IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クボタの特許一覧

<>
  • 特許-農作業機 図1
  • 特許-農作業機 図2
  • 特許-農作業機 図3
  • 特許-農作業機 図4
  • 特許-農作業機 図5
  • 特許-農作業機 図6
  • 特許-農作業機 図7
  • 特許-農作業機 図8
  • 特許-農作業機 図9
  • 特許-農作業機 図10
  • 特許-農作業機 図11
  • 特許-農作業機 図12
  • 特許-農作業機 図13
  • 特許-農作業機 図14
  • 特許-農作業機 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-14
(45)【発行日】2023-12-22
(54)【発明の名称】農作業機
(51)【国際特許分類】
   A01B 69/00 20060101AFI20231215BHJP
   G05D 1/02 20200101ALI20231215BHJP
【FI】
A01B69/00 303M
A01B69/00 303Z
G05D1/02 N
G05D1/02 W
【請求項の数】 3
(21)【出願番号】P 2020113238
(22)【出願日】2020-06-30
(65)【公開番号】P2022011849
(43)【公開日】2022-01-17
【審査請求日】2022-06-22
(73)【特許権者】
【識別番号】000001052
【氏名又は名称】株式会社クボタ
(74)【代理人】
【識別番号】110001818
【氏名又は名称】弁理士法人R&C
(72)【発明者】
【氏名】中林 隆志
(72)【発明者】
【氏名】渡邉 俊樹
(72)【発明者】
【氏名】佐野 友彦
(72)【発明者】
【氏名】吉田 脩
(72)【発明者】
【氏名】川畑 翔太郎
(72)【発明者】
【氏名】堀内 真幸
(72)【発明者】
【氏名】齊藤 直
(72)【発明者】
【氏名】山岡 京介
(72)【発明者】
【氏名】奥平 淳人
【審査官】竹中 靖典
(56)【参考文献】
【文献】特開2019-097503(JP,A)
【文献】特開平03-201903(JP,A)
【文献】特開2019-136039(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A01B 69/00 - 69/08
G05D 1/02
(57)【特許請求の範囲】
【請求項1】
操向可能な走行装置を有する機体と、
衛星測位を用いて機体位置を算出する機体位置算出部と、
前記機体の方位を算出する機体方位算出部と、
前記機体位置算出部によって算出された二つの前記機体位置を結ぶ直線の方位を基準方位として算出する基準方位算出部と、
前記基準方位に基づいて走行目標ラインを設定するライン設定部と、
前記基準方位、または、前記基準方位に基づいて設定された前記走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御部と、が備えられ、
前記基準方位算出部は、圃場の外周領域における周回走行中に算出された前記機体位置に基づいて、圃場の外周辺の延びる方向に沿う複数の前記基準方位を算出し、
前記ライン設定部は、前記複数の基準方位から前記機体の方位に近い前記基準方位を選択して前記走行目標ラインを設定する農作業機。
【請求項2】
前記基準方位算出部は、算出済みの前記基準方位から所定の方位だけ方位ずれした前記基準方位を算出可能に構成されている請求項1に記載の農作業機。
【請求項3】
記外周領域における周回走行は作業走行であって、
前記ライン設定部は、前記外周領域における前記作業走行中に算出された前記基準方位に基づいて、前記外周領域における前記作業走行による既作業領域よりも内側に残された作業対象領域に前記走行目標ラインを設定する請求項1または2に記載の農作業機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、農作業機に関する。
【背景技術】
【0002】
例えば特許文献1に開示された農作業機では、航法衛星を用いて機体の位置情報を取得可能な測位ユニットが備えられ、農作業機が最初のティーチング走行で算出された基準方位に沿って走行するように、操向制御部による操向制御が行われる。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2019-097503号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に開示された農作業機では、基準方位の算出がティーチング走行によって取得された二点間の直線に沿う方位が算出されるが、このようなティーチング走行が圃場の形状に合わせた走行に基づいて行われると、基準方位の算出が効率よく行われる。特に、農作業機が圃場を周回走行しながら基準方位の算出する構成であれば、圃場の形状に合わせた基準方位の算出が容易となる。
【0005】
本発明は、圃場の形状に合わせて基準方位を容易に算出できる農作業機を提供することにある。
【課題を解決するための手段】
【0006】
本発明による農作業機では、操向可能な走行装置を有する機体と、衛星測位を用いて機体位置を算出する機体位置算出部と、前記機体の方位を算出する機体方位算出部と、前記機体位置算出部によって算出された二つの前記機体位置を結ぶ直線の方位を基準方位として算出する基準方位算出部と、前記基準方位に基づいて前記走行目標ラインを設定するライン設定部と、前記基準方位、または、前記基準方位に基づいて設定された前記走行目標ラインに沿うように、前記機体位置に基づいて前記走行装置を自動的に操向制御する操向制御部と、が備えられ、前記基準方位算出部は、圃場の外周領域における周回走行中に算出された前記機体位置に基づいて、圃場の外周辺の延びる方向に沿う複数の前記基準方位を算出し、前記ライン設定部は、前記複数の基準方位から前記機体の方位に近い前記基準方位を選択して前記走行目標ラインを設定することを特徴とする。
