(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-14
(45)【発行日】2023-12-22
(54)【発明の名称】心臓血管再生に対する応答の予測方法
(51)【国際特許分類】
G01N 33/53 20060101AFI20231215BHJP
【FI】
G01N33/53 D
G01N33/53 P
(21)【出願番号】P 2020502119
(86)(22)【出願日】2018-07-16
(86)【国際出願番号】 EP2018069307
(87)【国際公開番号】W WO2019016156
(87)【国際公開日】2019-01-24
【審査請求日】2021-06-16
(31)【優先権主張番号】102017116204.6
(32)【優先日】2017-07-18
(33)【優先権主張国・地域又は機関】DE
【前置審査】
(73)【特許権者】
【識別番号】519364901
【氏名又は名称】ウニベルジテート ロストック ツェントラーレ ウニベルジテーツフェアヴァルトゥング リフェラート 1.1 レヒト
(74)【代理人】
【識別番号】110001896
【氏名又は名称】弁理士法人朝日奈特許事務所
(72)【発明者】
【氏名】シュタインホフ、グスタフ
(72)【発明者】
【氏名】ネステルク、ユーリア
(72)【発明者】
【氏名】ヴォルフィーン、マルクス
【審査官】北条 弥作子
(56)【参考文献】
【文献】特表2007-511206(JP,A)
【文献】国際公開第2009/061382(WO,A2)
【文献】特表2013-520509(JP,A)
【文献】特表2016-508129(JP,A)
【文献】米国特許出願公開第2013/0095060(US,A1)
【文献】国際公開第2007/142288(WO,A1)
【文献】特表2017-512988(JP,A)
【文献】山崎 元成,低左心機能症例における冠動脈バイパス術,術直後および中期遠隔期成績,予後因子の検討,冠疾患誌,2011年,17,8-15
【文献】Sang-Mo Kwon,Pivotal Role of Lnk Adaptor Protein in Endothelial Progenitor Cell Biology for Vascular Regeneration,Circulation Research,2009年04月24日,104(8),pp.969-977,doi: 10.1161/CIRCRESAHA.108.192856.
【文献】Sheryl L Chow,Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association, Circulation,AHA SCIENTIFIC STATEMENT,2017年05月30日,35(22),e1054-e1091,doi: 10.1161/CIR.0000000000000490.
【文献】Christof Stamm,Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: Safety and efficacy studies,The Journal of Thoracic and Cardiovascular Surgery,2007年03月,133(3),pp.717-725
(58)【調査した分野】(Int.Cl.,DB名)
G01N 33/48~33/98
(57)【特許請求の範囲】
【請求項1】
心臓血管再生に対する応答を予測するための方法であって、
(i)被験体の血液サンプル中の、
成長因子、
リンパ球アダプタータンパク質、
糖タンパク質、
脳性ナトリウム利尿ペプチド(BNP)、
循環内皮前駆細胞(EPC)、
循環内皮細胞(CEC)、
循環血小板、
循環単核細胞およびその亜集団、ならびに
MNC亜集団上の受容体/リガンド発現
の各群より選択されるバイオマーカーのそれぞれの量を測定すること、
(ii)測定された量をベースライン値および/または参照と比較すること
を含み、成長因子がVGEF、エリスロポエチンおよび/またはFGFから選択され、リンパ球アダプタータンパク質がSH2B3であり、糖タンパク質がビトロネクチンであり、かつ脳性ナトリウム利尿ペプチドがNT-proBNPである方法。
【請求項2】
予測精度の感度および特異性が約80%超である請求項1記載の方法であって、バイオマーカーがNT-proBNP、VEGF、エリスロポエチン、ビトロネクチン、SH2B3mRNA発現、循環EPC、循環CEC、および循環血小板を含み、循環EPCはCD45
+、C117
+、CD184
+、CD133
+、およびCD146
+EPCから選択され;循環CECはCD133
+、CD146
+、CD105
+、およびCD34
+CECから選択され;前記方法が、コロニー形成単位(CFU)ヒルアッセイ(Hill assay)、末梢血マトリゲルプラグアッセイ、体重、および左室収縮末期容積(LVESV)指数を含む臨床パラメータの使用を含み;血液サンプルが、幹細胞治療および冠動脈バイパス移植手術を受けている冠動脈疾患を患う披験体から採取されたものであり;前記方法が少なくとも2つの時点、手術前0日目および術後10日目の比較の結果のプロファイリングを含む、請求項1記載の方法。
【請求項3】
成長因子がVEGFおよび/またはエリスロポエチンである請求項1記載の方法。
【請求項4】
ヒトインターフェロンガンマ誘導性タンパク質10およびインスリン様成長因子結合タンパク質-3からなる群より選択される1つまたはそれより多くのバイオマーカーがさらに使用される請求項1、2または3記載の方法。
【請求項5】
方法が、心筋梗塞、脳卒中および末梢虚血性血管疾患を含む心臓血管疾患、心疾患および/または虚血性プレコンディショニングの、幹細胞治療および/または血管新生応答の誘導および/または組織修復に対する応答の術前予測のために使用される請求項1、および3~4のいずれか1項に記載の方法。
【請求項6】
血液サンプルが心疾患および/または動脈硬化症に罹患している被験体から採取される請求項1、および3~5のいずれか1項に記載の幹細胞治療に対する応答の予測のための方法。
【請求項7】
方法が、少なくとも2つ、3つ、4つ、5つ、6つまたはそれ以上の時点の比較の結果のプロファイリングを含む請求項1~6のいずれか1項に記載の方法。
【請求項8】
予測精度の感度および特異性が90%超である請求項2記載の方法であって、前記方法が少なくとも2つの時点、手術前0日目および術後180日目の比較の結果のプロファイリングを含む、方法。
【請求項9】
方法が、臨床診断パラメータの使用をさらに含む請求項1、および3~7のいずれか1項に記載の方法。
【請求項10】
方法が、血管新生応答のプロファイリングのために使用される請求項1~9のいずれか1項に記載の方法。
【請求項11】
方法が、RNAおよび/またはDNA配列分析および/またはネットワーク経路分析を用いた薬物動態学および薬理遺伝学データ分析をさらに含む請求項1~10のいずれか1項に記載の方法。
【請求項12】
方法が、体重の分析をさらに含む請求項1、3~7、および9~11のいずれか1項に記載の方法。
【請求項13】
幹細胞治療が、CD133陽性幹細胞の移植を含む、請求項5または6に記載の方法。
【請求項14】
被験体がヒトである、請求項1~13のいずれか1項に記載の方法。
【請求項15】
血液サンプルが、血清および/または血漿サンプルである請求項1~14のいずれか1項に記載の方法。
【請求項16】
成長因子、
リンパ球アダプタータンパク質、
糖タンパク質、
循環内皮前駆細胞(EPC)、
循環内皮細胞(CEC)、
循環血小板、
循環単核細胞(MNC)およびその亜集団、
MNC亜集団上の受容体/リガンド発現、および
脳性ナトリウム利尿ペプチド(BNP)
の各群よりそれぞれ選択される心臓血管再生に対する応答の予測のための一組のバイオマーカーであって、
成長因子がVGEF、エリスロポエチンおよび/またはFGFから選択され、リンパ球アダプタータンパク質がSH2B3であり、糖タンパク質がビトロネクチンであり、かつ脳性ナトリウム利尿ペプチドがNT-proBNPである一組のバイオマーカー。
【請求項17】
成長因子がVEGFおよび/またはエリスロポエチンである請求項
16記載の一組のバイオマーカー。
【請求項18】
ヒトインターフェロンガンマ誘導性タンパク質10およびインスリン様成長因子結合タンパク質-3からなる群より選択される1つまたは複数のバイオマーカーをさらに含む請求項
16または
17記載の一組のバイオマーカー。
【請求項19】
臨床診断データ、および/またはRNAおよび/またはmRNAおよび/または機能的RNAおよび/またはSNPの分析、および/または薬物動態学的データの分析、および/または体重の分析と組み合わせて使用される請求項16~18のいずれか1項に記載の一組のバイオマーカー。
【請求項20】
方法および/または一組のバイオマーカーが、幹細胞治療に対する応答の術前予測のために使用され、前記幹細胞治療が、冠状動脈バイパス移植(CABG)を伴う請求項5または15記載の方法または請求項16~18のいずれか1項に記載の一組のバイオマーカー。
【請求項21】
請求項1~15のいずれか1項に記載の方法を実行するために適合されたキットであって、前記被験体の血液サンプル中の、請求項1~4のいずれか1項のバイオマーカーの各々の量を測定するための検出試薬を含むキット。
【請求項22】
プロセッサおよびプロセッサに結合された1つまたは複数の機械学習(ML)モデルをエンコードするメモリを含むコンピュータ装置であって、前記
1つまたは複数の機械学習モデルのプログラムは、前記プロセッサに方法を実行させ、前記方法が、
(i)請求項1~4のいずれか1項に記載のバイオマーカーの測定量をベースライン値および/または参照と比較し、
(ii)比較の結果に基づいて、被験体における心臓血管再生への応答が、予想されるか、予想されないか、または両価であるかどうかを予測する
ことを含む、コンピュータ装置。
【請求項23】
請求項1~15のいずれか1項に記載の方法を実行するように適合された装置であって、
(i)被験体の血液サンプル中の、請求項1~4のいずれか1項に記載のバイオマーカーの各々の量を測定するための分析ユニット、および
(ii)請求項22記載のコンピュータ装置
を含む装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バイオマーカーの使用を含む心臓血管再生に対する応答の予測方法に関する。さらに、本発明は、心臓血管再生に対する応答の予測方法における使用のためのバイオマーカーの組み合わせ、本発明の方法を行うためのコンピュータ装置、ならびに本発明の方法を実行するために採用された装置に関する。
【背景技術】
【0002】
心臓組織の修復のための再生医療は、ここ16年における前臨床および臨床開発の最先端である。種々のアプローチのうち、心臓組織中への骨髄性幹細胞の直接的な適用が2001年の初めての人への適用および最初の有望な臨床試験以来、依然として、最も熱心に行われている臨床開発的治療である(Stamm C, Westphal B, Kleine HD, et al. Lancet. 2003; 361(9351):45-46; Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Lancet 2003; 361(9351):47-9; Stamm C, Kleine HD, Choi YH, et al. J Thorac Cardiovasc Surg 2007; 133(3):717-25)。しかし、これらの試験において、LVEF(左室駆動率)の臨床関連の改善ならびにノンレスポンシブ患者が、治療群およびプラセボ群の両方において観察することができた(Timothy D H, Lem M, Jay H T, Circulation Research 2016; 119:404-406; Nasseri B A, Ebell W, Dandel M, et al. Eur Heart J. 2014, 35(19):1263-74; Bartunek J, Terzic A, Davison B A et al. Eur Heart J. 2016 Dec 23. pii: ehw543. doi: 10.1093/eurheartj/ehw543)。
【0003】
このことは、幹細胞適用からは独立した再生機序およびCD34+内皮前駆細胞(EPC)に関連する血管修復の潜在的な抑制因子に対する誘発という問題を提起した(Werner N, Kosiol S, Schiegl T, et al. N Engl J Med. 2005; 353(10):999-1007)。最近発表された仮説に関して、CD133/CD34+末梢循環EPC細胞の極めて重要な役割が、心臓が再生しないことに関連付けられ得るかもしれないということが留意されるべきである(Taylor DA, Perin EC, Willerson JT, et al. Cell Transplant 2016;25(9):1675-1687; Bhatnagar A, Bolli R, Johnstone BH et al. Am Heart J 2016; 179:142-50; Contreras A, Orozco AF, Resende M, et al. Basic Res Cardiol 2017;112(1):3)。
