のサイズは、2mm×1.25mm×1.25mm、誘電体層の平均厚みは1μmであった。内部電極層の平均厚みは薄い方が0.8μm、厚い方が1.2μmであった。作製したコンデンサの静電容量の設計値は10μFに設定した。
【0030】
次に、コンデンサ本体をバレル研磨した後、コンデンサ本体の両端部に外部電極ペーストを塗布し、800℃の温度にて焼き付けを行って外部電極を形成した。
【0031】
また、外部電極ペーストを用いて、外部電極から離間した位置に金属膜となる平面パターンを形成した試料も作製した。試料としては、平面パターンをコンデンサ本体の積層方向の対向する2つの表面に形成したもの。残りの2つの表面にも形成し、計4つの平面パターンを形成したものの2種類を用意した。外部電極ペーストは、Cu粉末およびガラスを添加したものを用いた。その後、電解バレル機を用いて、この外部電極の表面に順にNiメッキ及びSnメッキを形成してコンデンサを得た。
【0032】
次に、作製したコンデンサについて以下の評価を行った。まず、コンデンサを鏡面研磨して、
図2に示すような断面を露出させ、誘電体層中に存在する金属粒子の状態を観察し
た。添加剤の添加量を0.05質量部以上とした試料は、金属粒子が存在していることを確認できるものであった。誘電体層中に存在する金属粒子の割合は、以下のようにして求めた。まず、コンデンサを研磨して
図2に示すような断面を露出させた試料を作製した。次に、誘電体層の断面に、結晶粒子、粒界および金属粒子のそれぞれの輪郭が明確に見えるように熱エッチング処理を行った。次に、得られた試料を走査型電子顕微鏡により観察した。次に、
図3に示すような断面を選択した。選択した領域は、コンデンサ本体の断面における積層方向の中央部かつコンデンサの長手方向(L寸断面)の中央部である。選択した領域は1箇所である。単位面積とする範囲は、誘電体層の1層の厚み方向の長さをL1、誘電体層の幅方向の長さをL2としたときに、L1とL2との積となる範囲である。L2はL1の長さの5倍の範囲とした。次に、その単位面積の範囲内に存在する個々の金属粒子の面積および合計した面積を求めた。金属粒子の面積は、走査型電子顕微鏡により得られた写真から求めた。金属粒子の面積は、金属粒子の輪郭の画像解析を行って求めた。金属粒子の粒径は、金属粒子の輪郭を画像解析して求めた面積を円の面積に換算することにより求めた。金属粒子の平均粒径は、個々に求めた金属粒子の粒径の平均値から求めた。測定した金属粒子の個数(n数)は20個から25個とした。金属粒子の合計の面積をAm、誘電体層の単位面積をAdとした。金属粒子の誘電体層の単位面積当たりに対する面積比はAm/Ad比から求めた。結晶粒子の平均粒径も金属粒子の場合と同様の方法を用いた。
【0033】
二面間粒界の幅は、以下の方法により求めた。まず、上記した単位面積の範囲に見られる結晶粒子を任意に3個~5個選択した。次に、選択した結晶粒子の輪郭の中で、二面間粒界の部分を10カ所抽出し、測定した。二面間粒界の幅は、10カ所のそれぞれの場所において最大値を選択した。最後に、二面間粒界の10カ所から求めた幅(W11D)の平均値を求めた。また、撮影した写真から、誘電体層中に、複数の金属粒子が誘電体層を厚み方向に重なって並んでいる部分が存在するか否かを評価した。結晶粒子の平均粒径はいずれの試料も0.26μmであった。二面間粒界の厚みはいずれも試料も0.06μmであった。金属粒子は粒界に存在していた。金属粒子が三重点粒界に存在する割合は90%以上であった。
【0034】
次に、誘電特性については、直流電圧を印加しない条件(交流電圧0.5V、周波数1kHz)にて静電容量を測定した。試料数は30個とし、平均値を求めた。静電容量を測定できた試料の静電容量はいずれも9.7μF以上であった。
【0035】
高温負荷試験は、温度170℃、直流電圧30Vの条件で不良が最初に発生した時間を評価した。コンデンサが不良となる状態は、コンデンサが短絡状態に入った状態とした。試料数は20個とした。
【0036】
【0037】
表1から明らかなように、誘電体層中に金属粒子が存在しなかった試料(試料No.1、試料No.2)を除いて、試料No.2~17は、高温負荷寿命がいずれも16時間以上であった。試料No.2~17のコンデンサは放熱性が高いことが分かった。また、誘電体層の単位面積当たりにおける金属粒子の面積比が1.2%以上4%以下である試料No.4~7、10~17は高温負荷寿命が18時間~27時間であった。これらの試料の中で、誘電体層よりも厚み厚い内部電極層を有する試料(試料No.10~13)は、誘電体層よりも厚み厚い内部電極層を有しない試料(試料No.4~7)に比べて高温負荷寿命が長くなっていた。さらに、外部電極が設けられた領域以外のコンデンサ本体の表面の外部電極から離間した位置に金属膜を設けた試料(試料No.14~17)も試料No.4~7のコンデンサよりも高温負荷寿命が長くなっていた。試料No.8は金属粒子の割合が多く、絶縁性が低下し、他の試料と同等の静電容量が得られなかった。
【符号の説明】
【0038】
1・・・・・・・・・・コンデンサ本体
3・・・・・・・・・・外部電極
5・・・・・・・・・・誘電体層
7・・・・・・・・・・内部電極層
9・・・・・・・・・・結晶粒子
11・・・・・・・・・粒界
13・・・・・・・・・金属粒子
17・・・・・・・・・金属膜