【0007】
本構成であれば、圃場の外周領域を周回走行することによって基準方位が算出される。
このため、搭乗者は外周領域の周回走行に専念すれば、衛星測位を用いて算出された機体位置から基準方位が算出される。これにより、農作業機の搭乗者に負担が掛かることなく、基準方位が容易に算出される。つまり、圃場の形状に合わせて基準方位を容易に算出できる農作業機が実現される。
【0008】
なお、本発明における『基準方位』は、操向制御部による操向制御において機体が地上を直進するべき方向である。本発明では、基準方位に沿って、一方向と、一方向と180°反対方向と、の双方向に機体の走行が可能であるが、基準方位に沿って一方向のみの単方向に機体が走行する構成も、本発明に含まれる。
【0009】
【0010】
また、本構成であれば、また、基準方位が圃場の外周辺の延びる方向に沿うため、走行目標ラインが当該外周辺に沿って延びる。このことから、操向制御部による操向制御が当該外周辺に沿うものとなって、好適な作業走行が実現される。
【0011】
【0012】
また、本構成であれば、機体方位算出部によって機体の方位が算出され、機体の方位に適した基準方位が選択されるため、機体の方位に基づく基準方位の選択が行われない構成と比較して、機体の旋回走行後に、操向制御部による操向制御が速やかに行われる。
【0013】
本発明において、前記基準方位算出部は、算出済みの前記基準方位から所定の方位だけ方位ずれした前記基準方位を算出可能に構成されていると好適である。
【0014】
本構成であれば、算出済みの基準方位に基づいて異なる方位を有する新たな基準方位の算出が可能となる。このため、基準方位を算出するために機体を走行させる手間を省くことが可能となり、複数の基準方位の算出が容易になる。
【0015】
本発明において、前記外周領域における周回走行は作業走行であって、前記ライン設定部は、前記外周領域における前記作業走行中に算出された前記基準方位に基づいて、前記外周領域における前記作業走行による既作業領域よりも内側に残された作業対象領域に前記走行目標ラインを設定すると好適である。
【0016】
本構成であれば、外周領域における周回走行は作業走行であるため、外周領域で農作業と、基準方位の算出と、が一度の作業走行で可能となる。また、周回走行が行われた後の既作業領域よりも内側に残された作業対象領域では、例えば、前進しながらの作業走行と、外周領域における180°(または略180°)の方向転換と、を繰り返す往復走行が行われることが一般的である。本構成であれば、周回走行で算出された基準方位に基づいて作業対象領域に走行目標ラインが設定される。このため、作業対象領域における作業走行で自動的に操向制御が行われる構成が可能となり、農作業機を操作する者の負担が軽減される。
【図面の簡単な説明】
【0017】
図1】農作業機の全体側面図である。
図2】農作業機の制御系を示す機能ブロック図である。
図3】基準方位の算出に関するフローチャート図である。
図4】機体の1周分の周囲刈り走行によって算出された基準方位を示す圃場の平面図である。
図5】走行軌跡を滑らかにする処理を示す図である。
図6】自動操向制御に関するフローチャート図である。
図7】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図8】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図9】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図10】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図11】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図12】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図13】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図14】基準方位に基づく機体の自動操向制御を示す圃場の平面図である。
図15】基準方位の算出及び機体の自動操向制御の一例を示す圃場の平面図である。
【発明を実施するための形態】
【0018】
本発明に係る農作業機の一例としてのコンバインの実施形態が、図面に基づいて以下に記載されている。この実施形態で、機体1の前後方向を定義するときは、作業状態における機体進行方向に沿って定義する。機体1の左右方向を定義するときは、機体前進方向視で見た状態で左右を定義する。
【0019】
〔農作業機の一例であるコンバインの基本構成〕
図1に示されるように、普通型のコンバインに、機体1と、操向可能な左右一対のクローラ式の走行装置11と、搭乗部12と、脱穀装置13と、穀粒タンク14と、収穫装置15と、搬送装置16と、穀粒排出装置18と、が備えている。
【0020】
走行装置11は、コンバインの下部に備えられている。走行装置11は左右一対のクローラ走行機構を有し、コンバインは、走行装置11によって圃場を走行可能である。搭乗部12、脱穀装置13、穀粒タンク14は、走行装置11よりも上側に備えられ、これらは機体1の上部として構成されている。コンバインの搭乗者と、コンバインの作業を監視する監視者と、の少なくとも一人が、搭乗部12に搭乗可能である。通常、搭乗者と監視者とは兼務される。なお、搭乗者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。搭乗部12の下方に駆動用のエンジン(不図示)が備えられている。穀粒排出装置18は、穀粒タンク14の後下部に連結されている。