【発明の概要】
【発明が解決しようとする課題】
【0004】
したがって、心臓再生の機序および骨髄性幹細胞により調節された血管新生の役割は依然として未解決のままである。
【課題を解決するための手段】
【0005】
本発明者らは、今回、バイオマーカーの測定を含む心臓血管再生に対する応答の予測方法を明らかにした。本発明は、したがって、本願の請求項1に記載の、バイオマーカーの測定を含む、心臓血管再生に対する応答の予測方法に関する。さらに、本発明は、心臓血管再生に対する応答の予測方法における使用のためのバイオマーカーの組み合わせ、そのような方法を実行するためのコンピュータ装置および本発明の方法を実施するために適合させた装置に関する。
【0006】
本発明は、したがって、心臓血管再生に対する応答の予測方法であって、
(i)被験体のサンプル中の次のバイオマーカーのそれぞれの量を測定する工程であって、該バイオマーカーは、成長因子、リンパ球アダプタータンパク質、糖タンパク質、脳性ナトリウム利尿ペプチド(BNP)、循環内皮前駆細胞(EPC)、循環内皮細胞(CEC)、循環血小板、循環単核細胞(MNC)および亜集団、およびMNC亜集団上の受容体/リガンド発現の群より選択される、
(ii)測定された量をベースライン値および/または参照と比較すること、
(iii)比較結果に基づき、被験体における心臓血管修復への応答が期待されるか、期待されないか、またはであるかを予測すること
を含む方法に関する。
【0007】
好ましくは、本発明の方法は、ex vivo法である。さらに、上記に明示した工程以外の工程を含んでいてもよい。例えば、さらなる工程は、サンプル前処理または本方法により得られる結果のさらなる評価もしくは使用に関してもよい。本方法は、手動で行ってもよく、自動化により支援されてもよい。好ましくは、工程(i)は、全体または部分的に自動化、例えば適切なロボットや感覚設備により支援されてもよい。工程(ii)および/または(iii)は、それぞれの比較および/または予測を実施するデータ処理ユニットにより支援されてもよい。
【0008】
有益には、本発明の方法を用いることにより、心臓血管再生に対する応答の予測精度は、約80%超、より好ましくは、約85%超、さらにより好ましくは、約90%超に向上させることができる。
【図面の簡単な説明】
【0009】
【
図1】レスポンダーおよびノンレスポンダーの末梢血液中でのSH2B3発現分析を示す図である。
【
図2】教師なしMLを意味する三次元t分布型確率的近傍埋め込み法(t-SNE)の計算を示す図である。
【
図3】レスポンダーとノンレスポンダーとを区別するための臨床ならびに臨床および実験室データセットの術前および術後の時点についてML予測結果(0日~180日)を示す図である。
【
図4】PERFECT試験のアウトカム結果を示す図である。
【発明を実施するための形態】
【0010】
本明細書において使用される用語「予測すること(predicting)」は、確からしさであって、それに基づいて被験体が、心臓幹細胞治療から恩恵を受ける(該心臓療法後に、本明細書のいずれかで詳細に定義されるように心臓血管系の機能改善がみられる)であろうという確からしさを評価することを意味する。
【0011】
当該技術分野における当業者によって理解されるであろうように、このような評価は、通常、診断される被験体の100%について正確であることは意図されない。しかしながら、この用語は、評価が統計的に有意な割合の被験体(例えばコホート研究におけるコホート)に対して正確であることを要件としている。割合が統計的に有意であるかどうかは、当該技術分野における当業者によって困難なしに、例えば信頼区間の決定、p値の決定、Studentのt検定、Mann-Whitney検定などの様々な周知の統計評価ツールを用いて決定され得る。詳細は、Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York 1983に見ることができる。好ましい信頼区間は、少なくとも90%、少なくとも95%、少なくとも97%、少なくとも98%、または少なくとも99%である。p値は、好ましくは0.1、0.05、0.01、0.005、または0.0001である。
【0012】
本明細書において使用される用語「心臓血管再生」は、心臓血管系に関連した疾患の再生および/または治療および/または改善を含む。
【0013】
用語「バイオマーカー」は、その存在、不存在または量が、医学的な状態または素因と相関する分子を意味する。バイオマーカーは、被験体に生じるあらゆる分子および/または細胞またはそれらの亜集団とすることができる。典型的には、バイオマーカーは、タンパク質、ペプチド、小分子または核酸(DNAまたはRNA)、または細胞またはその亜集団である。本発明によれば、その用語は、好ましくはタンパク質およびペプチド、すなわちVEGF、FGFまたはエリスロポエチンなどの成長因子、SH2B3などのリンパ球アダプタータンパク質、ビトロネクチンまたはGCSFなどの糖タンパク質、NT-proBNPなどの脳性ナトリウム利尿ペプチド、TNFなどのサイトカイン、IL-6、IL-8またはIL-10などのインターロイキン、ヒトインターフェロンガンマ-誘導性タンパク質10などのインターフェロン、インスリン様成長因子結合タンパク質2および/またはインスリン様成長因子結合タンパク質3などのインスリン様成長因子結合タンパク質(インスリン様成長因子は好ましくはIGF2から選択される)、SDF-1などのケモカインタンパク質、およびSCFなどのマルチタンパク質E3ユビキチンリガーゼ複合体を意味する。
【0014】
さらに、本発明によれば、バイオマーカーは、細胞およびその亜集団、すなわち、例えばCD45、CD117、CD184、CD133および/またはCD146などの分化抗原群(CD)をその表面に有するか、または有しない循環内皮前駆細胞(EPC)、CD31、CD133、CD146、CD105および/またはCD34をその表面に有するまたは有しない循環内皮細胞(CEC)、循環血小板、循環単核球(MNC)および亜集団、およびCD184、CD309、細胞接着分子(CAM)および/またはインテグリン受容体を有するか、または有さないMNC亜集団上の受容体/リガンド発現を意味する。
【0015】
本明細書中で意味されるバイオマーカーの量の測定とは、量または濃度を、好ましくは、半定量的または定量的に、測定することに関連する。測定は、直接的または間接的に行われ得る。直接的な測定は、バイオマーカー自体から得られるシグナルに基づいてバイオマーカーの量または濃度、および、サンプル中に存在するバイオマーカーの分子の数に直接的に相関する強度を測定することに関する。このようなシグナル-本明細書においてしばしば強度シグナルとも称される-は、例えば、バイオマーカーの特定の物理的または化学的特性の強度値を測定することなどによって得られ得る。間接的な測定は、二次成分(すなわち、バイオマーカー自体ではない成分)または生物学的な読み出しシステム、例えば、計測可能な細胞応答、リガンド、ラベル、または酵素反応生成物などから得られるシグナルを測定することを含む。
【0016】
本発明にしたがって、バイオマーカーの量を測定することは、サンプル中の、ペプチド、タンパク質、低分子、例えばDNAもしくはRNAなどの核酸、または細胞もしくはその亜集団の量を測定するための全ての公知の手段(means)によって達成され得る。該手段(means)は、免疫測定法および様々なサンドイッチアッセイ、競争的アッセイ、また他のアッセイのフォーマット中のラベルされた分子を利用し得る方法を含む。このようなアッセイは、好ましくは、測定されるバイオマーカーを特異的に認識する例えば抗体などの検出試薬に基づいている。検出試薬は、バイオマーカーの存在または非存在を示すシグナルを直接的または間接的のどちらかで生成することができるであろう。さらに、シグナル強度は、好ましくは、サンプル中に存在するバイオマーカーの量に直接的または間接的に(例えば反比例的に)相関し得る。さらなる適切な方法は、例えばその正確な分子量またはNMRスペクトルなどのバイオマーカーに特異的な物理的または化学的特性を測定することを含んでいる。これらの方法は、好ましくは、バイオセンサー、免疫測定法、FACS分析、バイオチップに連結された光学装置、例えば質量分析器、NMR分析器またはクロマトグラフィー装置などの分析装置を含む。さらに、該方法は、マイクロプレートELISAベースの方法、完全に自動化されたまたはロボティックな免疫測定法、酵素コバルト結合分析、およびラテックス凝集分析を含む。
【0017】
好ましくは、バイオマーカーの量を測定することは、(a)細胞応答を引き出すことのでき、その強度が適切な時間のあいだバイオマーカーの量を示すことができる細胞を該バイオマーカーと接触させる工程、(b)細胞応答を測定する工程を含む。細胞応答を測定するために、サンプルまたは処理されたサンプルが、好ましくは、細胞培養液へと添加され、そして、細胞内応答または細胞外応答が測定される。細胞応答としては、測定可能なレポーター遺伝子の発現、または、例えばペプチド、ポリペプチドまたは低分子などの物質の分泌が挙げられる。その発現または物質は、バイオマーカーの量と相関する強度シグナルを作製するであろう。
【0018】
また好ましくは、バイオマーカーの量を測定することは、サンプル中の該バイオマーカーから得られ得る特異的なシグナルの強度を測定する工程を含む。上述されるように、このようなシグナルは、質量スペクトルにおいて観察されるバイオマーカーに特異的なm/z変数で観察される、またはバイオマーカーに特異的なNMRスペクトルで観察されるシグナル強度であり得る。
【0019】
本明細書において使用される「量(amount)」との用語は、バイオマーカーの絶対量、バイオマーカーの相対量または濃度、および、それに相関するまたはそれから導かれ得る任意の値またはパラメータを包含する。このような値またはパラメータは、例えば、マススペクトルまたはNMRスペクトルにおける強度値などの、直接的な測定によって該ペプチドから得られる、全ての特異的な物理的または化学的特性由来のシグナル強度値を含む。さらに、本明細書中で特定される、間接的な測定によって得られる全ての値またはパラメータ、例えば、ペプチドに応答して生物学的読み出しシステムから決定される応答レベル、または、特異的に結合したリガンドから得られるシグナル強度などが含まれる。上述の量またはパラメータに相関している値はまた、全ての標準的な数学的操作によって得られ得ること、および、次数なしに、例えば本明細書中で記載される評価システムなどにおいて、使用され得ることが理解されるであろう。
【0020】
本明細書中で使用される用語「比較すること(comparing)」とは、分析されるサンプルに含まれるバイオマーカーの量を、本明細書中で特定される好適な参照源の量と比較することを包含する。本明細書中で使用される比較は、濃度が基準濃度と比較されるか、または試験サンプルから得られた強度信号が、参照サンプルの同じタイプの強度信号と比較されると同時に、対応するパラメータまたは値の比較、例えば、絶対量が絶対参照量と比較されることを意味することが理解されるべきである。しかしながら、本発明によれば、また、バイオマーカーの測定量に基づいて値を計算することが想定される。かかる値は、心臓幹細胞治療によって、事前に定義されたレスポンダーとノンレスポンダーを含む被験体の集団からの量について行われた多変量判別分析から導出された基準範囲と比較される。さらなる詳細は、以下に添付の実施例に見出すことができる。
【0021】
本発明の方法において意味される比較は、手動で、またはコンピュータに支援されて実行され得る。コンピュータ支援の比較については、測定された量の値は、コンピュータプログラムによってデータベース内に保管されている適切な参照に対応する値と比較され得る。コンピュータプログラムは、さらに、比較の結果を評価し得る、すなわち、適切な出力フォーマットで所望の評価を自動的に提供し得る。好ましくは、このような評価は、機械学習(ML)によって行われる。測定値と参照値との比較に基づいて、例えば、心臓幹細胞治療後の心臓の機能改善などの心臓再生に対する応答を予測することが可能である。特には、高い確からしさ(すなわち被験体がレスポンダーであろうこと)または低い確からしさ(すなわち、被験体がノンレスポンダーであろうこと)があるのか、または被験体が両価であるのかを予測することが可能であろう。したがって、参照値は、比較される量のあいだの相違または類似性が、虚血性または非虚血性脳損傷のいずれかを有する急性炎症の症状を示す被験体の群に属するこれらの試験の被験体を同定することを可能とするように選択される。この方法は、(i)虚血性脳損傷または(ii)非虚血性脳損傷を患う被験体として被験体を除く(ルールアウト(rule-out))か、同定する(ルールイン(rule-in))ことを可能にする。
【0022】
本明細書中で使用される用語「参照(reference)」とは、被験体を、心臓治療から恩恵を受けることが期待され得る被験体の群または恩恵のある心臓治療が期待できない被験体の群のどちらかの群または両価である被験体へと振り分けることを可能にするバイオマーカーの量に基づいた値、閾値または差を意味する。
【0023】
かかる参照は、これらの群を互いに分ける閾値量とすることができる。2つの群を分ける適切な閾値量は、心臓治療から恩恵を受けると知られている被験体または被験体の群、または前記治療から恩恵を受けないと知られている被験体または被験体の群、または両価であると知られている被験体のいずれかからのバイオマーカーの量に基づいて、本明細書中の他の場所に言及された統計的検定によってさらなる苦もなく計算することができる。
【0024】
原則として、参照は、標準的な統計的方法を適用することによって、所与のバイオマーカーの平均または平均値に基づいて、上記で特定されるように、被験体のコホートについて計算することができる。特には、事象を診断すること、またはしないことを目的とする方法などの試験の精度は、その受信者動作特性(ROC)によって最もよく説明されている(特に、Zweig 1993, Clin. Chem. 39:561-577参照)。したがって、本発明の前述の方法に使用される参照は、上述したような前記コホートのためのROCを確立し、それから閾値量を導出することによって生成することができる。診断方法に関する所望の感度および特異度に依存し、ROCプロットは、適切な閾値を導出することを可能にする。
【0025】
用語「サンプル(sample)」とは、体液のサンプル、および、好ましくは、血液(全血)、血漿または血清のサンプルを意味する、しかしながら、該用語はまた、上述の全血、血漿または血清から、例えば部分精製などによって得られる例えば血液、血漿または血清の画分などの例えば前処理工程などによって得られる全てのサンプルを包含する。
【0026】
本明細書で使用される用語「被験体(subject)」は、動物、好ましくは哺乳動物、最も好ましくはヒトを指す。被験体は、心臓治療が必要となることがある。好ましくは、心臓治療が必要な被験体は、例えば、心筋梗塞後に、心不全または冠動脈疾患などの心臓疾患を患うか、およびより好ましくは心不全を患う。
【0027】
本発明の方法に従って作成された予測も、確率が高く、非検体における心臓系の機能改善が生じるかことが期待されるかどうか、または確率が治療の成功が両価であるようなものであるかどうか、または確率が低く、したがって、被験体における心臓系の機能改善が生じないことが期待されるかどうかを評価することを可能とする。
【0028】
本発明はさらに、心臓血管再生への応答を予測するための方法における使用のための、成長因子、リンパ球アダプタータンパク質、糖タンパク質、脳性ナトリウム利尿ペプチド(BNP)、循環内皮前駆細胞(EPC)、循環内皮細胞(CEC)、循環血小板、循環単核細胞および亜集団、およびMNCの亜集団上での受容体/リガンド発現の群から選択されたバイオマーカーの組み合わせに関する。
【0029】
また、本発明は、プロセッサおよびプロセッサに結合された1つ以上の機械学習(ML)モデルをエンコードするメモリを含むコンピュータ装置に関し、前記プログラムは、プロセッサに方法を実行させ、前記方法は、
(i)本発明に係るバイオマーカーの測定された量をベースライン値および/または参照と比較し、
(ii)比較の結果に基づいて、被験体における心臓血管再生への応答が期待されるか、基体されないか、または両価であるかどうかを予測する
ことを含む。
【0030】
また、本発明は、本発明の方法を実行するように適合された装置に関し、装置は、
(i)被験体のサンプル中の本発明に係るバイオマーカーの各々の量を測定するための分析ユニット、および
(ii)本発明に係るコンピュータ装置(上述されたような)
を含む。
【0031】
本明細書で使用する用語「装置(device)」は、本発明の方法に係る診断を可能にするように互いに作動可能に連結された上述の各ユニットを備えるシステムに関する。分析ユニットに用いることができる好ましい検出試薬(detection agent)は、本明細書の他の箇所に開示されている。好ましい検出試薬は、バイオマーカー(複数可)に特異的に結合し、検出可能な複合体を形成する、抗体または他のタンパク質である。分析ユニットは、好ましくは、その量が測定されるべきバイオマーカーを含むサンプルに接触させられる固体支持体上に固定化された形態で検出試薬を含む。また、分析ユニットは、バイオマーカー(複数可)に特異的に結合された検出試薬の量を測定する検出器をさらに含むことができる。測定された量は、評価ユニットに送信することができる。前記評価ユニットは、測定された量と適切な参照との間の比較を行うための実装アルゴリズムを備える、コンピュータ等のデータ処理要素を含む。適切な参照は、本明細書の他の箇所に上記されるように参照量の生成のために使用される被験体のサンプルに由来し得る。結果は、パラメトリック診断生データの出力として、好ましくは、絶対量または相対量として与えられてもよい。これらのデータは、臨床医による解釈を必要とすることが理解されるべきである。しかし、出力が、専門の臨床医による解釈を必要としない処理された診断生データを含むエキスパートシステム装置も想定される。
【0032】
本発明のさらに好ましい態様は、以下の記載とともに従属クレームから導かれ、それにより、ある種のカテゴリーの特許クレームは異なるカテゴリーの従属クレームによって形成されてもよく、そして、種々の例の特徴は、新しい例と組み合わせてもよい。上記および下記でなされた用語の定義および説明は、本明細書および添付のクレーム中で記載される全ての実施形態に適切に適用されることが理解されるべきである。以下において、本発明の方法の具体的な実施形態がさらに特定される。
【0033】
有利には、本発明による方法を実施することにより、予測精度の感度および特異性が,約80%よりも高く、好ましくは約85%より高く、より好ましくは約90%より高くなり得る。したがって、本発明の方法は、心臓治療などの高価で煩雑な治療方針の適用に先立つ臨床医の下す決断を改善する。正しい決断を下すこと、すなわち、それが効果的である場合にのみその治療を適用することは、確かに個々の患者のためにも、そして費用結果を考慮すると、公衆衛生システム自体のためにも有益である。
【0034】
心臓治療の前に該心臓治療を必要とする被験体、例えば心不全を患う被験体から採取されたサンプルにおけるバイオマーカーの組み合わせの量を分析することは、被験体がその治療から、心臓再生または心臓血管修復が治療後に改善されるという恩恵を受けるかどうかを予測することを可能にし、その場合、成長因子が、好ましくは、VEGFおよび/またはエリスロポエチンから、および任意にはFGFから選択され、リンパ球アダプタータンパク質が、好ましくはSH2B3から選択され、糖タンパク質が、好ましくは、ビトロネクチンから、および任意にはGCSFから選択され、脳性ナトリウム利尿ペプチドが、好ましくはNT-proBNPから選択され、循環内皮前駆細胞(EPC)が、好ましくはCD45+、C117+、CD184+、CD133+、CD146+細胞から選択され、循環内皮細胞(CEC)が、好ましくはCD133+、CD146+、CD105+、CD34+細胞から選択され、循環血小板、循環単核細胞および亜集団、そしてMNC亜集団上の受容体/リガンド発現が、好ましくはCD184+および/またはCD309+細胞、細胞接着分子(CAM)および/またはインテグリン受容体から選択される。個々のバイオマーカーの量を測定するための技術は全て、当技術分野でよく知られている。
【0035】
機械学習(ML)を使用することによって、個々の比較をする必要がないため、方法は、好ましくは、さらに支援される。さらに、有利には、機械学習は、予測の信頼性をさらに向上させることができるように、パラメータのバランスをとり、そして重み付けするのに役立つ。したがって、本発明の有利な方法は、好ましくは、予測精度を容易にし、向上させるために機械学習によって支援される。本発明によれば、用語「機械学習」は、データから学び、データの予測を行うことが可能なアルゴリズムの研究および構築に関し、アルゴリズムは、これによって、サンプル入力からモデルを構築して、データ駆動型の予測や決定を行うことにより、厳密に静的なプログラム命令を克服する。
【0036】
本発明の方法の好ましい実施形態では、かかる方法は、さらなるバイオマーカーを使用し、そのさらなるバイオマーカーは、好ましくは、サイトカイン、インターロイキン、インターフェロン、インスリン様成長因子結合タンパク質、インスリン様成長因子、ケモカインタンパク質および/またはマルチタンパク質E3ユビキチンリガーゼ複合体の群から選択される。
【0037】
かかる方法によれば、サイトカインは、好ましくはTNFから選択され、インターロイキンは、好ましくはIL-6、IL-8および/またはIL-10から選択され、インターフェロンは、好ましくはヒトインターフェロンガンマ誘導性タンパク質10から選択され、インスリン様成長因子結合タンパク質は、好ましくはインスリン様成長因子結合タンパク質-2および/またはインスリン様成長因子結合タンパク質-3から選択され、インスリン様成長因子は、好ましくはIGF2から選択され、ケモカインタンパク質は、好ましくはSDF-1から選択され、および/またはマルチタンパク質E3ユビキチンリガーゼ複合体は、好ましくはSCFから選択される。
【0038】
別の好ましい実施形態において、本方法は、心筋梗塞、脳卒中および末梢虚血性血管疾患などの心臓血管疾患、心臓疾患および/または虚血性プレコンディショニングという状況下での、幹細胞治療および/または血管新生応答の誘導および/または組織修復に対する応答の術前予測のために使用される。かかる治療は、心臓血管インプラントまたはステント、心室の補助装置(VAD)、ペースメーカーおよび/またはオクルダーまたは適切な閉鎖デバイスを使用する治療を含んでいてもよい。また、かかる治療は、糖尿病、腫瘍疾患、グルテン不耐症、リウマチ性疾患、感染症、敗血症および/または高血圧症の治療を含んでいてもよい。特に、この方法は、左心室心機能の改善、例えば、急性経皮的冠動脈介入(PCI)および二次冠動脈バイパス移植(CABG)血行再建術によって順次処置される急性ST上昇型心筋梗塞(STEMI)および冠動脈3枝病変後の左室駆動率(LVEF)の低下の後の左心室心機能の改善の術前予測のために使用される。
【0039】
さらに別の好ましい実施形態では、心臓血管疾患の状況下での、心臓再生、特には、幹細胞治療および/または血管新生応答の誘導および/または組織修復に対する応答の予測のための方法は、心臓疾患および/または動脈硬化症に罹患している被験体から採取したサンプルを使用する。かかるサンプルは、特に狭心症、急性心筋損傷、細胞壊死、心筋肥大、心不全、好ましくは虚血性心不全、非虚血性心不全、心筋炎、心房細動、心室細動および/または動脈硬化を患っている被験体から採取してもよい。
【0040】
好ましい実施形態によれば、方法は、少なくとも2つ、3つ、4つ、5つ、6つまたはそれより多くの時点での比較の結果のプロファイリング含む。有利には、かかる時点は、術前と、術後約1、3、10、90、および/または180日に採取したサンプルを含む。少なくとも2つ、3つ、4つ、5つ、6つまたはそれより多くの時点でのサンプルを分析することにより、予測精度の特異性は、有益には90%を超えて、好ましくは91%、92%、93%、94%、95%を超え、およびそれより大きく増加させることができる。
【0041】
有益な方法のさらなる実施形態は、臨床診断パラメータの使用を含む。特に、かかるパラメータは、コロニー形成単位(CFU)ヒルアッセイ(Hill assay)、マトリゲルプラグアッセイ(Matrigel Plug assay)、体重および/または左室収縮末期容積(LVESV)から選択される。
【0042】
次の好ましい実施形態によれば、この方法は、血管新生応答のプロファイリングのために使用される。
【0043】
さらに別の好ましい実施形態は、診断の指標を含む、RNAおよび/またはDNAおよび/またはmRNA配列および/またはマイクロRNAおよび/またはノンコーディングRNAなどの機能的RNAおよび/またはSNPの解析をさらに含む、有利な方法を含む。本発明の文脈において、RNAおよび/またはDNAおよび/またはSNPのかかる指標解析は、機械学習および/または経路解析によって実行され、および/または支持されてもよい。本発明の文脈において、経路解析は、経路内の関連するRNAおよび/またはDNAおよび/またはSNPを同定するために使用されるか、または興味のあるRNA、DNAおよび/またはSNPからデノボで経路を構築するために使用される。