【0021】
収穫装置15は圃場の作物を収穫する。そして、コンバインは、収穫装置15によって圃場の作物を収穫しながら走行装置11によって走行する作業走行が可能である。搬送装置16は収穫装置15よりも後側に隣接して設けられている。収穫装置15及び搬送装置16は、機体1の前部に上下昇降可能に支持されている。
【0022】
収穫装置15によって収穫された作物は、搬送装置16によって脱穀装置13へ搬送され、脱穀装置13によって脱穀処理される。脱穀処理によって得られた収穫物としての穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。穀粒排出装置18は機体後部の縦軸芯回りに揺動可能に構成されている。即ち、穀粒排出装置18の遊端部が機体1よりも機体横外側へ張り出して作物を排出可能な排出状態と、穀粒排出装置18の遊端部が機体1の機体横幅の範囲内に位置する収納状態と、に切換可能なように穀粒排出装置18は構成されている。
【0023】
搭乗部12の天井部に衛星測位モジュール80が設けられている。衛星測位モジュール80は、人工衛星GSからのGNSS(グローバル・ナビゲーション・サテライト・システム。例えばGPS、QZSS、Galileo、GLONASS、BeiDou、等)の信号を受信して、自車位置を取得する。
【0024】
衛星測位モジュール80の他に、機体1の走行方位を検出する方位検出手段として、例えばIMU(インターナル・メジャメント・ユニット)を有する慣性計測モジュール81(図2参照)が、機体1に備えられている。慣性計測モジュール81は、ジャイロセンサや加速度センサを有する構成であっても良い。慣性計測モジュール81は、機体1の旋回角度の角速度を検出可能である。詳述はしないが、慣性計測モジュール81は、機体1の旋回角度の角速度の他、機体1の左右傾斜角度、機体1の前後傾斜角度の角速度等も計測可能である。なお、衛星測位モジュール80と慣性計測モジュール81とが一体的に構成されても良い。
【0025】
〔制御ユニットの構成〕
図2に示される制御ユニット30は、コンバインの制御系の中核要素であり、複数のECUの集合体として示されている。制御ユニット30は、自動操向制御が実行される自動操向モードと、自動操向制御が実行されない手動操向モードと、に切換え可能なように構成されている。『自動操向制御』とは、所定の方位に基づいて、後述する直線状の目標ラインCを設定し、機体1が目標ラインCに沿って走行するように走行装置11を制御することを意味する。制御ユニット30は、当該所定の方位として基準方位Bを算出する。
【0026】
基準方位Bは、自動操向制御において機体1が地上を直進するべき方位であって、例えば東西南北の何れかを基準とした角度値で管理される。本実施形態では、基準方位Bに沿って、一方向と、一方向と180°反対方向と、の双方向に機体1の走行が可能である。
この場合、基準方位Bは、東西南北の何れかを基準とした180°の範囲の角度値で管理されれば十分であるが、基準方位Bが360°の範囲の角度値で管理される構成であっても良い。あるいは、基準方位Bがベクトル値で管理されても良い。
【0027】
本発明における『基準方位』は、自動操向制御において機体が地上を直進するべき方位である。本発明では、基準方位Bに沿って、一方向と、一方向と180°反対方向と、の双方向に機体の走行が可能であるが、基準方位Bに沿って一方向のみの単方向に機体1が走行する構成も、本発明に含まれる。
【0028】
制御ユニット30に、機体位置算出部31と、機体方位算出部32と、基準方位算出部33と、記憶部34と、選択部35と、ライン設定部36と、操向制御部37と、が備えられている。制御ユニット30に、衛星測位モジュール80、慣性計測モジュール81、始点設定スイッチ21A、終点設定スイッチ21B、の信号が入力される。また、図示はしないが、制御ユニット30に、車速センサ、エンジンのトルクセンサ、障害物検知センサ、等の信号も入力される。
【0029】
機体位置算出部31は、衛星測位モジュール80によって出力された測位データに基づいて、機体1の位置座標を経時的に算出する。即ち、機体位置算出部31は、衛星測位を用いて機体位置を算出する。算出された機体1の経時的な位置座標は、機体方位算出部32と操向制御部37とへ送られる。
【0030】
機体方位算出部32は、慣性計測モジュール81によって検出された角速度を積分することによって、機体1の走行方位変化角を算出できる。また、機体方位算出部32は、経時的に算出した機体1の位置座標を時間微分することによって、機体1の走行速度及び走行方位を算出できる。即ち、機体方位算出部32は、機体位置算出部31によって経時的に算出された機体1の位置座標と、慣性計測モジュール81によって出力された角速度と、の少なくとも一方に基づいて機体1の走行方位を算出する。機体方位算出部32によって算出された機体1の走行方位は、選択部35と操向制御部37とに送られる。なお、機体方位算出部32は、例えば電子コンパス等に基づいて機体1の走行方位を算出しても良い。
【0031】
基準方位Bを設定するための設定スイッチ21が備えられている。設定スイッチ21は、例えば搭乗部12に設けられたタッチパネル式画面(例えば液晶の画面、OLEDの画面等のタッチ操作可能な画面)に表示されたアイコンボタンであって、始点位置を設定する始点設定スイッチ21Aと、終点位置を設定する終点設定スイッチ21Bと、を有する。
【0032】
手動操向モードの状態で始点設定スイッチ21Aの操作が可能であって、この状態で機体1が走行し、始点設定スイッチ21Aが操作されると、このタイミングにおける機体1の位置Aaが基準方位算出部33へ送られる。位置Aaは、始点設定スイッチ21Aが操作されたタイミングで、機体位置算出部31によって算出される。なお、始点設定スイッチ21Aが操作される時点において、終点設定スイッチ21Bの操作は不能である。