【0044】
また、さらなる好ましい実施形態によれば、有利な方法は、RNAおよび/またはDNA配列分析および/またはネットワーク経路分析を用いる薬物動態学的および薬理遺伝学的データの分析を含み得る。かかる薬物動態学的データは、特には、スタチン、アセチルサリチル酸(ASS)、β遮断薬、アンジオテンシン変換酵素(ACE)阻害剤、アンジオテンシンII(ATII)受容体拮抗薬、アルドステロン拮抗薬、利尿薬、カルシウム拮抗薬、抗不整脈薬、ジギタリス、マルクマール(Marcumar)、および/または硝酸塩から選択される群からの薬剤を投与された被験体から得られてもよい。
【0045】
次の好ましい実施形態はさらに、体重の分析などの、被験体の表現型の分析を使用してもよい。
【0046】
なおさらに好ましい実施形態によれば、心臓血管修復の予測のための方法は、CD133陽性幹細胞の移植を使用する幹細胞治療を含む。かかる幹細胞治療は、心臓再生の誘導に使用されるCABG血管再生および/またはPCIと任意に組み合わせることができる。しかし、特に好ましい実施形態は、心臓幹細胞治療が冠状動脈バイパス移植手術をさらに含むものである。
【0047】
有利なことに、心臓幹細胞治療後の心臓の再生および/または心臓の機能改善は、少なくとも5%のLVEFの増加を伴う。
【0048】
前述の本発明の方法は、ヒト被験体のみに適用することに限定されるものではなく、動物を含んでいてもよい。しかしながら、ヒト被験体に適用する方法が好ましい。本発明によれば、このような被験体のサンプルは、血液、特には末梢血、および/または血清および/または血漿サンプルおよび/または組織生検サンプルおよび/または内皮前駆細胞(EPC)などの循環(幹)細胞のサンプルに由来してもよい。
【0049】
上に示したように、本発明はまた、心臓血管再生に対する応答を予測するための方法における使用のための、成長因子、リンパ球アダプタータンパク質、糖タンパク質、脳性ナトリウム利尿ペプチド、循環内皮前駆細胞、循環内皮細胞、循環血小板、循環単核細胞およびその亜集団、およびMNC亜集団上の受容体/リガンド発現の群から選択されるバイオマーカーの組み合わせに関する。有利なことに、この方法は、エクソビボ(ex vivo)またはインビトロ(in vitro)の方法である。
【0050】
好ましくは、バイオマーカーは、心臓血管再生への応答を予測するための方法で使用され、該方法は
(i)被験体のサンプルにおいてバイオマーカーの各々の量を測定し、
(ii)測定された量をベースライン値および/または参照と比較し、
(iii)比較の結果に基づいて、被験体において心臓血管修復への応答が期待されるか、期待されないか、または両価であるかどうかを予測する
ことを含む。
【0051】
好ましい実施形態によれば、成長因子は、好ましくはVEGFおよび/またはエリスロポエチンから、および任意にはFGFから選択され、リンパ球アダプタータンパク質は、好ましくはSH2B3から選択され、糖タンパク質は、好ましくは、ビトロネクチンから、および任意にはGCSFから選択され、および脳性ナトリウム利尿ペプチドは、好ましくはNT-proBNPから選択される。
【0052】
加えて、バイオマーカーの組み合わせは、好ましくは、サイトカイン、インターロイキン、インターフェロン、インスリン様成長因子結合タンパク質、ケモカインタンパク質および/またはマルチタンパク質E3ユビキチンリガーゼ複合体の群から選択されるさらなるバイオマーカーを含む。さらにより好ましくは、サイトカインはTNFから選択され、インターロイキンは、IL-6、IL-8および/またはIL-10から選択され、インターフェロンは、ヒトインターフェロンガンマ誘導性タンパク質10から選択され、インスリン様成長因子結合タンパク質はインスリン様成長因子結合タンパク質2および/またはインスリン様成長因子結合タンパク質3から選択され、インスリン様成長因子は、好ましくはIGF2から選択され、ケモカインタンパク質はSDF-1から選択され、および/または、マルチタンパク質E3ユビキチンリガーゼ複合体はSCFから選択される。
【0053】
本発明の好ましい実施形態によれば、上記バイオマーカーの組み合わせは、心臓血管再生に対する応答の予測のための方法で使用され、該方法は、臨床診断データ、および/またはRNAおよび/またはmRNA、および/またはマイクロRNAおよび/またはノンコーディングRNAなどの機能的RNAおよび/またはSNPの分析、および/または薬物動態学的データの分析、および/または例えば体重などの表現型の分析をさらに含む。
【0054】
さらにより好ましくは、有利な方法および/または上記バイオマーカーの有利な組み合わせは、幹細胞治療に対する応答の術前予測のために使用され、該幹細胞治療はCABGを伴う。
【0055】
本明細書で使用する用語「幹細胞治療」は、治療すべき被験体の心臓への外因性心筋細胞の移植を含むすべての治療アプローチを意味する。かかる心筋細胞は、心筋細胞に非心筋前駆細胞を再プログラム化することによって生成することができる。再プログラム化される細胞は、胚性幹細胞、人工多能性幹細胞、多能心臓前駆細胞、骨格筋芽細胞または骨髄由来幹細胞であってもよい。さらに、成熟心筋細胞はまた、特に、有糸分裂細胞周期へ再度入るように刺激した場合に使用することができる。より好ましくは、本発明に係る心臓幹細胞治療は、CD133陽性細胞、最も好ましくは、CD133陽性骨髄性単核細胞の移植を含む。細胞は、単離された単一細胞として、または組織工学プロセスによって形成された組織ブロックなどの予め形成された構成として移植されてもよい。好ましくは、細胞は、心筋内注入をすることにより、本発明に従って移植される。さらに、心臓幹細胞治療という用語はまた、移植プロセスまたは手術などの他の治療措置を伴う薬物療法などの追加治療手段を包含し得る。好ましくは、本発明による心臓幹細胞治療は、さらに、以下に添付の実施例に記載されるように、冠状動脈バイパス移植手術を含む。
【0056】
本明細書で使用する用語「心臓の機能改善」は、被験体の治療前と後にLVEFを比較した場合に観察される心臓のLVEFの有意な増加を意味する。好ましくは、有意な増加とは、治療後に観察されるLVEFの5%以上の増加である。5%未満の増加は有意でないと見做される。機能改善を求める他に考慮され得るさらなるパラメータは、MIBI-SPECTによって定量化されるような、灌流欠損サイズの10%を超える減少、左心室端収縮期容積(LVESV)の10%を超える減少、および、経胸壁心エコーにより測定されるピーク収縮期速度の10%を超える増加である。
【0057】
本明細書で使用される心不全は、左側不全、右側不全または両心室不全などの心臓の任意の機能障害を意味する。典型的には、本明細書において言うところの用語、心不全は、駆動率の低下、例えば有意なLVEFの低下を生じる左側不全である。心不全のさらなる症状は臨床医によく知られている。本明細書において言うところの心不全は、心不全の急性および慢性型、ならびに重症度の任意の段階、例えば左側不全については、ニューヨーク心臓協会(NYHA)分類システムのNYHA I~IVによるすべての段階を包含する。
【0058】
本明細書で使用する用語「血管内皮増殖因子(VEGF)」は、血管新生、脈管形成および血管透過性を刺激する可溶性ポリペプチド成長因子を指す。それは、様々な細胞型によって産生される。5つの異なるVEGFポリペプチド、VEGF-A、胎盤増殖因子(PGF)、VEGF-B、VEGF-CおよびVEGF-Dが存在する。本明細書で使用されるように、好ましくは、VEGF-Aが想定される。VEGF-Aに関して知られている選択的スプライシングから生じる様々なアイソフォームが存在する。最も顕著なものはVEGF121、VEGF121b、VEGF145、VEGF165、VEGF165b、VEGF189、およびVEGF206である。
【0059】
好ましくは、VEGFは、Tischer 1991, J. Biol. Chem. 266(18): 11947-11954(VEGF-Aに関する最長のアイソフォームが開示されている)に記載されている、ヒトVEGF-Aを意味する。アミノ酸配列については、例えば、Genbank 受入番号NP_001020537.2,GI:76781480(Genbankは、NCBI、米国からwwww.ncbi.nlm.nih.gov/entrezで入手可能である)も参照されたい。この用語はまた、前述のヒトVEGFポリペプチドの変異体を包含する。かかる変異体は、前述のVEGFポリペプチドと少なくとも同じ本質的な生物学的および免疫学的特性を有する。特に、それらは、本明細書で言及される同じ特異的アッセイにより、例えば、前記VEGFポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイにより検出可能である場合、同じ本質的な生物学的および免疫学的特性を共有する。さらに、本発明において言及される変異体は、少なくとも1つのアミノ酸置換、欠失および/または付加により異なるアミノ酸配列を有し、その変異体のアミノ酸配列は依然として特定のVEGFポリペプチド、好ましくはヒトVEGFの全長にわたるアミノ酸配列と、それぞれ好ましくは少なくとも50%、60%、70%、80%、85%、90%、92%、95%、97%、98%、または99%同一であるものとすることが理解されるべきである。2つのアミノ酸配列の同一性の程度は、当該技術分野で周知のアルゴリズムによって決定することができる。好ましくは、同一性の程度は、比較ウインドウに対して2つの最適に整列された配列を比較することによって決定され、ここで、最適なアラインメントのために(付加または欠失を含まない)参照配列と比較して、比較ウインドウ中のアミノ酸配列の断片は、付加または欠失(例えばギャップまたはオーバーハング)を含んでいてもよい。パーセンテージは、同一のアミノ酸残基が両方の配列に存在する位置の数を決定して、一致した位置の数を得て、一致した位置の数を比較のウインドウにおける位置の総数で割り、その結果に100を乗算することによって配列同一性のパーセンテージを得ることにより計算される。比較のための配列の最適なアラインメントは、Smith 1981, Add. APL. Math. 2:482によって開示された局所相同性アルゴリズムによって、Needleman 1970, J. Mol. Biol. 48:443の相同性アラインメントアルゴリズムによって、Pearson 1988, Proc. Natl. Acad Sci. (USA) 85:2444の類似性検索法によって、これらのアルゴリズム(GAP, BESTFIT, BLAST, FAST, PASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI)のコンピュータによる実施によって、または目視検査によって行うことができる。2つの配列が比較のために同定されているとすれば、GAPおよびBESTFITがそれらの最適アライメントと、同一性の程度を決定するために好ましく使用される。好ましくは、ギャップウエイトに対して5.00およびギャップウエイト長さに対して0.30のデフォルト値が使用される。上記の変異体は、対立遺伝子変異体または任意の他の種の特定のホモログ、パラログ、またはオルソログであってもよい。上記の変異体は、対立遺伝子変異体または任意の他の種の特定のホモログ、パラログ、またはオルソログであってもよい。さらに、本明細書において言及される変異体には、特定のVEGFポリペプチドまたは前述のタイプの変異体の断片またはサブユニットが、これらの断片が上述の本質的な免疫学的および生物学的特性を有する限り、含まれる。かかる断片は、例えば、VEGFポリペプチドの分解産物であってもよい。変異体は、それらが、本明細書で言及される同じ特異的アッセイにより、例えば、前記VEGFポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイによって検出可能である場合、それらは、同一の本質的な生物学的および免疫学的特性を共有すると見做される。好ましいアッセイは、添付の実施例に記載されている。さらに、リン酸化またはミリスチル化などの翻訳後修飾に起因して異なる変異体が含まれる。VEGFは、結合または遊離形態で、またはサンプル中の総VEGF量として検出されてもよい。
【0060】
本明細書で使用する用語「線維芽細胞増殖因子(FGF)」は、血管新生、創傷治癒、胚発生と、種々の内分泌シグナル伝達経路に関与するメンバーを有する、成長因子のファミリーを意味する。
【0061】
本明細書で使用する用語「エリスロポエチン(EPO)」は、サイトカインである可溶性ポリペプチドを意味する。これは、典型的には、低酸素条件下で、腎臓細胞によって産生される。
【0062】
好ましくは、EPOは、例えば、Yanagawa 1984, J. Biol. Chem. 259(5): 2707-2710に記載されているようなヒトIL-6を意味する。より好ましくは、ヒトIL-6は、Genbank 受入番号p01588.1,GI:119526に示されるアミノ酸配列を有する。この用語はまた、前述のヒトEPOポリペプチドの変異体を包含する。かかる変異体は、前述のEPOポリペプチドと少なくとも同じ本質的な生物学的および免疫学的特性を有する。特に、それらは、本明細書で言及される同じ特異的アッセイにより、例えば、前記EPOポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイにより検出可能である場合、同じ本質的な生物学的および免疫学的特性を共有する。さらに、本発明において言及される変異体は、少なくとも1つのアミノ酸置換、欠失および/または付加により異なるアミノ酸配列を有し、その変異体のアミノ酸配列は依然として特定のIL-6のアミノ酸配列と、少なくとも50%、60%、70%、80%、85%、90%、92%、95%、97%、98%、または99%同一であるものとすることが理解されるべきである。変異体は、対立遺伝子変異体、スプライス変異体または任意の他の種の特定のホモログ、パラログ、またはオルソログであってもよい。さらに、本明細書で言及される変異体には、特定のEPOまたは前述の種類の変異体の断片が、これらの断片が上述の本質的な免疫学的および生物学的特性を有するかぎり、含まれる。かかる断片は、例えば、EPOの分解産物であってもよい。変異体は、それらが、本明細書で言及される同じ特異的アッセイにより、例えば、前記EPOポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイによって検出可能である場合、それらは、同一の本質的な生物学的および免疫学的特性を共有すると見做される。好ましいアッセイは、添付の実施例に記載されている。さらに、リン酸化またはミリスチル化などの翻訳後修飾に起因して異なる変異体が含まれる。
【0063】
本明細書で使用する用語「SH2Bアダプタータンパク質3(SH2B3)」は、リンパ球アダプタータンパク質(LNK)を意味する。SH2B3は、ヒトでは、第12染色体上のSH2B3遺伝子によってエンコードされているタンパク質である。それは普遍的に多くの組織および細胞型で発現される(Li Y, He X, Schembri-king J, Jakes S, Hayashi J, May 2000. Journal of Immunology. 164(10):5199-206)。
【0064】
本明細書で使用する用語「ビトロネクチン(VTN)」は、血清、細胞外マトリックスおよび骨に豊富に見出されるヘモペキシンファミリーの糖タンパク質を意味する(Boron, Walter F. and Boulpaep, Emile L. "Medical Physiology". Sanders, 2012, p.1097)。ヒトでは、ビトロネクチンは、VTN遺伝子によってエンコードされている。ビトロネクチンは、インテグリンアルファ-V ベータ-3に結合し、したがって細胞接着および拡散を促進する。ビトロネクチンはまた、終末細胞溶解性補体経路(terminal cytolytic complement pathway)の膜損傷効果を阻害し、そしていくつかのセルピン(セリンプロテアーゼ阻害剤)に結合する。ビトロネクチンは、分泌タンパク質であり、一本鎖形態、またはジスルフィド結合によって結びつけられた、短縮二本鎖形態のいずれかで存在する。ビトロネクチンは止血および腫瘍の悪性度に関与すると推測されている。
【0065】
コロニー刺激因子3(CSF3)としても知られている用語「顆粒球コロニー刺激因子(G-CSFまたはGCSF)」は、骨髄を刺激して、顆粒球や幹細胞を生成し、血流中にそれらを放出する糖タンパク質である。機能的には、サイトカインおよびホルモン、コロニー刺激因子の一種であり、多くの異なる組織によって生成される。G-CSFはまた、好中球前駆体および成熟好中球の生存、増殖、分化、および機能を刺激する。
【0066】
心室ナトリウム利尿ペプチドまたはナトリウム利尿ペプチドBとも呼ばれる、用語「脳性ナトリウム利尿ペプチドまたはB型ナトリウム利尿ペプチド(BNP)」は、心臓筋肉細胞(心筋細胞)の過度の伸張に応答して、心臓の心室によって分泌される32アミノ酸ポリペプチドである。BNPの放出は、カルシウムイオンによって調節される。BNPは、ヒトにおいては、主に心室で産生されるが、元々ブタ脳の抽出物において同定されたため、そのように命名されている。BNPは、NT-proBNPと呼ばれるプロホルモン中の76アミノ酸N末端断片に付着されて分泌される。一旦放出されると、BNPは、心房性ナトリウム利尿因子受容体(NPRA)に結合し、活性化させ、心房性ナトリウム利尿ペプチド(ANP)と同様の方法で、しかし10倍低い親和性で、より少ない程度のNPRBに結合する。BNPの生物学的半減期は、しかしながら、ANPの半減期の2倍であり、NT-proBNPの半減期はさらに長く、これらのペプチドを診断血液検査についてANPよりも良い標的としている。
【0067】
本明細書で使用する用語「インターロイキン6(IL-6)」は、炎症誘発性サイトカインおよび抗炎症ミオカインである可溶性ポリペプチドを意味する。IL-6は、T細胞およびマクロファージによって産生される。
【0068】
好ましくは、IL-6は、例えば、Wong 1988, Behring Inst. Mitt 83: 40-47で説明されているようなヒトIL-6を意味する。より好ましくは、ヒトIL-6は、Genbank 受入番号p05231.1,GI:124347に示されるアミノ酸配列を有する。この用語はまた、前述のヒトIL-6ポリペプチドの変異体を包含する。かかる変異体は、前述のIL-6ポリペプチドと少なくとも同じ本質的な生物学的および免疫学的特性を有する。特に、それらは、本明細書で言及される同じ特異的アッセイにより、例えば、前記IL-6ポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイにより検出可能である場合、同じ本質的な生物学的および免疫学的特性を共有する。さらに、本発明において言及される変異体は、少なくとも1つのアミノ酸置換、欠失および/または付加により異なるアミノ酸配列を有し、変異体のアミノ酸配列が依然として特定のIL-6のアミノ酸配列と、少なくとも50%、60%、70%、80%、85%、90%、92%、95%、97%、98%、または99%同一であるものとすることが理解されるべきである。変異体は、対立遺伝子変異体、スプライス変異体または任意の他の種の特定のホモログ、パラログ、またはオルソログであってもよい。さらに、本明細書で言及される変異体には、特定のIL-6または前述の種類の変異体の断片が、これらの断片が上記した本質的な免疫学的および生物学的特性を有するかぎり、含まれる。かかる断片は、例えば、IL-6の分解産物であってもよい。変異体は、それらは、本明細書で言及される同じ特異的アッセイにより、例えば、前記IL-6ポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイにより検出可能である場合、同じ本質的な生物学的および免疫学的特性を共有すると見做される。好ましいアッセイは、添付の実施例に記載されている。さらに、リン酸化またはミリスチル化などの翻訳後修飾に起因して異なる変異体が含まれる。
【0069】
本明細書で用いられる用語「インターフェロンガンマ誘導性タンパク質10(IP-10)」は、CXCケモカインファミリーに属するサイトカインである可溶性ポリペプチドを意味する。IP-10は、単球、内皮細胞および線維芽細胞によって産生される。
【0070】
好ましくは、IP-10は、例えば、Booth 2002, Biochemistry 41(33): 10418-10425に記載されるようなヒトIP-10を意味する。より好ましくは、ヒトIP-10は、Genbank 受入番号p02778.2,GI:21542456に示されるアミノ酸配列を有する。この用語はまた、前述のIP-10ポリペプチドの変異体を包含する。かかる変異体は、前述のIP-10ポリペプチドと少なくとも同じ本質的な生物学的および免疫学的特性を有する。特に、それらが、本明細書で言及される同じ特異的アッセイにより、例えば、前記IP-10ポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイにより検出可能である場合、それらは、同じ本質的な生物学的および免疫学的特性を共有する。さらに、本発明において言及される変異体は、少なくとも1つのアミノ酸置換、欠失および/または付加により異なるアミノ酸配列を有し、変異体のアミノ酸配列が依然として特定のIP-10のアミノ酸配列と、少なくとも50%、60%、70%、80%、85%、90%、92%、95%、97%、98%、または99%同一であるものとすることが理解されるべきである。変異体は、対立遺伝子変異体、スプライス変異体または任意の他の種の特定のホモログ、パラログ、またはオルソログであってもよい。さらに、本明細書で言及された変異体には、特定のIP-10または前述の種類の変異体の断片が、これらの断片が上記した本質的な免疫学的および生物学的特性を有するかぎり、含まれる。かかる断片は、例えば、IP-10の分解産物であってもよい。変異体は、それらが、本明細書で言及される同じ特異的アッセイにより、例えば、前記IP-10ポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイによって検出可能である場合、それらは、同一の必須の生物学的および免疫学的特性を共有すると見做される。好ましいアッセイは、添付の実施例に記載されている。さらに、リン酸化またはミリスチル化などの翻訳後修飾に起因して異なる変異体が含まれる。
【0071】
本明細書で用いられる用語「インスリン様成長因子結合タンパク質3(IGFBP-3)」は、インスリン様成長因子のファミリーの成長因子である可溶性ポリペプチドを意味する。IGFBPは、様々な細胞によって産生される。
【0072】
好ましくは、IGFBP-3は、例えば、Thweatt 1993, DNA Seq 4(1): 43-46に記載されるようなヒトIGFBP-3を意味する。より好ましくは、ヒトIL-6は、Genbank 受入番号p17936.1,GI:146327827に示されるアミノ酸配列を有する。この用語はまた、前述のヒトIGFBP-3ポリペプチドの変異体を包含する。かかる変異体は、前述のIGFBP-3ポリペプチドと少なくとも同じ本質的な生物学的および免疫学的特性を有する。特に、それらが、本明細書で言及される同じ特異的アッセイにより、例えば、前記IGFBP-3ポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイにより検出可能である場合、それらは、同じ本質的な生物学的および免疫学的特性を共有する。さらに、本発明において言及される変異体は、少なくとも1つのアミノ酸置換、欠失および/または付加により異なるアミノ酸配列を有し、変異体のアミノ酸配列が依然として特定のIGFBP-3のアミノ酸配列と、少なくとも50%、60%、70%、80%、85%、90%、92%、95%、97%、98%、または99%同一であるものとすることが理解されるべきである。変異体は、対立遺伝子変異体、スプライス変異体または任意の他の種の特定のホモログ、パラログ、またはオルソログであってもよい。さらに、本明細書で言及された変異体には、特定のIGFBP-3または前述の種類の変異体の断片は、これらの断片が上述した本質的な免疫学的および生物学的特性を有するかぎり、含まれる。かかる断片は、例えば、IGFBP-3の分解産物であってもよい。変異体は、それらが、本明細書で言及される同じ特異的アッセイにより、例えば、前記IGFBP-3ポリペプチドを特異的に認識するポリクローナルまたはモノクローナル抗体を用いるELISAアッセイにより検出可能である場合、それらは、同じ本質的な生物学的および免疫学的特性を共有すると見做される。好ましいアッセイは、添付の実施例に記載されている。さらに、リン酸化またはミリスチル化などの翻訳後修飾に起因して異なる変異体が含まれる。
【0073】
本明細書で使用される用語「インスリン様成長因子(IGF2)」は、インスリンに構造的類似性を共有する3つのタンパク質ホルモンの1つを意味する。IFG2は、肝臓によって分泌され、血液中を循環すると考えられている。これは、成長調節活性、インスリン様活性および分裂促進活性を有する。成長因子は、完全にではないが主にソマトトロピンに依存する。IGF2は、主要な胎児成長因子であると考えられている。
【0074】