【0033】
搭乗者が始点設定スイッチ21Aを操作した後、機体1が走行を継続して位置Aaから予め設定された距離以上に離れると、終点設定スイッチ21Bの操作が可能となる。なお、搭乗者が始点設定スイッチ21Aを操作した後で機体1が走行している間、始点設定スイッチ21Aは操作可能であっても良いし、始点設定スイッチ21Aは操作不能であっても良い。始点設定スイッチ21Aが操作可能である場合、搭乗者が始点設定スイッチ21Aを改めて操作すると、このタイミングにおける機体1の位置Aaが、再度、基準方位算出部33へ送られても良い。始点設定スイッチ21Aが操作不能である場合、始点設定スイッチ21Aに代わって、位置Aaの記憶を消去して基準方位Bの設定を中止するボタンが表示されても良い。
【0034】
終点設定スイッチ21Bが操作されると、このタイミングにおける機体1の位置Abが基準方位算出部33へ送られる。位置Abは、終点設定スイッチ21Bが操作されたタイミングで、機体位置算出部31によって算出される。そして、位置Aa,Abに基づいて、作業走行のための基準方位Bが基準方位算出部33によって算出され、算出された基準方位Bが記憶部34に記憶される。即ち、基準方位算出部33は、圃場の走行中に算出された複数の機体位置に基づいて基準方位Bを算出する。また、記憶部34は、作業走行のための複数の基準方位Bを記憶可能に構成されている。なお、記憶部34は、基準方位Bの記憶に限定されず、例えば、位置Aa,Abが記憶される構成であっても良い。
【0035】
選択部35は複数の基準方位Bのうちの一つを選択する。まず、選択部35は、機体方位算出部32から機体1の走行方位を取得する。そして選択部35は、記憶部34に記憶された複数の基準方位Bのうち、機体1の走行方位に最も近い基準方位Bを選択する。
【0036】
ライン設定部36は、機体位置算出部31によって算出された最新の機体1の位置座標を常時取得する。そしてライン設定部36は、当該最新の位置座標に基づいて、収穫装置15の左右中心部から、記憶部34によって選択された基準方位Bに沿って前方に延びる走行目標ラインCを常時算出する。制御ユニット30が自動操向モードに切換えられると、ライン設定部36は、その時点で算出されている走行目標ラインCを、機体1が走行すべき走行目標ラインCとして固定(設定)する。この設定された走行目標ラインCは、自動操向モードが解除されるまで固定される。走行目標ラインCは、機体1から機体前方へ延び、かつ、記憶部34によって選択された基準方位Bと平行である。即ち、ライン設定部36は、選択された基準方位Bに基づいて走行目標ラインCを設定する。自動操向モード中に、搭乗者が、操向レバー(不図示)を操作したり、主変速レバー(不図示)を停止位置に操作したりすると、制御ユニット30が自動操向モードから手動操向モードに切換えられる。制御ユニット30が自動操向モードから手動操向モードに切換えられると、ライン設定部36は走行目標ラインCの設定を解除する。なお、ライン設定部36が、制御ユニット30が自動操向モードに切換えられたときに走行目標ラインCを算出・設定するよう構成されてもよい。
【0037】
操向制御部37は、走行目標ラインCに対する機体1の機体横方向における位置ズレ量を算出できる。また、操向制御部37は、機体1の走行方位と、記憶部34によって選択された基準方位Bと、の角度偏差、即ち方位ズレを算出できる。制御ユニット30が自動操向モードに設定されているとき、操向制御部37は、機体位置算出部31からの機体位置情報と、機体方位算出部32からの方位情報と、に基づいて、機体1が走行目標ラインCに沿って走行するように、走行装置11を制御する。
【0038】
〔基準方位の算出について〕
圃場の収穫作業を行う場合、まず、搭乗者(監視者であっても良い、以下同じ)は、コンバインを手動で操作し、圃場内の外周領域において、圃場の外周辺、即ち畦際に沿って周囲刈り走行(作業走行の一例)しながら収穫を行う。この周囲刈り走行の領域は、コンバインが後工程で往復走行しながら圃場内側領域(例えば図13及び図14の作業対象領域CA)の作物を収穫する際に、機体1の旋回スペースとなる。このことから、当該旋回スペースは広く確保されることが望ましい。このため、搭乗者は、圃場の外周領域でコンバインを2~3周走行させ、コンバインの収穫幅の2~3倍程度の周囲刈り走行の領域を旋回スペースとして確保する。
【0039】
基準方位Bの算出は、圃場内の外周領域における周囲刈り走行と一緒に行われる。図3に、基準方位Bの算出の順序がフローチャートで示される。まず、終点設定スイッチ21Bが自動的に操作不能状態に切換えられる(ステップ#01)。
【0040】
本実施形態では、始点設定スイッチ21A及び終点設定スイッチ21Bがタッチパネル式画面のアイコンボタンである。終点設定スイッチ21Bの操作不能状態とは、例えば、終点設定スイッチ21Bのアイコンボタンがタッチパネル式画面に表示されない状態(アイコンボタンのグレーアウトも含まれる)であったり、終点設定スイッチ21Bのアイコンボタンがタッチパネル式画面に表示されていても搭乗者等の操作が反映されない状態であったりする。
【0041】
搭乗者が圃場の畦際にコンバインを移動させ、圃場の畦際に沿って直進(または略直進)を開始する際に、搭乗者は始点設定スイッチ21Aを操作する(ステップ#02)。なお、本実施形態で『操作』とは、アイコンボタンである始点設定スイッチ21A及び終点設定スイッチ21Bのアイコン操作も含まれる。
【0042】
始点設定スイッチ21Aが操作されると(ステップ#02:Yes)、機体1の位置座標として位置Aaが記憶される(ステップ#03)。位置Aaは、始点設定スイッチ21Aが操作されたタイミングで、機体位置算出部31によって算出された機体1の位置座標である。そして、搭乗者が圃場の畦際の一辺に沿ってコンバインを直進(または略直進)させながら作業走行を行う。この間、機体1が位置Aaから予め設定された距離以上に離れたかどうかが、基準方位算出部33によって判定される(ステップ#04)。『予め設定された距離』は、例えば位置Aaから5メートルである。