C-X-Cモチーフケモカイン12(CXCL12)としても知られている、用語「間質細胞由来因子1(SDF1)」は、ヒトでは、第10染色体上のCXCL12遺伝子によってエンコードされるケモカインタンパク質である。SDF1は普遍的に多くの組織および細胞型で発現される。間質細胞由来因子1-アルファと1-ベータは、ケモカインファミリーに属する小型サイトカインであって、そのメンバーは、白血球を活性化し、多くの場合、リポ多糖、TNF、またはIL1などの炎症誘発性刺激剤によって誘導される。ケモカインは、2つのジスルフィド結合を形成する4つの保存されたシステインの存在によって特徴付けられる。
【0075】
用語「skp・カリン・f-ボックス含有複合体(skp, cullin, f-box containing complex)(またはSCF)」は、プロテアソーム(proteasomal)分解されることとなっているタンパク質のユビキチン化を触媒するマルチタンパク質E3ユビキチンリガーゼ複合体を意味する。SCFは、細胞周期に関与するタンパク質のユビキチン化において重要な役割を有し、破壊のために各種の他の細胞タンパク質に印を付ける。
【0076】
バイオマーカーの量を測定することは、好ましくは、(a)バイオマーカーを特異的なリガンドと接触させる工程、(b)(任意で)非結合リガンドを除去する工程、(c)結合したリガンドの量を測定する工程を含んでもよい。結合リガンドは、強度シグナルを生成する。本発明に係る結合は共有結合および非共有結合の両方を含む。本発明によるリガンドは、例えば、ペプチド、ポリペプチド、核酸、または低分子化合物などの、本明細書に記載したペプチドまたはポリペプチドまたはタンパク質または核酸または細胞に結合する任意の化合物であり得る。好ましいリガンドは、抗体、核酸、ペプチドまたはポリペプチド(そのペプチドまたはポリペプチドに対する受容体または結合パートナーなど)およびそのペプチドに対する結合ドメインを含むそれらの断片、および例えば核酸またはペプチドアプタマーなどのアプタマーを含む。かかるリガンドを製造する方法は当該技術分野において周知である。例えば、好適な抗体またはアプタマーの同定および製造はまた、商業的供給業者によって提供される。当業者は、より高い親和性または特異性を有するそのようなリガンドの誘導体を開発する方法に精通している。例えば、ランダム突然変異を核酸、ペプチドまたはポリペプチドに導入することができる。これらの誘導体は、その後、当該技術分野で公知のスクリーニング手順、例えばファージディスプレイに従って、結合について試験することができる。本明細書において言及されるような抗体は、ポリクローナルおよびモノクローナル抗体の両方、ならびにそれらの断片、例えば、抗原またはハプテンを結合することができるFv、FabおよびF(ab)2断片を含む。本発明はまた、一本鎖抗体、および所望の抗原特異性を示す非ヒトドナー抗体のアミノ酸配列がヒトアクセプター抗体の配列と組み合わせられるヒト化ハイブリッド抗体を含む。ドナー配列は、通常少なくともドナーの抗原結合アミノ酸残基を含むであろうが、同様に、ドナー抗体の他の構造的および/または機能的に関連するアミノ酸残基を含んでもよい。かかるハイブリッドは、当該技術分野で周知のいくつかの方法によって製造することができる。好ましくは、リガンドまたは試薬がペプチドまたはポリペプチドに特異的に結合する。本発明に係る特異的結合とは、リガンドまたは試薬が、分析されるサンプル中に存在する別のペプチド、ポリペプチドまたは物質に実質的に結合(「交差反応」)しないことを意味する。好ましくは、特異的に結合したペプチドまたはポリペプチドは、任意の他の関連ペプチドまたはポリペプチドより、少なくとも3倍高い、より好ましくは少なくとも10倍高い、さらに好ましくは少なくとも50倍高い親和性で結合すべきである。非特異的結合は、それが、例えば、ウェスタンブロット法(Weatern Blot)でその大きさに応じて、またはサンプル中にその量が相対的により多量に存在することによって、明確に区別されかつ測定され得る場合には、許容され得る。リガンドの結合は、当該技術分野で公知の任意の方法によって測定することができる。好ましくは、この方法は、半定量的または定量的である。バイオマーカーの測定のためのさらなる適切な技術は、以下に記載されている。
【0077】
第一に、リガンドの結合は、例えばNMRまたは表面プラズモン共鳴によって直接測定することができる。第二に、リガンドが、対象のバイオマーカーの酵素活性の基質としても機能する場合、酵素反応生成物を測定することができる(例えば、プロテアーゼの量は、例えば、ウェスタンブロット法で、切断された基質の量を測定することによって測定することができる)。あるいは、リガンドそれ自体が酵素特性を示してもよく、そしてバイオマーカーにより結合した「リガンド/ペプチドもしくはポリペプチド」複合体またはリガンドは、それぞれ、強度シグナルの発生によって検出を可能にする適切な基質と接触させることができる。酵素反応生成物の測定のために、好ましくは基質の量は飽和している。基質はまた、反応前に検出可能なラベルで標識することができる。好ましくは、サンプルは、適切な時間、基質と接触させられる。適切な時間は、検出可能な、好ましくは測定可能な生成物の量が生成されるのに必要な時間を意味する。生成物の量の測定の代わりに、生成物の所与の(例えば検出可能な)量の出現に必要な時間を測定することができる。第三に、リガンドは、リガンドの検出および測定を可能にするラベルに共有結合または非共有結合させることができる。標識することは、直接的または間接的な方法により行うことができる。直接標識は、リガンドに(共有結合または非共有結合で)直接ラベルを結合することを含む。間接標識は、二次リガンドを一次リガンドに(共有または非共有)結合することを含む。二次リガンドは、一次リガンドに特異的に結合すべきである。該二次リガンドは好適なラベルと結合されてもよく、および/または二次リガンドに結合する三次リガンドの標的(受容体)であってもよい。二次、三次またはさらに高次のリガンドの使用は、しばしばシグナルを増加させるために使用される。適切な二次および高次のリガンドは、抗体、二次抗体、および周知のストレプトアビジン-ビオチン系を含み得る。リガンドまたは基質はまた、当該技術分野で公知のように、1個以上のタグで「タグ付け」することができる。このようなタグは、より高次のリガンドの標的となり得る。適切なタグは、ビオチン、ジゴキシゲニン、Hisタグ、グルタチオン-S-トランスフェラーゼ、FLAG、GFP、mycタグ、インフルエンザAウイルス赤血球凝集素(HA)、マルトース結合タンパク質などを含む。ペプチドまたはポリペプチドの場合は、タグはN末端および/またはC末端であることが好ましい。適当なラベルは、適当な検出方法により検出可能な任意のラベルである。典型的なラベルには、金粒子、ラテックスビーズ、アクリジンエステル、ルミノール、ルテニウム、酵素活性ラベル、放射性ラベル、磁気ラベル(常磁性および超常磁性ラベルを含む「例えば磁気ビーズ」)、および蛍光ラベルが挙げられる。酵素活性ラベルとしては、例えば西洋ワサビペルオキシダーゼ、アルカリホスファターゼ、ベータ-ガラクトシダーゼ、ルシフェラーゼ、およびそれらの誘導体が挙げられる。検出に適した基質は、ジアミノベンジジン(DAB)、3,3’-5,5’-テトラメチルベンジジン、NBT-BCIP(4-ニトロブルーテトラゾリウムクロリドおよび5-ブロモ-4-クロロ-3-インドリル-ホスフェート)を含む。適切な酵素-基質の組み合わせは、(例えば、感光フィルムまたは好適なカメラシステムを使用して)当該技術分野で公知の方法に従って測定することができる着色反応生成物、蛍光または化学発光をもたらし得る。酵素反応の測定については、上記の基準が同様に適用される。典型的な蛍光ラベルとしては、蛍光タンパク質(GFPおよびその誘導体など)、Cy3、Cy5、テキサスレッド、フルオレセイン、およびAlexa色素が挙げられる。さらなる蛍光ラベルは、モレキュラープローブス(Molecular Probes)社(オレゴン州)から入手可能である。また、蛍光ラベルとして量子ドットの使用が意図される。典型的な放射性ラベルとしては、35S、125I、32P、33Pなどが挙げられる。放射性ラベルは、任意の公知の適切な方法,例えば、感光性フィルムまたは蛍光イメージャーによって検出することができる。
【0078】
バイオマーカーの量は、また、好ましくは、以下のように:(a)上記で特定されたバイオマーカーに対するリガンドを含む固体支持体を、バイオマーカーを含むサンプルと接触させ、および(b)その支持体に結合しているバイオマーカーの量を測定することによって測定されてもよい。好ましくは核酸、ペプチド、ポリペプチド、抗体およびアプタマーからなる群より選択されるリガンドが、固定された形態で固体支持体上に存在することが好ましい。固体支持体を製造するための材料は、当該技術分野で周知であり、とりわけ、市販のカラム材料、ポリスチレンビーズ、ラテックスビーズ、磁気ビーズ、コロイド金属粒子、ガラスおよび/またはシリコンチップおよび表面、ニトロセルロースストリップ、膜、シート、デュラサイト(duracyte)、反応トレーのウェルおよび壁は、プラスチックチューブなどである。リガンドまたは試薬は、多くの異なる担体に結合されてもよい。周知の担体の例としては、ガラス、ポリスチレン、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリカーボネート、デキストラン、ナイロン、アミロース、天然および変性セルロース、ポリアクリルアミド、アガロース、およびマグネタイトが挙げられる。担体の性質は、本発明の目的のために可溶性または不溶性のいずれであってもよい。前記リガンドを定着/固定化するための適切な方法は、よく知られており、イオン性相互作用、疎水性相互作用または共有結合相互作用などを含むがこれらに限定されるものではない。
【0079】
本発明に係る好適な測定方法は、また、FACS分析、ラジオイムノアッセイ(RIA)、酵素結合免疫吸着アッセイ(ELISA)、サンドイッチ酵素免疫試験、電気化学発光サンドイッチイムノアッセイ(ECLIA)、解離増強ランタニド蛍光免疫アッセイ(DELFIA)、シンチレーション近接アッセイ(SPA)、または固相免疫試験を含む。ゲル電気泳動、二次元ゲル電気泳動、SDSポリアクリルアミドゲル電気泳動(SDS-PAGE)、ウェスタンブロッティングおよび質量分析(MS)などの当該技術分野で公知のさらなる方法は、単独で、または上記のような標識化法または他の検出方法と組み合わせて使用することができる。
【0080】
本発明の方法を実行するために、本発明の方法を実行するために適合されたキットが提供され、本発明のキットは、前記被験体のサンプルにおいて少なくとも1つの上記バイオマーカーの量を測定するための検出試薬を含む。かかるキットは、有利には、本発明の方法および/または本発明に係るバイオマーカーの測定(measurement)および/または決定(determination)の簡単な実行を可能にする。
【0081】
本明細書で使用する用語「キット」は、前述の構成要素、好ましくは、別途提供されるか、または単一の容器内に提供される構成要素の集合を意味する。キットはまた、本発明の方法を実施するための取扱説明書を含んでいてもよい。これらの取扱説明書は、マニュアルの形態であってもよく、またはコンピュータまたはデータ処理装置に実装された際に本発明の方法において言及される比較を行うことが可能でそれに応じて診断を確立することができるコンピュータプログラムコードによって提供されてもよい。コンピュータプログラムコードは、記憶媒体(例えば、コンパクトディスク、USBドライブまたは外付けハードディスク)などのデータ記憶媒体または装置に、または直接コンピュータまたはデータ処理装置に提供されていてもよい。また、キットは、好ましくは、本明細書の他の箇所で詳細に記載されるような参照量の標準を含んでいてもよい。
【0082】
本発明のさらなる特徴は、クレームおよび図面と組み合わされて実施例から導き出される。単一の特徴は、特別な実施形態において、他の特徴と組み合わされて実行されてもよく、本発明の保護範囲を限定するものではない。本発明による以下の実施例の記載は、以下の図面に関連する。
【0083】
図1は、レスポンダーおよびノンレスポンダーの末梢血液におけるSH2B3発現分析を示す。全血サンプルが、冠動脈バイパスグラフト(CABG)血管再生の前に21人の患者から採取された。SH2B3の相対的な発現(a)および対応するΔCT値(b)が2
-ΔΔCT法を用いて算出された。全ての値は、平均±SEMとして表し、GAPDHおよびPOLR2Aに対して正規化された。n=13(レスポンダー)、n=8(ノンレスポンダー)。ΔCT値:p=0.073。
【0084】
図2は、教師なしMLを意味する三次元t分布型確率的近傍埋め込み法(t-SNE)の計算を示す。この独立した方法は、所与のパラメータセット、例えば、バイオマーカープロファイルの次元を減少させ、従って、同様に患者を別個の群に分類するために使用される新たに計算された特徴を示す変数x、y、zを算出する。モデルは、その後、地理的プロファイルとしてz軸を可視化するように多項式(n3)によって適合された。レスポンダー(黒色のドット)およびノンレスポンダー(グレーのドット)患者のための各色は、後に加えられた。分類された群は、黒とグレーの破線によって大まかにまとめられている。結果は、3000回の繰り返しの後に得られる。レスポンダーとノンレスポンダーとの間の比率の計算は各円に対して示されている。ノンレスポンダー群がより小さなz値(z<20、比<42%)により局在化するようである。レスポンダーは69%を超える割合を含むライトグレーの領域(z>20)内に濃縮される傾向がある。
【0085】
図3は、レスポンダーとノンレスポンダーとを区別するための臨床ならびに臨床および実験室データセットの術前および術後の時点についてML予測結果(0日~180日)を示す。グラフは、5つの独立した特徴で選択されたMLモデル(特徴選択のためのアダブースト(AdaBoost)および最終予測のためのランダムフォレスト(Random Forest)(RF))の真の陽性予測率を示す。エラーバーは、100回の反復の後に得られた構築モデルのそれぞれの精度の標準偏差を示す。100回のモデルの反復は、一方向ANOVAによる有意差である(p<0.001)。
【0086】
図4にPERFECT試験のアウトカム結果を示す。骨髄/血液CD133
+、CD34
+、CD117
+、EPCおよび血管形成応答に結び付けられた独特の術前末梢血液パラメータ指標による、PERFECT試験における主要評価項目アウトカムレスポンダーの診断識別。
【実施例】
【0087】
以下の実施例は、単に本発明を説明するものとする。実施例は、一切、その範囲を限定するものとして解釈されるべきではない。
【0088】
実施例1:臨床研究の設計と評価
心筋梗塞や虚血性心筋症後の心不全患者における心臓再生の誘導は、幹細胞治療を含む複数のアプローチを用いて標的にされてきた。これに関し、有効性の欠如と応答予測可能性の欠如は、治療の標準化と成功のための主な障害となってきた。
【0089】
虚血性心不全かつ駆出率低下(failed ejection fraction)の患者が、幹細胞治療のための適切な候補であり、かつ高い心臓再生の確率をもって幹細胞治療から恩恵を受けることができるかどうかを評価するために臨床試験が行われた。臨床試験は、心臓回復においてレスポンダーとノンレスポンダーとの間で著しい差を示し、それは、末梢血中の血管新生因子の特定指標組成物と関連していた。臨床研究のコンダクタンスは以下に詳述される。
【0090】
ロストック大学(Rostock University)心臓外科部門において始められた、制御され、前向きな、無作為化された、二重盲検多施設臨床試験(「冠動脈バイパスグラフト手術に加えた骨髄幹細胞の心筋内移植(Intra-myocardial Transplantation of Bone Marrow Stem Cells in Addition to Coronary Artery Bypass Graft Surgery)(PERFECT)」)を伴う研究が実施された。試験は、左心室のLVEF低下と局所的な運動/運動低下/低灌流領域の存在とを有する、心筋梗塞後の冠動脈疾患を患う患者における心筋内CD133+細胞注入の有効性および安全性を評価した。事前の結果は、いくつかの再生因子と治療(CABGまたはCABGプラスCD133+幹細胞注入)に対する患者の応答との間の密接な関係を明らかにした。MRIによって測定されたLVEFの最小5%の増加が、6~12ヶ月のフォローアップで機能改善を示すために選択された。5%を超えてLVEFを増加させた患者は、レスポンダーとして定義され、5%未満の増加、またはLVEFの減少は、ノンレスポンダーと定義する。
【0091】
バイオマーカー
事前特定:明確な造血および内皮CD133+EPCの亜集団および血管新生能は、インビトロCFU-EC、CFU-Hillのおよびインビボマトリゲルプラグアッセイ(Matrigel plug assay)ならびにEPC(同時染色パネルCD133、34、117、184、309、105、45)および循環内皮細胞(CEC)(同時染色のパネル:CD31、146、34、45、105、184、309)のパネル一覧を同時染色することに対して、4レーザーフローサイトメトリー法(LSR II、ベクトン デッキンソン、ハイデルベルク、ドイツ)を使用する共発現解析を施行した骨髄(BM)および末梢血(PB)における39人の患者のコホートにおいて試験した。NT-proBNPならびにウイルス分析は、末梢血血清におけるIgGおよび抗原分析により、エプスタイン-バール-ウイルス(EBV)、サイトメガロウイルス(CMV)およびパルボウイルスに関して行った。最終的なデータの閉鎖前に事後解析を、血清血管新生因子およびサイトカインについて行った。
事後分析:BM亜集団分析および末梢血(PB)におけるSH2B3 mRNA RT-PCR:BM CD133+およびPBMNCサンプルにおいて研究されたバイオマーカーの方法と分析は、サイトメトリービーズアレイ(CBA)および酵素結合免疫吸着アッセイ(ELISA)およびRT-PCRを使用した。
【0092】
統計分析
サンプルサイズ計算では、センターによる一次解析の層化は無視された。一次解析に使用された共分散分析(ANCOVA)の代わりに、等分散を有する2標本t検定のシナリオが検討された。サンプルサイズは、両側第1種の誤り(type I error)(α)5%、第2種の誤り(type II error)(β)10%(すなわち、検定力90%)と仮定して測定された。4~5%の2つの治療アームの間における術後6ヶ月時でのLVEFの差のシナリオは、臨床的に適切な差とみなされた。4.5の差および7.5の標準偏差で、群あたり少なくともn=60の患者が必要とみなされ、そして、さらに15%のドロップアウト率で、合計少なくとも142人の患者がランダム化されるべきであった。サンプルサイズは、市販のプログラムnQuery Advisor 5.0、セクション8、表MTT0-1(Hofmann WK, de Vos S, Elashoff D, et al., Lancet 2002; 359(9305):481-6)を用いて計算された。計算は、中心および非心t分布を用いて実施され、非心パラメータは、√n δ/√2であり、δは、効果の大きさ|μ1-μ2|/σ(O'Brien R G, Muller K E, Signified power analysis for t-tests through multivariate hypothesis. In L K Edward (Ed.) Applied analysis of variance in behavioral science, 1993, New York, Marcel Dekker)として定義される。
【0093】
統計分析、最終的なデータセットの計算、および作成は、ケーラー社(Koehler GmbH)の重要な特徴を同定する機械学習によるデータ解析により行われ、包括的な患者データの分類は、教師ありおよび教師なし機械学習(ML)MLアルゴリズム(Kuhn M, J Statistical Software, 2008; 28(5):1-26)を使用することによって得られた。ベストプラクティスレコメンデーションに続く次元削減のために、低分散でかつ高相関の特徴を除去しながらデータが前処理された。欠測値には標準データ代入の実務において頻繁に使用されるようにゼロを入れた。以下の教師ありアルゴリズムを比較した:アダブースト、サポートベクターマシン(Support Vector Machine)(SVM)およびランダムフォレスト(RF)(Forman G and Cohen I, 2004. “Learning from Little: Comparison of Classifiers Given Little Training” doi: 10.1007/978-3-540-30116-5_17)。小規模臨床データセットは、多くの場合、過学習する傾向がある。ほとんど訓練を与えられていない特徴の比較のための小さなデータセットにおける訓練に適している分類器であって、過学習に向けた精度およびロバスト性にしたがい最も適切なアルゴリズムを選択する分類器が採用された(Saeb AT, Al-Naqeb D. Scientifica (Cairo). 2016; 2016:2079704. doi:10.1155/2016/2079704. Epub 2016 May 30)。教師ありMLモデルは、10倍の交差検証となっていた。特徴選択は、次に特徴の数をさらに20未満に減らすためにアダブーストおよびRFから適用された。教師なし機械学習分類および非線形次元削減のために、t分布型確率的近傍埋め込み法(t-SNE)を採用した(Maaten L V D & Hinton G, Visualizing Data using t-SNE. Journal of Machine Learning Research, 2008;9:2579-2605.Doi http://jmlr.org/papers/v9/vandermaaten08a.html)。
【0094】
結果
安全性解析対象集団(safety set)の患者群(SAS)とパー・プロトコル・セット(per-protocol set)の患者群(PPS)における患者のベースライン特性の分析は、予め指定されたコホート分析の説明に従った、SAS(n=77)およびPPS(n=58)プラセボ対CD133+。主要評価項目アウトカムに影響を与える要因を分析するために追加的に事後分析を実施した。このため、患者はレスポンダー(180日目でLEVFの増加>5%)または、およびノンレスポンダー(180日目でLEVFの増加<5%)として群分けされた。この事後解析によると、35/58(60.3%)の患者が治療レスポンダーであり、そして23/58(39.7%)でLEVFが改善しなかった。このレスポンダー/ノンレスポンダー(NR)比は、プラセボ群57/43%(R/NR:17/13患者(pt))およびCD133+群64/36%(R/NR:18/10pt.)とそれぞれ同様であった(プラセボ対CD133+:p=0.373)。
【0095】
有効性アウトカム分析
PPS有効性分析群(n=58)は、ベースラインLVEF 33.5%、SD ±6.26%[最小-最大 25-49]、n=58でMI後のポンプ機能低下(安静時MRIで測定)によって特徴付けられた。予め指定された主要評価項目:治療後6ヶ月の左心室機能は、+9.6%±SD11.3%[最小-最大 13-42]、p<0.001(n=58)のLVEFのかなりの増加を示した。CABGの血管再生による左心室機能の早い改善および遅い心筋逆リモデリングを判別するために、退院時の追加の中間MRI分析が、サブ群の患者(n=29)で利用可能であった。これにより、主に+6.5%,SD ±7.92%[最小-最大 11-23]、p=0.007(n=29)のΔLVEFの遅い(10~180日)増加が明らかとなった。主要評価項目のANCOVA分析において、プラセボ群では、180日でベースラインLVEFが33.5%から42.3%に改善し(ΔLVEF +8.8%、SE ±2.17%[CI 38.0、46.6]、p<0.001;n=30)、そしてCD133+群のLVEFは、33.5%から43.9%に上昇した(ΔLVEF +10.4%、SE ±2.33%[CI 39.0、48.5]、p<0.001;n=28)。+2.58±SE 3.13%[CI -3.7-8.9]、p=0.414でのCD133+対プラセボの治療群差は、ANCOVA分析において統計的に有意ではなかった。CD133+幹細胞群は、プラセボコントロール群(10~180日 ΔLVEF)+4.3%、SD ±8.8%[最小-最大 11-23]、p=0.077(n=15)に対して、主に+8.8%,SD ±6.38%[最小-最大 4-10],p=0.001(n=14)の遅い相(10~180日 ΔLVEF)においてΔLVEFの改善を示した。
【0096】
レスポンダー(R)/ノンレスポンダー(NR)
事後主要評価項目の解析において、治療レスポンダーは、180日での対ベースラインΔLVEFが5%より高いものとして定義された。58人の患者のコホートにおける35人のレスポンダーの広がりという結果は、180d/0での+17.1%;SE ±2.08%[CI 12.9.;21.3]、R対NR、p<0.0001(180d/0)、n=58のANCOBAにおけるΔLEVFの全体的な増加によって特徴付けられた。LVEFの増加はCD133+(+19.1%)対プラセボ(+13.9%)、p=0.099、n=35(データは示さず)であった。対照的に、ノンレスポンダーは、180d/0でのΔLVEFを0%、SE ±5.73%[CI 22.3;44.8]p=0.287だけ示した(プラセボ/NR +3.3%,CD133+/NR -2.4%)。
【0097】