【0043】
機体1が位置Aaから予め設定された距離以上に離れていなければ(ステップ#04:No)、ステップ#09の処理が行われる。ステップ#09は、終点設定スイッチ21Bが操作可能状態である場合に、終点設定スイッチ21Bを操作不能状態に切換える処理である。つまり、機体1が位置Aaから予め設定された距離以上に離れていなければ(ステップ#04:No)、終点設定スイッチ21Bの操作不能状態が保持され、搭乗者は終点設定スイッチ21Bを操作できない。
【0044】
機体1が位置Aaから予め設定された距離以上に離れていれば(ステップ#04:Yes)、終点設定スイッチ21Bが操作可能状態に切換えられる(ステップ#05)、このとき、終点設定スイッチ21Bが既に操作可能状態であれば、終点設定スイッチ21Bの操作可能状態が保持される。そして、終点設定スイッチ21Bが操作されたかどうかが判定される(ステップ#06)。終点設定スイッチ21Bが操作されなければ(ステップ#06:No)、ステップ#04~#05の処理が繰り返される。このとき、例えばコンバインが後進走行する等の要因によって、機体1が位置Aaから予め設定された距離以上に離れなくなると(ステップ#04:No)、終点設定スイッチ21Bが再び操作不能状態に切換えられる(ステップ#09)。
【0045】
終点設定スイッチ21Bが操作されると(ステップ#06:Yes)、機体1の位置座標として位置Abが記憶される(ステップ#07)。位置Abは、終点設定スイッチ21Bが操作されたタイミングで、機体位置算出部31によって算出された機体1の位置座標である。このように、搭乗者が圃場の畦際の一辺に沿ってコンバインを直進(または略直進)させながら作業走行を行い、始点設定スイッチ21A及び終点設定スイッチ21Bを操作することによって、位置Aa,Abが取得される。
【0046】
位置Aa,Abが取得されると、基準方位算出部33は位置Aa,Abの二点間を結ぶ直線の方位として基準方位Bを算出する(ステップ#08)。即ち、基準方位算出部33は、機体位置算出部31によって算出された二つの機体位置を結ぶ直線の方位を基準方位Bとして算出する。また、ステップ#08において基準方位算出部33は算出済みの基準方位Bを記憶部34に記憶する。これにより、基準方位Bの算出処理が完了する。
【0047】
上述のステップ#01からステップ#08までの処理を繰り返し行うことによって、基準方位算出部33は複数の基準方位Bを取得可能に構成されている。例えば、搭乗者が、圃場の別の畦際にコンバインを移動させ、始点設定スイッチ21Aを操作して当該別の畦際の一辺に沿ってコンバインを直進(または略直進)させながら作業走行を行って、その後、終点設定スイッチ21Bを操作する。このとき、基準方位算出部33は、ステップ#01からステップ#08までの処理を再度行い、別の基準方位Bを算出する。
【0048】
図4に示される例では、圃場の畦際に沿って1周分の周囲刈り走行が行われ、複数の基準方位B1,B2,B3,B4が基準方位算出部33によって算出され、記憶部34に、方位の夫々異なる複数の基準方位B1,B2,B3,B4が記憶されている。位置A1,A2に基づいて基準方位B1が算出され、位置A3,A4に基づいて基準方位B2が算出され、位置A5,A6に基づいて基準方位B3が算出され、位置A7,A8に基づいて基準方位B4が算出されている。位置A1,A3,A5,A7は始点設定スイッチ21Aが操作されたタイミングにおける位置Aa(図2及び図3参照)であって、位置A2,A4,A6,A8は終点設定スイッチ21Bが操作されたタイミングにおける位置Ab(図2及び図3参照)である。即ち、基準方位算出部33は、圃場の外周領域における周回走行中に算出された機体位置に基づいて基準方位Bを算出する。このとき、基準方位算出部33は、圃場の外周辺の延びる方位に沿う複数の基準方位Bを算出する。換言すると、基準方位算出部33は、圃場の外周領域における人為操作での周回走行中に算出された機体位置に基づいて、圃場の外周辺の延びる方位に沿う複数の基準方位Bを算出する。
【0049】
上述の基準方位Bの算出は、人が始点設定スイッチ21A及び終点設定スイッチ21Bを操作することによって行われるが、この実施形態に限定されない。本発明では、圃場の畦際に沿って周囲刈り走行が行われると、圃場の畦際の各辺に応じて基準方位Bが自動的に算出される構成であっても良い。例えば、周囲刈り走行時に、機体位置が機体位置算出部31によって経時的に算出されると、機体位置に基づいて走行軌跡の算出が可能である。基準方位算出部33は、当該走行軌跡のうちの複数の直進部分(または略直進部分)を抽出し、これら複数の直進部分(または略直進部分)に基づいて複数の基準方位Bを算出しても良い。
【0050】
基準方位算出部33が走行軌跡に基づいて精度よく基準方位Bを算出するために、図5に示される手法が用いられる。機体位置算出部31によって算出された機体位置として、ある機体位置を対象位置41とする。対象位置41から所定の数、例えば2つ離れた位置にある機体位置を基点位置42とし、対象位置41と基点位置42との間に位置する機体位置を中間位置43とする。対象位置41と基点位置42とを結んだ線分L1と、中間位置43との距離x1が所定の長さ以下である場合、中間位置43を走行軌跡から削除する。図5の〔例1〕では、距離x1が所定の長さ以下であるため、中間位置43が削除される(削除された機体位置を白丸で表す)。
【0051】
さらに、図5の〔例2〕に示されるように、対象位置41の隣に位置する機体位置を対象位置44とすると、図5の〔例1〕における中間位置43は削除されているので、基点位置42はそのままで、図5の〔例1〕における対象位置41が中間位置45となる。同様に、対象位置44と基点位置42とを結んだ線分L2と、中間位置45との距離x2は、所定の長さ以上であるため、中間位置45(対象位置41)は残される。
【0052】
続けて、対象位置44の隣に位置する機体位置を対象位置46として、同様の処理を行うことにより、対象位置44に対応する機体位置が削除されたとする。図5の〔例3〕に、基点位置42に対応する機体位置と中間位置45に対応する機体位置とを結んだ線、及び、中間位置45に対応する機体位置と対象位置46とを結んだ線が示される。このような処理が繰り返されると、周囲刈り走行の走行軌跡が滑らかに処理され、走行軌跡のうちの直進部分が圃場の畦際の各辺と平行(または略平行)になる。そして基準方位算出部33は、当該滑らかに処理された走行軌跡に基づいて基準方位Bが算出する。例えば基準方位算出部33は、残された機体位置同士を結んだ複数の線分の方位の平均値または中央値から基準方位Bを算出しても良い。また、例えば基準方位算出部33は、残された機体位置同士を結んだ複数の線分のうち、同一(または略同一)の方位を有する線分を抽出しながら方位ごとにグループ分けし、線分の最も多いグループにおける方位情報から基準方位Bを算出しても良い。
【0053】
〔自動操向制御について〕
基準方位Bが記憶部34に記憶された後、自動操向制御の前に、人の操作に応じて図6に示されるような判定処理が行われる。まず、機体位置算出部31によって算出された機体1の位置が位置Paとして記憶される(ステップ#11)。続いて、選択部35が、機体1の走行方位を機体方位算出部32から取得し(ステップ#12)、複数の基準方位Bのうち機体1の走行方位に最も近い基準方位Bを選択する(ステップ#13)。図7に示される例では、機体1の走行方位が基準方位B1に沿っていることから、選択部35は、複数の基準方位Bのうちの基準方位B1を選択する。そして、ライン設定部36(または選択部35)は、機体1の走行方位と基準方位Bとの差分Δθを算出し(ステップ#14)、差分Δθが予め設定された閾値以内(例えば5°以内)かどうかを判定する(ステップ#15)。
【0054】
差分Δθが予め設定された閾値よりも大きければ(ステップ#15:No)、ステップ#11~14の処理が繰り返され、位置Paが更新され続ける。このとき、ステップ#13において同じ基準方位Bが繰り返し選択される場合が考えられるが、この場合には選択部35の選択が保持される。また、この間に機体1が旋回し、機体1の走行方位に最も近い基準方位Bが他の基準方位Bになってしまうと、選択部35は当該他の基準方位Bを選択する。
【0055】
差分Δθが予め設定された閾値以内であれば(ステップ#15:Yes)、ライン設定部36は、ステップ#11で記憶された位置Paから予め設定された距離以上に機体位置が離れたかどうかを判定する(ステップ#16)。ステップ#16の判定がNoであれば、ステップ#12~#16の処理が繰り返される。このとき、ステップ#11の処理は行われずに位置Paは更新されない。この状態で機体1が前進すると、機体位置と、ステップ#11で記憶された位置Paと、の離間距離が大きくなる。そして、ステップ#16の判定がYesになると、制御ユニット30が自動操向モードに移行し、操向制御部37による自動操向制御が行われる(ステップ#17)。
【0056】
制御ユニット30が自動操向モードに移行すると、ライン設定部36は、基準方位Bと平行な直線状の走行目標ラインCを機体1の前方に設定する。自動操向モードの移行後において、機体1の位置情報が機体位置算出部31によって経時的に算出されるとともに、相対的な方位変化角が機体方位算出部32によって経時的に算出される。そして、操向制御部37は、走行目標ラインCに対する機体1の機体横方向の位置ズレ量と、基準方位Bと機体1の走行方位との方位ズレ角度と、を算出し、機体1が走行目標ラインCに沿って走行するように、走行装置11を制御する。
【0057】
上述したように、周囲刈り走行の領域は後工程でコンバインの旋回スペースとして用いられるため、コンバインの周囲刈り走行は2~3周に亘って行われる。本実施形態では、圃場の外周辺に沿って1周の周囲刈り走行が行われて複数の基準方位Bが算出され(図4参照)、基準方位Bの夫々は記憶部34に記憶されている。このため、これらの基準方位Bの夫々は、2周目以降の周囲刈り走行に利用可能である。
【0058】
図7では、位置A1,A2に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部35は、機体1の走行方位に最も近い基準方位B1を選択し、ライン設定部36は、機体1の進行方位前方に基準方位B1と平行な直線状の走行目標ラインC1を生成する。そして、コンバインの刈幅に亘る領域D1において、走行目標ラインC1に沿う自動操向制御が行われる。
【0059】
図8では、位置A3,A4に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部35は、機体1の走行方位に最も近い基準方位B2を選択し、ライン設定部36は、機体1の進行方位前方に基準方位B2と平行な直線状の走行目標ラインC2を生成する。そして、コンバインの刈幅に亘る領域D2において、走行目標ラインC2に沿う自動操向制御が行われる。
【0060】
図9では、位置A5,A6に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部35は、機体1の走行方位に最も近い基準方位B3を選択し、ライン設定部36は、機体1の進行方位前方に基準方位B3と平行な直線状の走行目標ラインC3を生成する。そして、コンバインの刈幅に亘る領域D3において、走行目標ラインC3に沿う自動操向制御が行われる。
【0061】