事後二次評価項目:レスポンダーは、ノンレスポンダーと比較してLV-体積(dimension)(LVEDV p=0.008、LVESV p=0.0001)の有意な減少およびNT-pro-BNPの減少、p=0.0002を示した。これは6MWT(p=0.811)の同様の改善によっては反映されなかった。心筋内の組織の回復が、瘢痕サイズR対NR -8.19g SE ±3.5g、p=0.0238の改善としてレスポンダーに見られた。CD133+処理されたNRも、瘢痕サイズ(CD133+NR Δ瘢痕サイズ180d/0:-13.9g、SD ±20.9g プラセボNR +11.9、SD ±16.7g、p=0.008、n=20)および非生存組織(non-viable tissue)(Δ非生存組織 180d/0:CD133+NR -12.4g、SD ±19.3g対プラセボNR +11.5g、SD ±12.0g、p=0.004,n=19)の減少を表示した(データは示さず)。この傾向は、レスポンダー:瘢痕サイズ(CD133+NR対プラセボNR -1.9,SD±16.0g 対プラセボ+2.5,SD±13.2g,p=0.398,n=33)および非生存組織(CD133+NR対プラセボNR -1.4、SD ±16.7g 対プラセボ +1.8、SD ±12.3g、p=0.544、n=32)では観察されなかった。長期生存:中期生存率は76.9±3.32カ月(R)対+72.3±5.0ヶ月(NR)、HR 0.3[CI 0.07~1.2];p=0.067であった。
【0098】
末梢血中の循環EPC(CD133+/CD34+/CD117+)は、治療前のNR対Rにおいて2倍低減することが見出された。CD34+MNC亜集団では術前の血中レベルは、(R):CD34+ 0.072%、SD ±0.05%対(NR)0.039%、SD ±0.017、R対NR p=0.027であった。同様の差が、CD133+、CD133+およびCD117+亜集団について術前に見られた(手術前 R対NR:CD133+ 0.048%、SD ±0.031%対0.021%、SD ±0.011%、p=0.005; CD133+CD117+ 0.019%、SD ±0.016%対0.007%、SD ±0.008%、p=0.024、n=23)(表1参照)。この差は、プラセボとCD133+との比較では見つからなかった(プラセボ対CD133+群:CD34+ p=0.975;CD133+ p=0.995;CD133+CD117+ p=0.892;n=24)(表1)。対照的に、CD146+CECは、ノンレスポンダー対レスポンダーにおいてより高い術前レベルを示した(p=0.053)(表1)。
【0099】
術後、NRにおけるEPCの減少は、術後のEPOレベルの増加(NR術前:16.9U/ml、SD ±14.1U/ml;、NR10日目:42.1U/ml、SD ±23.9U/ml;p=0.006 術前/10日目)およびIP10/CXCL10の減少(NR術前:157.6pg/ml、SD ±94.5pg/ml;NR10日目:95.8pg/ml、SD ±85.2pg/ml;p=0.01 術前/10日目)にもかかわらず、退院まで有意なままであった:末梢血CD34+(NR対R p=0.26 術前および10日目)およびCD133+CD117+(NR対R p=0.024 術前および10日目)。
【0100】
治療レスポンダーは、VEGF(P=0.056 R/NR)、EPO(p=0.023 R/NR)、CXCL10/IP10(p=0.076 R/NR)などの血管新生促進因子の低い血清レベル、IGFBP-3(p=0.089 R/NR)の高いレベル(表1)、ならびに治療介入後10日目におけるVEGFの強い誘導(+26.6pg/ml、p=0.015 術前/10日目)対ノンレスポンダー(+1.2pg/ml、p=0.913 術前/10日目)によって手術前に特徴付けられた(表1)。単離された骨髄CD133+細胞は、その血管新生能のために、CFU-ECによるインビトロでの、およびMatrigel plugによるインビボでの検査で全て陽性であった(データは示さず)。
【0101】
血小板計数は、治療前、NRにおいて術前に減少した(208×109/L、SD ±51.2 109/L[CI 73-311]、n=23)対R(257×109/L、SD ±81.5 109/L[CI 123-620]、n=35)(NR対R:p=0.004、n=58)。減少したPB血小板およびCD133
+CD34
+EPC計数を見出したことにより骨髄性幹細胞の抑制を疑い、直ちに凍結された血液サンプル中のEPCおよび巨核球について造血幹細胞応答の抑制に関連付けられているLNKアダプタータンパク質SH2B3をコードするSH2B3 mRNAのRT-PCR遺伝子発現解析をテストした。21人の患者の最初の分析は、ノンレスポンダーの末梢血中のmRNA発現の増加傾向が明らかとなった(p=0.073)(表1、
図1参照)。
【0102】
表1:血中の血管新生に関連するバイオマーカーの分析。レスポンダー対ノンレスポンダーおよびプラセボ対CD133+群が、術前(評価I)と術後10日目(放出)との間の末梢血サンプルのバイオマーカーの変化について分析された。データは完全な分析(パー・プロトコル臨床データセットおよびバイオマーカー)を有する患者群(コホート)に由来する。このコホートでは、すべてのサンプルは、保管や輸送によるサンプルの任意の変化を避けるために直ちに処理された。データは平均値±標準偏差、時点0および10日の間のP値、レスポンダー/ノンレスポンダー間のPA値、各時点での幹細胞/コントロール(PB-末梢血、EPO-エリスロポエチン)として表される。
【0103】
【0104】
R/NRための診断応答指標を同定するために、我々は、心臓幹細胞治療とCABG手術後の機能改善を予測するためのツールとして、機械学習法を使用した。最初の分析は、特に小さな集団で過剰適合を除外するために行われた。次いで、PERFECT臨床データベースからの盲検患者データを、教師なしMLによって調査し、近接した同様の患者をクラスタ化することができ、明確な群を明らかにした。基礎となるセグメンテーションを調べ、2つの異なる群に患者特性を分類するために、すべての時点でファーストライン教師ありML分析が行われた。計算は、独立して、>5%の事前選択基準を確認する180日目のΔLVEFによって患者特性を割り当てた(表2、
図2参照)。
【0105】
そして、機械学習アルゴリズムは、応答指標に対する決定的なパラメータを調査するために使用された。このため、基礎となるPERFECT臨床データセットとバイオマーカー研究室測定が、CABG術前後のレスポンダーとノンレスポンダーについてのパラメータプロファイルの分類特異性を検証するために組み合わせ、分析された。特に、我々は特徴的な主要評価項目および二次的評価項目のパラメータだけでなく、血小板や白血球数も使用した。臨床パラメータ(n=160)分類のみの使用では、レスポンダーの特異性は、63.35%の平均精度(180日)を想定する結果となった(表2)。しかし、術前臨床データ(n=49)とバイオマーカー実験室パラメータ(n=142)の組み合わせは、すでに術前に別の想定最大精度、81.64±SE0.51%[CI 80.65-82.65(n=31)(表2)を有する末梢血における血管新生/EPC/CEC関連パラメータのより高い感度を示した。興味深いことに、17/20の関連パラメータは、血管新生パラメータ、骨髄EPC/CEC応答、NT-proBNP、および末梢血におけるSH2B3遺伝子発現に関連していた(表2)。臨床およびバイオマーカーの両パラメータを使用した、レスポンダーの術前予測精度は、79.35%±SE 0.24%[CI 78.87-79.84](n=31)であり、ノンレスポンダーについては83.95%±SE 0.93%[CI 82.10-85.80](n=31)であった。10日目の術後評価(n=382)は、82.12%±SE 0.28%[CI 81.56-82.67](n=31)(R)および85.89%±SE 0.67%[CI 84.56-87.22](n=31)(NR)の予測精度を示し、一方、0~180日の組み合わされた臨床およびバイオマーカー分析(n=522)は、94.77%±SE 0.43%[CI 93.92-95.63](n=31)(R)および92.44%±SE 0.60%[CI 91.24 -93.64](n=31)(NR)の予測精度を可能にした(
図3参照)。
【0106】
我々の機械学習手法に基づく特徴選択は、応答の欠如と心臓再生の誘導に関する決定的な因子の同定につながり、治療前の診断的R/NR選択および治療中のモニタリングのために使用することができる。末梢血における実験室診断のためのコア因子は、NT-proBNP、VEGF、エリスロポエチン、ビトロネクチン、循環EPC/CEC/血小板、SH2B3 mRNA発現、CFU-Hillアッセイ/末梢血のためのマトリゲルプラグ、ならびに体重(weight)およびLVESV指数であった。我々は、繰り返し交差検証を用いたレスポンダーおよびノンレスポンダーの選択に関し、同定された因子と算出されたそれらの診断用途の統計学的相関を見出した(参照:
図4)。
【0107】
実験室バイオマーカーサブセットは、MLにより臨床試験の特定の特徴と一緒に選択された。計算的に選択された特徴およびバイオマーカーは、以下の表2に示される。予測の精度は80%超と決定した。
【0108】
表2:レスポンダーとノンレスポンダーの診断識別のために機械学習が選択したパラメータ。
【0109】
【0110】
例示的に本明細書に適切に記載された発明は、本明細書に具体的に開示されている/いない任意の要素または複数の要素、限定または複数の限定の非存在下で実施することができる。したがって、例えば、本明細書中の各場合において、用語「含む(comprising)」、「から本質的になる(consisting essentially of)」と 「からなる(consisting of)」のいずれも、他の2つの用語のいずれかと置き換えることができる。使用されてきた用語および表現は、説明および非限定の用語として使用され、そして示されそして記載された特徴の任意の等価物またはその一部を排除するような用語および表現の使用の意図はないが、本発明の範囲内で種々の改変が可能であることが認識される。したがって、本発明は、特に好ましい実施形態および任意の特徴により開示されているが、本明細書に開示された概念の修正および変形が当業者によって講ぜられてもよく、そのような修正および変形が、添付の特許請求の範囲によって定義される本発明の範囲内にあると考えられることが理解されるべきである。
【0111】
本明細書で引用した全ての参考文献は、それらの全開示内容のすべておよび特に本明細書に記載された開示内容を参照することにより本明細書に組み込まれる。
【0112】
略語
AE=有害事象
AESI=特別に関心のある有害事象
AHA=アメリカ心臓協会
ANCOVA=共分散の分析
BM=骨髄
BMSC=骨髄幹細胞
CABG=冠動脈バイパス移植
CAP-EPC=濃縮周囲分子-内皮前駆細胞
CBA=サイトメトリービーズアレイ
CCS=カナダ心臓血管学会
CCTRN=心臓血管細胞療法研究ネットワーク
CD=分化抗原群
CEC=循環内皮細胞、CECパネル、PB中で測定されるCD
CFU=コロニー形成単位
CI=信頼区間
CMV=サイトメガロウイルス
EA=早期抗原
EBNA1=EBV-核抗原
EBV=エプスタインバービールス
EC=内皮細胞
ECG=心エコー
ELISA=酵素結合免疫吸着アッセイ
EPC=内皮前駆細胞、EPCパネル、PB中で測定されるCD
EPO=エリスロポエチン
GMP=適性製造基準
HR=ハザード比
HIF=低酸素誘導因子、転写因子
ICH GCP=三者ガイドライン 良い臨床慣行のためのガイドライン
IGF-1=インスリン様成長因子1
IGFBP2/3=インスリン様成長因子-結合タンパク質2/3
IHG=ISHAGEガイドラインに従って行われる分析
IL=インターロイキン
IP-10=C-X-Cモチーフケモカイン10(CXCL10)としても知られている、インターフェロンガンマ誘導性タンパク質10
LMCA=左主冠状動脈
LVEDV=左室拡張終末期容積
LVEF=左室駆動率
LVESD=左室収縮終末期径
MACE=主要な有害な心臓血管事象
ML=機械学習
MNC=単核細胞
MRI=核磁気共鳴画像法
6MWT=6分歩行テスト
NT-proBNP=B-型脳性ナトリウム利尿ペプチド
PB=末梢血
PBMNC=末梢血から単離された単核細胞
PCI=経皮的冠動脈介入
PEI=ポール・エーリッヒ研究所
PPS=パー・プロトコル・セットの患者群
SAE=重大有害事象
SAS=安全性解析対象集団の患者群
SDF-1=間質細胞由来因子1
SH2B3=重要なアダプタ機能を有するSH2含有タンパク質に属する
SCF=幹細胞因子
STEMI=STセグメント上昇心筋梗塞
SUSAR=予期せぬ重篤な副作用の疑い
TNF=腫瘍壊死因子
t-SNE=t分布型確率的近傍埋め込み法
VCA=ビールス-カプシド-抗原
VEGF=血管内皮増殖因子
VEGF rec=血管内皮増殖因子受容体
VEGFR2/KDR=血管内皮増殖因子受容体2/キナーゼ挿入ドメイン受容体