図10では、位置A6と位置A7とに亘る刈跡に隣接して周囲刈り走行が行われており、機体1の走行方位は基準方位B1と同一または近似する。このため、選択部35は基準方位B1を選択し、ライン設定部36は、機体1の進行方位前方に基準方位B1と平行な直線状の走行目標ラインC4を生成する。そして、コンバインの刈幅に亘る領域D4において、走行目標ラインC4に沿う自動操向制御が行われる。
【0062】
図11では、位置A6と位置A7とに亘る刈跡に隣接して周囲刈り走行が行われており、機体1の走行方位は基準方位B2と同一または近似する。このため、選択部35は基準方位B2を選択し、ライン設定部36は、機体1の進行方位前方に基準方位B2と平行な直線状の走行目標ラインC5を生成する。そして、コンバインの刈幅に亘る領域D5において、走行目標ラインC5に沿う自動操向制御が行われる。
【0063】
図12では、位置A7,A8に亘る刈跡に隣接して周囲刈り走行が行われる。このとき、選択部35は、機体1の走行方位に最も近い基準方位B4を選択し、ライン設定部36は、機体1の進行方位前方に基準方位B4と平行な直線状の走行目標ラインC6を生成する。そして、コンバインの刈幅に亘る領域D6において、走行目標ラインC6に沿う自動操向制御が行われる。
【0064】
コンバインの周囲刈り走行が完了すると、図13及び図14に示されるように、コンバインは、周囲刈り走行による既作業領域よりも内側に残された作業対象領域CAを往復走行しながら作物を刈り取る。作業対象領域CAにおいて、走行目標ラインCに沿って前進しながら作物を刈り取る刈取走行と、作業対象領域CAよりも外側の外周領域における180°(または略180°)の方向転換と、が繰り返される。これにより、コンバインは、作業対象領域CAの全体を網羅するように作物を刈り取る。このとき、機体1の走行方位は基準方位B1と同一または近似する。このため、選択部35は基準方位B1を選択し、ライン設定部36は、機体1の進行方位前方に基準方位B1と平行な直線状の走行目標ラインC7,C8等を生成する。これにより、例えば図13に示される往復走行では、コンバインの刈幅に亘る領域D7において、走行目標ラインC7に沿う自動操向制御が行われる。また、例えば図14に示される中割り走行では、コンバインの刈幅に亘る領域D8において、走行目標ラインC8に沿う自動操向制御が行われる。つまり、ライン設定部36は、外周領域における周回走行中に算出された基準方位Bに基づいて作業対象領域CAに走行目標ラインCを設定する。なお、図13及び図14に示される例では、作業対象領域CAが圃場の形状に沿って不等辺の多角形となるように周囲刈り走行が行われているが、作業対象領域CAが四角形となるように周囲刈り走行が行われても良い。コンバインの周囲刈り走行後の往復走行等で自動操向制御が行われることによって、搭乗者の負担が軽減される。
【0065】
このように、選択部35は、算出された機体1の走行方位に基づいて複数の基準方位Bのうちの一つを選択し、ライン設定部36は選択された基準方位Bに基づいて走行目標ラインCを設定する。
【0066】
〔基準方位及び走行目標ラインの画面表示について〕
図6におけるステップ#11~#16の処理が行われる間、搭乗部12に設けられたタッチパネル式画面に、選択された基準方位Bと、コンバイン(農作業機)と、が表示される。基準方位Bとコンバインとの夫々は、差分Δθに応じて基準方位Bとコンバインとの一方が傾斜するように、当該画面に表示される。このため、搭乗者は、自動操向制御の開始前にタッチパネル式画面を確認しながら機体1の走行方位を基準方位Bに合わせ易くなる。また、基準方位Bに平行な方位線が、コンバインの作業幅の間隔で当該画面に複数表示されても良く、複数の方位線とコンバインとの位置関係が当該画面に表示されても良い。この場合、搭乗者は、例えば中割り走行を行う際の基準として機体横方向の位置調整を行い易くなる。なお、機体1の走行方位が基準方位Bに合わない場合、機体1の走行方位が基準方位Bに沿うように、機体1の走行方位が自動的に修正される構成であっても良い。
【0067】
図6のステップ#17で制御ユニット30が自動操向モードに移行すると、搭乗部12に設けられたタッチパネル式画面に走行目標ラインCが表示され、走行目標ラインCは、コンバインの前方に延びるように表示される。また、走行目標ラインCに沿う作業領域が当該画面に表示される。作業領域は、例えば図13及び図14に示される領域D7,D8等であって、コンバインの作業幅に亘る幅で作業領域が当該画面に表示される構成であっても良い。作業幅は、搭乗者が入力するものであっても良いし、外部のネットワーク経由で取得するものであっても良い。また、この作業幅に、横方向に隣接する既刈領域または未刈領域とオーバーラップする余分な幅、いわゆるオーバーラップしろが考慮されても良い。このとき、当該オーバーラップしろは、搭乗者が入力するものであっても良いし、外部のネットワーク経由で取得するものであっても良い。コンバインの作業幅に亘る幅で走行目標ラインCに沿う作業領域が当該画面に表示されるとともに、走行目標ラインCに対するコンバインの横ズレ及び方位ズレが当該画面に表示される。
【0068】
〔別実施形態〕
本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
【0069】
(1)制御ユニット30は、機体位置算出部31によって算出された機体位置に基づいて走行軌跡を算出する構成であっても良い。例えば図15に示されるように、機体位置算出部31によって算出された機体位置に基づいて走行軌跡Tが算出され、圃場の外周領域における位置A1と位置A2とに亘る二点間走行の走行軌跡Tが示される。走行軌跡Tの途中の領域Eに水口Wが存在し、水口Wを回避するための迂回走行が行われる場合も考えられる。このような場合、圃場の外周領域における走行軌跡Tが制御ユニット30に記憶され、基準方位算出部33は、走行軌跡Tのうちの直進部分に基づいて基準方位B1を算出する構成であっても良い。また、基準方位B1が算出された後で、基準方位B1に沿って自動操向制御が行われる場合、機体位置算出部31によって算出された機体位置に基づいて、水口Wの存在する領域Eへの接近が判定されると、制御ユニット30は領域Eへの接近を報知可能な構成であっても良い。
【0070】
(2)上述の実施形態において、操向制御部37は、機体位置算出部31からの自機位置情報と、機体方位算出部32からの方位情報と、に基づいて走行装置11を制御するが、この実施形態に限定されない。操向制御部37は、機体位置算出部31からの自機位置情報に基づいて走行装置11を制御しても良いし、機体方位算出部32からの方位情報に基づいて走行装置11を制御しても良い。操向制御部37は、基準方位Bに沿うように、機体位置に基づいて走行装置11を自動的に操向制御しても良い。また、操向制御部37は、基準方位Bに基づいて設定された走行目標ラインCに沿うように、機体位置に基づいて走行装置11を自動的に操向制御しても良い。操向制御部37が基準方位Bに沿うように走行装置11を自動的に操向制御する場合、ライン設定部36が備えられない構成であっても良い。
【0071】
(3)上述の実施形態では、図4に示されるように、位置A1,A2に基づいて基準方位B1が算出され、位置A3,A4に基づいて基準方位B2が算出されているが、この実施形態に限定されない。例えば、基準方位算出部33は、算出済みの基準方位Bから所定の方位だけ方位ずれした基準方位Bを算出可能に構成されても良い。図4に示される例では、位置A1,A2に基づいて基準方位B1が算出されると、基準方位B1に対して90°だけ方位ずれした基準方位B2が自動的に算出される構成であっても良い。また、位置A3,A4に基づいて基準方位B2が算出されると、所定の方位だけ方位ずれした基準方位B3が自動的に算出される構成であっても良い。
【0072】
(4)上述の実施形態では、始点設定スイッチ21Aが押下されると位置Aaが記憶され、終点設定スイッチ21Bが押下されると位置Abが記憶され、基準方位算出部33は位置Aa,Abに基づいて基準方位Bを算出するが、この実施形態に限定されない。例えば、機体1が圃場の外周辺に沿って直進(または略直進、以下同じ)したら、その直進区間に基づいて基準方位Bが自動的に算出される構成であっても良い。例えば図4では、機体1が位置A1,A2に亘って直進することによって基準方位B1が自動的に算出され、機体1が位置A3,A4に亘って直進することによって基準方位B2が算出されても良い。
また、機体1が位置A5,A6に亘って直進することによって基準方位B3が自動的に算出され、機体1が位置A7,A8に亘って直進することによって基準方位B4が算出されても良い。また、圃場の外周辺に沿う直進区間の全てに基づいて基準方位Bが自動的に算出される必要はなく、圃場の外周辺のうち少なくとも一辺に沿う直進区間に基づいて基準方位Bが自動的に算出される構成であっても良い。即ち、基準方位算出部33は、圃場の外周領域における周回走行中に算出された機体位置に基づいて基準方位Bを算出する構成であれば良い。
【0073】
(5)本発明の『機体位置算出部』は、機体位置算出部31と衛星測位モジュール80とが一体的に構成されたものであっても良い。また、機体方位算出部32が、機体位置算出部31と衛星測位モジュール80との少なくとも一方の位置情報に基づいて機体1の方位を算出する構成であっても良い。
【0074】
(6)上述の実施形態では、基準方位Bに沿って、一方向と、一方向と180°反対方向と、の双方向に機体1の走行が可能であるが、基準方位Bに沿って一方向にのみ機体1の走行が可能な単方向の構成であっても良い。この場合、当該一方向と反対方向に自動走行制御を行う場合、当該一方向と180°反対方向の情報を有する別の基準方位Bが記憶部34に記憶されても良い。そして、当該一方向と180°反対方向へ直進する自動操向制御が行われる際に、選択部35が当該別の基準方位Bを選択する構成であっても良い。
【0075】
(7)制御ユニット30に、領域算出部が備えられてもよい。領域算出部は、機体位置算出部31が算出した機体1の経時的な位置座標に基づいて、外周領域及び作業対象領域CA(図13及び図14参照)を算出する。具体的には、領域算出部は、機体位置算出部31が算出した機体1の経時的な位置座標に基づいて、圃場の外周側における周回走行(初期周回走行)での機体1の走行軌跡を算出する。そして、領域算出部は、算出された機体1の走行軌跡に基づいて、機体1が圃場の作物を収穫しながら走行した圃場の外周側の領域を外周領域として設定する。また、領域算出部は、算出された外周領域よりも圃場内側の領域を作業対象領域CAとして設定する。算出された外周領域及び作業対象領域CAは記憶部34に記憶される構成であっても良い。
【0076】
なお、上述の実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。
また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
【産業上の利用可能性】
【0077】
本発明は、普通型コンバイン以外にも、自脱型コンバイン、田植機、直播機、トラクタ、管理機等の農作業機に適用できる。
【符号の説明】
【0078】
1 :機体
11 :走行装置
31 :機体位置算出部
32 :機体方位算出部
33 :基準方位算出部
36 :ライン設定部
37 :操向制御部
B :基準方位
B1 :基準方位
B2 :基準方位
B3 :基準方位
B4 :基準方位
C :走行目標ライン
C1 :走行目標ライン
C2 :走行目標ライン
C3 :走行目標ライン
C4 :走行目標ライン
C5 :走行目標ライン
C6 :走行目標ライン
C7 :走行目標ライン
C8 :走行目標ライン
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15